JP5445778B2 - Current mirror type biosensor and method of manufacturing current mirror type biosensor - Google Patents

Current mirror type biosensor and method of manufacturing current mirror type biosensor Download PDF

Info

Publication number
JP5445778B2
JP5445778B2 JP2010190392A JP2010190392A JP5445778B2 JP 5445778 B2 JP5445778 B2 JP 5445778B2 JP 2010190392 A JP2010190392 A JP 2010190392A JP 2010190392 A JP2010190392 A JP 2010190392A JP 5445778 B2 JP5445778 B2 JP 5445778B2
Authority
JP
Japan
Prior art keywords
current mirror
isfet
biosensor
region
type biosensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010190392A
Other languages
Japanese (ja)
Other versions
JP2012047611A (en
Inventor
樋口  拓也
克行 甕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2010190392A priority Critical patent/JP5445778B2/en
Publication of JP2012047611A publication Critical patent/JP2012047611A/en
Application granted granted Critical
Publication of JP5445778B2 publication Critical patent/JP5445778B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、2つの電界効果トランジスタのペアからカレントミラー回路を構成すると共に、そのうちの1つのトランジスタで液体試料特性のセンシングを行うように構成したカレントミラー型バイオセンサ及びそのようなカレントミラー型バイオセンサの製造方法に関する。   The present invention comprises a current mirror type biosensor configured to form a current mirror circuit from a pair of two field effect transistors and to sense liquid sample characteristics with one of the transistors, and such a current mirror type biosensor. The present invention relates to a method for manufacturing a sensor.

近年、疾患の診断、薬物代謝に関する個人差の検出、または、食品若しくは環境モニタ等の目的で、DNA、糖鎖、タンパク質等の生体関連物質の検査をするための種々の方法が開発されており、特に、電気的な信号によって生体分子(biomolecule)を検出するバイオセンサの研究が進んでいる。最近では、電気的な信号の転換が速く、集積回路とMEMS(Micoro Electro Mechanical System)の接続が容易であるという観点から、電界効果トランジスタ(Field Effect Transistor、以下、「FET」ともいう。)を使用して生物学的な反応を検出するバイオセンサについて多くの研究がなされている。   In recent years, various methods have been developed for testing biologically relevant substances such as DNA, sugar chains, and proteins for purposes such as disease diagnosis, detection of individual differences in drug metabolism, or food or environmental monitoring. In particular, research on biosensors that detect biomolecules using electrical signals is in progress. Recently, a field effect transistor (hereinafter also referred to as “FET”) is used from the viewpoint that electrical signal conversion is fast and the connection between an integrated circuit and a MEMS (Micro Electro Mechanical System) is easy. Much research has been done on biosensors that are used to detect biological responses.

従来、FETを用いたバイオセンサは、MOSFETからゲート電極を除去し、絶縁膜の上にイオン感応膜を被着した構造を有しており、「ISFET(Ion Sensitive FET)」と呼ばれている。そして、イオン感応膜に酸化還元酵素、各種タンパク質、DNA、抗原または抗体などを配置することによって、各種バイオセンサとして機能するようになっている。   Conventionally, a biosensor using an FET has a structure in which a gate electrode is removed from a MOSFET and an ion-sensitive film is deposited on an insulating film, which is called “ISFET (Ion Sensitive FET)”. . Then, by arranging an oxidoreductase, various proteins, DNA, antigen or antibody on the ion sensitive membrane, it functions as various biosensors.

具体的には、バイオセンサに用いられるFETは、シリコン基板の表面にソース電極、ドレイン電極及びゲート絶縁膜を形成し、ソース電極とドレイン電極間のゲート絶縁物表面に金属電極を有する構造となっている。この金属電極の表面には、DNAプローブとアルカンチオールが配置されている。実際に測定を行う場合には、金属電極と、金属電極の表面上に配置されたDNAプローブ及びアルカンチオールと、参照電極とが測定セル内の反応溶液中に配置されるようになっており、参照電極を介して電圧が印加されると、反応溶液中に含まれるターゲットDNAとDNAプローブとの結合の前後で変化する絶縁ゲート電界効果トランジスタの電気特性変化、すなわち、ソースとドレインとの間を流れる電流値の変化を検出することにより、反応溶液中に含まれるターゲットDNAの伸張の有無を検出することができるようになっている。   Specifically, an FET used for a biosensor has a structure in which a source electrode, a drain electrode, and a gate insulating film are formed on the surface of a silicon substrate, and a metal electrode is formed on the surface of the gate insulator between the source electrode and the drain electrode. ing. A DNA probe and alkanethiol are disposed on the surface of the metal electrode. When actually performing the measurement, the metal electrode, the DNA probe and alkanethiol arranged on the surface of the metal electrode, and the reference electrode are arranged in the reaction solution in the measurement cell, When a voltage is applied through the reference electrode, the electrical characteristics of the insulated gate field effect transistor change before and after the binding between the target DNA and the DNA probe contained in the reaction solution, that is, between the source and the drain. By detecting the change in the value of the flowing current, it is possible to detect the presence or absence of extension of the target DNA contained in the reaction solution.

上記のようなバイオセンサをさらに発展させた形態として、特許文献1(特表2008−506943号公報)には、カレントミラー回路の一つのトランジスタをISFETに設定することにより、バイオセンシング部の反応に応じた電流を検知できるようにしたカレントミラー型のバイオセンサが開示されている。
特表2008−506943号公報
As a form in which the biosensor as described above is further developed, Patent Document 1 (Japanese Patent Publication No. 2008-506943) describes a reaction of the biosensing unit by setting one transistor of a current mirror circuit as an ISFET. A current mirror type biosensor capable of detecting a corresponding current is disclosed.
Special table 2008-506943 gazette

ところで、カレントミラー回路においては、入力した電流と、出力した電流とが等しくなることが理想であるが、カレントミラー回路を構成するそれぞれのトランジスタの動作特性のバラツキなどによって、必ずしも理想通りとならない。このため、従来のカレントミラー型バイオセンサにおいては、補正回路を追加するなどしてセンサで取得される検出値を補正する必要などがあり、コストアップの要因となる、という問題があった。   By the way, in a current mirror circuit, it is ideal that the input current is equal to the output current, but it is not always ideal because of variations in the operating characteristics of the transistors constituting the current mirror circuit. For this reason, in the conventional current mirror type biosensor, there is a problem that it is necessary to correct the detection value acquired by the sensor by adding a correction circuit or the like, which causes a cost increase.

本発明は以上のような課題を解決するためのものであり、請求項1に係る発明は、2つのトランジスタからなり、前記2つのトランジスタによってカレントミラー回路が構成されると共に、前記2つのトランジスタのうち、一方のトランジスタがISFETとして利用され、他方のトランジスタがISFETとして利用されないカレントミラー型バイオセンサにおいて、ISFETとして利用されるトランジスタにゲート電極が設けられ、前記ゲート電極に切断予定箇所が設けられていることを特徴とする。   The present invention is to solve the above-described problems, and the invention according to claim 1 includes two transistors, a current mirror circuit is configured by the two transistors, and the two transistors are Among them, in a current mirror type biosensor in which one transistor is used as an ISFET and the other transistor is not used as an ISFET, a gate electrode is provided in a transistor used as an ISFET, and a portion to be cut is provided in the gate electrode. It is characterized by being.

また、請求項2に係る発明は、請求項1に記載のカレントミラー型バイオセンサにおいて、
前記切断予定箇所には、切り欠き部が設けられることを特徴とする。
The invention according to claim 2 is the current mirror biosensor according to claim 1,
The cut portion is provided with a notch.

また、請求項3に係る発明は、請求項1又は請求項2に記載のカレントミラー型バイオセンサにおいて、前記切断予定箇所が切断され、前記ゲート電極が電気的に浮遊状態とされることを特徴とする。   The invention according to claim 3 is the current mirror biosensor according to claim 1 or claim 2, wherein the planned cutting position is cut and the gate electrode is electrically floated. And

また、請求項4に係る発明は、2つのトランジスタからなり、前記2つのトランジスタによってカレントミラー回路が構成されると共に、前記2つのトランジスタのうち、一方のトランジスタがISFETとして利用され、他方のトランジスタがISFETとして利用されないカレントミラー型バイオセンサにおいて、ISFETとして利用されるトランジスタのゲート電極と、ISFETとして利用されないトランジスタのゲート電極との間の導通のオンオフを行うスイッチング回路部が設けられていることを特徴とする。
The invention according to claim 4 includes two transistors, and a current mirror circuit is constituted by the two transistors, and one of the two transistors is used as an ISFET, and the other transistor is In a current mirror type biosensor that is not used as an ISFET , a switching circuit unit that turns on and off conduction between a gate electrode of a transistor that is used as an ISFET and a gate electrode of a transistor that is not used as an ISFET is provided. And

また、請求項5に係る発明は、請求項1乃至請求項4のいずれかに記載のカレントミラー型バイオセンサにおいて、前記ISFETとして利用されるトランジスタは感応膜をさらに有し、前記感応膜上における所定領域に被検査物質が配置されることを特徴とする。   The invention according to claim 5 is the current mirror type biosensor according to any one of claims 1 to 4, wherein the transistor used as the ISFET further includes a sensitive film, on the sensitive film. A test substance is arranged in a predetermined area.

また、請求項6に係る発明は、請求項5に記載のカレントミラー型バイオセンサにおいて、前記感応膜と接触しない探針状の参照電極を有し、前記探針状の参照電極が前記被検査物質と接触することを特徴とする。   The invention according to claim 6 is the current mirror biosensor according to claim 5, further comprising a probe-like reference electrode that does not contact the sensitive film, wherein the probe-like reference electrode is the test object. It is characterized by contact with a substance.

また、請求項7に係る発明は、請求項5に記載のカレントミラー型バイオセンサにおいて、前記感応膜上に設けられた膜状の参照電極を有し、前記膜状の参照電極が前記被検査物質と接触することを特徴とする。   The invention according to claim 7 is the current mirror biosensor according to claim 5, further comprising a film-like reference electrode provided on the sensitive film, wherein the film-like reference electrode is the inspected object. It is characterized by contact with a substance.

また、請求項8に係る発明は、請求項1乃至請求項4のいずれかに記載のカレントミラー型バイオセンサにおいて、前記ISFETとして利用されるトランジスタは感応膜をさらに有し、前記感応膜上には被検査物質を配置する所定領域が設けられることを特徴とする。   The invention according to claim 8 is the current mirror biosensor according to any one of claims 1 to 4, wherein the transistor used as the ISFET further includes a sensitive film, and the sensitive film is formed on the sensitive film. Is characterized in that it is provided with a predetermined area for placing the substance to be inspected.

また、請求項9に係る発明は、請求項8に記載のカレントミラー型バイオセンサにおいて、前記感応膜と接触しない探針状の参照電極をさらに有することを特徴とする。   The invention according to claim 9 is the current mirror biosensor according to claim 8, further comprising a probe-like reference electrode that does not contact the sensitive film.

また、請求項10に係る発明は、請求項8に記載のカレントミラー型バイオセンサにおいて、前記感応膜上に設けられた膜状の参照電極をさらに有することを特徴とする。   The invention according to claim 10 is the current mirror biosensor according to claim 8, further comprising a film-like reference electrode provided on the sensitive film.

また、請求項11に係る発明は、請求項5乃至請求項10のいずれかに記載のカレントミラー型バイオセンサにおいて、前記所定領域が親水性を示すと共に、前記感応膜上における前記所定領域以外の領域に疎水性を示す領域が含まれていることを特徴とする。   The invention according to claim 11 is the current mirror biosensor according to any one of claims 5 to 10, wherein the predetermined region exhibits hydrophilicity and other than the predetermined region on the sensitive film. The region includes a region exhibiting hydrophobicity.

また、請求項12に係る発明は、請求項5乃至請求項7請求項10のいずれかに記載のカレントミラー型バイオセンサにおいて、前記所定領域が細胞接着性を示すと共に、前記感応膜上における前記所定領域以外の領域に細胞接着阻害性を示す領域が含まれていることを特徴とする。   The invention according to claim 12 is the current mirror biosensor according to any one of claims 5 to 7, wherein the predetermined region exhibits cell adhesiveness and the region on the sensitive membrane. A region other than the predetermined region includes a region showing cell adhesion inhibition.

また、請求項13に係る発明は、請求項1乃至請求項12のいずれかに記載のカレントミラー型バイオセンサにおいて、カレントミラー回路を構成するトランジスタのペアが複数設けられると共に、それぞれのトランジスタのペアのうち1つのトランジスタをISFETとして利用することを特徴とする。   The invention according to claim 13 is the current mirror biosensor according to any one of claims 1 to 12, wherein a plurality of pairs of transistors constituting the current mirror circuit are provided, and each pair of transistors is provided. One of the transistors is used as an ISFET.

また、請求項14に係る発明は、2つのトランジスタからなり、前記2つのトランジスタによってカレントミラー回路が構成されると共に、前記2つのトランジスタのうち、一方のトランジスタがISFETとして利用され、他方のトランジスタがISFETとして利用されないカレントミラー型バイオセンサの製造方法であって、ISFETとして利用されるトランジスタのゲート電極には切断予定箇所を設ける工程と、前記カレントミラー回路に電流を流して電気特性を取得する工程と、前記切断予定箇所を切断する工程と、を含むことを特徴とする。   The invention according to claim 14 includes two transistors, and a current mirror circuit is configured by the two transistors, and one of the two transistors is used as an ISFET, and the other transistor is A method of manufacturing a current mirror type biosensor that is not used as an ISFET, the step of providing a cut-off portion in the gate electrode of a transistor used as an ISFET, and the step of acquiring an electrical characteristic by passing a current through the current mirror circuit And a step of cutting the planned cutting portion.

本発明のカレントミラー型バイオセンサにおいては、ISFETとして利用されるトランジスタのゲート電極には切断予定箇所が設けられ、このゲート電極を利用して予めカレントミラー回路に電流を流して電気特性を取得することで、カレントミラー回路の電気特性をテストすることが可能であるので、本発明のカレントミラー型バイオセンサによれば、補正回路などを追加する必要がなく、コストを抑制しつつ、高い精度での検出を行うことが可能となる。   In the current mirror type biosensor of the present invention, the gate electrode of a transistor used as an ISFET is provided with a scheduled cutting portion, and the gate electrode is used to flow an electric current through a current mirror circuit in advance to acquire electrical characteristics. Therefore, according to the current mirror type biosensor of the present invention, it is possible to test the electrical characteristics of the current mirror circuit. Can be detected.

本発明の第1実施形態に係るカレントミラー型バイオセンサ(テスト前)の構造の概略を示す図である。It is a figure showing the outline of the structure of the current mirror type biosensor (before a test) concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係るカレントミラー型バイオセンサ(テスト前)の回路構成を示す図である。It is a figure which shows the circuit structure of the current mirror type biosensor (before a test) which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の構造の概略を示す図である。It is a figure which shows the outline of the structure of the current mirror type | mold biosensor (tested and in use) which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の回路構成を示す図である。1 is a diagram showing a circuit configuration of a current mirror type biosensor (tested and in actual use) according to a first embodiment of the present invention. 本発明の第1実施形態に係るカレントミラー型バイオセンサ(テスト済み)の使用状況を示す斜視図である。It is a perspective view which shows the use condition of the current mirror type biosensor (tested) which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るカレントミラー型バイオセンサ(テスト前)の構造の概略を示す図である。It is a figure which shows the outline of the structure of the current mirror type biosensor (before a test) which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るカレントミラー型バイオセンサ(テスト前)の回路構成を示す図である。It is a figure which shows the circuit structure of the current mirror type | mold biosensor (before a test) which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の構造の概略を示す図である。It is a figure which shows the outline of the structure of the current mirror type | mold biosensor (tested and in use) which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の回路構成を示す図である。It is a figure which shows the circuit structure of the current mirror type | mold biosensor (tested and actually using) which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るカレントミラー型バイオセンサの構造の概略を示す図である。It is a figure which shows the outline of the structure of the current mirror type | mold biosensor which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係るカレントミラー型バイオセンサの構造の概略を示す図である。It is a figure which shows the outline of the structure of the current mirror type | mold biosensor which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の構造の概略を示す図である。It is a figure which shows the outline of the structure of the current mirror type | mold biosensor (tested and in use) which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の回路構成を示す図である。It is a figure which shows the circuit structure of the current mirror type | mold biosensor (tested and actually used) which concerns on 5th Embodiment of this invention. 本発明に係るカレントミラー型バイオセンサを模式的に示した図である。It is the figure which showed typically the current mirror type | mold biosensor which concerns on this invention. 本発明の第6実施形態に係るカレントミラー型バイオセンサ(テスト前)の構造の概略を示す図である。It is a figure which shows the outline of the structure of the current mirror type biosensor (before a test) which concerns on 6th Embodiment of this invention. 本発明の第6実施形態に係るカレントミラー型バイオセンサ(テスト前)の回路構成を示す図である。It is a figure which shows the circuit structure of the current mirror type biosensor (before a test) which concerns on 6th Embodiment of this invention. 本発明の第6実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の構造の概略を示す図である。It is a figure which shows the outline of the structure of the current mirror type | mold biosensor (tested and in use) which concerns on 6th Embodiment of this invention. 本発明の第6実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の回路構成を示す図である。It is a figure which shows the circuit structure of the current mirror type | mold biosensor (tested and actually using) which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係るカレントミラー型バイオセンサ(テスト前)の上面図である。It is a top view of the current mirror type biosensor (before a test) concerning a 7th embodiment of the present invention. 本発明の第8実施形態に係るカレントミラー型バイオセンサの上面図である。It is a top view of the current mirror type biosensor which concerns on 8th Embodiment of this invention. 本発明の第8実施形態に係るカレントミラー型バイオセンサの回路構成を示す図である。It is a figure which shows the circuit structure of the current mirror type | mold biosensor which concerns on 8th Embodiment of this invention. 本発明の第9実施形態に係るカレントミラー型バイオセンサの構造の概略を示す図である。It is a figure which shows the outline of the structure of the current mirror type | mold biosensor which concerns on 9th Embodiment of this invention. 本発明の第10実施形態に係るカレントミラー型バイオセンサ(テスト前)の構造の概略を示す図である。It is a figure which shows the outline of the structure of the current mirror type | mold biosensor (before a test) which concerns on 10th Embodiment of this invention. 本発明の第1実施形態に係るカレントミラー型バイオセンサの構成に基づくシミュレーション結果を示す図である。It is a figure which shows the simulation result based on the structure of the current mirror type biosensor which concerns on 1st Embodiment of this invention.

本発明のカレントミラー型バイオセンサにおいては、カレントミラー回路を構成する2つの電界効果トランジスタを有するものであるが、2つのトランジスタのうち、一方はISFETとして利用し、他方は通常のFETとして利用する。本発明のカレントミラー型バイオセンサで測定を行う実使用時においては、ISFETとして利用されるトランジスタのゲート電極は不要なものとなるが、一方で、カレントミラー回路に電流を流して電気特性をテストする上では、ISFETとして利用されるトランジスタにもゲート電極を設けておく必要がある。   The current mirror type biosensor of the present invention has two field effect transistors constituting a current mirror circuit, but one of the two transistors is used as an ISFET and the other is used as a normal FET. . The gate electrode of a transistor used as an ISFET is not necessary in actual use when measuring with the current mirror type biosensor of the present invention. On the other hand, a current is passed through the current mirror circuit to test the electrical characteristics. Therefore, it is necessary to provide a gate electrode also for a transistor used as an ISFET.

そこで、本発明のカレントミラー型バイオセンサにおいては、カレントミラー回路の電気的特性をテストするまではISFETとして利用されるトランジスタにもゲート電極を設けるようにしておき、テスト後にはゲート電極を独立させることで、電気的に浮遊状態(電位的にフローティングの状態)とする。このために、ISFETとして利用されるトランジスタのゲート電極には切断予定箇所を予め設けておき、テスト後は、この切断予定箇所を切断することでゲート電極を電気的に浮遊状態とする。   Therefore, in the current mirror biosensor of the present invention, a gate electrode is also provided in a transistor used as an ISFET until the electrical characteristics of the current mirror circuit are tested, and the gate electrode is made independent after the test. Thus, an electrically floating state (potentially floating state) is obtained. For this purpose, a predetermined cut location is provided in advance in the gate electrode of a transistor used as an ISFET, and after the test, the planned cut location is cut to bring the gate electrode into an electrically floating state.

以下、本発明の実施の形態を図面を参照しつつ説明する。以下の図1及び図2は、カレントミラー回路の電気特性テスト前のカレントミラー型バイオセンサ100を示しており、図3乃至図6はカレントミラー回路の電気特性テストが済み、センサとして利用可な状態のカレントミラー型バイオセンサ100を示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 below show a current mirror type biosensor 100 before an electric characteristic test of a current mirror circuit. FIGS. 3 to 6 show an electric characteristic test of the current mirror circuit and can be used as a sensor. The state current mirror type biosensor 100 is shown.

図1は本発明の第1実施形態に係るカレントミラー型バイオセンサ(テスト前)の構造の概略を示す図である。図1(A)はカレントミラー型バイオセンサ(テスト前)を上面側から見た図であり、図1(B)は図1(A)におけるX−X’断面を模式的に示す図で
ある。また、図2は本発明の第1実施形態に係るカレントミラー型バイオセンサ(テスト前)の回路構成を示す図である。
FIG. 1 is a diagram schematically showing the structure of a current mirror type biosensor (before a test) according to the first embodiment of the present invention. FIG. 1A is a view of a current mirror type biosensor (before a test) as viewed from the upper surface side, and FIG. 1B is a view schematically showing a cross section taken along line XX ′ in FIG. . FIG. 2 is a diagram showing a circuit configuration of the current mirror type biosensor (before the test) according to the first embodiment of the present invention.

図3は本発明の第1実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の構造の概略を示す図である。図3(A)はカレントミラー型バイオセンサ(テスト済み、実使用中)を上面側から見た図であり、図3(B)は図3(A)におけるX−X’断面を模式的に示す図である。また、図4は本発明の第1実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の回路構成を示す図である。また、図5は本発明の第1実施形態に係るカレントミラー型バイオセンサ(テスト済み)の使用状況を示す斜視図である。   FIG. 3 is a diagram showing an outline of the structure of the current mirror type biosensor (tested and in actual use) according to the first embodiment of the present invention. FIG. 3A is a view of a current mirror type biosensor (tested and in actual use) viewed from the upper surface side, and FIG. 3B is a schematic view taken along the line XX ′ in FIG. FIG. FIG. 4 is a diagram showing a circuit configuration of the current mirror type biosensor (tested and actually used) according to the first embodiment of the present invention. FIG. 5 is a perspective view showing a usage state of the current mirror type biosensor (tested) according to the first embodiment of the present invention.

本発明に係るカレントミラー型バイオセンサ100は、センサ上側に設けられた所定領域に、細胞、DNA、糖鎖、タンパク質などの生体関連物質を含む被検査液体Fを配置し、その電気的特性を取得するものであり、図1に示すカレントミラー型バイオセンサ100は、トップゲートボトムコンタクトの構造を有するものである。なお、本実施形態では、センサ上側の所定領域に被検査液体Fを配置する例に基づいて説明するが、カレントミラー型バイオセンサ100で測定可能な物質は液体に限らず、気体、固体やジェルなどの被検査物質も含まれる。   The current mirror type biosensor 100 according to the present invention arranges a liquid to be inspected F containing a biological substance such as a cell, DNA, sugar chain, or protein in a predetermined region provided on the upper side of the sensor, and has its electrical characteristics. The current mirror biosensor 100 shown in FIG. 1 has a top gate bottom contact structure. In the present embodiment, description will be made based on an example in which the liquid to be inspected F is arranged in a predetermined region on the upper side of the sensor. However, the substance that can be measured by the current mirror biosensor 100 is not limited to liquid, but may be gas, solid, or gel. Inspected substances such as are also included.

本発明に係るカレントミラー型バイオセンサ100は、第1の電界効果トランジスタと、これとは異なる第2の電界効果トランジスタとを基本の構成としており、センサ内の配線によって、第1及び第2の2つの電界効果トランジスタのペアからカレントミラー回路が構成されるようになっている。また、第1電界効果トランジスタ、第2電界効果トランジスタのいずれか一方が被検査液体の電気的特性をセンシングするためのISFETとして利用され、他方が通常のFETとして利用される(すなわちISFETとしては利用されない)ようになっている。ISFETとして利用される電界効果トランジスタにおいては、センサ実使用時には不要となるが、カレントミラー回路の電気特性テストには必要となるテスト用ゲート電極117が設けられる。   The current mirror type biosensor 100 according to the present invention has a basic configuration including a first field effect transistor and a second field effect transistor different from the first field effect transistor. A current mirror circuit is composed of a pair of two field effect transistors. In addition, either the first field effect transistor or the second field effect transistor is used as an ISFET for sensing the electrical characteristics of the liquid to be inspected, and the other is used as a normal FET (that is, used as an ISFET). Is not). A field effect transistor used as an ISFET is provided with a test gate electrode 117 that is not required when the sensor is actually used, but is necessary for an electrical characteristic test of the current mirror circuit.

以下、各図の左側に位置するトランジスタを第1電界効果トランジスタ、右側に位置するトランジスタを第2電界効果トランジスタと定義して説明する。   Hereinafter, the transistor located on the left side of each figure is defined as a first field effect transistor, and the transistor located on the right side is defined as a second field effect transistor.

カレントミラー型バイオセンサ100には、電流入力端子101、電流出力端子102、参照電極接続用端子103、接地端子104の4つの端子が設けられており、これらにより外部構成との電気接続を可能としている。   The current mirror type biosensor 100 is provided with four terminals including a current input terminal 101, a current output terminal 102, a reference electrode connection terminal 103, and a ground terminal 104, thereby enabling electrical connection with an external configuration. Yes.

電流入力端子101は、センサ内においては、第1電界効果トランジスタの第1ドレイン電極111と参照電極接続用端子103、第2電界効果トランジスタのゲート電極114、テスト用ゲート電極117(テスト前)と導通するようになっている。この電流入力端子101には不図示の定電流源が接続され、電流Iinを流すように利用される。   In the sensor, the current input terminal 101 includes a first drain electrode 111 of the first field effect transistor, a reference electrode connection terminal 103, a gate electrode 114 of the second field effect transistor, and a test gate electrode 117 (before the test). It is designed to conduct. A constant current source (not shown) is connected to the current input terminal 101 and is used so as to flow a current Iin.

また、電流出力端子102は、センサ内においては、第2電界効果トランジスタの第2ドレイン電極112と導通するようになっている。本発明に係るカレントミラー型バイオセンサ100は、図2に示すようなカレントミラー回路が組まれていることから、この電流出力端子102には、電流入力端子101にIinが流れると、電流Ioutが流れるようになっている。被検査液体Fの電気的特性は、所定の電流Iinを電流入力端子101に流したとき、電流出力端子102にどのような電流Ioutが流れるかによって解析されるようになっている。   The current output terminal 102 is electrically connected to the second drain electrode 112 of the second field effect transistor in the sensor. Since the current mirror type biosensor 100 according to the present invention includes a current mirror circuit as shown in FIG. 2, when Iin flows through the current input terminal 101, the current Iout is supplied to the current output terminal 102. It comes to flow. The electrical characteristics of the liquid F to be inspected are analyzed depending on what current Iout flows through the current output terminal 102 when a predetermined current Iin flows through the current input terminal 101.

参照電極接続用端子103は、センサ内においては、第1電界効果トランジスタの第1
ドレイン電極111、第2電界効果トランジスタのゲート電極114と導通するようになっている。この参照電極接続用端子103には、例えば、探針状の参照電極115が接続されるようになっており、参照電極115は被検査液体F中に挿通された状態で、被検査液体Fと電気的に導通させるようにして利用される。
The reference electrode connection terminal 103 is the first field effect transistor first in the sensor.
The drain electrode 111 is electrically connected to the gate electrode 114 of the second field effect transistor. For example, a probe-like reference electrode 115 is connected to the reference electrode connection terminal 103, and the reference electrode 115 is inserted into the liquid F to be inspected and the liquid F to be inspected. It is used so as to be electrically conducted.

ISFETにおける参照電極115は、通常のFETではゲート電極に相当する電極であるが、ISFETにおいては、この参照電極115は、被検査液体Fの電気的特性を、感応膜140などを介して、第1ドレイン電極111−ソース電極113間の半導体膜120に伝達させるための機能を果たす。センサ実使用状態を示す図4における第1電界効果トランジスタの回路図は、このような参照電極115と被検査液体Fとの関係を模式的に示したものである。   The reference electrode 115 in the ISFET is an electrode corresponding to the gate electrode in the normal FET, but in the ISFET, the reference electrode 115 has the electrical characteristics of the liquid F to be inspected through the sensitive film 140 and the like. It functions to transmit to the semiconductor film 120 between the 1 drain electrode 111 and the source electrode 113. The circuit diagram of the first field effect transistor in FIG. 4 showing the actual use state of the sensor schematically shows the relationship between the reference electrode 115 and the liquid F to be inspected.

接地端子104は、センサ内においてはソース電極113と導通するようになっている。この接地端子104はグランドと接続するために利用される。なお、本発明においては、ソース電極113を接地して、第1ドレイン電極111、第2ドレイン電極112を電流の入力側電極として利用する例について説明するが、ドレイン電極を接地するようにして、2つのソース電極を設けて、これらのソース電極を入力側電極として利用するように構成してもよい。   The ground terminal 104 is electrically connected to the source electrode 113 in the sensor. The ground terminal 104 is used to connect to the ground. In the present invention, an example will be described in which the source electrode 113 is grounded and the first drain electrode 111 and the second drain electrode 112 are used as current input electrodes. However, the drain electrode is grounded, Two source electrodes may be provided, and these source electrodes may be used as input side electrodes.

ISFETとして利用される第1電界効果トランジスタには、切断予定箇所Cを備えるテスト用ゲート電極117が設けられており、カレントミラー回路の電気特性テストが済むとセンサとして実使用可能とするようにこの切断予定箇所Cが適当な方法によって切断されるようになっている。切断予定箇所Cの切断方法としては、センサ外部から照射されるレーザーによって溶断させる方法や、物理的にセンサを積層方法から打ち抜く方法など適当な方法を適宜用いることができる。   The first field effect transistor used as an ISFET is provided with a test gate electrode 117 having a planned cutting position C. After the electrical characteristics test of the current mirror circuit is completed, this can be used as a sensor. The planned cutting location C is cut by an appropriate method. As a method for cutting the planned cutting position C, an appropriate method such as a method of fusing with a laser irradiated from the outside of the sensor or a method of physically punching out the sensor from the lamination method can be used as appropriate.

テストが実施された後には、テスト用ゲート電極117を電気的に浮遊状態とするために、テスト用ゲート電極117は他の導通部位と切り離されるが、この目的で利用される切断予定箇所Cとしては、(1)カレントミラー型バイオセンサ100の積層方向において、半導体膜120と重なっていないこと、及び(2)切断予定箇所Cの切断により、センサとして利用する際に必要な導通(例えば、電流入力端子101とスルーホールTH1との間の導通など)を妨げないこと、を満足する位置に設けられている必要がある。切断予定箇所Cは、上記のような条件を満足する位置に設けられていればよく、ある程度の位置的な自由度を有するものである。   After the test is performed, the test gate electrode 117 is separated from other conductive parts in order to bring the test gate electrode 117 into an electrically floating state. (1) The current mirror type biosensor 100 is not overlapped with the semiconductor film 120 in the stacking direction, and (2) the continuity necessary for use as a sensor by cutting the planned cutting position C (for example, current) It is necessary to be provided at a position satisfying that it does not hinder the conduction between the input terminal 101 and the through hole TH1. The planned cutting location C only needs to be provided at a position satisfying the above conditions, and has a certain degree of positional freedom.

図1(A)に示すテスト前のテスト用ゲート電極117の切断予定箇所Cは、カレントミラー回路の電気特性テスト後においては、図3(A)に示すように切断されるようになっている。また、これを回路図的に見ると、図2に示すテスト前のテスト用ゲート電極117は、テスト後は切断予定箇所Cで切断され、電気的にフローティングの状態となるので、図4に示すように回路上は存在しないようになる。   The planned cutting position C of the test gate electrode 117 before the test shown in FIG. 1A is cut as shown in FIG. 3A after the electrical characteristic test of the current mirror circuit. . Further, when viewed from a circuit diagram, the test gate electrode 117 before the test shown in FIG. 2 is cut off at the planned cutting position C after the test, and is in an electrically floating state. So that it does not exist on the circuit.

次に、本発明に係るカレントミラー型バイオセンサ100の積層構造について説明する。なお、各端子については図1(B)に示されていないが、各端子は適当な周知の方法によってセンサ内に組み込まれるようになっている。   Next, the laminated structure of the current mirror type biosensor 100 according to the present invention will be described. Although each terminal is not shown in FIG. 1B, each terminal is incorporated in the sensor by an appropriate well-known method.

基材110は、半導体膜120、第1ドレイン電極111、第2ドレイン電極112、ソース電極113を積層することが可能な材料で形成されたものであれば特に限定されるものではない。具体的には、ガラス等の無機材料、PENまたはPETなどのプラスチック(ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ABS樹脂、ナイロン、アクリル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、メチルペンテ
ン樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、塩化ビニル樹脂)で代表される有機材料を挙げることができる。本実施形態においては基材110の形状を平板としたが、基材110の形状はこれに限定されず、例えば、平膜、フィルム、多孔質膜等の平坦な形状や、シリンダ、スタンプ、マルチウェルプレート、マイクロ流路等の立体的な形状を採用することもできる。フィルムを使用する場合、その厚さは特に制限されないが、通常1μm〜1mm程度である。
The substrate 110 is not particularly limited as long as it is formed of a material capable of stacking the semiconductor film 120, the first drain electrode 111, the second drain electrode 112, and the source electrode 113. Specifically, inorganic materials such as glass, plastics such as PEN or PET (polyester resin, polyethylene resin, polypropylene resin, ABS resin, nylon, acrylic resin, fluororesin, polycarbonate resin, polyurethane resin, methylpentene resin, phenol resin , Melamine resin, epoxy resin, vinyl chloride resin). In the present embodiment, the shape of the base material 110 is a flat plate, but the shape of the base material 110 is not limited to this. For example, a flat shape such as a flat film, a film, a porous film, a cylinder, a stamp, a multi-layer A three-dimensional shape such as a well plate or a micro flow path can also be employed. When using a film, the thickness is not particularly limited, but is usually about 1 μm to 1 mm.

半導体膜120は、第1ドレイン電極111、第2ドレイン電極112、ソース電極113を覆うようにして基材110上に積層されて形成されている。この半導体膜120は、基ゲート絶縁膜130を積層することが可能な材料で形成されたものであれば特に限定されるものではない。   The semiconductor film 120 is formed on the substrate 110 so as to cover the first drain electrode 111, the second drain electrode 112, and the source electrode 113. The semiconductor film 120 is not particularly limited as long as it is formed of a material capable of laminating the base gate insulating film 130.

具体的には、半導体膜120は、InMZnO(Mはガリウム(Ga)、アルミニウム(Al)、鉄(Fe)のうち少なくとも1種)を主成分とするアモルファス酸化物によって形成される。特に、MがGaであるInGaZnO系のアモルファス酸化物が好ましい。また、このIGZOを主成分とする半導体膜120には、必要に応じて、Al、Fe、Sn等を構成元素として加えたものであってもよい。IGZO半導体膜など半導体膜120は、室温から150℃程度の低温での製膜が可能であることから、耐熱性に乏しいプラスチック基板やガラス基板に対して好ましく適用できる。   Specifically, the semiconductor film 120 is formed of an amorphous oxide containing InMZnO (M is at least one of gallium (Ga), aluminum (Al), and iron (Fe)) as a main component. In particular, an InGaZnO-based amorphous oxide in which M is Ga is preferable. In addition, the semiconductor film 120 containing IGZO as a main component may be added with Al, Fe, Sn, or the like as a constituent element, if necessary. The semiconductor film 120 such as an IGZO semiconductor film can be formed at room temperature to a low temperature of about 150 ° C., and thus can be preferably applied to a plastic substrate or a glass substrate having poor heat resistance.

また、半導体膜120は、酸化物亜鉛(ZnO)を主成分とする酸化物半導体から形成されていてもよい。また、このZnOを主成分とする半導体膜120には、真性の酸化物亜鉛の他に、必要に応じて、リチウム(Li)、ナトリウム(Na)、窒素(N)及び炭素(C)等のp型ドーパント及びホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)等のn型ドーパントがドーピングされた酸化亜鉛及びマグネシウム(Mg)、ベリリウム(Be)などがドーピングされた酸化亜鉛を加えたものであってもよい。さらに、半導体膜120は、錫を添加した酸化インジウム(インジウム錫オキサイド:ITO)、インジウム亜鉛オキサイド(IZO)または酸化マグネシウム(MgO)などの酸化物半導体から形成されていてもよい。   The semiconductor film 120 may be formed of an oxide semiconductor containing zinc oxide (ZnO) as a main component. In addition to the intrinsic zinc oxide, the semiconductor film 120 containing ZnO as a main component includes lithium (Li), sodium (Na), nitrogen (N), carbon (C), and the like as necessary. Zinc oxide doped with p-type dopant and n-type dopants such as boron (B), aluminum (Al), gallium (Ga), indium (In), and oxide doped with magnesium (Mg), beryllium (Be), etc. Zinc may be added. Further, the semiconductor film 120 may be formed of an oxide semiconductor such as indium oxide to which tin is added (indium tin oxide: ITO), indium zinc oxide (IZO), or magnesium oxide (MgO).

なお、半導体膜120の膜圧は、諸条件により適宜選択されることが可能であって、特に、20nm〜100nm程度が好ましい。   Note that the film pressure of the semiconductor film 120 can be appropriately selected depending on various conditions, and is preferably about 20 nm to 100 nm.

半導体膜120における第1ドレイン電極111、ソース電極113との間の領域(I
)は第1電界効果トランジスタのチャンネル領域(I)として、また、半導体膜120に
おけるソース電極113、第2ドレイン電極112との間の領域(I I)は第2電界効果
トランジスタのチャンネル領域(II)として、それぞれ機能する。
A region between the first drain electrode 111 and the source electrode 113 in the semiconductor film 120 (I
) Is the channel region (I) of the first field effect transistor, and the region (II) between the source electrode 113 and the second drain electrode 112 in the semiconductor film 120 is the channel region (II) of the second field effect transistor. As each function.

基材110平面上において、第1ドレイン電極111、ソース電極113、第2ドレイン電極112は、積層方向に対して垂直となる水平方向で、所定の間隔をもって配置されるようにして形成されている。これら第1ドレイン電極111、ソース電極113、第2ドレイン電極112は、半導体膜120とのオーミック接触が得られるものであれば特に限定されるものではない。具体的には、インジウム錫オキサイド(ITO)、酸化亜鉛(ZnO)、酸化スズ(SnO2)などの導電性のものから形成される。 On the plane of the substrate 110, the first drain electrode 111, the source electrode 113, and the second drain electrode 112 are formed so as to be arranged at a predetermined interval in the horizontal direction perpendicular to the stacking direction. . The first drain electrode 111, the source electrode 113, and the second drain electrode 112 are not particularly limited as long as ohmic contact with the semiconductor film 120 is obtained. Specifically, it is made of a conductive material such as indium tin oxide (ITO), zinc oxide (ZnO), tin oxide (SnO 2 ).

なお、第1ドレイン電極111、ソース電極113、第2ドレイン電極112の膜圧は、諸条件により適宜選択されることが可能であって、特に、20nm〜200nm程度が好ましい。   Note that the film pressures of the first drain electrode 111, the source electrode 113, and the second drain electrode 112 can be appropriately selected depending on various conditions, and are preferably about 20 nm to 200 nm.

ゲート絶縁膜130は、半導体膜120、第1ドレイン電極111、ソース電極113
、第2ドレイン電極112を覆うように、半導体膜120、第1ドレイン電極111、ソース電極113、第2ドレイン電極112上に積層される。また、このゲート絶縁膜130は、層間絶縁膜135を積層することが可能な材料で形成されたものであれば特に限定されるものではない。具体的には、絶縁性の観点から、酸化珪素(SiO2)、窒化珪素
(SiNx)、窒化酸化珪素(SiOxNy)などのシリコン酸化物若しくはシリコン窒化物から形成される。特に、本実施形態のゲート絶縁膜130には、酸化珪素を用いるのが好ましい。なお、ゲート絶縁膜130の膜圧は、諸条件により適宜選択可能であって、特に、50nmから1μm程度が好ましい。
The gate insulating film 130 includes a semiconductor film 120, a first drain electrode 111, and a source electrode 113.
The semiconductor layer 120, the first drain electrode 111, the source electrode 113, and the second drain electrode 112 are stacked so as to cover the second drain electrode 112. The gate insulating film 130 is not particularly limited as long as it is formed of a material capable of laminating the interlayer insulating film 135. Specifically, it is formed from silicon oxide or silicon nitride such as silicon oxide (SiO 2 ), silicon nitride (SiNx), silicon nitride oxide (SiOxNy) from the viewpoint of insulation. In particular, it is preferable to use silicon oxide for the gate insulating film 130 of the present embodiment. Note that the film pressure of the gate insulating film 130 can be appropriately selected according to various conditions, and is preferably about 50 nm to 1 μm.

ゲート電極114やテスト用ゲート電極117は、ゲート絶縁膜130上に積層可能なものであれば特に限定されるものではないが、テスト用ゲート電極117の切断予定箇所Cを、カレントミラー回路の電気特性のテストを行った後に、YAGレーザーなどのレーザーの照射によって溶断する場合には、アルミニウムなどの材質で構成することが好ましい。   The gate electrode 114 and the test gate electrode 117 are not particularly limited as long as the gate electrode 114 and the test gate electrode 117 can be stacked on the gate insulating film 130. In the case of fusing by irradiating a laser such as a YAG laser after the characteristic test, it is preferable to use a material such as aluminum.

層間絶縁膜135は、ゲート電極114やテスト用ゲート電極117やゲート絶縁膜130を覆うようにして積層されるものであり、ポリイミドなどの有機系絶縁膜や、酸化珪素などの無機系絶縁膜のいずれも用いることが可能である。この層間絶縁膜135は、感応膜140を積層することが可能な材料で形成されたものであれば特に限定されるものではない。   The interlayer insulating film 135 is laminated so as to cover the gate electrode 114, the test gate electrode 117, and the gate insulating film 130, and is made of an organic insulating film such as polyimide or an inorganic insulating film such as silicon oxide. Either can be used. The interlayer insulating film 135 is not particularly limited as long as it is formed of a material capable of laminating the sensitive film 140.

感応膜140は、ゲート絶縁膜130及び層間絶縁膜135の上に積層され、被検査液体F中に含まれるサンプル、すなわち、細胞、DNA、糖鎖、タンパク質などの生体関連物質を配置可能なものによって形成される。特に、感応膜140は、半導体膜120における第1電界効果トランジスタのチャンネル領域(I)の上に、被検査液体Fに含まれる
生体関連物質が配置されるための所定領域を有している。感応膜140上にはスリット状凹部145が形成されており、被検査液体Fが前記所定領域に滞留しやすい構造となっている。
The sensitive film 140 is laminated on the gate insulating film 130 and the interlayer insulating film 135, and can contain a sample contained in the liquid F to be inspected, that is, a biological substance such as a cell, DNA, sugar chain, or protein. Formed by. In particular, the sensitive film 140 has a predetermined area on the channel area (I) of the first field effect transistor in the semiconductor film 120 for placing the biological substance contained in the liquid F to be inspected. A slit-shaped recess 145 is formed on the sensitive film 140 so that the liquid F to be inspected easily stays in the predetermined area.

また、感応膜140は、イオン感応膜であって、シリコン酸化膜(SiO2)、シリコ
ン窒化膜(SiN4)、タンタル酸化膜(Ta25)または酸化アルミニウム膜(Al23)によって形成される。これらのイオン感応膜を測定したいイオン種に応じて適宜採用
すればよい。また必要に応じて、DNAタンパク質、糖鎖を固定化する為の表面修飾がなされていてもよい。
The sensitive film 140 is an ion sensitive film, and is formed of a silicon oxide film (SiO 2 ), a silicon nitride film (SiN 4 ), a tantalum oxide film (Ta 2 O 5 ), or an aluminum oxide film (Al 2 O 3 ). It is formed. What is necessary is just to employ | adopt suitably according to the ion species to measure these ion sensitive membranes. If necessary, surface modification for immobilizing DNA protein and sugar chain may be performed.

隔壁150は、感応膜140上であってスリット状凹部145の周囲に形成されており、水溶液または培養液などの被検査液体Fを感応膜140上に滞留させるように積層方向に対して所定の高さを有している。隔壁150は、スリット状凹部145外に被検査液体Fを漏出させないための材料で形成されたものであれば、特に限定されるものではない。具体的には、ガラス、プラスチックまたは金属によって形成されている。このように、本発明に係るカレントミラー型バイオセンサ100は、隔壁150によって感応膜140上の被検査液体Fをスリット状凹部145の所定領域に滞留させることができるので、的確に被検査液体F中の生体関連物質の電気的特性を検出することができる。   The partition wall 150 is formed on the sensitive film 140 and around the slit-shaped recess 145, and has a predetermined direction with respect to the stacking direction so that the liquid F to be inspected such as an aqueous solution or a culture solution is retained on the sensitive film 140. Has a height. The partition 150 is not particularly limited as long as it is made of a material that prevents the liquid F to be inspected from leaking out of the slit-shaped recess 145. Specifically, it is made of glass, plastic or metal. As described above, the current mirror biosensor 100 according to the present invention can retain the liquid to be inspected F on the sensitive film 140 in the predetermined region of the slit-shaped recess 145 by the partition wall 150. It is possible to detect the electrical characteristics of the biological substance contained therein.

本実施形態のカレントミラー型バイオセンサ100は、上述のような構成を有することによって、被検査液体Fに含まれるサンプル、すなわち、細胞、DNA、糖鎖、タンパク質などの生体関連物質を感応膜140上に配置させることができるようになっている。   The current mirror type biosensor 100 according to the present embodiment has the above-described configuration, so that a sample contained in the liquid F to be inspected, that is, a biological substance such as a cell, DNA, sugar chain, protein, or the like can be detected. It can be placed on top.

被検査液体Fを図示するように感応膜140に滞留させた上で、探針状の参照電極115を被検査液体F中にセットして、電流入力端子101に接続した定電流源により電流I
inを適宜流すようにする。すると、所定の電流Iinを電流入力端子101に流したとき、電流出力端子102に電流Ioutが流れるので、これによりIin−Iout特性を取得して、もって被検査液体F中の生体関連物質の電気的特性を解析する。このような解析によって、被検査液体Fに含まれる生体関連物質の種別、量等を特定することができるようになっている。
After the liquid F to be inspected is retained in the sensitive film 140 as shown in the figure, the probe-like reference electrode 115 is set in the liquid F to be inspected, and the current I is supplied by a constant current source connected to the current input terminal 101.
Make in flow as appropriate. Then, when a predetermined current Iin is supplied to the current input terminal 101, the current Iout flows to the current output terminal 102. Thus, the Iin-Iout characteristic is acquired, and thus the electrical property of the biological substance in the liquid F to be inspected is obtained. Analyze mechanical properties. Through such analysis, the type, amount, etc. of the biological substance contained in the liquid F to be inspected can be specified.

以上、本発明のカレントミラー型バイオセンサ100においては、ISFETとして利用されるトランジスタのテスト用ゲート電極117には切断予定箇所Cが設けられ、このテスト用ゲート電極117を利用して予めカレントミラー回路に電流を流して電気特性を取得することで、カレントミラー回路の電気特性をテストすることが可能であるので、本発明のカレントミラー型バイオセンサ100によれば、補正回路などを追加する必要がなく、コストを抑制しつつ、高い精度での検出を行うことが可能となる。   As described above, in the current mirror type biosensor 100 of the present invention, the test gate electrode 117 of the transistor used as the ISFET is provided with the scheduled cutting position C, and the current mirror circuit is previously used by using the test gate electrode 117. Since it is possible to test the electrical characteristics of the current mirror circuit by obtaining the electrical characteristics by passing a current through the current mirror, it is necessary to add a correction circuit or the like according to the current mirror type biosensor 100 of the present invention. In addition, it is possible to perform detection with high accuracy while suppressing cost.

次に、本発明の他の実施形態について説明する。図6は本発明の第2実施形態に係るカレントミラー型バイオセンサ(テスト前)の構造の概略を示す図であり、図7は本発明の第2実施形態に係るカレントミラー型バイオセンサ(テスト前)の回路構成を示す図である。また、図8は本発明の第2実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の構造の概略を示す図であり、図9は本発明の第2実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の回路構成を示す図である。   Next, another embodiment of the present invention will be described. FIG. 6 is a diagram schematically showing the structure of a current mirror biosensor (before testing) according to the second embodiment of the present invention, and FIG. 7 is a diagram showing the current mirror biosensor (testing) according to the second embodiment of the present invention. It is a figure which shows the circuit structure of the front. FIG. 8 is a diagram showing an outline of the structure of a current mirror biosensor (tested and in actual use) according to the second embodiment of the present invention, and FIG. 9 is a current diagram according to the second embodiment of the present invention. It is a figure which shows the circuit structure of a mirror type | mold biosensor (tested and actually used).

本発明の第1実施形態に係るカレントミラー型バイオセンサ100においては、第1電界効果トランジスタ、第2電界効果トランジスタのうち、第1電界効果トランジスタをISFETとして利用し、これにテスト用ゲート電極117を設けるものであったが、第2実施形態に係るカレントミラー型バイオセンサ100においては、第2電界効果トランジスタを被検査液体Fの電気的特性をセンシングするためのISFETとして利用し、これにテスト用ゲート電極117を設け、第1電界効果トランジスタを通常のFETとして利用する(すなわちISFETとしては利用しない)ように構成されるものである。なお、その他の構成は、第1実施形態と同一であり、同一部材に対しては同一の符号を付している。   In the current mirror biosensor 100 according to the first embodiment of the present invention, the first field effect transistor is used as the ISFET among the first field effect transistor and the second field effect transistor, and the test gate electrode 117 is used as the ISFET. However, in the current mirror type biosensor 100 according to the second embodiment, the second field effect transistor is used as an ISFET for sensing the electrical characteristics of the liquid F to be inspected, and this is tested. The gate electrode 117 is provided, and the first field effect transistor is used as a normal FET (that is, not used as an ISFET). Other configurations are the same as those in the first embodiment, and the same members are denoted by the same reference numerals.

以上のような第2実施形態によっても、先の実施形態と同様の効果を享受することが可能である。   Also according to the second embodiment as described above, it is possible to receive the same effect as the previous embodiment.

次に、本発明の他の実施形態について説明する。図10は本発明の第3実施形態に係るカレントミラー型バイオセンサの構造の概略を示す図である。この図10は、第1実施形態における図1(B)に相当するものである。   Next, another embodiment of the present invention will be described. FIG. 10 is a diagram showing an outline of the structure of a current mirror type biosensor according to the third embodiment of the present invention. FIG. 10 corresponds to FIG. 1B in the first embodiment.

本実施形態が第1実施形態と異なる点は、第3実施形態においては、感応膜140上において、親水性・疎水性を付与する処理がなされている点である。その他の構成については、第1実施形態と同一であるので、同一部材に対しては同一の符号を付してその説明を省略する。   The present embodiment is different from the first embodiment in that, in the third embodiment, a treatment for imparting hydrophilicity / hydrophobicity is performed on the sensitive film 140. Since other configurations are the same as those in the first embodiment, the same members are denoted by the same reference numerals and description thereof is omitted.

すなわち、第3実施形態においては、感応膜140上の所定領域に対しては親水性を付与する処理が施され親水性領域141が形成されると共に、感応膜140上における前記所定領域以外の領域に対しては疎水性を付与する処理が施され疎水性領域142が形成される。このような各処理が施されているため、本実施形態によれば、感応膜140上の被検査液体Fをスリット状凹部145の所定領域に確実に滞留させることができるようになり、より的確に被検査液体F中の生体関連物質の電気的特性を検出することができるようになる。   That is, in the third embodiment, a treatment for imparting hydrophilicity is performed on a predetermined region on the sensitive film 140 to form a hydrophilic region 141, and regions other than the predetermined region on the sensitive film 140 are formed. Is subjected to a treatment for imparting hydrophobicity to form a hydrophobic region 142. Since each of these processes is performed, according to the present embodiment, the liquid F to be inspected on the sensitive film 140 can be reliably retained in a predetermined region of the slit-shaped recess 145, which is more appropriate. In addition, the electrical characteristics of the biological substance in the liquid F to be inspected can be detected.

第3実施形態に係るカレントミラー型バイオセンサ100においては、感応膜140上の所定領域は、親水性を発揮するための物質が塗布等によって形成され、親水性領域141とされる。一方、感応膜140上に形成された領域であって、被検査液体Fを滞留させるための所定領域の外周に沿った領域は、疎水性を発揮するための物質が塗布等によって形成され、疎水性領域142とされる。   In the current mirror type biosensor 100 according to the third embodiment, a predetermined region on the sensitive film 140 is formed by applying a substance for exhibiting hydrophilicity or the like to be a hydrophilic region 141. On the other hand, in the region formed on the sensitive film 140 and along the outer periphery of the predetermined region for retaining the liquid F to be inspected, a substance for exhibiting hydrophobicity is formed by application or the like. Sex region 142.

所定領域は、感応膜140が親水性の物質によって形成されている場合に、他の物質を用いることなく、感応膜140の物質そのものによって代替することができる。また、所定領域は、上記に代えて、感応膜140の表面へ親水性の物質の塗布等、または、低親水性若しくは親水性を有する物質の塗布及びUV照射等によって形成されてもよい。   When the sensitive film 140 is formed of a hydrophilic substance, the predetermined region can be replaced by the substance itself of the sensitive film 140 without using another substance. In addition, the predetermined region may be formed by applying a hydrophilic substance to the surface of the sensitive film 140, or applying a substance having low hydrophilicity or hydrophilicity, UV irradiation, or the like instead of the above.

疎水性領域142は、該当する感応膜140の表面の領域に疎水性の物質の塗布等、または、有機物などの疎水性を有する物質の塗布及び四フッ化メタンガスのプラズマを用いてプラズマ処理を行うことによって形成されている。例えば、本実施形態においては、親水性を有するシリコン酸化膜(SiO2)によって感応膜140が形成されている場合に
は、親水性領域141としては、当該シリコン酸化膜そのものによって形成し、疎水性領域142に相当する領域にレジストなどの有機物を塗布してプラズマ処理を行うことによって当該疎水性領域142を形成するようになっている。
The hydrophobic region 142 performs plasma treatment on the surface region of the corresponding sensitive film 140 by applying a hydrophobic substance or the like, or applying a hydrophobic substance such as an organic substance and plasma of tetrafluoromethane gas. It is formed by. For example, in the present embodiment, when the sensitive film 140 is formed by a hydrophilic silicon oxide film (SiO 2 ), the hydrophilic region 141 is formed by the silicon oxide film itself and is hydrophobic. The hydrophobic region 142 is formed by applying an organic material such as a resist to a region corresponding to the region 142 and performing plasma treatment.

本実施形態のようにカレントミラー型バイオセンサ100の感応膜140上において、親水性・疎水性を付与する処理がなされていると、使用状況によっては、被検査液体Fを感応膜140に滞留させるための隔壁150などの部材を不要とすることも可能となるので、製造コストを抑制することが可能となる。   When processing for imparting hydrophilicity / hydrophobicity is performed on the sensitive film 140 of the current mirror biosensor 100 as in the present embodiment, the liquid F to be inspected is retained in the sensitive film 140 depending on the use situation. Therefore, it is possible to eliminate the need for a member such as the partition wall 150, so that the manufacturing cost can be reduced.

また、第3実施形態に係るカレントミラー型バイオセンサ100によっても、これまで説明してきた実施形態が享受する効果と同様のものを享受することが可能である。   Also, the current mirror biosensor 100 according to the third embodiment can enjoy the same effects as those obtained by the embodiments described so far.

なお、第3実施形態においては、第1電界効果トランジスタをISFETとして利用し、第2電界効果トランジスタを通常のFETとして利用する例につき説明したが、第3実施形態においても、第1電界効果トランジスタを通常のFETとして利用し、第2電界効果トランジスタをISFETとして利用するようにしてもよい。   In the third embodiment, the first field effect transistor is used as an ISFET and the second field effect transistor is used as a normal FET. However, in the third embodiment, the first field effect transistor is also used. May be used as a normal FET, and the second field effect transistor may be used as an ISFET.

次に、本発明の他の実施形態について説明する。図11は本発明の第4実施形態に係るカレントミラー型バイオセンサの構造の概略を示す図である。この図11は、第1実施形態における図1(B)に相当するものである。   Next, another embodiment of the present invention will be described. FIG. 11 is a diagram showing an outline of the structure of a current mirror type biosensor according to the fourth embodiment of the present invention. FIG. 11 corresponds to FIG. 1B in the first embodiment.

本実施形態が第1実施形態と異なる点は、第4実施形態においては、感応膜140上において、細胞接着性・細胞接着阻害性を付与する処理がなされている点である。その他の構成については、第1実施形態と同一であるので、同一部材に対しては同一の符号を付してその説明を省略する。   The present embodiment is different from the first embodiment in that, in the fourth embodiment, a process for imparting cell adhesion and cell adhesion inhibition is performed on the sensitive film 140. Since other configurations are the same as those in the first embodiment, the same members are denoted by the same reference numerals and description thereof is omitted.

すなわち、第4実施形態においては、感応膜140上の所定領域に対しては細胞接着性を付与する処理が施し細胞接着性領域143が形成されると共に、感応膜140上における前記所定領域以外の領域に対しては細胞接着阻害性を付与する処理が施され細胞接着阻害性領域144が形成される。このような各処理が施されているため、本実施形態によれば、感応膜140上における生体関連物質を含む被検査液体Fを、スリット状凹部145の所定領域に確実に滞留させることができるようになり、より的確に被検査液体F中の生体関連物質の電気的特性を検出することができるようになる。   That is, in the fourth embodiment, a predetermined region on the sensitive film 140 is subjected to a process for imparting cell adhesiveness to form a cell adhesive region 143, and other than the predetermined region on the sensitive film 140. A treatment for imparting cell adhesion inhibition is performed on the region to form a cell adhesion inhibition region 144. Since each of these processes is performed, according to the present embodiment, the liquid F to be inspected containing the biological material on the sensitive film 140 can be reliably retained in a predetermined region of the slit-shaped recess 145. As a result, the electrical characteristics of the biological substance in the liquid F to be inspected can be detected more accurately.

本実施形態に係るカレントミラー型バイオセンサ100においては、感応膜140上の
所定領域には細胞の接着性を有する細胞接着性領域143が形成され、前記所定領域以外の領域には、細胞の接着を阻害する細胞接着阻害性領域144が形成される。
In the current mirror biosensor 100 according to the present embodiment, a cell adhesive region 143 having cell adhesiveness is formed in a predetermined region on the sensitive film 140, and cell adhesion is performed in a region other than the predetermined region. A cell adhesion-inhibiting region 144 that inhibits is formed.

すなわち、第4実施形態に係るカレントミラー型バイオセンサ100においては、感応膜140上の所定領域は、細胞を接着させる強度の高い物質によって形成されている細胞接着性領域143とされる。一方、感応膜140上に形成された領域であって、被検査液体Fを滞留させるための所定領域の外周に沿った領域は、細胞の接着を阻害する細胞接着阻害性領域144とされる。   That is, in the current mirror biosensor 100 according to the fourth embodiment, the predetermined region on the sensitive film 140 is a cell adhesive region 143 formed of a high-strength substance that adheres cells. On the other hand, the region formed on the sensitive film 140 and along the outer periphery of the predetermined region for retaining the liquid F to be inspected is a cell adhesion inhibiting region 144 that inhibits cell adhesion.

なお、「細胞接着性」とは、細胞を接着する強度、すなわち細胞の接着しやすさを意味するとともに、細胞接着性領域143とは、細胞接着性が良好な領域を意味し、細胞接着阻害性領域144とは、細胞の接着性が悪い領域を意味する。したがって、細胞接着性領域143と細胞接着阻害性領域144とがパターン化された基板上に細胞が含まれた被検査液体Fを滞留させると、細胞接着性領域143には細胞が接着するが、細胞接着阻害性領域144には細胞が接着しないため、細胞接着性領域143、すなわち、所定領域に細胞がパターン状に配列されることになる。   “Cell adhesion” means the strength of cell adhesion, that is, the ease of cell adhesion, and the cell adhesion region 143 means a region with good cell adhesion, which inhibits cell adhesion. The sex region 144 means a region having poor cell adhesion. Therefore, when the test liquid F containing cells is retained on the substrate on which the cell adhesion region 143 and the cell adhesion inhibition region 144 are patterned, the cells adhere to the cell adhesion region 143. Since cells do not adhere to the cell adhesion-inhibiting region 144, cells are arranged in a pattern in the cell adhesion region 143, that is, a predetermined region.

また、細胞接着性は、接着しようとする細胞によって異なる場合もあるため、細胞接着性が良好とは、ある種の細胞に対する細胞接着性が良好であることを意味する。したがって、感応膜140上には、複数種の細胞に対する複数の細胞接着性領域143が存在する場合、すなわち細胞接着性が異なる細胞接着性領域143が2水準以上存在する場合もある。   In addition, since cell adhesion may vary depending on the cells to be adhered, good cell adhesion means that cell adhesion to certain types of cells is good. Accordingly, there may be a case where there are a plurality of cell adhesive regions 143 for a plurality of types of cells on the sensitive film 140, that is, there are two or more cell adhesive regions 143 having different cell adhesive properties.

具体的には、細胞接着性領域143は、炭素酸素結合を有する有機化合物を含む細胞接着阻害性の親水性膜に酸化処理及び/または分解処理を施して細胞接着性とした膜で形成されている。この細胞接着性領域143は、感応膜140の表面全体に炭素酸素結合を有する有機化合物を含む細胞接着阻害性の親水性膜を形成し、次いで、細胞の接着が望まれる所定領域に対して酸化処理及び/または分解処理を施すことにより当該領域に細胞接着性を付与して細胞接着性領域143に改変する。なお、前記処理を施さない部分は細胞接着阻害性領域144である。   Specifically, the cell adhesion region 143 is formed of a cell adhesion-inhibiting hydrophilic film containing an organic compound having a carbon-oxygen bond, which is oxidized and / or decomposed to make it cell adhesive. Yes. The cell adhesion region 143 forms a cell adhesion-inhibiting hydrophilic membrane containing an organic compound having a carbon-oxygen bond on the entire surface of the sensitive membrane 140, and then oxidizes a predetermined region where cell adhesion is desired. By performing treatment and / or decomposition treatment, cell adhesion is imparted to the region, and the cell adhesion region 143 is modified. In addition, the part which does not perform the said process is the cell adhesion inhibition area | region 144. FIG.

また、細胞接着性領域143は、炭素酸素結合を有する有機化合物を低密度で含む親水性膜で形成されていてもよい。この場合には、細胞接着性領域143は、炭素酸素結合を有する有機化合物を高密度で含む親水性膜が細胞接着阻害性を有するのに対して、前記化合物を低密度で含む親水性膜は細胞接着性を有することを利用したものである。なお、感応膜140の表面に前記化合物が結合しやすい第一領域と結合しにくい第二領域とを設け、該感応膜140の表面に前記化合物の膜を形成すると、第一領域は細胞接着阻害性領域144となり、第二領域は細胞接着性領域143となる。   The cell adhesive region 143 may be formed of a hydrophilic film containing an organic compound having a carbon-oxygen bond at a low density. In this case, the cell adhesive region 143 has a hydrophilic film containing an organic compound having a carbon-oxygen bond at a high density, whereas the hydrophilic film containing the compound at a low density has a cell adhesion inhibitory property. It utilizes cell adhesion. In addition, when the surface of the sensitive film 140 is provided with a first region where the compound is likely to be bound and a second region where the compound is difficult to be bound, and the film of the compound is formed on the surface of the sensitive film 140, the first region is inhibited from cell adhesion. The second region becomes the cell adhesion region 143.

一方、細胞接着阻害性領域144は、炭素酸素結合を有する有機化合物により形成される親水性膜により形成される。当該親水性膜は、水溶性や水膨潤性を有する、炭素酸素結合を有する有機化合物を主原料とする薄膜であり、酸化される前は細胞接着阻害性を有し、酸化及び/または分解された後は細胞接着性を有しているものであれば特に限定されない。この炭素酸素結合とは、炭素と酸素との間に形成される結合を意味し、単結合に限らず二重結合であってもよい。炭素酸素結合としてはC−O結合、C(=O)−O結合、C=O結合が挙げられる。   On the other hand, the cell adhesion-inhibiting region 144 is formed by a hydrophilic film formed of an organic compound having a carbon-oxygen bond. The hydrophilic film is a thin film mainly composed of an organic compound having a carbon-oxygen bond, which has water solubility and water swellability, and has a cell adhesion inhibitory property before being oxidized and is oxidized and / or decomposed. There is no particular limitation as long as it has cell adhesion. The carbon-oxygen bond means a bond formed between carbon and oxygen, and is not limited to a single bond but may be a double bond. Examples of the carbon-oxygen bond include a C—O bond, a C (═O) —O bond, and a C═O bond.

また、主原料としては、水溶性高分子、水溶性オリゴマー、水溶性有機化合物、界面活性物質、両親媒性物質等が挙げられ、これらが相互に物理的または化学的に架橋し、感応膜140と物理的または化学的に結合することにより親水性膜となる。具体的な水溶性高
分子材料としては、ポリアルキレングリコール及びその誘導体、ポリアクリル酸及びその誘導体、ポリメタクリル酸及びその誘導体、ポリアクリルアミド及びその誘導体、ポリビニルアルコール及びその誘導体、双性イオン型高分子、多糖類、等を挙げることができる。分子形状は、直鎖状、分岐を有するもの、デンドリマー等を挙げることができる。より具体的には、ポリエチレングリコール、ポリエチレングリコールとポリプロピレングリコールの共重合体、例えば、Plutonic F108、Plutonic F127、ポリ(N−イソプロピルアクリルアミド)、ポリ(N−ビニル−2−ピロリドン)、ポリ(2−ヒドロキシエチルメタクリレート)、ポリ(メタクリロイルオキシエチルフォスフォリルコリン)、メタクリロイルオキシエチルフォスフォリルコリンとアクリルモノマーの共重合体、デキストラン、及びヘパリンが挙げられるがこれらに限定されない。具体的な水溶性オリゴマー材料や水溶性低分子化合物としては、アルキレングリコールオリゴマー及びその誘導体、アクリル酸オリゴマー及びその誘導体、メタクリル酸オリゴマー及びその誘導体、アクリルアミドオリゴマー及びその誘導体、酢酸ビニルオリゴマーの鹸化物及びその誘導体、双性イオンモノマーからなるオリゴマー及びその誘導体、アクリル酸及びその誘導体、メタクリル酸及びその誘導体、アクリルアミド及びその誘導体、双性イオン化合物、水溶性シランカップリング剤、水溶性チオール化合物等を挙げることができる。より具体的には、エチレングリコールオリゴマー、(N−イソプロピルアクリルアミド)オリゴマー、メタクリロイルオキシエチルフォスフォリルコリンオリゴマー、低分子量デキストラン、低分子量ヘパリン、オリゴエチレングリコールチオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、2−[メトキシ(ポリエチレンオキシ)−プロピルトリメトキシシラン、及びトリエチレングリコール−ターミネイティッド−チオールが挙げられるがこれらには限定されない。
The main raw materials include water-soluble polymers, water-soluble oligomers, water-soluble organic compounds, surfactants, amphiphiles, etc., which are physically or chemically cross-linked with each other, and the sensitive film 140 It becomes a hydrophilic film by being physically or chemically bonded to. Specific water-soluble polymer materials include polyalkylene glycol and derivatives thereof, polyacrylic acid and derivatives thereof, polymethacrylic acid and derivatives thereof, polyacrylamide and derivatives thereof, polyvinyl alcohol and derivatives thereof, and zwitterionic polymers. , Polysaccharides, and the like. Examples of the molecular shape include a straight chain, a branched one, and a dendrimer. More specifically, polyethylene glycol, a copolymer of polyethylene glycol and polypropylene glycol, such as Plonic F108, Plonic F127, poly (N-isopropylacrylamide), poly (N-vinyl-2-pyrrolidone), poly (2- Hydroxyethyl methacrylate), poly (methacryloyloxyethylphosphorylcholine), copolymers of methacryloyloxyethylphosphorylcholine and acrylic monomers, dextran, and heparin, but are not limited thereto. Specific water-soluble oligomer materials and water-soluble low-molecular compounds include alkylene glycol oligomers and derivatives thereof, acrylic acid oligomers and derivatives thereof, methacrylic acid oligomers and derivatives thereof, acrylamide oligomers and derivatives thereof, saponified vinyl acetate oligomers and Derivatives, oligomers composed of zwitterionic monomers and derivatives thereof, acrylic acid and derivatives thereof, methacrylic acid and derivatives thereof, acrylamide and derivatives thereof, zwitterionic compounds, water-soluble silane coupling agents, water-soluble thiol compounds, etc. be able to. More specifically, ethylene glycol oligomer, (N-isopropylacrylamide) oligomer, methacryloyloxyethylphosphorylcholine oligomer, low molecular weight dextran, low molecular weight heparin, oligoethylene glycol thiol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene Examples include, but are not limited to, glycol, 2- [methoxy (polyethyleneoxy) -propyltrimethoxysilane, and triethylene glycol-terminated-thiol.

なお、親水性膜は、処理前は高い細胞接着阻害性を有し、酸化処理及び/または分解処理後は弱い細胞接着性を示すものであることが望ましい。また、親水性膜の平均厚さは、0.8nm〜500μmが好ましく、0.8nm〜100μmがより好ましく、1nm〜10μmがより好ましく、1.5nm〜1μmが最も好ましい。平均厚さが0.8nm以上であれば、タンパク質の吸着や細胞の接着において、基板表面の親水性薄膜で覆われていない領域の影響を受けにくいため好ましい。また、平均厚さが500μm以下であればコーティングが比較的容易である。   In addition, it is desirable that the hydrophilic film has a high cell adhesion inhibitory property before the treatment and exhibits a weak cell adhesion property after the oxidation treatment and / or the decomposition treatment. The average thickness of the hydrophilic film is preferably 0.8 nm to 500 μm, more preferably 0.8 nm to 100 μm, more preferably 1 nm to 10 μm, and most preferably 1.5 nm to 1 μm. If the average thickness is 0.8 nm or more, it is preferable because protein adsorption and cell adhesion are not easily affected by the region not covered with the hydrophilic thin film on the substrate surface. Moreover, if the average thickness is 500 μm or less, coating is relatively easy.

以上のようなカレントミラー型バイオセンサ100は、細胞接着性領域143に生体関連物質を結集させて細胞接着阻害性領域144に生体関連物質を存在させないことによって、電気的特性を検出する際に、細胞接着性領域143以外に存在する生体関連物質の影響を排除することができるとともに、細胞接着性領域143に接着された生体関連物質における電気的特性を的確に検出することができる。   The current mirror biosensor 100 as described above, when detecting electrical characteristics by concentrating biological substances in the cell adhesion region 143 and not having the biological substances in the cell adhesion inhibition region 144, It is possible to eliminate the influence of a biological substance existing outside the cell adhesive region 143, and to accurately detect the electrical characteristics of the biological substance adhered to the cell adhesive region 143.

また、本実施形態のようにカレントミラー型バイオセンサ100の感応膜140上において、細胞接着性・細胞接着阻害性を付与する処理がなされていると、使用状況によっては、被検査液体Fを感応膜140に滞留させるための隔壁150などの部材を不要とすることも可能となるので、製造コストを抑制することが可能となる。   In addition, when processing for imparting cell adhesion and cell adhesion inhibition is performed on the sensitive film 140 of the current mirror biosensor 100 as in the present embodiment, the liquid F to be inspected may be sensitive depending on the usage situation. Since it becomes possible to eliminate the need for a member such as the partition wall 150 to be retained in the film 140, the manufacturing cost can be suppressed.

また、第4実施形態に係るカレントミラー型バイオセンサ100によっても、これまで説明してきた実施形態が享受する効果と同様のものを享受することが可能である。   Also, the current mirror biosensor 100 according to the fourth embodiment can enjoy the same effects as those obtained by the embodiments described so far.

なお、第4実施形態においては、第1電界効果トランジスタをISFETとして利用し、第2電界効果トランジスタを通常のFETとして利用する例につき説明したが、第4実施形態においても、第1電界効果トランジスタを通常のFETとして利用し、第2電界効果トランジスタをISFETとして利用するようにしてもよい。   In the fourth embodiment, an example in which the first field effect transistor is used as an ISFET and the second field effect transistor is used as a normal FET has been described. However, in the fourth embodiment, the first field effect transistor is also used. May be used as a normal FET, and the second field effect transistor may be used as an ISFET.

次に、本発明の他の実施形態について説明する。図12は本発明の第5実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の構造の概略を示す図である。図12(A)は第5実施形態に係るカレントミラー型バイオセンサを上面側から見た図であり、図12(B)は図12(A)におけるX−X’断面を模式的に示す図である。また、図13は本発明の第5実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の回路構成を示す図である。   Next, another embodiment of the present invention will be described. FIG. 12 is a diagram showing an outline of the structure of a current mirror type biosensor (tested and in actual use) according to the fifth embodiment of the present invention. FIG. 12A is a view of the current mirror biosensor according to the fifth embodiment as viewed from the upper surface side, and FIG. 12B is a view schematically showing the XX ′ cross section in FIG. It is. FIG. 13 is a diagram showing a circuit configuration of a current mirror type biosensor (tested and actually used) according to the fifth embodiment of the present invention.

第5実施形態に係るカレントミラー型バイオセンサ100が、第1実施形態に係るカレントミラー型バイオセンサ100と異なる点は、第1電界効果トランジスタと第2電界効果トランジスタのペアからなるカレントミラー回路が2組設けられており、それぞれの組のいずれかの電界効果トランジスタがISFETとして利用される点である。そこで、第5実施形態における1組目のカレントミラー回路を構成する部材であって、第1実施形態の部材と同一の部材に対してはサフィックスaを付加し示すこととし、第5実施形態における2組目のカレントミラー回路を構成する部材であって、第1実施形態の部材と同一の部材に対してはサフィックスbを付加し示すこととする。   The current mirror biosensor 100 according to the fifth embodiment is different from the current mirror biosensor 100 according to the first embodiment in that a current mirror circuit including a pair of a first field effect transistor and a second field effect transistor is used. Two sets are provided, and one of the field effect transistors in each set is used as an ISFET. Therefore, a member constituting the first set of current mirror circuits in the fifth embodiment, which is the same as the member in the first embodiment, is indicated by adding a suffix a, and in the fifth embodiment. A member constituting the second set of current mirror circuits, which is the same as the member of the first embodiment, is indicated by adding a suffix b.

第5実施形態に係るカレントミラー型バイオセンサ100においては、2組のカレントミラー回路の構成の中で、第1電界効果トランジスタがISFETとして利用され、第2電界効果トランジスタが通常のFETとして利用される構成となっている。2つの第1電界効果トランジスタに対応して、感応膜140上には、2つのスリット状凹部145が形成されており、被検査液体Fが前記所定領域に滞留しやすい構造となっている。これにより、被検査液体F中の生体関連物質の電気的特性を検出することができるようになる。   In the current mirror biosensor 100 according to the fifth embodiment, the first field effect transistor is used as an ISFET and the second field effect transistor is used as a normal FET in the configuration of two sets of current mirror circuits. It is the composition which becomes. Corresponding to the two first field effect transistors, two slit-shaped recesses 145 are formed on the sensitive film 140 so that the liquid F to be inspected easily stays in the predetermined region. Thereby, it becomes possible to detect the electrical characteristics of the biological substance in the liquid F to be inspected.

半導体膜などを基板上に製膜しトランジスタを構成するときには、製膜条件、製膜位置などの相違によって、製膜により構成されるトランジスタの特性にバラツキが発生することがある。しかしながら、第5実施形態に係るカレントミラー型バイオセンサ100においては、2つのトランジスタをISFETとして利用することにより、例えトランジスタの特性にバラツキがあったとしても、2つのトランジスタの平均的な特性に基づいた値を検出することが可能となる。このように第5実施形態に係るカレントミラー型バイオセンサ100によれば、トランジスタのバラツキに起因する検出値のバラツキを低減することが可能となるのである。   When a transistor is formed by depositing a semiconductor film or the like on a substrate, variations in characteristics of the transistor formed by film formation may occur due to differences in film forming conditions, film forming positions, or the like. However, in the current mirror biosensor 100 according to the fifth embodiment, by using the two transistors as ISFETs, even if the characteristics of the transistors vary, based on the average characteristics of the two transistors. The detected value can be detected. As described above, according to the current mirror type biosensor 100 according to the fifth embodiment, it is possible to reduce variations in detection values caused by variations in transistors.

なお、第5実施形態においては、2つのカレントミラー回路構成中、第1電界効果トランジスタをISFETとして利用し、第2電界効果トランジスタを通常のFETとして利用する例につき説明したが、第5実施形態においても、第1電界効果トランジスタを通常のFETとして利用し、第2電界効果トランジスタをISFETとして利用するようにしてもよい。   In the fifth embodiment, the example in which the first field effect transistor is used as an ISFET and the second field effect transistor is used as a normal FET in two current mirror circuit configurations has been described. In this case, the first field effect transistor may be used as a normal FET, and the second field effect transistor may be used as an ISFET.

また、第5実施形態においても、先の実施形態と同様に、感応膜140上において、親水性・疎水性を付与する処理を行うようにしてもよいし、或いは、細胞接着性・細胞接着阻害性を付与する処理を行うようにしてもよい。   Also in the fifth embodiment, as in the previous embodiment, a treatment for imparting hydrophilicity / hydrophobicity may be performed on the sensitive film 140, or cell adhesion / cell adhesion inhibition may be performed. You may make it perform the process which provides property.

次に、本発明の上記実施形態の変形例について説明する。図14は本発明に係るカレントミラー型バイオセンサを模式的に示した図である。   Next, a modification of the above embodiment of the present invention will be described. FIG. 14 schematically shows a current mirror type biosensor according to the present invention.

図14におけるCは、いずれかがISFETである第1電界効果トランジスタと第2電界効果トランジスタのペアからなるカレントミラー回路を示している。図14(A)は前記カレントミラー回路が1つバイオセンサ内に設けられている第1実施形態などの場合を示している。また、図14(B)は前記カレントミラー回路が2つバイオセンサ内に設けられている第5実施形態などの場合を示している。前述したように、図14(B)に示す
ように、カレントミラー回路の数を増やすことによって、トランジスタのバラツキに起因する検出値のバラツキを低減することが可能となる。
C in FIG. 14 indicates a current mirror circuit composed of a pair of a first field effect transistor and a second field effect transistor, either of which is an ISFET. FIG. 14A shows the case of the first embodiment in which one current mirror circuit is provided in the biosensor. FIG. 14B shows the case of the fifth embodiment in which two current mirror circuits are provided in the biosensor. As described above, as shown in FIG. 14B, by increasing the number of current mirror circuits, it is possible to reduce variations in detection values due to transistor variations.

上記のようなトランジスタのバラツキに基づく障害をさらに解消しようとする場合、例えば、図14(C)に示すように前記カレントミラー回路の数を4つにすることでこれを行うことが可能となる。これによれば、図14(B)に示すものよりトランジスタのバラツキに起因する検出値のバラツキを低減可能となる。   In order to further eliminate the obstacle based on the transistor variation as described above, for example, this can be achieved by using four current mirror circuits as shown in FIG. . According to this, it is possible to reduce the variation of the detection value caused by the variation of the transistor than that shown in FIG.

このように、本発明に係るカレントミラー型バイオセンサ100においては、センサ内に複数の前記カレントミラー回路を設けることも好ましい実施形態であることがわかる。   Thus, in the current mirror type biosensor 100 according to the present invention, it is understood that providing a plurality of the current mirror circuits in the sensor is also a preferred embodiment.

次に、本発明の他の実施形態について説明する。図15は本発明の第6実施形態に係るカレントミラー型バイオセンサ(テスト前)の構造の概略を示す図である。図15(A)は第6実施形態に係るカレントミラー型バイオセンサを上面側から見た図であり、図15(B)は図15(A)におけるX−X’断面を模式的に示す図である。また、図16は本発明の第6実施形態に係るカレントミラー型バイオセンサ(テスト前)の回路構成を示す図である。   Next, another embodiment of the present invention will be described. FIG. 15 is a diagram schematically showing the structure of a current mirror type biosensor (before testing) according to the sixth embodiment of the present invention. FIG. 15A is a view of the current mirror type biosensor according to the sixth embodiment as viewed from the upper surface side, and FIG. 15B is a view schematically showing the XX ′ cross section in FIG. It is. FIG. 16 is a diagram showing a circuit configuration of a current mirror type biosensor (before the test) according to the sixth embodiment of the present invention.

図17は本発明の第6実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の構造の概略を示す図である。図17(A)は第6実施形態に係るカレントミラー型バイオセンサを上面側から見た図であり、図17(B)は図17(A)におけるX−X’断面を模式的に示す図である。また、図18は本発明の第6実施形態に係るカレントミラー型バイオセンサ(テスト済み、実使用中)の回路構成を示す図である。   FIG. 17 is a diagram schematically showing the structure of a current mirror type biosensor (tested and in actual use) according to a sixth embodiment of the present invention. FIG. 17A is a view of the current mirror type biosensor according to the sixth embodiment as viewed from the upper surface side, and FIG. 17B is a diagram schematically showing the XX ′ cross section in FIG. It is. FIG. 18 is a diagram showing a circuit configuration of a current mirror type biosensor (tested and actually used) according to the sixth embodiment of the present invention.

第1実施形態などにおける参照電極115は、参照電極接続用端子103に接続された探針状のもので、この探針状参照電極115を被検査液体F中に挿通させた状態で、被検査液体Fと電気的に導通させるようにして利用されるものであった。   The reference electrode 115 in the first embodiment or the like is a probe-like one connected to the reference electrode connecting terminal 103, and the probe-like reference electrode 115 is inserted into the liquid F to be inspected and the object to be inspected. It was used so as to be electrically connected to the liquid F.

これに対して、第6実施形態における参照電極115は、予め感応膜140上に設けられた膜状のものであり、隔壁150内に被検査液体Fが満たされると、参照電極115は被検査液体Fと接触して、電気的に導通するように構成されている。図18における第1電界効果トランジスタの回路図は、このような膜状の参照電極115と被検査液体Fとの関係を模式的に示したものである。   On the other hand, the reference electrode 115 in the sixth embodiment is a film-like material provided on the sensitive film 140 in advance, and when the partition 150 is filled with the liquid F to be inspected, the reference electrode 115 is inspected. It is configured to be in electrical contact with the liquid F. The circuit diagram of the first field effect transistor in FIG. 18 schematically shows the relationship between such a film-like reference electrode 115 and the liquid F to be inspected.

以上のような構成であるために、第6実施形態に係るカレントミラー型バイオセンサ100には、参照電極接続用端子103が設けられていない。また、第6実施形態における参照電極115は、スルーホールTH0を介して感応膜140上に引き出させるようになっている。なお、その他の構成は、第1実施形態と同一であり、同一部材に対しては同一の符号を付している。   Because of the configuration as described above, the reference mirror connection terminal 103 is not provided in the current mirror biosensor 100 according to the sixth embodiment. In addition, the reference electrode 115 in the sixth embodiment is drawn on the sensitive film 140 through the through hole TH0. Other configurations are the same as those in the first embodiment, and the same members are denoted by the same reference numerals.

第6実施形態における参照電極115は、導通膜で形成されたものであれば特に限定されるものではない。具体的には、アルミニウム(Al)、インジウム錫オキサイド(ITO)、酸化亜鉛(ZnO)、酸化スズ(SnO2)などの導通性のものから形成される。 The reference electrode 115 in the sixth embodiment is not particularly limited as long as it is formed of a conductive film. Specifically, it is made of a conductive material such as aluminum (Al), indium tin oxide (ITO), zinc oxide (ZnO), tin oxide (SnO 2 ).

上記のような膜状の参照電極115が予め設けられた第6実施形態に係るカレントミラー型バイオセンサ100によれば、測定のためのセッティングなどが簡便となるために、バイオセンサによる測定プロセスの効率アップを図ることが可能となる。   According to the current mirror type biosensor 100 according to the sixth embodiment in which the film-like reference electrode 115 is provided in advance as described above, since the setting for measurement and the like are simple, Efficiency can be improved.

なお、第6実施形態においては、第1電界効果トランジスタをISFETとして利用し、第2電界効果トランジスタを通常のFETとして利用する例につき説明したが、第6実
施形態においても、第1電界効果トランジスタを通常のFETとして利用し、第2電界効果トランジスタをISFETとして利用するようにしてもよい。
In the sixth embodiment, the first field effect transistor is used as an ISFET and the second field effect transistor is used as a normal FET. However, in the sixth embodiment, the first field effect transistor is also used. May be used as a normal FET, and the second field effect transistor may be used as an ISFET.

また、第6実施形態においても、先の実施形態と同様に、感応膜140上において、親水性・疎水性を付与する処理を行うようにしてもよいし、或いは、細胞接着性・細胞接着阻害性を付与する処理を行うようにしてもよい。   Also in the sixth embodiment, as in the previous embodiment, a treatment for imparting hydrophilicity / hydrophobicity may be performed on the sensitive film 140, or cell adhesion / cell adhesion inhibition may be performed. You may make it perform the process which provides property.

また、第6実施形態においても、先の実施形態と同様に、バイオセンサ内にもうけるカレントミラー回路の数を2つ以上とすることも可能である。   Also in the sixth embodiment, as in the previous embodiment, the number of current mirror circuits provided in the biosensor can be two or more.

次に、本発明の他の実施形態について説明する。図19は本発明の第7実施形態に係るカレントミラー型バイオセンサ(テスト前)の上面図である。   Next, another embodiment of the present invention will be described. FIG. 19 is a top view of a current mirror type biosensor (before the test) according to the seventh embodiment of the present invention.

第1実施形態などにおけるテスト用ゲート電極117には幅方向(図19のX−X’の方向)の長さが一定のものが用いられていたが、第7実施形態におけるテスト用ゲート電極117には幅方向の長さが一部短くなったものが用いられる。テスト用ゲート電極117における幅方向の短い部分を切断予定箇所Cとする。すなわち、第7実施形態におけるテスト用ゲート電極117には、切り欠き部118が設けられるようになっている。なお、その他の構成は、第1実施形態と同一であり、同一部材に対しては同一の符号を付している。   The test gate electrode 117 in the first embodiment or the like has a constant length in the width direction (the direction of XX ′ in FIG. 19), but the test gate electrode 117 in the seventh embodiment is used. In this case, a material whose length in the width direction is partially shortened is used. A short portion in the width direction of the test gate electrode 117 is defined as a planned cutting location C. In other words, the notch 118 is provided in the test gate electrode 117 in the seventh embodiment. Other configurations are the same as those in the first embodiment, and the same members are denoted by the same reference numerals.

以上のような構成であるために、第7実施形態に係るカレントミラー型バイオセンサ100においては、センサ内のカレントミラー回路のテストの後にテスト用ゲート電極117の切断予定箇所Cを切断する際に、切り欠き部118の分、レーザーを走査させる必要がなくなるので、より簡便にテスト用ゲート電極117の切断作業を実施することが可能となる。   Because of the configuration as described above, in the current mirror biosensor 100 according to the seventh embodiment, when cutting the planned cutting position C of the test gate electrode 117 after the test of the current mirror circuit in the sensor. Since it is not necessary to scan the laser by the cutout portion 118, the test gate electrode 117 can be cut more easily.

なお、第7実施形態においては、第1電界効果トランジスタをISFETとして利用し、第2電界効果トランジスタを通常のFETとして利用する例につき説明したが、第7実施形態においても、第1電界効果トランジスタを通常のFETとして利用し、第2電界効果トランジスタをISFETとして利用するようにしてもよい。   In the seventh embodiment, the example in which the first field effect transistor is used as an ISFET and the second field effect transistor is used as a normal FET has been described. However, in the seventh embodiment, the first field effect transistor is also used. May be used as a normal FET, and the second field effect transistor may be used as an ISFET.

また、第7実施形態においても、先の実施形態と同様に、感応膜140上において、親水性・疎水性を付与する処理を行うようにしてもよいし、或いは、細胞接着性・細胞接着阻害性を付与する処理を行うようにしてもよい。   Also in the seventh embodiment, similarly to the previous embodiment, a treatment for imparting hydrophilicity / hydrophobicity may be performed on the sensitive film 140, or cell adhesion / cell adhesion inhibition may be performed. You may make it perform the process which provides property.

また、第7実施形態においても、先の実施形態と同様に、バイオセンサ内にもうけるカレントミラー回路の数を2つ以上とすることも可能である。   Also in the seventh embodiment, as in the previous embodiment, the number of current mirror circuits provided in the biosensor can be two or more.

また、第7実施形態においても、先の実施形態と同様に、膜状の参照電極を設けるように構成することも可能である。   Also in the seventh embodiment, it is possible to provide a film-like reference electrode as in the previous embodiment.

次に、本発明の他の実施形態について説明する。図20は本発明の第8実施形態に係るカレントミラー型バイオセンサの上面図である。図21は本発明の第8実施形態に係るカレントミラー型バイオセンサの回路構成を示す図である。   Next, another embodiment of the present invention will be described. FIG. 20 is a top view of a current mirror type biosensor according to an eighth embodiment of the present invention. FIG. 21 is a diagram showing a circuit configuration of a current mirror biosensor according to the eighth embodiment of the present invention.

これまで説明した実施形態においては、テスト用ゲート電極117は、カレントミラー回路のテスト後に切断されて、電気的なフローティング状態とされるものであった。これに対して、本実施形態は、オンオフを行うスイッチング回路部106がバイオセンサ内に設けられており、カレントミラー回路のテストを行うときにはスイッチング回路部106
をオン状態としてテスト用ゲート電極117と他の導電部との間を導通させるようにするが、カレントミラー型バイオセンサ100によって測定を行う実使用時においてはスイッチング回路部106をオフ状態として、テスト用ゲート電極117を電気的に浮遊状態とさせるようにしている。また、スイッチング回路部106のオンオフを制御するためのスイッチング回路制御用端子107が設けられている。
In the embodiments described so far, the test gate electrode 117 is cut after the test of the current mirror circuit to be in an electrically floating state. On the other hand, in this embodiment, the switching circuit unit 106 that performs on / off is provided in the biosensor, and the switching circuit unit 106 is used when testing the current mirror circuit.
Is turned on so that the test gate electrode 117 is electrically connected to the other conductive part. However, in actual use in which measurement is performed by the current mirror biosensor 100, the switching circuit part 106 is turned off and the test is performed. The gate electrode 117 is made to be in an electrically floating state. Further, a switching circuit control terminal 107 for controlling on / off of the switching circuit unit 106 is provided.

本実施形態は、上記のような構成であるため、テスト用ゲート電極117を切断するための工程が不要となり、製造工程が簡略化される。   Since this embodiment is configured as described above, a process for cutting the test gate electrode 117 is not required, and the manufacturing process is simplified.

なお、第8実施形態においては、第1電界効果トランジスタをISFETとして利用し、第2電界効果トランジスタを通常のFETとして利用する例につき説明したが、第8実施形態においても、第1電界効果トランジスタを通常のFETとして利用し、第2電界効果トランジスタをISFETとして利用するようにしてもよい。   In the eighth embodiment, the first field effect transistor is used as an ISFET and the second field effect transistor is used as a normal FET. However, in the eighth embodiment, the first field effect transistor is also used. May be used as a normal FET, and the second field effect transistor may be used as an ISFET.

また、第8実施形態においても、先の実施形態と同様に、感応膜140上において、親水性・疎水性を付与する処理を行うようにしてもよいし、或いは、細胞接着性・細胞接着阻害性を付与する処理を行うようにしてもよい。   Also, in the eighth embodiment, similarly to the previous embodiment, a treatment for imparting hydrophilicity / hydrophobicity may be performed on the sensitive film 140, or cell adhesion / cell adhesion inhibition may be performed. You may make it perform the process which provides property.

また、第8実施形態においても、先の実施形態と同様に、バイオセンサ内にもうけるカレントミラー回路の数を2つ以上とすることも可能である。   Also in the eighth embodiment, as in the previous embodiment, the number of current mirror circuits provided in the biosensor can be two or more.

また、第8実施形態においても、先の実施形態と同様に、膜状の参照電極を設けるように構成することも可能である。   Also in the eighth embodiment, it is possible to provide a film-like reference electrode as in the previous embodiment.

次に、本発明の他の実施形態について説明する。図22は本発明の第9実施形態に係るカレントミラー型バイオセンサの構造の概略を示す図である。この図22は、第1実施形態における図1(B)に相当するものである。   Next, another embodiment of the present invention will be described. FIG. 22 is a diagram schematically showing the structure of a current mirror type biosensor according to the ninth embodiment of the present invention. FIG. 22 corresponds to FIG. 1B in the first embodiment.

本実施形態のカレントミラー型バイオセンサ100は、第1実施形態のソース電極及び第1、第2ドレイン電極における構造に、コプレーナ型を適用した点に特徴がある。   The current mirror biosensor 100 of this embodiment is characterized in that a coplanar type is applied to the structure of the source electrode and the first and second drain electrodes of the first embodiment.

本実施形態のカレントミラー型バイオセンサ100は、図22に示すように、基材110、基材110上に、領域(0)にわたって積層された半導体膜220と、半導体膜220に形成された第1ドレイン側拡散領域221、ソース側拡散領域222、第2ドレイン側拡散領域223と、第1ドレイン側拡散領域221と接続される第1ドレイン電極211と、ソース側拡散領域222と接続されるソース電極213と、第2ドレイン側拡散領域223と接続される第2ドレイン電極212と、半導体膜220を覆うように積層される絶縁膜230と、絶縁膜230上に積層されたゲート電極214、テスト用ゲート電極217と、ゲート絶縁膜230上に積層される感応膜240と、感応膜240上に形成され、当該感応膜240上にサンプルが含まれる水溶液または培養液などの被検査液体Fを滞留させるための隔壁250と、を有している。   As shown in FIG. 22, the current mirror biosensor 100 of the present embodiment includes a base material 110, a semiconductor film 220 stacked on the base material 110 over the region (0), and a first film formed on the semiconductor film 220. 1 drain side diffusion region 221, source side diffusion region 222, second drain side diffusion region 223, first drain electrode 211 connected to the first drain side diffusion region 221, and source connected to the source side diffusion region 222 An electrode 213, a second drain electrode 212 connected to the second drain side diffusion region 223, an insulating film 230 stacked to cover the semiconductor film 220, a gate electrode 214 stacked on the insulating film 230, a test Gate electrode 217, a sensitive film 240 stacked on the gate insulating film 230, and formed on the sensitive film 240. Has a partition wall 250 for causing the residence to be inspected liquid F, such as an aqueous solution or broth include Le, a.

第1ドレイン側拡散領域221、ソース側拡散領域222、第2ドレイン側拡散領域223などの各拡散領域は、半導体に対してプラズマ処理(例えば、水素プラズマ、アルゴンプラズマ)の所定の処理を行うことによって低抵抗化することによって形成される。また、第1ドレイン側拡散領域221、ソース側拡散領域222、第2ドレイン側拡散領域223は絶縁膜230中に形成されたコンタクトホールを介して各電極30と電気的に結合される。   Each diffusion region such as the first drain side diffusion region 221, the source side diffusion region 222, and the second drain side diffusion region 223 is subjected to a predetermined plasma treatment (for example, hydrogen plasma, argon plasma) on the semiconductor. Formed by lowering the resistance. Further, the first drain side diffusion region 221, the source side diffusion region 222, and the second drain side diffusion region 223 are electrically coupled to each electrode 30 through a contact hole formed in the insulating film 230.

以上のような第9実施形態に係るカレントミラー型バイオセンサにおいては、ISFE
Tとして利用されるトランジスタのテスト用ゲート電極217には切断予定箇所Cが設けられ、このテスト用ゲート電極217を利用して予めカレントミラー回路に電流を流して電気特性を取得することで、カレントミラー回路の電気特性をテストすることが可能であるので、本発明のカレントミラー型バイオセンサによれば、補正回路などを追加する必要がなく、コストを抑制しつつ、高い精度での検出を行うことが可能となる。
In the current mirror biosensor according to the ninth embodiment as described above, ISFE is used.
The test gate electrode 217 of the transistor used as T is provided with a planned cutting point C. By using this test gate electrode 217, a current is passed through the current mirror circuit in advance to obtain electrical characteristics, thereby obtaining a current characteristic. Since it is possible to test the electrical characteristics of the mirror circuit, according to the current mirror type biosensor of the present invention, it is not necessary to add a correction circuit and the like, and detection is performed with high accuracy while suppressing cost. It becomes possible.

なお、第9実施形態においては、第1電界効果トランジスタをISFETとして利用し、第2電界効果トランジスタを通常のFETとして利用する例につき説明したが、第9実施形態においても、第1電界効果トランジスタを通常のFETとして利用し、第2電界効果トランジスタをISFETとして利用するようにしてもよい。   In the ninth embodiment, an example in which the first field effect transistor is used as an ISFET and the second field effect transistor is used as a normal FET has been described. However, in the ninth embodiment, the first field effect transistor is also used. May be used as a normal FET, and the second field effect transistor may be used as an ISFET.

また、第9実施形態においても、先の実施形態と同様に、感応膜140上において、親水性・疎水性を付与する処理を行うようにしてもよいし、或いは、細胞接着性・細胞接着阻害性を付与する処理を行うようにしてもよい。   In the ninth embodiment, as in the previous embodiment, a treatment for imparting hydrophilicity / hydrophobicity may be performed on the sensitive film 140, or cell adhesion / cell adhesion inhibition may be performed. You may make it perform the process which provides property.

また、第9実施形態においても、先の実施形態と同様に、バイオセンサ内にもうけるカレントミラー回路の数を2つ以上とすることも可能である。   Also in the ninth embodiment, as in the previous embodiment, the number of current mirror circuits provided in the biosensor can be two or more.

また、第9実施形態においても、先の実施形態と同様に、膜状の参照電極を設けるように構成することも可能である。   Also in the ninth embodiment, it is possible to provide a film-like reference electrode as in the previous embodiment.

また、第9実施形態においても、先の実施形態と同様に、テスト用ゲート電極217に切り欠き部を設けるように構成することも可能である。   Also in the ninth embodiment, similarly to the previous embodiment, the test gate electrode 217 may be provided with a notch.

次に、本発明の他の実施形態について説明する。図23は本発明の第10実施形態に係るカレントミラー型バイオセンサ(テスト前)の構造の概略を示す図である。図23(A)はカレントミラー型バイオセンサ(テスト前)を上面側から見た図であり、図23(B)は図23(A)におけるA−A’断面を模式的に示す図である。   Next, another embodiment of the present invention will be described. FIG. 23 is a diagram schematically showing the structure of a current mirror type biosensor (before testing) according to the tenth embodiment of the present invention. FIG. 23A is a view of a current mirror type biosensor (before the test) as viewed from the upper surface side, and FIG. 23B is a view schematically showing a cross section taken along the line AA ′ in FIG. .

本実施形態のカレントミラー型バイオセンサ100は、金属酸化物半導体を用いて構成した点に特徴がある。   The current mirror type biosensor 100 of this embodiment is characterized in that it is configured using a metal oxide semiconductor.

本実施形態のカレントミラー型バイオセンサ100は、図23に示すように、p型シリコン基板320と、p型シリコン基板320上に構成されるn型半導体形成領域321、n型半導体形成領域322、n型半導体形成領域323などの各n型半導体形成領域と、p型シリコン基板320上に積層されるゲート絶縁膜330と、ゲート絶縁膜330上に積層されるゲート電極314、テスト用ゲート電極317と、ゲート絶縁膜330、ゲート電極314、テスト用ゲート電極317上に積層される層間絶縁膜335と、コンタクトホールを介してn型半導体形成領域321と導通する第1ドレイン電極311と、コンタクトホールを介してn型半導体形成領域322と導通するソース電極313と、コンタクトホールを介してn型半導体形成領域323と導通する第2ドレイン電極312と、第1ドレイン電極311、第2ドレイン電極312、ソース電極313、層間絶縁膜335上に積層される保護層339と、保護層339上に積層される感応膜340と、感応膜340上に形成され、当該感応膜340上にサンプルが含まれる水溶液または培養液などの被検査液体Fを滞留させるための隔壁(不図示)と、を有している。   As shown in FIG. 23, the current mirror type biosensor 100 of the present embodiment includes a p-type silicon substrate 320, an n-type semiconductor formation region 321, an n-type semiconductor formation region 322 formed on the p-type silicon substrate 320, Each n-type semiconductor formation region such as the n-type semiconductor formation region 323, a gate insulating film 330 stacked on the p-type silicon substrate 320, a gate electrode 314 stacked on the gate insulating film 330, and a test gate electrode 317 A gate insulating film 330, a gate electrode 314, an interlayer insulating film 335 stacked on the test gate electrode 317, a first drain electrode 311 electrically connected to the n-type semiconductor formation region 321 through the contact hole, and a contact hole A source electrode 313 that is electrically connected to the n-type semiconductor formation region 322 through the contact hole, and an n-type semiconductor through the contact hole. A second drain electrode 312 electrically connected to the formation region 323, a first drain electrode 311, a second drain electrode 312, a source electrode 313, a protective layer 339 stacked on the interlayer insulating film 335, and a protective layer 339. And a partition wall (not shown) for retaining the liquid F to be inspected such as an aqueous solution or a culture solution containing the sample on the sensitive film 340. Yes.

p型シリコン基板320上のn型半導体形成領域321、n型半導体形成領域322、n型半導体形成領域323などの各n型半導体形成領域は不純物注入によって構成され、n型半導体形成領域321とn型半導体形成領域322との間の領域は、第1電界効果トランジスタチャンネル領域(I)として機能し、n型半導体形成領域322とn型半導体
形成領域323との間の領域は、第2電界効果トランジスタチャンネル領域(II)として機能する。
Each of the n-type semiconductor formation regions such as the n-type semiconductor formation region 321, the n-type semiconductor formation region 322, and the n-type semiconductor formation region 323 on the p-type silicon substrate 320 is formed by impurity implantation. The region between the n-type semiconductor formation region 322 functions as the first field effect transistor channel region (I), and the region between the n-type semiconductor formation region 322 and the n-type semiconductor formation region 323 has a second field effect. It functions as a transistor channel region (II).

また、ゲート絶縁膜330としてはSiO2などのドライ酸化膜が、また、層間絶縁膜
335にはSiO2などのウエット酸化膜が、また、保護層339としてはSi34など
の材質が用いられる。
Further, a dry oxide film such as SiO 2 is used as the gate insulating film 330, a wet oxide film such as SiO 2 is used as the interlayer insulating film 335, and a material such as Si 3 N 4 is used as the protective layer 339. It is done.

以上のような第10実施形態に係るカレントミラー型バイオセンサにおいては、ISFETとして利用されるトランジスタのテスト用ゲート電極317には切断予定箇所Cが設けられ、このテスト用ゲート電極317を利用して予めカレントミラー回路に電流を流して電気特性を取得することで、カレントミラー回路の電気特性をテストすることが可能であるので、本発明のカレントミラー型バイオセンサによれば、補正回路などを追加する必要がなく、コストを抑制しつつ、高い精度での検出を行うことが可能となる。   In the current mirror type biosensor according to the tenth embodiment as described above, the test gate electrode 317 of the transistor used as the ISFET is provided with the planned cutting position C, and this test gate electrode 317 is used. Since it is possible to test the electrical characteristics of the current mirror circuit by acquiring current through the current mirror circuit in advance, according to the current mirror biosensor of the present invention, a correction circuit and the like are added. Therefore, it is possible to perform detection with high accuracy while suppressing cost.

なお、第10実施形態においては、第1電界効果トランジスタをISFETとして利用し、第2電界効果トランジスタを通常のFETとして利用する例につき説明したが、第10実施形態においても、第1電界効果トランジスタを通常のFETとして利用し、第2電界効果トランジスタをISFETとして利用するようにしてもよい。   In the tenth embodiment, the first field effect transistor is used as an ISFET and the second field effect transistor is used as a normal FET. However, in the tenth embodiment, the first field effect transistor is also used. May be used as a normal FET, and the second field effect transistor may be used as an ISFET.

また、第10実施形態においても、先の実施形態と同様に、感応膜140上において、親水性・疎水性を付与する処理を行うようにしてもよいし、或いは、細胞接着性・細胞接着阻害性を付与する処理を行うようにしてもよい。   Also, in the tenth embodiment, similarly to the previous embodiment, a treatment for imparting hydrophilicity / hydrophobicity may be performed on the sensitive film 140, or cell adhesion / cell adhesion inhibition may be performed. You may make it perform the process which provides property.

また、第10実施形態においても、先の実施形態と同様に、バイオセンサ内にもうけるカレントミラー回路の数を2つ以上とすることも可能である。   Also in the tenth embodiment, as in the previous embodiment, the number of current mirror circuits provided in the biosensor can be two or more.

また、第10実施形態においても、先の実施形態と同様に、膜状の参照電極を設けるように構成することも可能である。   Also in the tenth embodiment, a film-like reference electrode can be provided as in the previous embodiment.

また、第10実施形態においても、先の実施形態と同様に、テスト用ゲート電極317に切り欠き部を設けるように構成することも可能である。   Also in the tenth embodiment, similarly to the previous embodiment, the test gate electrode 317 can be configured to have a notch.

図14は本発明の第1実施形態に係るカレントミラー型バイオセンサの構成に基づくシミュレーション結果を示す図である。図14(A)はpHを0〜10まで変化させたときの、入力電量Iinと出力電流Ioutとの関係を示す図であり、図14(B)はIinが20μAである時の、pH変化に伴う出力電流Ioutの変化を示す図である。例えば、図14(B)によれば、0〜10まで変化を7μA幅の出力電流の変化によって検出することが可能であることがわかる。   FIG. 14 is a diagram showing a simulation result based on the configuration of the current mirror type biosensor according to the first embodiment of the present invention. FIG. 14A is a diagram showing the relationship between the input electric energy Iin and the output current Iout when the pH is changed from 0 to 10, and FIG. 14B is a pH change when Iin is 20 μA. It is a figure which shows the change of the output current Iout accompanying with. For example, according to FIG. 14B, it can be seen that a change from 0 to 10 can be detected by a change in the output current having a width of 7 μA.

以上、本発明のカレントミラー型バイオセンサにおいては、ISFETとして利用されるトランジスタのゲート電極には切断予定箇所が設けられ、このゲート電極を利用して予めカレントミラー回路に電流を流して電気特性を取得することで、カレントミラー回路の電気特性をテストすることが可能であるので、本発明のカレントミラー型バイオセンサによれば、補正回路などを追加する必要がなく、コストを抑制しつつ、高い精度での検出を行うことが可能となる。   As described above, in the current mirror biosensor of the present invention, the gate electrode of a transistor used as an ISFET is provided with a portion to be cut, and electric current is supplied to the current mirror circuit in advance by using this gate electrode. Since it is possible to test the electrical characteristics of the current mirror circuit by acquiring, according to the current mirror type biosensor of the present invention, it is not necessary to add a correction circuit or the like, and the cost is suppressed while being high. It is possible to perform detection with accuracy.

100・・・カレントミラー型バイオセンサ
101・・・電流入力端子
102・・・電流出力端子
103・・・参照電極接続用端子
104・・・接地端子
106・・・スイッチング回路部
107・・・スイッチング回路制御用端子
110・・・基材
111・・・第1ドレイン電極
112・・・第2ドレイン電極
113・・・ソース電極
114・・・ゲート電極
115・・・参照電極
117・・・テスト用ゲート電極
118・・・切り欠き部
120・・・半導体膜
130・・・ゲート絶縁膜
135・・・層間絶縁膜
140・・・感応膜
141・・・親水性領域
142・・・疎水性領域
143・・・細胞接着性領域
144・・・細胞接着阻害性領域
145・・・スリット状凹部
150・・・隔壁
210・・・基材
220・・・半導体膜
211・・・第1ドレイン電極
212・・・第2ドレイン電極
213・・・ソース電極
214・・・ゲート電極
215・・・参照電極
217・・・テスト用ゲート電極
221・・・第1ドレイン側拡散領域
222・・・ソース側拡散領域
223・・・第2ドレイン側拡散領域
230・・・絶縁膜
240・・・感応膜
245・・・スリット状凹部
250・・・隔壁
311・・・第1ドレイン電極
312・・・第2ドレイン電極
313・・・ソース電極
314・・・ゲート電極
317・・・テスト用ゲート電極
320・・・p型シリコン基板
321・・・n型半導体形成領域
322・・・n型半導体形成領域
323・・・n型半導体形成領域
330・・・ゲート絶縁膜
335・・・層間絶縁膜
339・・・保護層
340・・・イオン感応膜
345・・・スリット状凹部
S・・・バイオセンシングエリア
F・・・被検査液体
TH(n)・・・スルーホール
(I)・・・第1電界効果トランジスタチャンネル領域
(II)・・・第2電界効果トランジスタチャンネル領域
DESCRIPTION OF SYMBOLS 100 ... Current mirror type biosensor 101 ... Current input terminal 102 ... Current output terminal 103 ... Reference electrode connection terminal 104 ... Ground terminal 106 ... Switching circuit unit 107 ... Switching Terminal 110 for circuit control ... Base material 111 ... First drain electrode 112 ... Second drain electrode 113 ... Source electrode 114 ... Gate electrode 115 ... Reference electrode 117 ... For testing Gate electrode 118 ... Notch 120 ... Semiconductor film 130 ... Gate insulating film 135 ... Interlayer insulating film 140 ... Sensitive film 141 ... Hydrophilic region 142 ... Hydrophobic region 143・ ・ ・ Cell adhesive region 144 ・ ・ ・ Cell adhesion inhibitory region 145 ・ ・ ・ Slit recess 150 ・ ・ ・ Partition 210 ・ ・ ・ Base material 220 ・ ・ ・ Semiconductor film 211. First drain electrode 212 ... second drain electrode 213 ... source electrode 214 ... gate electrode 215 ... reference electrode 217 ... test gate electrode 221 ... first drain side diffusion region 222 ··· Source side diffusion region 223 ··· Second drain side diffusion region 230 · · · Insulating film 240 · · · Sensitive film 245 · · · slit-shaped recess 250 · · · partition 311 · · · first drain electrode 312 .... Second drain electrode 313 ... Source electrode 314 ... Gate electrode 317 ... Test gate electrode 320 ... p-type silicon substrate 321 ... n-type semiconductor formation region 322 ... n-type semiconductor Forming region 323... N-type semiconductor forming region 330... Gate insulating film 335... Interlayer insulating film 339... Protective layer 340. Groove-shaped recess S ... Biosensing area F ... Inspected liquid TH (n) ... Through hole (I) ... First field effect transistor channel region (II) ... Second field effect transistor Channel area

Claims (14)

2つのトランジスタからなり、前記2つのトランジスタによってカレントミラー回路が構成されると共に、前記2つのトランジスタのうち、一方のトランジスタがISFETとして利用され、他方のトランジスタがISFETとして利用されないカレントミラー型バイオセンサにおいて、
ISFETとして利用されるトランジスタにゲート電極が設けられ、前記ゲート電極に切断予定箇所が設けられていることを特徴とするカレントミラー型バイオセンサ。
In a current mirror type biosensor comprising two transistors, a current mirror circuit is constituted by the two transistors, and one of the two transistors is used as an ISFET and the other transistor is not used as an ISFET. ,
A current mirror type biosensor characterized in that a gate electrode is provided in a transistor used as an ISFET, and a portion to be cut is provided in the gate electrode.
前記切断予定箇所には、切り欠き部が設けられることを特徴とする請求項1に記載のカレントミラー型バイオセンサ。 The current mirror type biosensor according to claim 1, wherein a cut portion is provided at the planned cutting location. 前記切断予定箇所が切断され、前記ゲート電極が電気的に浮遊状態とされることを特徴とする請求項1又は請求項2に記載のカレントミラー型バイオセンサ。 3. The current mirror biosensor according to claim 1, wherein the planned cutting portion is cut, and the gate electrode is brought into an electrically floating state. 4. 2つのトランジスタからなり、前記2つのトランジスタによってカレントミラー回路が構成されると共に、前記2つのトランジスタのうち、一方のトランジスタがISFETとして利用され、他方のトランジスタがISFETとして利用されないカレントミラー型バイオセンサにおいて、
ISFETとして利用されるトランジスタのゲート電極と、ISFETとして利用されないトランジスタのゲート電極との間の導通のオンオフを行うスイッチング回路部が設けられていることを特徴とするカレントミラー型バイオセンサ。
In a current mirror type biosensor comprising two transistors, a current mirror circuit is constituted by the two transistors, and one of the two transistors is used as an ISFET and the other transistor is not used as an ISFET. ,
A current mirror type biosensor characterized in that a switching circuit portion for turning on and off conduction between a gate electrode of a transistor used as an ISFET and a gate electrode of a transistor not used as an ISFET is provided.
前記ISFETとして利用されるトランジスタは感応膜をさらに有し、前記感応膜上における所定領域に被検査物質が配置されることを特徴とする請求項1乃至請求項4のいずれかに記載のカレントミラー型バイオセンサ。 5. The current mirror according to claim 1, wherein the transistor used as the ISFET further includes a sensitive film, and a substance to be inspected is disposed in a predetermined region on the sensitive film. Type biosensor. 前記感応膜と接触しない探針状の参照電極を有し、前記探針状の参照電極が前記被検査液体と接触することを特徴とする請求項5に記載のカレントミラー型バイオセンサ。 6. The current mirror type biosensor according to claim 5, further comprising a probe-like reference electrode that does not come into contact with the sensitive film, wherein the probe-like reference electrode is in contact with the liquid to be inspected. 前記感応膜上に設けられた膜状の参照電極を有し、前記膜状の参照電極が前記被検査液体と接触することを特徴とする請求項5に記載のカレントミラー型バイオセンサ。 6. The current mirror type biosensor according to claim 5, further comprising a film-like reference electrode provided on the sensitive film, wherein the film-like reference electrode is in contact with the liquid to be inspected. 前記ISFETとして利用されるトランジスタは感応膜をさらに有し、前記感応膜上には被検査物質を配置する所定領域が設けられることを特徴とする請求項1乃至請求項4のいずれかに記載のカレントミラー型バイオセンサ。 5. The transistor according to claim 1, wherein the transistor used as the ISFET further includes a sensitive film, and a predetermined region in which a substance to be inspected is disposed is provided on the sensitive film. Current mirror type biosensor. 前記感応膜と接触しない探針状の参照電極をさらに有することを特徴とする請求項8に記載のカレントミラー型バイオセンサ。 The current mirror type biosensor according to claim 8, further comprising a probe-like reference electrode that does not contact the sensitive film. 前記感応膜上に設けられた膜状の参照電極をさらに有することを特徴とする請求項8に記載のカレントミラー型バイオセンサ。 The current mirror type biosensor according to claim 8, further comprising a film-like reference electrode provided on the sensitive film. 前記所定領域が親水性を示すと共に、前記感応膜上における前記所定領域以外の領域に疎水性を示す領域が含まれていることを特徴とする請求項5乃至請求項10のいずれかに記載のカレントミラー型バイオセンサ。 The region according to any one of claims 5 to 10, wherein the predetermined region exhibits hydrophilicity, and a region other than the predetermined region on the sensitive film includes a region exhibiting hydrophobicity. Current mirror type biosensor. 前記所定領域が細胞接着性を示すと共に、前記感応膜上における前記所定領域以外の領域に細胞接着阻害性を示す領域が含まれていることを特徴とする請求項5乃至請求項7請求項10のいずれかに記載のカレントミラー型バイオセンサ。 The region according to claim 5, wherein the predetermined region exhibits cell adhesion, and a region other than the predetermined region on the sensitive film includes cell adhesion inhibitory regions. A current mirror type biosensor according to any one of the above. カレントミラー回路を構成するトランジスタのペアが複数設けられると共に、それぞれのトランジスタのペアのうち1つのトランジスタをISFETとして利用することを特徴とする請求項1乃至請求項12のいずれかに記載のカレントミラー型バイオセンサ。 13. A current mirror according to claim 1, wherein a plurality of transistor pairs constituting a current mirror circuit are provided, and one transistor of each transistor pair is used as an ISFET. Type biosensor. 2つのトランジスタからなり、前記2つのトランジスタによってカレントミラー回路が構成されると共に、前記2つのトランジスタのうち、一方のトランジスタがISFETとして利用され、他方のトランジスタがISFETとして利用されないカレントミラー型バイオセンサの製造方法であって、
ISFETとして利用されるトランジスタのゲート電極には切断予定箇所を設ける工程と、
前記カレントミラー回路に電流を流して電気特性を取得する工程と、
前記切断予定箇所を切断する工程と、を含むことを特徴とするカレントミラー型バイオセンサの製造方法。
A current mirror biosensor comprising two transistors, wherein a current mirror circuit is constituted by the two transistors, and one of the two transistors is used as an ISFET and the other transistor is not used as an ISFET. A manufacturing method comprising:
A step of providing a scheduled cutting position in a gate electrode of a transistor used as an ISFET;
Obtaining electric characteristics by passing a current through the current mirror circuit;
A method of manufacturing a current mirror type biosensor, comprising the step of cutting the portion to be cut.
JP2010190392A 2010-08-27 2010-08-27 Current mirror type biosensor and method of manufacturing current mirror type biosensor Expired - Fee Related JP5445778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010190392A JP5445778B2 (en) 2010-08-27 2010-08-27 Current mirror type biosensor and method of manufacturing current mirror type biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010190392A JP5445778B2 (en) 2010-08-27 2010-08-27 Current mirror type biosensor and method of manufacturing current mirror type biosensor

Publications (2)

Publication Number Publication Date
JP2012047611A JP2012047611A (en) 2012-03-08
JP5445778B2 true JP5445778B2 (en) 2014-03-19

Family

ID=45902660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010190392A Expired - Fee Related JP5445778B2 (en) 2010-08-27 2010-08-27 Current mirror type biosensor and method of manufacturing current mirror type biosensor

Country Status (1)

Country Link
JP (1) JP5445778B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5447858B2 (en) * 2010-08-27 2014-03-19 大日本印刷株式会社 Current mirror biosensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259565A (en) * 1985-05-13 1986-11-17 Fuji Xerox Co Ltd Thin film transistor and manufacture thereof
JPS63269820A (en) * 1987-04-28 1988-11-08 Nec Corp Current mirror circuit
DE19601488C1 (en) * 1996-01-17 1997-05-28 Itt Ind Gmbh Deutsche Measuring device manufacturing method for measuring or testing physiological parameter at biocomponent
GB2416210B (en) * 2004-07-13 2008-02-20 Christofer Toumazou Ion sensitive field effect transistors
JP2009103810A (en) * 2007-10-22 2009-05-14 Sony Corp Liquid crystal display and repair method therefor

Also Published As

Publication number Publication date
JP2012047611A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP4962599B2 (en) Field effect transistor biosensor
US11008611B2 (en) Double gate ion sensitive field effect transistor
ES2321118T3 (en) DEVICE AND PROCEDURE FOR THE DETECTION OF LOADED MACROMOLECULES.
US20110291673A1 (en) Chemical sensor
JP5488372B2 (en) Biosensor
TW201224478A (en) Methods and apparatus for testing ISFET arrays
Sinha et al. A comprehensive review of FET‐based pH sensors: materials, fabrication technologies, and modeling
KR101515491B1 (en) hydrogen ion sensor
KR101720281B1 (en) FET based biosensor using nanowire of sensor channel and membrane of flow channel, and method for detecting target materials using the FET based biosensor
US20140295573A1 (en) Biosensor with dual gate structure and method for detecting concentration of target protein in a protein solution
Chen et al. Contacting versus insulated gate electrode for Si nanoribbon field-effect sensors operating in electrolyte
JP5903872B2 (en) Transistor type sensor and method for manufacturing transistor type sensor
JP5494396B2 (en) Biosensor
JP5392344B2 (en) Field effect transistor biosensor
JP5445778B2 (en) Current mirror type biosensor and method of manufacturing current mirror type biosensor
JP5447858B2 (en) Current mirror biosensor
JP5963887B2 (en) Apparatus and method for electrochemical analysis of liquid samples by lateral flow assay
JP5682270B2 (en) Measuring method using biosensor and biosensor
CN116936640A (en) Ion sensitive thin film transistor and biosensing chip
JP5413607B2 (en) Current mirror biosensor
KR20160134111A (en) Bio Sensor
TWI239397B (en) Electro-chemical electrode sensing test sheet for screen printing and its manufacturing method
JP5472013B2 (en) Transistor type sensor
JP5494395B2 (en) Biosensor
Diao et al. Direct Protein Detection in Solutions of High Ionic Strength using Polyethylene Glycol‐modified AlGaN/GaN High Electron Mobility Transistors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Ref document number: 5445778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees