JP5439297B2 - Control server and network system - Google Patents

Control server and network system Download PDF

Info

Publication number
JP5439297B2
JP5439297B2 JP2010148490A JP2010148490A JP5439297B2 JP 5439297 B2 JP5439297 B2 JP 5439297B2 JP 2010148490 A JP2010148490 A JP 2010148490A JP 2010148490 A JP2010148490 A JP 2010148490A JP 5439297 B2 JP5439297 B2 JP 5439297B2
Authority
JP
Japan
Prior art keywords
path
node
delay
control server
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010148490A
Other languages
Japanese (ja)
Other versions
JP2012015668A (en
Inventor
仁史 藪崎
大典 松原
一磨 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010148490A priority Critical patent/JP5439297B2/en
Publication of JP2012015668A publication Critical patent/JP2012015668A/en
Application granted granted Critical
Publication of JP5439297B2 publication Critical patent/JP5439297B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)

Description

本発明は、トランスポート制御サーバ(TCS:Transport Control Server)、ネットワークシステム及びトランスポート制御方法に係り、特に、遅延を保証するパスに対して、最終的に収容するパスの収容率やトラフィック量からノードにおける転送遅延やリンクを経由することによる伝送遅延からパスの遅延を計算する技術に関する。   The present invention relates to a transport control server (TCS: Transport Control Server), a network system, and a transport control method, and in particular, from the accommodation rate and traffic volume of a path that is finally accommodated with respect to a path that guarantees delay. The present invention relates to a technique for calculating a path delay from a transfer delay in a node and a transmission delay caused by passing through a link.

従来のトランスポート制御システムでは、MPLS(Multi−Protocol Label Switching)などのパスを設定・制御する際、パス経路を自動的に設計するための様々な手法が使われている。特開2006‐74600では,リンクを経由する伝送遅延からパスの遅延を計算し,遅延制約に基づいて帯域を有効活用するパスを計算・設定するシステムが提案されている。特開2008‐48114では,複数のネットワークを経由するパスにおいて,遅延制約に基づいてパスを計算する際にリンクを経由する伝送遅延からパスの遅延を計算し,各ネットワークに割り当てる遅延の割合を計算するシステムが提案されている。特開2005-080159では,余剰帯域に基づいてパス設定可能かを判断し,パスを設定できない場合に,ネットワークの状態を示す状態情報を通知するシステムが提案されている。特開2008-017409では,QoS制御システムにおいて,余剰帯域に基づいてパス設定可能かを判断し,パス設定できない場合に提供可能な最大の余剰帯域を通知するシステムが提案されている。特開2007‐26374では,パス上の帯域使用率・ノードの町パケット数の情報と,回線の帯域情報とをもとに,ケイロンお平均帯域幅を算出する装置が提案されている。   In a conventional transport control system, various methods for automatically designing a path route are used when setting and controlling a path such as MPLS (Multi-Protocol Label Switching). Japanese Laid-Open Patent Publication No. 2006-74600 proposes a system that calculates a path delay from a transmission delay via a link, and calculates and sets a path that effectively uses a bandwidth based on a delay constraint. JP 2008-48114 calculates the path delay from the transmission delay through the link when calculating the path based on the delay constraint, and calculates the ratio of the delay allocated to each network. A system has been proposed. Japanese Patent Application Laid-Open No. 2005-080159 proposes a system that determines whether a path can be set based on the surplus bandwidth, and notifies status information indicating a network status when a path cannot be set. Japanese Patent Laid-Open No. 2008-017409 proposes a system that determines whether a path can be set based on the surplus bandwidth in a QoS control system, and notifies the maximum surplus bandwidth that can be provided when the path cannot be set. Japanese Patent Application Laid-Open No. 2007-26374 proposes an apparatus for calculating an average bandwidth of a Keiron based on information on bandwidth usage on a path, the number of town town packets, and bandwidth information on a line.

特開2006‐74600JP 2006-74600 特開2008‐48114JP2008-48114 特開2005-080159JP2005-080159 特開2008-017409JP2008-017409 特開2007‐26374JP2007-26374

従来システムでは、パスの遅延を計算する際に,リンクを経由するのに要する伝送遅延しか考慮されていない。パスの遅延を保証するためには伝送遅延だけではなく,ノード内における転送遅延も考慮する必要がある。しかし,伝送遅延と転送遅延の両方を考慮してパスの遅延を算出して,遅延制約を満たすか判断するシステムが見られない。   In the conventional system, when calculating the path delay, only the transmission delay required for passing through the link is considered. In order to guarantee the path delay, it is necessary to consider not only the transmission delay but also the transfer delay in the node. However, there is no system that calculates the delay of a path in consideration of both transmission delay and transfer delay and determines whether the delay constraint is satisfied.

また,ノードの処理遅延はノード内部の構成に依存するため,ノード内部の構成およびあるポートに入ったパケットがノード内のどの構成部を経由して他のポートから出てくるかという情報に基づいてパスの遅延を計算する必要があるが,ノードの構成やパケットの経由する構成部を考慮した転送遅延の計算は提案されていない。   In addition, since the processing delay of a node depends on the internal configuration of the node, it is based on the internal configuration of the node and the information on which component in the node the packet is output from other ports. Although it is necessary to calculate the delay of the path, no calculation of the transfer delay considering the node configuration or the configuration part through which the packet passes has been proposed.

更に,一般的にトラフィックはバースト的であり,またネットワークに流れるトラフィック量は時間帯によって大きく変化する。転送遅延はノード内に流入するトラフィック量によって変化するため,そのときどきのトラフィック量に基づいてパスの遅延を計算・計測すると,パスの遅延が変化する。従って、パスの遅延を保証するためには転送遅延の再計算が必要になり,またパスの遅延の通知が必要になるため,パスを管理する制御サーバのCPUやメモリを圧迫する。   Furthermore, traffic is generally bursty, and the amount of traffic flowing through the network varies greatly with time. Since the transfer delay changes depending on the amount of traffic flowing into the node, the path delay changes when the path delay is calculated and measured based on the traffic amount at that time. Therefore, in order to guarantee the path delay, it is necessary to recalculate the transfer delay, and it is necessary to notify the path delay, which puts pressure on the CPU and memory of the control server that manages the path.

また、パスでは帯域を確保するが,リンクの総帯域に対する確保された帯域の割合(パスの収容率)に基づいて転送遅延を計算することによって遅延を見積もることができるが,新規にパスを設定してパスの収容率が変化すると,見積もった遅延が変化する。既設パス数が数万本に増えると,パスの収容率が変化した際に,多数のパスの遅延の再計算が必要になり,パスを管理する制御サーバのCPUやメモリを圧迫する。   In addition, although bandwidth is secured in the path, the delay can be estimated by calculating the transfer delay based on the ratio of the secured bandwidth to the total bandwidth of the link (path accommodation rate). As the path accommodation rate changes, the estimated delay changes. When the number of existing paths increases to several tens of thousands, when the path accommodation rate changes, it becomes necessary to recalculate the delays of a large number of paths, putting pressure on the CPU and memory of the control server that manages the paths.

上記課題を解決するために、本発明の制御サーバの一例では、パス経路において通信されるデータの遅延を計算する制御サーバであって、複数のノードに接続されるインタフェースと、該複数のノードの各々のノード内における前記データの遅延である転送遅延の値を格納する格納部と、前記複数のノードのうち前記パス経路が経由するノードの前記転送遅延の値に基づいて、前記パス経路において通信されるデータの遅延を計算するパス遅延計算部と、を有することを特徴とする。   In order to solve the above problem, an example of a control server of the present invention is a control server that calculates a delay of data communicated in a path route, and includes an interface connected to a plurality of nodes, and Communication in the path route based on a storage unit that stores a transfer delay value that is a delay of the data in each node, and the transfer delay value of a node through which the path route passes among the plurality of nodes And a path delay calculation unit for calculating a delay of the data to be processed.

また、上記転送遅延を計算するために、ノード毎のノード内に流入するトラフィックの総和の上限値、ノード毎の収容するリンクの帯域の上限値、リンク毎の物理帯域の総和に対する確保する帯域の上限値の割合、又は、リンク毎の物理帯域の総和に対するリンクを流れるトラフィック量の上限値を、予め定め、これら予め定めた値の少なくとも一つを用いて、転送遅延を計算する。また、これら予め定めた値は、目標収容率と呼ぶ。   In addition, in order to calculate the transfer delay, the upper limit value of the total sum of traffic flowing into the node for each node, the upper limit value of the bandwidth of the link accommodated for each node, and the bandwidth to be secured for the sum of the physical bandwidth for each link A ratio of the upper limit value or an upper limit value of the amount of traffic flowing through the link with respect to the total physical bandwidth for each link is determined in advance, and the transfer delay is calculated using at least one of these predetermined values. Moreover, these predetermined values are called target accommodation rates.

また、本発明のネットワークシステムの一例では、複数のノードに接続されネットワークにおけるパス経路を設定する制御サーバと、管理端末と、を備え、前記管理端末は、目標収容率を含む情報を前記制御サーバに送信する送受信部を有し、前記制御サーバは、前記管理端末から受信した前記目標収容率を含む情報を格納する格納部と、前記目標収容率に基づいて、前記ノードのノード内における通信データの遅延である転送遅延を計算する転送遅延計算部と、を有することを特徴とする。   In one example of the network system of the present invention, a control server connected to a plurality of nodes and setting a path route in the network, and a management terminal are provided, and the management terminal stores information including a target accommodation rate in the control server. The control server includes a storage unit that stores information including the target accommodation rate received from the management terminal, and communication data within the node of the node based on the target accommodation rate. And a transfer delay calculation unit for calculating a transfer delay that is a delay of the above.

更に、本ネットワークシステムにおいて、前記管理端末の前記送受信部は、パス経路において通信されるデータの遅延が所定の値を満たすパス経路の設定要求を前記制御サーバに送信し、前記制御サーバは、前記パス経路が経由するノードの前記転送遅延に基づいて、前記パス経路において通信されるデータの遅延を計算するパス遅延計算部と、前記計算した前記パス経路において通信されるデータの遅延から、前記所定の値を満たすパス経路を選択するパス設定部と、を有することを特徴とする。   Furthermore, in this network system, the transmission / reception unit of the management terminal transmits a path route setting request that satisfies a predetermined value for a delay of data communicated in the path route to the control server, and the control server Based on the transfer delay of the node through which the path route passes, a path delay calculation unit that calculates a delay of data communicated in the path route, and the predetermined delay from the calculated delay of data communicated in the path route And a path setting unit that selects a path route that satisfies the above value.

本発明は、パスの遅延の再計算および再通知を防止することで制御サーバのCPUやメモリを圧迫することを防止する。   The present invention prevents pressure on the CPU and memory of the control server by preventing recalculation and re-notification of path delay.

ネットワークシステムの構成図Network system configuration diagram トポロジの図Topology diagram ノードの構成例Example of node configuration トランスポート制御サーバの構成Transport control server configuration 目標収容率を更新する場合のフロー図Flow chart for updating the target capacity システム導入時のフロー図Flow chart for system introduction パス設定要求時のフロー図Flow diagram when requesting path setting パス設定要求情報のテーブルPath setting request information table ノートとリンク接続情報テーブルNotes and link connection information table リンク情報テーブルLink information table 探索パス情報テーブルSearch path information table パス探索条件情報テーブルPath search condition information table 探索状態情報テーブルSearch status information table 仮想ネットワークパケット情報テーブルVirtual network packet information table 目標収容率情報テーブルTarget capacity information table リンク遅延情報テーブルLink delay information table 外部連携用パス基本情報テーブルPath basic information table for external linkage 仮想ネットワーク既設パス情報テーブルVirtual network existing path information table 仮想ネットワークノード状態情報テーブルVirtual network node status information table 仮想ネットワークノード遅延情報テーブルVirtual network node delay information table 仮想ネットワークスケジューリング情報テーブルVirtual network scheduling information table 仮想ネットワークリンクメトリック情報テーブルVirtual network link metric information table 仮想ネットワークノード構成部メトリック情報テーブルVirtual network node component metric information table 仮想ネットワークノードメトリック情報テーブルVirtual network node metric information table 仮想ネットワーク情報テーブルVirtual network information table 仮想ネットワークノード余剰帯域情報テーブルVirtual network node surplus bandwidth information table 仮想ネットワーク余剰帯域情報テーブルVirtual network surplus bandwidth information table 仮想ネットワーク算出パス情報テーブルVirtual network calculation path information table 候補パスの計算のフロー図Candidate path calculation flow diagram ノード遅延の計算のフロー図Node delay calculation flow diagram パス遅延の計算のフロー図Path delay calculation flow diagram 経路計算のフロー図Route calculation flow diagram

以下、本発明に係るネットワークシステムを図面に示した実施の形態を参照してさらに詳細に説明する。   Hereinafter, a network system according to the present invention will be described in more detail with reference to embodiments shown in the drawings.

図1は、本発明の一実施例に係るネットワークシステムの構成図であり、ネットワークの制御を行うトランスポート制御サーバ100、トランスポート制御サーバ100に接続して画面表示やシステム操作の手段を提供する管理端末120、トランスポート制御サーバ100が管理するノード111〜118がある。   FIG. 1 is a configuration diagram of a network system according to an embodiment of the present invention. The transport control server 100 performs network control, and is connected to the transport control server 100 to provide screen display and system operation means. There are nodes 111 to 118 managed by the management terminal 120 and the transport control server 100.

トランスポート制御サーバ100はノード111〜118に接続しており、それぞれのノードの間で接続されるパスを設定する。パス技術の例としては、MPLS(Multi-Protocol Label Switching)、MPLS-TP(MPLS Transport Profile)、PBB-TE(Provider Backbone Bridge Traffic Engineering)などがある。パスは各ノードが収容するVPN、音声、動画、などのサービスに対して設定されるため、ノード間で設定される。   The transport control server 100 is connected to the nodes 111 to 118, and sets a path to be connected between the nodes. Examples of path technologies include MPLS (Multi-Protocol Label Switching), MPLS-TP (MPLS Transport Profile), and PBB-TE (Provider Backbone Bridge Traffic Engineering). Since the path is set for services such as VPN, voice, video, etc. accommodated by each node, it is set between the nodes.

遅延はパスのスイッチ間を繋ぐリンクを経由するのに要する伝送遅延とスイッチでパケットを処理するのに要する転送遅延があり,正確に遅延を見積もるためには両方を考慮して計算する必要がある。   There are two types of delays: the transmission delay required to pass through the link between the switches in the path and the transfer delay required to process the packet in the switch. To accurately estimate the delay, both must be calculated .

例えば,図2のようなネットワークにおいては,ノード111,ノード114を端点としてノード113を経由するパスの遅延は,ノード111,ノード113,ノード114における転送遅延と,リンクa,リンクbにおける伝送遅延の和で算出される。   For example, in the network as shown in FIG. 2, the delay of the path passing through the node 113 with the nodes 111 and 114 as end points is the transfer delay in the nodes 111, 113, and 114 and the transmission delay in the links a and b. It is calculated by the sum of

ノード111〜ノード118の構成例を図3に示す。ノードは基本ユニット121と増設ユニット131,およびそれらの接続部である127で構成される。基本ユニット121はインタフェース122~125および,それらのインタフェース(IF)を繋ぐスイッチングファブリック126等で構成される。増設ユニット131はインタフェース132,133等で構成される。ノードにおける転送遅延は各構成部においてパケットを処理する時間,および他のパケットが処理されている間を各構成部バッファーで待つ時間の合計で計算される。
A configuration example of the nodes 111 to 118 is shown in FIG. The node is composed of a basic unit 121, an extension unit 131, and 127 which is a connection part thereof. The basic unit 121 includes interfaces 122 to 125 and a switching fabric 126 that connects these interfaces (IF). The extension unit 131 includes interfaces 132, 133 and the like. The transfer delay in the node is calculated as the sum of the time for processing the packet in each component and the time to wait in each component buffer while another packet is processed.

本発明のトランスポート制御サーバ100の構成を図4に示す。   The configuration of the transport control server 100 of the present invention is shown in FIG.

トランスポート制御サーバ100は、例えば、通信IF210と、データ記憶部211と,制御処理部200を備える。通信IF210は制御対象であるネットワークのノードに対して直接あるいはEMS(Element Management System)を通してパスを設定,削除,変更,あるいはノードの情報を収集する際にメッセージの送受信を行う。データ記憶部211は,パス情報記憶部208,トポロジ情報記憶部209,帯域情報記憶部212を備える。パス情報記憶部208はテーブル720,730,740,780,800,810,830,850,960を有する。トポロジ情報記憶部209はテーブル640,700,710,760,920,980を有する。帯域情報記憶部212はテーブル600,860, 880を有する。   The transport control server 100 includes, for example, a communication IF 210, a data storage unit 211, and a control processing unit 200. The communication IF 210 transmits / receives a message when a path is set, deleted, changed, or node information is collected directly or through an element management system (EMS) with respect to a network node to be controlled. The data storage unit 211 includes a path information storage unit 208, a topology information storage unit 209, and a bandwidth information storage unit 212. The path information storage unit 208 includes tables 720, 730, 740, 780, 800, 810, 830, 850, and 960. The topology information storage unit 209 includes tables 640, 700, 710, 760, 920, and 980. The band information storage unit 212 includes tables 600, 860, and 880.

制御処理部200は,パス設定部201,経路・リソース計算部204,サービス受付部202,通信特性計算部205,およびメッセージ送受信部206を有する。パス設定部201は経路・リソース計算部204が算出したパスの経路や帯域情報に基づきパスデータを作成する。経路・リソース計算部204は設定するパスの経路や設定するパスの帯域を計算・管理する。サービス受付部202はパス設定要求者がGUI等からパスの新規設定等を入力した場合やデータ同期アプリケーション基盤,データセンタ,あるいは他のNMS等が新規パス設定要求を送信した場合に,パス設定要求を受信する。通信特性計算部205は設定されたノードの目標収容率に基づいてノードの遅延やパスの遅延を計算する。ノードの構成部単位における遅延を計算することで,ノードの実装状況に対して正確な遅延の算出が可能になる。   The control processing unit 200 includes a path setting unit 201, a route / resource calculation unit 204, a service reception unit 202, a communication characteristic calculation unit 205, and a message transmission / reception unit 206. The path setting unit 201 creates path data based on the path and bandwidth information calculated by the path / resource calculation unit 204. The path / resource calculation unit 204 calculates and manages the path of the path to be set and the bandwidth of the path to be set. The service reception unit 202 requests a path setting when a path setting requester inputs a new path setting from a GUI or the like, or when a data synchronization application platform, data center, or another NMS transmits a new path setting request. Receive. The communication characteristic calculation unit 205 calculates a node delay and a path delay based on the set target capacity of the node. By calculating the delay in each node component unit, it is possible to accurately calculate the delay according to the mounting state of the node.

また,ノードを複数の仮想ネットワークに属する複数の仮想ノードとして認識し,仮想ネットワーク毎に分けてノードのリソースを分割して管理すると,仮想化ネットワークに適用可能になる。さらに仮想ネットワーク毎のリソースから遅延を計算すると,仮想ネットワーク毎の遅延を算出することができる。また,ノードの構成部単位で仮想ネットワークの帯域を計算すると,ノードの構成部単位で仮想ネットワークにリソースを分割することができ,フレキシビリティの高い制御,およびそれに対応した遅延の計算が可能である。   In addition, if a node is recognized as a plurality of virtual nodes belonging to a plurality of virtual networks, and the resources of the nodes are divided and managed for each virtual network, it can be applied to a virtual network. Furthermore, if the delay is calculated from the resources for each virtual network, the delay for each virtual network can be calculated. In addition, if the bandwidth of the virtual network is calculated for each node component, resources can be divided into virtual networks for each node component, enabling highly flexible control and corresponding delay calculations. .

メッセージ送受信部206はパス設定部201が作成したパスデータに基づきパスを設定,変更,削除するメッセージを作成し,また通信IF210がノードの情報に関するメッセージを収集した際に, 収集したメッセージを解釈し,経路・リソース計算部204,または通信特性計算部205に渡す。   The message transmission / reception unit 206 creates a message for setting, changing, or deleting a path based on the path data created by the path setting unit 201, and interprets the collected message when the communication IF 210 collects a message related to node information. , Route / resource calculation unit 204, or communication characteristic calculation unit 205.

以下にデータ機構部211が保持する情報を示す。   The information held by the data mechanism unit 211 is shown below.

図9にノードとリンクの接続情報であるテーブル700を示す。テーブル700はトポロジ情報記憶部209に保存されている。ノードID701はノードの識別子である。ポートID702は同行のノードID701のポートの識別子である。接続リンクID703は同行のノードID701のポート702に接続するリンクの識別子である。隣接ノードID704は同行の接続リンクID703を経由して同行のノードID701と接続するノードの識別子である。接続ノードのポートID705は同行の隣接ノードID704のポートのうち,同行のリンクID701と接続するポートの識別子である。   FIG. 9 shows a table 700 which is node and link connection information. The table 700 is stored in the topology information storage unit 209. The node ID 701 is a node identifier. The port ID 702 is an identifier of the port of the node ID 701 on the bank. The connection link ID 703 is an identifier of a link connected to the port 702 of the node ID 701 on the bank. The adjacent node ID 704 is an identifier of a node that is connected to the node ID 701 of the bank via the connection link ID 703 of the bank. The port ID 705 of the connection node is an identifier of a port connected to the link ID 701 of the same row among the ports of the adjacent node ID 704 of the same row.

図10にリンク情報であるテーブル710を示す。テーブル710はトポロジ情報記憶部209に保存されている。リンクID711はリンクの識別子である。遅延712はパケットが同行のリンクID711に対応するリンクを経由するのに要する時間である。接続ノードID713は同行のリンクID711が接続するノードの識別子である。接続ポートID714は同行のノードID713のポートのうち,同行のリンクID711に接続するポートの識別子である。   FIG. 10 shows a table 710 as link information. The table 710 is stored in the topology information storage unit 209. The link ID 711 is a link identifier. The delay 712 is a time required for the packet to pass through the link corresponding to the link ID 711 of the bank. The connection node ID 713 is an identifier of a node to which the link ID 711 on the bank is connected. The connection port ID 714 is an identifier of a port connected to the link ID 711 of the bank among the ports of the node ID 713 of the bank.

図11に探索パス情報であるテーブル720を示す。テーブル720はパス情報記憶部208に保存されている。パスID721はパスの識別子である。経由ノード722は同行のパスID721に対応するパスが経由するノードの識別子である。経由ノードのポートID 入口/出口723は同行のパスID721が経由するノードに入るポートと出るポートの識別子である。経由リンクID724は同行のパスID721が経由するリンクの識別子である。経由ノード数725は同行のパスID721が経由するノードの数である。遅延726は同行のパスID721の遅延であり,同パスが経由するノードがパケットを処理するのに要する時間とリンクを経由するのに要する時間の合計である。状態727はパスの探索状態を表す識別子である。   FIG. 11 shows a table 720 that is search path information. The table 720 is stored in the path information storage unit 208. The path ID 721 is a path identifier. The transit node 722 is an identifier of a node through which a path corresponding to the path ID 721 of the bank passes. Port ID of the transit node The entrance / exit 723 is an identifier of the port that enters and exits the node through which the path ID 721 of the bank passes. The via link ID 724 is an identifier of a link through which the path ID 721 of the bank passes. The number of via nodes 725 is the number of nodes through which the path ID 721 of the bank passes. The delay 726 is the delay of the path ID 721 of the bank, and is the total of the time required for the node through which the path passes to process the packet and the time required to pass through the link. A state 727 is an identifier representing a path search state.

図12にパス探索条件情報であるテーブル730を示す。テーブル730はパス情報記憶部208に保存されている。最大遅延731は探索するパスに許容する最大の遅延の値である。遅延がこの値を超えたパスの探索は終了する。最大経由ノード数732は探索するパスに許容する最大の経由ノード数である。経由ノード数がこの値を超えたパスの探索は終了する。パス数733は探索するパスの総数である。探索されたパスから最終的に絞り込むパスの数を表す。最大Joint数734は端点が同じパスの中で,同じリンクまたはノードを経由する数(Joint数)の最小値を制限する値である。Joint数の最小値が最大Joint数734よりも大きいパスは削除される。   FIG. 12 shows a table 730 that is path search condition information. The table 730 is stored in the path information storage unit 208. The maximum delay 731 is a maximum delay value allowed for the searched path. The search for a path whose delay exceeds this value ends. The maximum number of via nodes 732 is the maximum number of via nodes allowed for the searched path. The search for the path where the number of via nodes exceeds this value ends. The number of paths 733 is the total number of paths to be searched. This represents the number of paths that are finally narrowed down from the searched paths. The maximum Joint number 734 is a value that limits the minimum value of the number (Joint number) that passes through the same link or node in the path with the same end point. A path whose minimum number of joints is larger than the maximum number of joints 734 is deleted.

図13に探索状態情報であるテーブル740を示す。テーブル740はパス情報記憶部208に保存されている。探索中のパスID741は探索中のパスの識別子を表す。   FIG. 13 shows a table 740 that is search state information. The table 740 is stored in the path information storage unit 208. A path ID 741 being searched represents an identifier of the path being searched.

図14に仮想ネットワーク(NW)パケット情報であるテーブル810を示す。テーブル810はパス情報記憶部208に保存されている。仮想NWID811は仮想ネットワークを識別するための識別子である。平均パケット長812は仮想ネットワークに流れるパケットの,MPLSやPBB(Provider Backbone Bridge)などのヘッダーを付加する前の平均のパケット長である。最小パケット長813は仮想ネットワークに流れるMPLSやPBBなどに流れるパケットのMPLSやPBBなどのヘッダーを付加する前の最小(ショーテストパケット)のパケット長である。バースト長814はトラフィックが突発的に増大する場合にも帯域を保証するために過剰に確保する帯域である。また,仮想ネットワークによってはトラフィックをオーバーブッキングするように設定することがあるが,バースト長814は,1以下の値を入れることによって統計多重としても活用される。   FIG. 14 shows a table 810 that is virtual network (NW) packet information. The table 810 is stored in the path information storage unit 208. The virtual NWID 811 is an identifier for identifying a virtual network. The average packet length 812 is an average packet length of packets flowing through the virtual network before adding a header such as MPLS or PBB (Provider Backbone Bridge). The minimum packet length 813 is a minimum packet length (show test packet) before adding a header such as MPLS or PBB of a packet flowing in the MPLS or PBB flowing in the virtual network. The burst length 814 is a bandwidth that is reserved excessively to guarantee the bandwidth even when traffic suddenly increases. Also, depending on the virtual network, traffic may be set to be overbooked, but the burst length 814 is also used as statistical multiplexing by entering a value of 1 or less.

図15に目標収容率に関する情報であるテーブル600を示す。テーブル600は帯域情報記憶部212に保存される。ノードID601はノードの識別子である。目標収容率602は最終的にパスあるいはトラフィックを収容する割合である。目標収容率をノード毎に管理することによって,柔軟な目標収容率の管理が可能になる。例えば,エッジノードやコアノードでは,トラフィックの流入条件等が違うため,目標収容率を変更することによって,どの程度積み上げるかを細かく設定することができ,その結果,より正確な遅延の見積もりが可能になる。仮想NWID604は仮想ネットワークの識別子であり,各仮想NWの割合605は仮想ネットワークに確保する帯域の割合を示す。これによって,目標収容率を仮想ネットワーク毎に管理することができる。総帯域606は各仮想ネットワークに割り当てられた帯域(Mbps、Gbps)である。トラフィック量607はトラフィックが実際に流れている帯域(Mbps、Gbps)である。この値を管理することによって目標収容率から算出した遅延と実際のトラフィック量から計測した遅延の値を比較することによって,目標収容率に基づいた遅延の算出の精度を高めることができる。   FIG. 15 shows a table 600 that is information on the target capacity. The table 600 is stored in the band information storage unit 212. The node ID 601 is a node identifier. The target accommodation rate 602 is a rate at which a path or traffic is finally accommodated. By managing the target capacity for each node, the target capacity can be managed flexibly. For example, since the inflow conditions of traffic are different between edge nodes and core nodes, it is possible to set how much to accumulate by changing the target capacity, and as a result, more accurate delay estimation is possible. Become. The virtual NWID 604 is an identifier of the virtual network, and the ratio 605 of each virtual NW indicates the ratio of the bandwidth reserved for the virtual network. As a result, the target capacity can be managed for each virtual network. The total bandwidth 606 is a bandwidth (Mbps, Gbps) assigned to each virtual network. A traffic amount 607 is a bandwidth (Mbps, Gbps) in which traffic actually flows. By managing this value and comparing the delay calculated from the target accommodation rate with the delay value measured from the actual traffic volume, it is possible to improve the accuracy of the delay calculation based on the target accommodation rate.

テーブル600は帯域情報記憶部212に保存されている。ノードID601はノードを識別するための識別子である。目標収容率602は同行のノードが収容可能な帯域に対する,そのノードに最終的に設定する全てのパスの帯域の総和である。仮想NWID604 はノードのリソースやフォワーディングテーブル等を仮想的に分割する仮想ネットワークを識別するための識別子である。仮想NWの割合605は各仮想NWに割り振るノードの帯域の割合である。総帯域606は各仮想NWに割り当てられた帯域である。トラフィック量607は各仮想NWに流れることを想定するトラフィック量である。トラフィック量は事前に設定した値や,計測によって変更された値等が含まれる。   The table 600 is stored in the band information storage unit 212. A node ID 601 is an identifier for identifying a node. The target accommodation rate 602 is the total sum of the bandwidths of all paths finally set for the node with respect to the bandwidth that can be accommodated by the accompanying node. A virtual NWID 604 is an identifier for identifying a virtual network that virtually divides a node resource, a forwarding table, and the like. A virtual NW ratio 605 is a ratio of a node bandwidth allocated to each virtual NW. The total bandwidth 606 is a bandwidth allocated to each virtual NW. The traffic amount 607 is a traffic amount that is assumed to flow to each virtual NW. The traffic volume includes values set in advance and values changed by measurement.

図16にリンク遅延情報であるテーブル620を示す。テーブル620はトポロジ情報記憶部209に保存されている。リンクID621はリンクを識別するための識別子である。レイヤ1ノード遅延622はL2のリンクの間に含まれるWDM(Wavelength Division Multiplexing)光伝送装置における処理時間の合計値である。伝送距離623はリンクの光学距離である。遅延624はレイヤ1ノードの遅延と伝送距離をパケットが移動することによる遅延の合計値である。   FIG. 16 shows a table 620 that is link delay information. The table 620 is stored in the topology information storage unit 209. The link ID 621 is an identifier for identifying the link. The layer 1 node delay 622 is a total value of processing times in a WDM (Wavelength Division Multiplexing) optical transmission apparatus included between L2 links. Transmission distance 623 is the optical distance of the link. The delay 624 is a total value of the delay due to the packet moving through the delay of the layer 1 node and the transmission distance.

図17に外部連携用パス基本情報であるテーブル800を示す。テーブル800はパス情報記憶部208に保存されており,外部NMSと連携する場合に用いる。仮想NWID801は仮想ネットワークを識別するための識別子である。パスID802はパスを識別するための識別子である。経由ノードID/入口ポートID,出口ポートID803はパスが経由するノードの識別子とそのノードにパケットが入るポートの識別子とノードからパケットが出るポートの識別子の組合せを,パスが経由するノードの順番に並べた値の集合である。経由リンクID804はパスが経由するリンクの識別子である。   FIG. 17 shows a table 800 that is basic information for external linkage paths. The table 800 is stored in the path information storage unit 208, and is used when linking with an external NMS. The virtual NWID 801 is an identifier for identifying a virtual network. A path ID 802 is an identifier for identifying a path. Via node ID / ingress port ID, egress port ID 803 is a combination of the identifier of the node through which the path passes, the identifier of the port where the packet enters the node, and the identifier of the port through which the packet leaves the node in the order of the node through which the path passes It is a set of arranged values. A transit link ID 804 is an identifier of a link through which a path passes.

図18に仮想ネットワーク既設パス情報であるテーブル850を示す。テーブル850はパス情報記憶部208に保存されている。制御対象のネットワークに既に設定されているパスの情報である。仮想NWID859は仮想ネットワークを識別するための識別子である。パスID851はパスを識別するための識別子である。端点853はパスの始点ノードと終点ノードの識別子である。遅延854はパスの始点ノードから終点ノードまでパケットが移動する際の遅延である。パケットロス855はパスの始点ノードから終点ノードまでの間に廃棄されるパケットの割合である。ジッター856はパスの始点ノードから終点ノードまでパケットが移動する際の遅延の変化の大きさである。帯域857はパスの始点ノードから終点ノードまでに確保された帯域である。コスト858はパスを選択する際の選択基準である。コストは経由するリンクやノードの帯域使用率等によって計算される値である。   FIG. 18 shows a table 850 that is virtual network existing path information. The table 850 is stored in the path information storage unit 208. This is information on paths already set in the network to be controlled. The virtual NWID 859 is an identifier for identifying a virtual network. A path ID 851 is an identifier for identifying a path. The end point 853 is an identifier of the start point node and the end point node of the path. A delay 854 is a delay when the packet moves from the start node to the end node of the path. The packet loss 855 is a ratio of packets discarded between the start point node and the end point node of the path. Jitter 856 is a magnitude of a change in delay when a packet moves from the start node to the end node of the path. A bandwidth 857 is a bandwidth secured from the start node to the end node of the path. The cost 858 is a selection criterion when selecting a path. The cost is a value calculated based on the link usage rate and the bandwidth usage rate of the node.

図19に構成部毎の収容率・処理時間情報であるテーブル640を示す。テーブル640はトポロジ情報記憶部209に保存されている。ノードID641はノードを識別するための識別子である。テーブル640によって,各構成部における処理時間に基づいて正確に処理時間を算出することができる。構成部642はノードを構成する各部分であり,各部の識別子を示す。例えば,IDが1のポートの場合はポート1と表示される。ポートの他には,ノードの基本ユニットに新規ユニットを増設した際の基本ユニットと増設ユニット,ノード内でパケットを処理するスイッチングファブリック等がある。仮想NWID643は仮想ネットワークを識別するための識別子である。処理速度644は各構成部の仮想的に分離されたリソースで,パケットを処理可能な帯域である。収容率645は各構成部の仮想ネットワーク毎の処理速度644に対する,その構成部に設定されるパスやトラフィックの帯域の割合である。処理時間646は,各構成部の仮想的に分離されたリソースでパケットの処理にかかる時間である。   FIG. 19 shows a table 640 that is accommodation rate / processing time information for each component. The table 640 is stored in the topology information storage unit 209. The node ID 641 is an identifier for identifying the node. With the table 640, the processing time can be accurately calculated based on the processing time in each component. A configuration unit 642 is each part constituting the node, and indicates an identifier of each unit. For example, if the port has an ID of 1, port 1 is displayed. In addition to the ports, there are basic units and expansion units when a new unit is added to the basic unit of the node, switching fabric for processing packets within the node, and the like. The virtual NWID 643 is an identifier for identifying a virtual network. The processing speed 644 is a virtually separated resource of each component, and is a bandwidth that can process a packet. The accommodation rate 645 is the ratio of the path and traffic bandwidth set for each component to the processing speed 644 of each component for each virtual network. The processing time 646 is the time taken to process a packet with virtually separated resources of each component.

図20に入口・出口ポートの組み合わせ毎の処理時間情報であるテーブル760を示す。テーブル760はトポロジ情報記憶部209に保存されている。テーブル760によって、ノード内の処理時間を各構成部の処理時間から再計算することなく、ノード内で転送にかかる時間である転送遅延を計算することができる。ノードID761,仮想NWID762,ポートID763はそれぞれ,ノードの識別子,仮想ネットワークの識別子,ポートの識別子である。経由構成部764は同行のノードID761,仮想NWID762に属するものでノードの入口と出口のポートがポートID763の同行の値である場合にノード内で経由する構成部である。また,遅延765は同行の経由構成部764の処理時間の合計値である。   FIG. 20 shows a table 760 that is processing time information for each combination of inlet and outlet ports. The table 760 is stored in the topology information storage unit 209. With the table 760, it is possible to calculate the transfer delay, which is the time required for transfer within the node, without recalculating the processing time within the node from the processing time of each component. The node ID 761, virtual NWID 762, and port ID 763 are a node identifier, a virtual network identifier, and a port identifier, respectively. The routing configuration unit 764 belongs to the node ID 761 and virtual NWID 762 of the bank, and is a configuration unit that is routed in the node when the entry and exit ports of the node have the same value of the port ID 763. The delay 765 is the total value of the processing times of the via-composition unit 764 of the bank.

図21に仮想ネットワークスケジューリング情報であるテーブル830を示す。テーブル830はパス情報記憶部208に保存されている。仮想NWID831は仮想ネットワークを識別するための識別子である。スケジューリング方式832はノードの処理において複数の優先度のパケットを処理するQoS制御において,スケジューリングを示す識別子である。完全優先転送やCBQ(Class Based Queuing)などがある。   FIG. 21 shows a table 830 that is virtual network scheduling information. The table 830 is stored in the path information storage unit 208. The virtual NWID 831 is an identifier for identifying a virtual network. The scheduling method 832 is an identifier indicating scheduling in QoS control in which packets of a plurality of priorities are processed in node processing. There are strict priority transfer and CBQ (Class Based Queuing).

図22に仮想ネットワークリンクメトリック情報であるテーブル500を示す。テーブル501はトポロジ情報記憶部209に保存されている。テーブル500はパスを計算する際に用いるリンクの重み係数に関するデータである。リンクID501はリンクの識別子である。仮想NWIDは仮想ネットワークの識別子である。メトリック502はそのリンクを用いることの重み係数である。一般に、最短経路問題を効率的に解くグラフ理論におけるアルゴリズムであるDIJKSTRA等に用いられる値で,制約条件を満たすパスが複数存在する場合に,経由するリンクのメトリックの和が最小の経路が選ばれる。   FIG. 22 shows a table 500 that is virtual network link metric information. The table 501 is stored in the topology information storage unit 209. The table 500 is data relating to the link weight coefficient used when calculating the path. The link ID 501 is a link identifier. The virtual NWID is a virtual network identifier. Metric 502 is a weighting factor for using the link. In general, when there are multiple paths that satisfy the constraints, the path with the smallest sum of the metrics of the links through which it passes is selected, as used in DIJKSTRA, an algorithm in graph theory that efficiently solves the shortest path problem .

図23に仮想ネットワークノード構成部メトリック情報であるテーブル520を示す。テーブル520はトポロジ情報記憶部209に保存されている。テーブル520はパスを計算する際に用いるノードの各構成部の重み係数に関するデータである。ノードID521はノードの識別子である。構成部ID522はノードの各構成部を識別するための識別子である。仮想NWID524は仮想ネットワークの識別子である。メトリック523はノードの各構成部の重み係数であり,経由する構成部のメトリックの和がノードのメトリックとして計算され,DIJKSTRAを拡張して,各構成部単位で余剰帯域や運用ポリシーに基づいて経路を計算することに用いられる値で,制約条件を満たすパスが複数存在する場合に,経由するリンクやノードのメトリックの和が最小の経路が選ばれる。これによって,構成部単位の余剰帯域を考慮した経路計算,あるいは優先的に使用すべき構成部,およびその組合せを考慮した経路計算が可能になる。   FIG. 23 shows a table 520 that is virtual network node configuration unit metric information. The table 520 is stored in the topology information storage unit 209. The table 520 is data relating to the weighting factor of each component of the node used when calculating the path. The node ID 521 is a node identifier. The component ID 522 is an identifier for identifying each component of the node. The virtual NWID 524 is a virtual network identifier. The metric 523 is a weighting factor of each component of the node, and the sum of the metrics of the components that are passed through is calculated as the node metric, and the DIJKSTRA is expanded so that the path based on the surplus bandwidth and the operation policy for each component When there are a plurality of paths that satisfy the constraint condition and are used to calculate the path, the path with the smallest sum of the metrics of the links and nodes that pass through is selected. This makes it possible to perform route calculation considering surplus bandwidth in units of components, or route calculation considering components to be preferentially used and combinations thereof.

図24に仮想ネットワークノードメトリック情報であるテーブル540を示す。テーブル540はトポロジ情報記憶部209に保存されている。テーブル540はパスを計算する際に用いるノードの重み係数に関するデータである。ノードID541はノードの識別子である。ポートID542はノードのどのポートから入ってどのポートに出るかを示すポートの識別子である。仮想NWID544は仮想ネットワークの識別子である。メトリック543はポートID542を出入口とする場合の重み係数である。DIJKSTRAを拡張して,各構成部単位で余剰帯域や運用ポリシーに基づいて経路を計算することに用いられる値で,制約条件を満たすパスが複数存在する場合に,経由するリンクとノードのメトリックの和が最小の経路が選ばれる。これによって,構成部単位の余剰帯域を考慮した経路計算,あるいは優先的に使用すべき構成部,およびその組合せを考慮した経路計算が可能になる。   FIG. 24 shows a table 540 that is virtual network node metric information. The table 540 is stored in the topology information storage unit 209. The table 540 is data relating to the node weighting coefficient used when calculating the path. The node ID 541 is a node identifier. The port ID 542 is a port identifier indicating which port of the node is used and which port is output. The virtual NWID 544 is a virtual network identifier. A metric 543 is a weighting coefficient when the port ID 542 is used as an entrance / exit. DIJKSTRA is a value that is used to calculate routes based on surplus bandwidth and operation policy for each component, and when there are multiple paths that satisfy the constraints, the link and node metrics that pass through The path with the smallest sum is chosen. This makes it possible to perform route calculation considering surplus bandwidth in units of components, or route calculation considering components to be preferentially used and combinations thereof.

図25に仮想ネットワーク情報であるテーブル980を示す。テーブル980はトポロジ情報記憶部209に保存されている。テーブル980は主にパス設定要求の条件を満たすパスが指定された仮想ネットワークに存在しない場合に他の仮想ネットワークを使用する際に用いるものである。仮想NWID981は仮想ネットワークを識別するための識別子である。コスト982は仮想ネットワークの価格などの値であり,複数の仮想ネットワークで提供可能な場合の選択基準の一つになる。他仮想NWへの活用可否983は他の仮想ネットワークに要求されたパスをその仮想ネットワークが収容できない場合に,代わりに収容することを許すか否かを示す識別子である。   FIG. 25 shows a table 980 which is virtual network information. The table 980 is stored in the topology information storage unit 209. The table 980 is mainly used when another virtual network is used when a path that satisfies the path setting request condition does not exist in the designated virtual network. The virtual NWID 981 is an identifier for identifying a virtual network. The cost 982 is a value such as the price of the virtual network, and is one of selection criteria when it can be provided by a plurality of virtual networks. Whether or not to use to other virtual NWs 983 is an identifier indicating whether or not a path requested for another virtual network is allowed to be accommodated when the virtual network cannot accommodate it.

図26に仮想ネットワークノード余剰帯域情報であるテーブル860を示す。テーブル860は帯域情報記憶部212に保存されている。テーブル860は主に制御対象のネットワークが複数の仮想ネットワークを有する際の,ノードの各構成部の余剰帯域を示すものである。ノードID861はノードの識別子である。構成部ID862はポートなどの構成部の識別子である。仮想NWID863は仮想ネットワークを識別するための識別子である。使用可能総帯域864はその構成部が同行の仮想ネットワークに割り当てられた処理速度である。余剰帯域865は使用可能総帯域864のうち,まだ使用(確保)されていない,余っている帯域である。   FIG. 26 shows a table 860 which is virtual network node surplus bandwidth information. The table 860 is stored in the band information storage unit 212. The table 860 mainly indicates the surplus bandwidth of each component of the node when the network to be controlled has a plurality of virtual networks. The node ID 861 is a node identifier. The configuration unit ID 862 is an identifier of a configuration unit such as a port. The virtual NWID 863 is an identifier for identifying a virtual network. The usable total bandwidth 864 is a processing speed whose component is allocated to the accompanying virtual network. The surplus bandwidth 865 is a surplus bandwidth that has not been used (reserved) in the available total bandwidth 864.

図27にリンクの帯域情報であるテーブル880を示す。テーブル880は帯域情報記憶部212に保存されている。テーブル880は主に制御対象のネットワークが複数の仮想ネットワークを有する際の,リンクの余剰帯域を示すものである。リンクID881はノードの識別子である。仮想NWID882は仮想ネットワークを識別するための識別子である。回線帯域883はその回線が同行の仮想ネットワークに割り当てられた回線速度である。余剰帯域884は回線帯域883のうち,まだ使用(確保)されていない,余っている帯域である。   FIG. 27 shows a table 880 that is link bandwidth information. The table 880 is stored in the band information storage unit 212. The table 880 mainly indicates the surplus bandwidth of the link when the network to be controlled has a plurality of virtual networks. The link ID 881 is a node identifier. The virtual NWID 882 is an identifier for identifying a virtual network. The line bandwidth 883 is a line speed at which the line is allocated to the accompanying virtual network. The surplus bandwidth 884 is a surplus bandwidth that has not been used (reserved) in the line bandwidth 883.

図28に仮想ネットワーク算出パス情報であるテーブル960を示す。テーブル960はパス情報記憶部208に保存されている。テーブル960は制御対象のネットワークが複数の仮想ネットワークを有する際の,経路・リソース計算部204が算出するパスに関するデータである。仮想NWID972は仮想ネットワークの識別子である。パスID961はパスの識別子である。端点962はパスの端点である始点ノード,終点ノードの識別子である。経由ノード963はパスが経由するノードの識別子である。経由ノードのポートID入口/出口964は経由ノードID963に示された各ノードの出入口のポートの識別子である。経由リンクID965はパスが経由するリンクの識別子である。経由ノード数966はパスが経由するノードの数である。遅延967はパスの始点ノードから終点ノードまでにパケットが転送されるのに所要する時間である。パケットロス968はパスの始点ノードから終点ノードまでにパケットが転送される間に廃棄されるパケットの割合である。ジッター969はパスの始点ノードから終点ノードまでにパケットが転送される間に所要する時間の変動の大きさである。帯域970はパスの始点ノードから終点ノードまでに各リンクや各ノードの各構成部で保証されるデータ転送速度の大きさである。コスト971はパスを選択する際の選択基準である。   FIG. 28 shows a table 960 that is virtual network calculation path information. The table 960 is stored in the path information storage unit 208. The table 960 is data relating to paths calculated by the path / resource calculation unit 204 when the network to be controlled has a plurality of virtual networks. The virtual NWID 972 is a virtual network identifier. The path ID 961 is a path identifier. The end point 962 is an identifier of a start point node and an end point node that are end points of the path. The transit node 963 is an identifier of a node through which a path passes. The port ID entry / exit 964 of the transit node is an identifier of the port of the entrance / exit of each node indicated by the transit node ID 963. The via link ID 965 is an identifier of the link through which the path passes. The number of via nodes 966 is the number of nodes through which the path passes. The delay 967 is the time required for the packet to be transferred from the start node to the end node of the path. The packet loss 968 is a ratio of packets discarded while a packet is transferred from the start point node to the end point node of the path. Jitter 969 is the magnitude of time fluctuation required while a packet is transferred from the start node to the end node of the path. The bandwidth 970 is the data transfer rate guaranteed by each link or each component of each node from the start node to the end node of the path. The cost 971 is a selection criterion for selecting a path.

図5に本発明において,目標収容率を設定・更新する場合のフロー図を示す。   FIG. 5 shows a flowchart for setting / updating the target capacity in the present invention.

ステップ2001では、パス設定要求者がノード毎の目標収容率の設定・変更を,また、制御対象のネットワークが仮想ネットワークで構成される場合には、仮想ネットワーク毎に確保する帯域の割合を,GUI等を通して設定する。サービス受付部202は入力された目標収容率を帯域情報記憶部212のテーブル600の目標収容率602に目標収容率を保存し,制御対象のネットワークが仮想ネットワークで構成される場合には、仮想ネットワークの割合も帯域情報記憶部212のテーブル600の仮想NWの割合605に保存する。
ステップ2002では,サービス受付部202が目標収容率更新要求を通信特性計算部205に送る。目標収容率更新要求2002のメッセージには,テーブル600が含まれる。
ステップ2003では,通信特性計算部205がデータ記憶部211のテーブル810,640,760,830を参照する。
ステップ2004では,通信特性計算部205がテーブル600を元に,ステップ2003で参照した情報からデータ記憶部211のステップ2103で参照した情報からデータ記憶部211のテーブル640の収容率645を計算し,テーブル640の収容率645,処理時間646,およびテーブル760の遅延765を計算する。以下図30に,具体的な計算方法を示す。
In step 2001, the path setting requester sets / changes the target capacity for each node, and if the network to be controlled is configured with a virtual network, the ratio of the bandwidth to be secured for each virtual network is determined by the GUI. Set through etc. The service reception unit 202 stores the target target capacity in the target target capacity 602 of the table 600 of the bandwidth information storage unit 212 and stores the target target capacity in the virtual network. Is also stored in the virtual NW ratio 605 of the table 600 of the bandwidth information storage unit 212.
In step 2002, the service reception unit 202 sends a target capacity update request to the communication characteristic calculation unit 205. The message of the target capacity update request 2002 includes a table 600.
In step 2003, the communication characteristic calculation unit 205 refers to the tables 810, 640, 760, and 830 of the data storage unit 211.
In step 2004, the communication characteristic calculation unit 205 calculates the accommodation rate 645 of the table 640 in the data storage unit 211 from the information referenced in step 2103 of the data storage unit 211 from the information referenced in step 2003 based on the table 600, The capacity 645 of the table 640, the processing time 646, and the delay 765 of the table 760 are calculated. FIG. 30 shows a specific calculation method.

図30にノード遅延の計算の例をフロー図に示す。   FIG. 30 is a flowchart showing an example of node delay calculation.

本処理内容は図5の遅延の計算2004,および図6の遅延の計算2104の詳細な処理内容ついて説明する。   This processing content will be described in detail with respect to the delay calculation 2004 in FIG. 5 and the delay calculation 2104 in FIG.

ステップ1101にて,通信特性計算部205が,帯域情報記憶部212のテーブル600のノードID601,同行の目標収容率602,仮想NWID604,仮想NWの割合605を参照して,トポロジ情報記憶部209のテーブル640のノードID641が把握したノードIDで仮想NWID643が本ステップで把握した仮想NWID604である行の,全ての構成部の行の収容率634に目標収容率602を保存する。これを全てのパスIDに対して行う。   In step 1101, the communication characteristic calculation unit 205 refers to the node ID 601 of the table 600 of the bandwidth information storage unit 212, the accompanying target capacity 602, the virtual NWID 604, and the virtual NW ratio 605, and the topology information storage unit 209 The target accommodation rate 602 is stored in the accommodation rate 634 of the row of all the components in the row in which the virtual NWID 643 is the virtual NWID 604 grasped in this step with the node ID grasped by the node ID 641 of the table 640. This is performed for all path IDs.

ステップ1102にて,通信特性計算部205が,パス情報記憶部208のテーブル810の平均パケット長811,最小パケット長812,バースト長814を参照し,パス情報記憶部208のテーブル830のスケジューリング方式832を参照し,トポロジ情報記憶部209のテーブル640のノードID641,および処理速度644を把握する。   In step 1102, the communication characteristic calculation unit 205 refers to the average packet length 811, minimum packet length 812, and burst length 814 in the table 810 of the path information storage unit 208, and schedules 832 in the table 830 of the path information storage unit 208. , The node ID 641 of the table 640 of the topology information storage unit 209 and the processing speed 644 are ascertained.

ステップ1103にて,通信特性計算部205がステップ1101,ステップ1102にて参照した値を用いて各構成部の処理時間を計算し,計算した各構成部の処理時間をトポロジ情報記憶部209のテーブル640の処理時間646に保存する。計算方法としては例えば,数(1)を用いて算出される。数(1)において,nはノードID641,cは仮想NWID641, mは構成部642, pは平均パケット長812,または最小パケット長813であり,bはバースト長814,Bvは構成部の処理時間646であり,Bgn,mはノードnの構成部mの目標収容率602と仮想NWの割合605と処理速度644の積であり,Bvn,c,mはノードnの構成部mの仮想ネットワークcの帯域であり,数(2)によって算出される。数(2)において,Bvn,mはノードnの構成部mの処理速度644である。Bvrn,m,cはノードnの構成部mにおける仮想ネットワークcの割合605である。 In step 1103, the communication characteristic calculation unit 205 calculates the processing time of each component using the values referenced in step 1101 and step 1102, and the calculated processing time of each component is stored in the table of the topology information storage unit 209. Save to 640 processing time 646. As a calculation method, for example, it is calculated using the number (1). In the number (1), n is the node ID 641, c is the virtual NWID 641, m is the configuration unit 642, p is the average packet length 812 or the minimum packet length 813, b is the burst length 814, and Bv is the processing time of the configuration unit Bg n, m is the product of the target capacity 602 of the component m of the node n, the ratio 605 of the virtual NW, and the processing speed 644, and Bv n, c, m is the virtual of the component m of the node n This is the bandwidth of the network c and is calculated by the number (2). In Equation (2), Bv n, m is the processing speed 644 of the component m of the node n. Bvr n, m, c is the ratio 605 of the virtual network c in the component m of the node n.

目標収容率を用いる場合はBgn,m/Bvn,c,mが目標収容率になる。 When using the target capacity, Bg n, m / Bv n, c, m is the target capacity.

Figure 0005439297
Figure 0005439297

Figure 0005439297
Figure 0005439297

ステップ1104にて,通信特性計算部205が,トポロジ情報記憶部209のテーブル640のノードID641,構成部642,仮想NWID643,同行の処理時間646を参照し,トポロジ情報記憶部209のテーブル760のノードID761,ポートID762,経由構成部763を参照して,各ノードの入口ポートに入ってから出口ポートに出るまでの遅延を計算し,計算結果を、テーブル760のノードID761が同ステップで把握したノードID641で,仮想NWID762が同ステップで把握した仮想NWID643である行の遅延765に保存する。計算方法としては,例えば,数(3)を用いて算出する。数(3)において,i,jはポートID763であり,Iはノードnの入口ポート,出口ポートがi,jの場合にパケットが経由する経由構成部764であり,Dnn,c,i,jはテーブル640においてノードID641がnで仮想NWID643がcの行のパケットが入口ポートiから入って出口ポートjに出る場合の処理時間646である。 In step 1104, the communication characteristic calculation unit 205 refers to the node ID 641, the configuration unit 642, the virtual NWID 643, and the processing time 646 of the same row in the table 640 of the topology information storage unit 209, and the node of the table 760 in the topology information storage unit 209 Referring to ID761, port ID762, and via component 763, calculate the delay from entering the entry port of each node to exiting the exit port, and the node ID761 of table 760 grasps the calculation result at the same step In ID641, the virtual NWID 762 saves in the delay 765 of the row that is the virtual NWID 643 grasped in the same step. As a calculation method, for example, the calculation is performed using the number (3). In the number (3), i, j is the port ID 763, I is the routing component 764 through which the packet passes when the entry port and the exit port of the node n are i, j, and Dn n, c, i, In the table 640, j is the processing time 646 when a packet having a node ID 641 of n and a virtual NWID 643 of c enters the entry port i and exits to the exit port j.

Figure 0005439297
Figure 0005439297

図31にパス遅延の計算のもう一つの例をフロー図に示す。   FIG. 31 is a flowchart showing another example of path delay calculation.

ステップ1201にて,通信特性計算部205が,帯域情報記憶部212のテーブル600のノードID601,同行の目標収容率602を参照してトポロジ情報記憶部209のテーブル640のノードID641が把握したノードIDである行の,全ての構成部の行の収容率645に目標収容率602を保存する。これを全てのパスIDに対して行う。   In step 1201, the communication characteristic calculation unit 205 refers to the node ID 601 of the table 600 of the bandwidth information storage unit 212 and the node target ID 602 of the topology information storage unit 209 with reference to the target capacity ratio 602 of the bank. The target accommodation rate 602 is stored in the accommodation rate 645 of all the components in the row. This is performed for all path IDs.

ステップ1202にて,通信特性計算部205が,パス情報記憶部208のテーブル810の平均パケット長811,最小パケット長812,バースト長814を参照し,パス情報記憶部208のテーブル830のスケジューリング方式832を参照し,トポロジ情報記憶部209のテーブル640のノードID641,および処理速度644を把握する。   In step 1202, the communication characteristic calculation unit 205 refers to the average packet length 811, the minimum packet length 812, and the burst length 814 in the table 810 of the path information storage unit 208, and schedules 832 in the table 830 of the path information storage unit 208. , The node ID 641 of the table 640 of the topology information storage unit 209 and the processing speed 644 are ascertained.

ステップ1203にて,ステップ1101,ステップ1102にて参照した値を用いて各構成部の処理時間を計算し,通信特性計算部205が,トポロジ情報記憶部209のテーブル640の処理時間646に保存する。計算方法としては例えば,数(4)を用いて算出される。数(4)において,nはノードID641,mは構成部642, pは平均パケット長812,または最小パケット長813であり,bはバースト長814,Bvは構成部の処理時間646であり,Bgn,mはノードnの構成部mにおける目標収容率602と仮想NWの割合605と処理速度644の積であり,Bvn,,mはノードnの構成部mの帯域であり,数(2)によって算出される。数(2)において,Bvn,mはノードnの構成部mの処理速度644である。 In step 1203, the processing time of each component is calculated using the values referenced in steps 1101 and 1102, and the communication characteristic calculation unit 205 stores the processing time 646 in the table 640 of the topology information storage unit 209. . As a calculation method, for example, it is calculated using the number (4). In the number (4), n is the node ID 641, m is the configuration unit 642, p is the average packet length 812 or the minimum packet length 813, b is the burst length 814, Bv is the processing time 646 of the configuration unit, Bg n, m is the product of the target capacity 602, the virtual NW ratio 605 and the processing speed 644 in the component m of the node n , and Bv n ,, m is the bandwidth of the component m of the node n, and the number (2 ). In Equation (2), Bv n, m is the processing speed 644 of the component m of the node n.

Figure 0005439297
Figure 0005439297

ステップ1204にて,通信特性計算部205が,トポロジ情報記憶部209のテーブル640のノードID641,構成部642と同行の処理時間646を参照し,トポロジ情報記憶部209のテーブル760のノードID761,ポートID763,経由構成部764を参照して,各ノードの入口ポートに入ってから出口ポートに出るまでの遅延を計算し,トポロジ情報記憶部209のテーブル760の遅延765に保存する。計算方法としては,例えば,式(3)を用いて算出する。式(3)において,i,jはそれぞれ入口ポートの識別子,出口ポートの識別子であり,Iはノードnの入口ポート,出口ポートがi,jの場合にパケットが経由する構成部の集合であり,Dnn,c,i,jはノードnの構成部の識別子がiで仮想NWIDがcで,パケットが入口ポートiから入って出口ポートjに出る場合の処理時間である。 In step 1204, the communication characteristic calculation unit 205 refers to the node ID 641 of the table 640 in the topology information storage unit 209 and the processing time 646 in the same row as the configuration unit 642, and the node ID 761 and port of the table 760 in the topology information storage unit 209 The delay from entering the entry port of each node to exiting to the exit port is calculated with reference to the ID 763 and the via composition unit 764 and stored in the delay 765 of the table 760 of the topology information storage unit 209. As a calculation method, for example, the calculation is performed using Expression (3). In Expression (3), i and j are the identifier of the entry port and the identifier of the exit port, respectively, and I is a set of components through which the packet passes when the entry port and exit port of node n are i and j. , Dn n, c, i, j is the processing time when the identifier of the component of node n is i, the virtual NWID is c, and the packet enters from the entry port i and exits to the exit port j.

ステップ1205にて,通信特性計算部205が,パス情報記憶部208のテーブル850の仮想NWID859,パスID851を参照して,パス情報記憶部208のテーブル800の仮想NWID801,パスID802が同ステップで参照した仮想NWID859,パスID851である行の経由ノードID/入口ポートID/出口ポートID803を全て把握する。通信特性計算部は、トポロジ情報記憶部209のノードID761,仮想NWID762,ポートID763 がそれぞれ,同ステップで把握した全ての経由ノードID/入口ポートID/出口ポートID803のノードID,仮想NWID859,経由ノードID/入口ポートID/出口ポートID803の入口ポートID/出口ポートIDである行の,遅延765の和を計算し,計算結果を、テーブル850の仮想NWID859,パスID851が上記で参照した行である遅延854に保存する。   In step 1205, the communication characteristic calculation unit 205 refers to the virtual NWID 859 and path ID 851 of the table 850 of the path information storage unit 208, and refers to the virtual NWID 801 and path ID 802 of the table 800 of the path information storage unit 208 in the same step. All the transit node IDs / entrance port IDs / exit port IDs 803 in the row that is the virtual NWID 859 and the path ID 851 are obtained. The communication characteristic calculation unit includes the node ID 761, the virtual NWID 762, and the port ID 763 of the topology information storage unit 209, the node IDs of all the transit node IDs / ingress port IDs / egress port IDs 803, virtual NWID 859, Calculate the sum of the delay 765 of the line that is ID / entrance port ID / exit port ID803 entry port ID / exit port ID, and the calculation result is the line referenced above in the virtual NWID859 and path ID851 of the table 850 Save to delay 854.

図5の説明に戻る。   Returning to the description of FIG.

ステップ2005では,通信特性計算部205がステップ2004で更新したテーブル640,760をデータ記憶部に渡す。   In step 2005, the communication characteristic calculation unit 205 passes the tables 640 and 760 updated in step 2004 to the data storage unit.

ステップ2006では,通信特性計算部205が目標収容率更新通知をサービス受付部202に渡す。   In step 2006, the communication characteristic calculation unit 205 passes the target capacity update notification to the service reception unit 202.

ステップ2007ではサービス受付部202がGUI等を通してパス設定要求者に目標収容率更新完了通知を送る。   In step 2007, the service reception unit 202 sends a target accommodation rate update completion notification to the pass setting requester through the GUI or the like.

図6に本発明において,ネットワークに設定するパスの各回線における帯域の総和や各回線に流れるトラフィック量の総和が変化した場合でも遅延を保証できるように、目標収容率に基づいた遅延を計算する為のフロー図を示す。   In FIG. 6, in the present invention, the delay based on the target capacity is calculated so that the delay can be guaranteed even when the sum of the bandwidth in each line of the path set in the network and the total amount of traffic flowing in each line change. The flow chart for this is shown.

ステップ2101では、サービス受付部202がパス設定要求者等からの初期化要求を受け付ける。目標収容率設定2101のメッセージには,テーブル600が含まれる。テーブル600はデータ記憶部212から参照してもよい。情報記憶部212以外からテーブル600を受け取った場合,サービス受付部202は目標収容率を帯域情報記憶部212のテーブル600の目標収容率602に目標収容率を保存する。また,制御対象のネットワークが仮想ネットワークで構成される場合には、サービス受付部202は仮想ネットワークの割合も帯域情報記憶部212のテーブル600の仮想NWの割合605に保存する。   In step 2101, the service reception unit 202 receives an initialization request from a path setting requester or the like. The message of the target capacity setting 2101 includes a table 600. The table 600 may be referred to from the data storage unit 212. When the table 600 is received from other than the information storage unit 212, the service reception unit 202 stores the target accommodation rate in the target accommodation rate 602 of the table 600 of the bandwidth information storage unit 212. When the network to be controlled is a virtual network, the service reception unit 202 also stores the virtual network ratio in the virtual NW ratio 605 of the table 600 of the bandwidth information storage section 212.

ステップ2102では,サービス受付部202が遅延計算要求を通信特性計算部205に送る。遅延計算要求2102のメッセージには,テーブル600が含まれる。   In step 2102, the service reception unit 202 sends a delay calculation request to the communication characteristic calculation unit 205. The message of the delay calculation request 2102 includes a table 600.

ステップ2103では,通信特性計算部205がデータ記憶部211のテーブル810,640,760,830を参照する。   In step 2103, the communication characteristic calculation unit 205 refers to the tables 810, 640, 760, and 830 of the data storage unit 211.

ステップ2104では,通信特性計算部205がテーブル600を元に,ステップ2103で参照した情報からデータ記憶部211のテーブル640の収容率645を計算し,テーブル640の収容率645,処理時間646,およびテーブル760の遅延765を計算する。ステップ2104の具体的な計算方法は図5の遅延の計算2004において説明した図30に記載のノード遅延の計算と同様である。   In step 2104, the communication characteristic calculation unit 205 calculates the accommodation rate 645 of the table 640 of the data storage unit 211 from the information referred to in step 2103 based on the table 600, the accommodation rate 645 of the table 640, the processing time 646, and Calculate the delay 765 of the table 760. The specific calculation method of step 2104 is the same as the node delay calculation described in FIG. 30 described in the delay calculation 2004 of FIG.

ステップ2105では,通信特性計算部205がステップ2104で更新したテーブル640,760をデータ記憶部に渡す。   In step 2105, the communication characteristic calculation unit 205 passes the tables 640 and 760 updated in step 2104 to the data storage unit.

ステップ2106では,通信特性計算部205が遅延計算通知をサービス受付部202に渡す。   In step 2106, the communication characteristic calculation unit 205 passes a delay calculation notification to the service reception unit 202.

ステップ2107では,サービス受付部202が経路・リソース計算部204に候補パス計算要求を送る。   In step 2107, the service reception unit 202 sends a candidate path calculation request to the route / resource calculation unit 204.

ステップ2108では,経路・リソース計算部204がデータ記憶部211のテーブル700,710, 730,740、760を参照する。   In step 2108, the route / resource calculation unit 204 refers to the tables 700, 710, 730, 740, and 760 of the data storage unit 211.

ステップ2109では,経路・リソース計算部204がステップ2108で参照した情報からデータ記憶部211のテーブル720の経由ノード722,経由ノードのポートID入口/出口723,経由リンクID724,経由ノード数725,遅延726,を計算する。以下図29に具体的な計算方法を示す。   In step 2109, the route / resource calculation unit 204 uses the information referenced in step 2108 to determine the transit node 722 of the data storage unit 211, the transit node port ID entry / exit 723, the transit link ID 724, the transit node number 725, and the delay. 726. FIG. 29 shows a specific calculation method below.

図29に候補パスの計算のフロー図を示す。本処理内容は図6の候補パスの計算2109の詳細な処理内容である。   FIG. 29 shows a flowchart of candidate path calculation. This processing content is the detailed processing content of the candidate path calculation 2109 in FIG.

ステップ1002にて,経路・リソース計算部204がトポロジ情報記憶部209のテーブル710のノードID701から端点ノードを選択し,パス情報記憶部208のテーブル720のパスID721 に新しくパスIDを追加し,そのパスIDをパス情報記憶部208のテーブル740の探索中のパスID741に保存する。
ステップ1003にて,経路・リソース計算部204が、トポロジ情報記憶部209のテーブル700のノードID701がステップ1002で把握したノードIDである行の,ポートID702,接続リンクID703,接続ノードID704,接続ノードのポートID705,を把握する。トポロジ情報記憶部209のテーブル760のノードID761がステップ1002で把握したノードIDで,ポートID763が本ステップで把握したポートIDである行の遅延754を把握する。トポロジ情報記憶部209のテーブル710のリンクID711が,トポロジ情報記憶部209のテーブル700のノードID701がステップ1002で把握したノードIDである行の接続リンクID703である行の,遅延712を把握する。そして、本ステップで参照した遅延754と遅延712の合計値を合計遅延として把握する。
In step 1002, the route / resource calculation unit 204 selects an end node from the node ID 701 of the table 710 of the topology information storage unit 209, adds a new path ID to the path ID 721 of the table 720 of the path information storage unit 208, The path ID is stored in the path ID 741 being searched in the table 740 of the path information storage unit 208.
In step 1003, the path / resource calculation unit 204, the port ID 702, the connection link ID 703, the connection node ID 704, and the connection node in the row in which the node ID 701 of the table 700 of the topology information storage unit 209 is the node ID recognized in step 1002 The port ID 705. The node ID 761 of the table 760 in the topology information storage unit 209 is the node ID acquired in step 1002 and the port ID 763 is the port ID acquired in this step. The link ID 711 of the table 710 of the topology information storage unit 209 grasps the delay 712 of the row that is the connection link ID 703 of the row whose node ID 701 of the table 700 of the topology information storage unit 209 is the node ID grasped in step 1002. Then, the total value of the delay 754 and the delay 712 referred to in this step is grasped as the total delay.

ステップ1004にて,経路・リソース計算部204が,ステップ1003で把握したノードIDが,パス情報記憶部208のテーブル720のパスID721がパス情報記憶部208のテーブル740の探索中のパスID741の行である経由ノード722に含まれているか判断する。含まれている場合はステップ1009に進む。含まれていない場合はステップ1005に進む。   In step 1004, the path ID 741 in the path information storage unit 208 is searched for in the path ID 741 in the path information storage unit 208 in the path ID 721 of the table 720 in the path information storage unit 208. It is determined whether it is included in the transit node 722. If it is included, go to Step 1009. If not, the process proceeds to step 1005.

ステップ1005にて,経路・リソース計算部204が,パス情報記憶部208のテーブル720のパスID721がパス情報記憶部208のテーブル740の探索中のパスID741の行である遅延726を把握する。
ステップ1006にて,経路・リソース計算部204が,ステップ1003で把握した合計遅延とステップ1005で把握した遅延の合計がパス情報記憶部208のテーブル730の最大遅延731よりも小さく,かつテーブル720の経由ノード数725がパス情報記憶部208のテーブル730の最大経由ノード数732よりも小さいか判断する。大きい場合はステップ1007へ進む。小さい場合はステップ1008に進む。なお、遅延はパスの端点となるノードの組合せ(物理的距離等)によって異なるため、最大遅延731はパスの端点となるノード組合せにおける最小遅延や平均遅延の関数にすることによって、算出するパス数をパスの端点となるノードの組合せ間で均等に減らすことができる。なお、最大遅延731を最小遅延の関数とする場合には、遅延が小さいパスから順番に計算することによって、遅延が最小のパスが最初に求まるために1回のパスの探索で最小遅延と最大遅延731の算出、および経路の探索ができる。
In step 1005, the route / resource calculation unit 204 grasps a delay 726 in which the path ID 721 of the table 720 in the path information storage unit 208 is the row of the path ID 741 that is being searched in the table 740 of the path information storage unit 208.
In step 1006, the route / resource calculation unit 204 has the total delay grasped in step 1003 and the sum of delays grasped in step 1005 smaller than the maximum delay 731 of the table 730 of the path information storage unit 208, and the table 720 It is determined whether the number of via nodes 725 is smaller than the maximum number of via nodes 732 in the table 730 of the path information storage unit 208. If so, go to Step 1007. If so, go to Step 1008. Note that the delay differs depending on the combination of nodes (path distance, etc.) that is the endpoint of the path. Therefore, the maximum delay 731 is a function of the minimum delay and the average delay in the node combination that is the endpoint of the path. Can be reduced evenly among the combinations of nodes that are the end points of the path. When the maximum delay 731 is used as a function of the minimum delay, the minimum delay and the maximum are searched by one path search because the path with the minimum delay is obtained first by calculating in order from the path with the smallest delay. The delay 731 can be calculated and the route can be searched.

ステップ1007にて,経路・リソース計算部204が,パス情報記憶部208のテーブル720のパスIDがパス情報記憶部208のテーブル740の探索中のパスIDである行の状態727を終了にし,ステップ1009に進む。   In step 1007, the route / resource calculation unit 204 ends the row state 727 in which the path ID of the table 720 in the path information storage unit 208 is the path ID being searched in the table 740 of the path information storage unit 208, and the step Proceed to 1009.

ステップ1008にて,経路・リソース計算部204が,パス情報記憶部208のテーブル720のパスID721に新規パスIDを作成し,同行の経由ノードID722,経由ノードのポートID 入口/出口723,経由リンクID724,経由ノード数725,遅延726に,テーブル720のパスID721がパス情報記憶部208のテーブル740の探索中のパスID741である行の経由ノードID722,経由ノードのポートID 入口/出口723,経由リンクID724,経由ノード数725,遅延726を保存する。更に,パス情報記憶部208のテーブル720の新規パスIDを作成した行の経由ノードID722,経由リンクID724にステップ1003にて把握した接続ノードID,接続リンクIDを追加し,同行の経由ノードのポートID 入口/出口723にポートID,接続ノードのポートIDを追加し,同行の経由ノード数725に1を加え,同行の遅延726にステップ1003で把握した合計遅延を加え,同行の状態727を未探索にする。   In step 1008, the route / resource calculation unit 204 creates a new path ID in the path ID 721 of the table 720 in the path information storage unit 208, and passes through the node ID 722, the port ID of the node via the entry / exit 723, and the link through Via the ID 724, the number of transit nodes 725, the delay 726, the transit node ID 722 of the row where the path ID 721 of the table 720 is the path ID 741 being searched in the table 740 of the path information storage unit 208, the transit node port ID, the entry / exit 723 The link ID 724, the number of via nodes 725, and the delay 726 are stored. Further, the connection node ID and connection link ID obtained in step 1003 are added to the transit node ID 722 and transit link ID 724 of the row where the new path ID of the table 720 of the path information storage unit 208 is created, and the port of the transit node of the same row is added. Add the port ID and port ID of the connected node to the ID entry / exit 723, add 1 to the number of transit nodes 725 in the bank, add the total delay obtained in step 1003 to the delay 726 of the bank, and change the status 727 of the bank Search.

ステップ1009にて,経路・リソース計算部204が,パス情報記憶部208のテーブル720の状態727が未探索になっているパスがあるか判断する。ない場合は処理を終了する。ある場合はステップ1010に進む。   In step 1009, the route / resource calculation unit 204 determines whether there is a path whose state 727 in the table 720 of the path information storage unit 208 is not searched. If not, the process ends. If yes, go to Step 1010.

ステップ1010にて,経路・リソース計算部204が,パス情報記憶部208のテーブル740の探索中のパスID741に,パス情報記憶部208のテーブル720の状態727が未探索になっている行のパスID721を保存し,ステップ1003に進む。   In step 1010, the path / resource calculation unit 204 sets the path ID 741 being searched for in the table 740 of the path information storage unit 208 and the path of the row in which the state 727 of the table 720 of the path information storage unit 208 is not searched. Save ID721 and go to Step 1003.

図6の説明に戻る。   Returning to the description of FIG.

ステップ2110では,通信特性計算部205がステップ2104で計算したテーブル720を データ記憶部211に渡す。   In step 2110, the communication characteristic calculation unit 205 passes the table 720 calculated in step 2104 to the data storage unit 211.

ステップ2111では,経路・リソース計算部204がサービス受付部202に候補パス計算通知2111を送る。   In step 2111, the route / resource calculation unit 204 sends a candidate path calculation notification 2111 to the service reception unit 202.

ステップ2112ではサービス受付部202がGUI等を通してパス設定要求者に初期化完了通知を送る。   In step 2112, the service reception unit 202 sends an initialization completion notification to the path setting requester through the GUI or the like.

図7に本発明において,パス設定要求時のフロー図を示す。   FIG. 7 shows a flowchart when a path setting request is made in the present invention.

ステップ2502では、パス設定要求者が新規パス設定などのパス設定要求を,GUI等を通して入力し,サービス受付部202は入力されたパス設定要求をデータ記憶部211のテーブル780に入力する。   In step 2502, the path setting requester inputs a path setting request such as a new path setting through the GUI or the like, and the service reception unit 202 inputs the input path setting request into the table 780 of the data storage unit 211.

ステップ7503では,サービス受付部202がパス設定要求を,テーブル780の情報とともに,パス設定部201に送る。   In step 7503, the service reception unit 202 sends a path setting request to the path setting unit 201 together with information in the table 780.

ステップ2504では,パス設定部201がパス設定要求を,テーブル780の情報とともに,経路・リソース計算部204に送る。   In step 2504, the path setting unit 201 sends a path setting request to the route / resource calculation unit 204 together with information in the table 780.

ステップ2505では,経路・リソース計算部204がデータ記憶部211のテーブル720,500, 540,980,860,880を参照する。   In step 2505, the route / resource calculation unit 204 refers to the tables 720, 500, 540, 980, 860, and 880 in the data storage unit 211.

ステップ2506では,経路・リソース計算部204がステップ2505で参照した情報からデータ記憶部211のテーブル960を計算する。ステップ2506の具体的な計算方法を以下図32に示す。   In step 2506, the route / resource calculation unit 204 calculates the table 960 of the data storage unit 211 from the information referred to in step 2505. A specific calculation method of step 2506 is shown in FIG.

図32に経路計算のフロー図を示す。本処理内容は図7の経路計算2506の詳細な処理内容を示す。   FIG. 32 shows a flowchart of route calculation. This processing content shows the detailed processing content of the route calculation 2506 of FIG.

経路・リソース計算部204がデータ記憶部211のテーブル860のノードID861,構成部ID862,仮想NWID863,使用可能総帯域864,余剰帯域865を把握して各構成部のメトリックを計算してデータ記憶部211のテーブル520のノードID521,構成部ID522,仮想NWID524がデータ記憶部211の テーブル860のノードID861,構成部ID862,仮想NWID863である行のメトリック523に保存し,データ記憶部211のテーブル880のリンクID881,仮想NWID882,回線帯域883,余剰帯域884を把握して各リンクのメトリックを計算してデータ記憶部211のテーブル500のリンクID501,仮想NWID502,が データ記憶部211のテーブル880のリンクID881,仮想NWID882である行のメトリック503に保存する。経路・リソース計算部204がデータ記憶部211のテーブル760のノードID761,仮想NWID762,ポートID763がテーブル540のノードID541,ポートID542,仮想NWID544である行の経由構成部764を把握して,テーブル520のノードID521,仮想NWID544がテーブル760のノードID761,仮想NWID762で,構成部ID522が本ステップで把握した経由構成部764である全ての行のメトリック523の和を把握し,テーブル540の本ステップで把握したノードID541,ポートID542,仮想NWID544の行のメトリック543に保存する。メトリックの計算方法は例えば,回線帯域と余剰帯域の逆数や使用可能総帯域と余剰帯域の逆数,あるいは余剰帯域が0に近づくに従って指数的に増大する値をメトリックとする。   The path / resource calculation unit 204 grasps the node ID 861, the configuration unit ID 862, the virtual NW ID 863, the usable total bandwidth 864, and the surplus bandwidth 865 in the table 860 of the data storage unit 211, calculates the metric of each configuration unit, and the data storage unit The node ID 521, the component ID 522, and the virtual NWID 524 of the table 520 of 211 are stored in the metric 523 of the row that is the node ID 861, the component ID 862, and the virtual NWID 863 of the table 860 of the data storage 211, and the table 880 of the data storage 211 The link ID 881, the virtual NWID 882, the line bandwidth 883, the surplus bandwidth 884 are grasped, the metrics of each link are calculated, and the link ID 501 and the virtual NWID 502 of the table 500 of the data storage unit 211 are the link ID 881 of the table 880 of the data storage unit 211. , It is stored in the metric 503 of the row which is the virtual NWID882. The route / resource calculation unit 204 grasps the route composition unit 764 of the row having the node ID 761, the virtual NWID 762 and the port ID 763 of the table 760 of the data storage unit 211 as the node ID 541, the port ID 542, and the virtual NWID 544 of the table 540. Node ID 521 and virtual NWID 544 are the node ID 761 and virtual NWID 762 of table 760, and the component ID 522 grasps the sum of the metrics 523 of all the rows that are the transit component 764 grasped in this step. The obtained node ID 541, port ID 542, and virtual NWID 544 are stored in the metric 543 of the row. As the metric calculation method, for example, the inverse of the line bandwidth and the surplus bandwidth, the reciprocal of the usable total bandwidth and the surplus bandwidth, or a value that exponentially increases as the surplus bandwidth approaches 0 is used as the metric.

ステップ1302では、経路・リソース計算部204がデータ記憶部211のテーブル780の候補パス792を参照して候補パスの計算が必要か判断する。必要ない場合はステップ1303に進む。必要な場合はステップ1304に進む。   In step 1302, the route / resource calculation unit 204 refers to the candidate path 792 in the table 780 of the data storage unit 211 and determines whether the candidate path needs to be calculated. If not necessary, the process proceeds to step 1303. If necessary, go to Step 1304.

ステップ1304では,経路・リソース計算部204がデータ記憶部211のテーブル780の始点ノード782,終点ノード783,遅延制約785,帯域786,方向性791を把握して,テーブル720の経由ノード722の先頭と末尾のノードIDがテーブル780の始点ノード782,終点ノード783である行のパスID721,経由ノード722,および経由ノードのポートID入口/出口723を把握して,テーブル760のノードID761,ポートID763がテーブル722の経由ノード722,および経由ノードのポートID入口/出口723である全ての行の経由構成部764を把握して,テーブル860のノードID861,構成部ID862が上記で把握したテーブル722の経由ノード722,経由構成部764である行の余剰帯域865を把握し,上記で把握したパスID721のうち把握した余剰帯域865の帯域の最小値がテーブル帯域786以上であるものを帯域満足パスとして把握する。ここで,全てのパスID721において,余剰帯域865の最小値がテーブル786以下である場合は余剰帯域865の最小値が大きい複数のパスID721を帯域準満足パスとして把握する。テーブル720のパスID721が帯域満足パスまたは帯域準満足パスのパスIDである行の遅延726がテーブル780の遅延制約785よりも小さいパスIDを遅延満足パスとして把握する。テーブル720のパスID721が帯域満足パスまたは帯域準満足パスのパスIDである行の遅延726が全てテーブル780の遅延制約785より大きい場合は遅延726が小さい複数のパスID721を遅延準満足パスとして把握する。   In step 1304, the path / resource calculation unit 204 grasps the start node 782, end node 783, delay constraint 785, bandwidth 786, and direction 791 of the table 780 of the data storage unit 211, and starts the via node 722 in the table 720. And the node ID 761 and port ID 763 of the table 760 are obtained by grasping the path ID 721, the transit node 722, and the transit node port ID entry / exit 723 of the row whose node ID at the end is the start node 782 and the end node 783 of the table 780. Is the transit node 722 of the table 722, and the transit configuration part 764 of all the rows that are the port ID entry / exit 723 of the transit node, and the node ID 861 of the table 860 and the composition part ID 862 The surplus bandwidth 865 of the line that is the transit node 722 and the transit configuration unit 764 is grasped, and the bandwidth satisfying pass 721 is obtained from the path ID 721 grasped above when the surplus bandwidth 865 having the minimum bandwidth is the table bandwidth 786 or more. To grasp as. Here, in all the path IDs 721, when the minimum value of the surplus bandwidth 865 is less than or equal to the table 786, a plurality of path IDs 721 having a large minimum value of the surplus bandwidth 865 are grasped as bandwidth near satisfaction paths. A path ID in which the delay 726 of the row whose path ID 721 of the table 720 is the bandwidth satisfaction path or the bandwidth satisfaction path ID is smaller than the delay constraint 785 of the table 780 is recognized as a delay satisfaction path. When the delay 726 of the row whose path ID 721 of the table 720 is a bandwidth satisfaction path or a bandwidth semi-satisfaction path is all greater than the delay constraint 785 of the table 780, a plurality of path IDs 721 having a small delay 726 are recognized as the delay near-satisfaction paths. To do.

ステップ1303では,経路・リソース計算部204がデータ記憶部211のテーブル780の始点ノード782,終点ノード783,遅延制約785,帯域786,方向性791を把握して,テーブル720の経由ノード722の先頭と末尾のノードIDがテーブル780の始点ノード782,終点ノード783である行のパスID721,経由ノード722,および経由ノードのポートID入口/出口723を把握して,テーブル760のノードID761,ポートID763がテーブル722の経由ノード722,および経由ノードのポートID入口/出口723である全ての行の経由構成部764を把握して,テーブル860のノードID861,構成部ID862が上記で把握したテーブル722の経由ノード722,経由構成部764である行の余剰帯域865を把握し,上記で把握したパスID721のうち把握した余剰帯域865の帯域の最小値がテーブル帯域786以上であるものを帯域満足パスとして把握する。テーブル720のパスID721が帯域満足パスのパスIDである行の遅延726がテーブル780の遅延制約785よりも小さいパスIDを遅延満足パスが存在するか判断する。存在する場合はステップ1305に進む。存在しない場合はステップ1308に進む。   In step 1303, the path / resource calculation unit 204 grasps the start node 782, end node 783, delay constraint 785, bandwidth 786, and direction 791 of the table 780 of the data storage unit 211, and starts the via node 722 in the table 720. And the node ID 761 and port ID 763 of the table 760 are obtained by grasping the path ID 721, the transit node 722, and the transit node port ID entry / exit 723 of the row whose node ID at the end is the start node 782 and the end node 783 of the table 780. Is the transit node 722 of the table 722, and the transit configuration part 764 of all the rows that are the port ID entry / exit 723 of the transit node, and the node ID 861 of the table 860 and the composition part ID 862 The surplus bandwidth 865 of the line that is the transit node 722 and the transit configuration unit 764 is grasped, and the bandwidth satisfying pass 721 is obtained from the path ID 721 grasped above when the surplus bandwidth 865 having the minimum bandwidth is the table bandwidth 786 or more. To grasp as. It is determined whether there is a delay satisfaction path with a path ID in which the delay 726 of the row whose path ID 721 of the table 720 is the path ID of the bandwidth satisfaction path is smaller than the delay constraint 785 of the table 780. If it exists, go to Step 1305. If not, the process proceeds to step 1308.

ステップ1305では,経路・リソース計算部204がデータ記憶部211のテーブル780の始点ノード782,終点ノード783,遅延制約785,帯域786,方向性791を把握して,テーブル720の経由ノード722の先頭と末尾のノードIDがテーブル780の始点ノード782,終点ノード783である行のパスID721,経由ノード722,および経由ノードのポートID入口/出口723を把握して,テーブル760のノードID761,ポートID763がテーブル722の経由ノード722,および経由ノードのポートID入口/出口723である全ての行の経由構成部764を把握して,テーブル860のノードID861,構成部ID862が上記で把握したテーブル722の経由ノード722,経由構成部764である行の余剰帯域865を把握し,上記で把握したパスID721のうち把握した余剰帯域865の帯域の最小値がテーブル帯域786以上であるものを帯域満足パスとして把握する。テーブル720のパスID721が帯域満足パスのパスIDである行の遅延726がテーブル780の遅延制約785よりも小さいパスIDを遅延満足パスが存在するか判断する。   In step 1305, the path / resource calculation unit 204 grasps the start node 782, end node 783, delay constraint 785, bandwidth 786, and direction 791 of the table 780 in the data storage unit 211, and starts the via node 722 in the table 720. And the node ID 761 and port ID 763 of the table 760 are obtained by grasping the path ID 721, the transit node 722, and the transit node port ID entry / exit 723 of the row whose node ID at the end is the start node 782 and the end node 783 of the table 780. Is the transit node 722 of the table 722, and the transit configuration part 764 of all the rows that are the port ID entry / exit 723 of the transit node, and the node ID 861 of the table 860 and the composition part ID 862 The surplus bandwidth 865 of the line that is the transit node 722 and the transit configuration unit 764 is grasped, and the bandwidth satisfying pass 721 is obtained from the path ID 721 grasped above when the surplus bandwidth 865 having the minimum bandwidth is the table bandwidth 786 or more. To grasp as. It is determined whether there is a delay satisfaction path with a path ID in which the delay 726 of the row whose path ID 721 of the table 720 is the path ID of the bandwidth satisfaction path is smaller than the delay constraint 785 of the table 780.

ステップ1306では,経路・リソース計算部204が,テーブル780のパスID721がステップ1304,または1305で把握したパスIDである各行に対して,経由ノード722,および経由ノードのポートID入口/出口723,経由リンク724を把握して,テーブル540のノードID541,ポート542がそれぞれ,本ステップで把握した経由ノード722,経由ノードのポートID入口/出口723である行のメトリック543の和を計算してノードコストとして把握し,テーブル500のリンクID501が本ステップで把握した経由リンク724である行のメトリック503の和を計算してリンクコストとして把握し,ノードコストとリンクコストの和を,コストとして把握する。   In step 1306, the route / resource calculation unit 204 performs the transit node 722 and the transit node port ID entry / exit 723 for each row whose path ID 721 of the table 780 is the path ID grasped in step 1304 or 1305. By grasping the via link 724, the node ID 541 and the port 542 of the table 540 calculate the sum of the metric 543 of the row which is the transit node 722 and the transit node port ID entry / exit 723 obtained in this step, respectively. It is grasped as the cost, and the sum of the metric 503 of the row that is the via link 724 that the link ID 501 of the table 500 grasped in this step is calculated and grasped as the link cost, and the sum of the node cost and the link cost is grasped as the cost. .

ステップ1307では,経路・リソース計算部204が,ステップ1306で把握したコストが小さい複数のパスのパスID721,経由ノード722,および経由ノードのポートID入口/出口723,経由リンク724,遅延726,コストをテーブル960のパスID961,経由ノード963,および経由ノードのポートID入口/出口964,経由リンク965,遅延967,コスト971に保存し,テーブル780の始点ノード782,終点ノード783をテーブル960の端点961に,テーブル780の帯域786をテーブル960の帯域970に保存する。   In step 1307, the path / resource calculation unit 204 obtains the path ID 721, the transit node 722, the transit node port ID entry / exit 723, the transit link 724, the delay 726, the cost of the plurality of paths whose costs are ascertained in step 1306. Are stored in the path ID 961 of the table 960, the transit node 963, and the port ID entry / exit 964 of the transit node, the transit link 965, the delay 967, and the cost 971, and the start node 782 and the end node 783 of the table 780 are the end points of the table 960. In 961, the bandwidth 786 of the table 780 is stored in the bandwidth 970 of the table 960.

図7の説明に戻る。   Returning to the description of FIG.

ステップ2507では,経路・リソース計算部204がステップ2506で更新したテーブル960をパス計算結果としてパス設定部201に渡す。   In step 2507, the route / resource calculation unit 204 passes the table 960 updated in step 2506 to the path setting unit 201 as a path calculation result.

ステップ2508では,パス設定部201がステップ2507で受け取ったパス計算結果をサービス受付部に,複数パス情報として渡す。   In step 2508, the path setting unit 201 passes the path calculation result received in step 2507 to the service reception unit as multiple path information.

ステップ2509では,サービス受付部がステップ2508で受け取った複数パス情報を,GUI等を通して,パス設定要求者に通知する。   In step 2509, the service reception unit notifies the path setting requester of the multiple path information received in step 2508 through the GUI or the like.

ステップ2510では,パス設定要求者はステップ2508で受け取った複数パス情報から仮想NWIDとパスIDを選択する。   In step 2510, the path setting requester selects a virtual NWID and a path ID from the multiple path information received in step 2508.

ステップ2511では,パス設定要求者が選択したパスIDと仮想NWIDを選択パス情報としてサービス受付部202が受け取る。   In step 2511, the service reception unit 202 receives the path ID selected by the path setting requester and the virtual NWID as selected path information.

ステップ2512では,サービス受付部202が受け取った選択パス情報をパス設定部201に渡す。   In step 2512, the selected path information received by the service reception unit 202 is passed to the path setting unit 201.

ステップ2513では,パス設定部201はステップ2512で受け取ったパスID,仮想NWIDのパス設定情報を生成する。パス設定情報には、パスを設定するノードID、ポートID、ノードがパスを識別する為のラベル、各パスに対してQoS制御をおこなうための最低帯域や最大帯域等、ネットワークにパスを設定するのに必要な情報が含まれる。   In step 2513, the path setting unit 201 generates path setting information of the path ID and virtual NWID received in step 2512. In the path setting information, a path is set in the network, such as a node ID for setting a path, a port ID, a label for the node to identify the path, and a minimum bandwidth and a maximum bandwidth for performing QoS control on each path. It contains information necessary for

ステップ2514では,パス設定部201がメッセージ送受信部206にステップ2513で生成したパス情報を,パス設定要求として送信する。   In step 2514, the path setting unit 201 transmits the path information generated in step 2513 to the message transmission / reception unit 206 as a path setting request.

ステップ2515では,メッセージ送受信部206がステップ2514で受信したパス設定要求をEMSに送信する。   In step 2515, the message transmitting / receiving unit 206 transmits the path setting request received in step 2514 to the EMS.

ステップ2516では,メッセージ送受信部206がEMSからパス設定完了の通知をパス設定通知として受け取る。   In step 2516, the message transmission / reception unit 206 receives a path setting completion notification from the EMS as a path setting notification.

ステップ2517では,メッセージ送受信部206がステップ2516で受信したパス設定通知をパス設定部201に送信する。   In step 2517, the message transmitting / receiving unit 206 transmits the path setting notification received in step 2516 to the path setting unit 201.

ステップ2518では,テーブル960のノードID961がステップ2512で受け取ったパスIDである行のパスID961端点962,遅延967,パケットロス968,ジッター969,帯域960,コスト961を、テーブル850のパスID851,端点853,遅延854,パケットロス855,ジッター856,帯域857,コスト858に保存する。   In step 2518, the path ID 961 end point 962, the delay 967, the packet loss 968, the jitter 969, the bandwidth 960, and the cost 961 of the row whose node ID 961 of the table 960 is the path ID received in step 2512 are stored in the path ID 851 and end point of the table 850. 853, delay 854, packet loss 855, jitter 856, bandwidth 857, and cost 858 are stored.

ステップ2519では,パス設定部201がサービス受付部202に,パス設定がテーブル960のノードID961がステップ2512で受け取ったパスIDである行のパスID961端点962,遅延967,パケットロス968,ジッター969,帯域960,コスト961の値をパス設定通知として送信する。   In step 2519, the path setting unit 201 sends to the service accepting unit 202, and the path setting node ID 961 in the table 960 is the path ID 961 end point 962 of the line whose path ID is received in step 2512, delay 967, packet loss 968, jitter 969, The band 960 and cost 961 values are transmitted as a path setting notification.

ステップ2520では,サービス受付部202がステップ2519で受け取ったパスIDである行のパスID961端点962,遅延967,パケットロス968,ジッター969,帯域960,コスト961の値を,GUI等を通してパス設定要求者に通知する。   In step 2520, a path setting request is made through the GUI, etc., using the path ID 961 endpoint 962, the delay 967, the packet loss 968, the jitter 969, the bandwidth 960, and the cost 961 of the row that is the path ID received by the service reception unit 202 in step 2519. The person in charge.

図8にパス設定要求情報であるテーブル780を示す。テーブル780はパス情報記憶部208に保存されており,パス設定要求者が入力したパス設定要求の内容である。パス名称781はパス設定要求者がパスを識別するためのパスの名前である。始点ノード782は設定するパスの始点となるノードの識別子である。終点ノード783は設定するパスの終点となるノードの識別子である。仮想NWID784はパスを設定する仮想ネットワークの識別子である。遅延制約785は設定するパスを通るトラフィックが,パスの始点ノード782から終点ノード783のEnd-to-Endで保証される遅延である。帯域786は設定するパスに確保する帯域である。   FIG. 8 shows a table 780 that is path setting request information. The table 780 is stored in the path information storage unit 208, and is the contents of the path setting request input by the path setting requester. The path name 781 is a path name for the path setting requester to identify the path. The start point node 782 is an identifier of a node that is the start point of the set path. The end node 783 is an identifier of a node that is an end point of the path to be set. The virtual NWID 784 is an identifier of a virtual network for setting a path. The delay constraint 785 is a delay in which traffic passing through the set path is guaranteed by the end-to-end from the start node 782 to the end node 783 of the path. A bandwidth 786 is a bandwidth reserved for the set path.

予備パスの有無787は設定するパスに,通常使用する現用パスの他に,現用パスが経由するリンクやノードで障害が発生した際に使用する予備パスを設定するか否かの識別子である。ジッター788は設定するパスを通るトラフィックが,パスの始点ノード782から終点ノード783のEnd-to-Endで保証されるジッターである。パケットロス率789は設定するパスを通るトラフィックが,パスの始点ノード782から終点ノード783のEnd-to-Endで保証されるパケットロスの割合である。予備パス帯域確保方法790は予備パスの帯域を確保する方法で,例えば,全ての予備パスに対して,現用パスの帯域と同じ帯域を確保する1:1,端点が同じで通信経路が異なる現用パス同士で予備パスを共有するパスシェアや現用パスが異なる通信経路である予備パス同士でリンクの帯域を共有するリンクシェアなどがある。方向性791はパスの方向性を示しており,始点ノード782から終点ノード783への片方向の通信と始点ノード782と終点ノード783の双方向の通信がある。候補パス792はパス設定要求の条件を満たすパスが存在しない場合に,計算結果をパスの計算を失敗とするか,パス設定要求の条件に近いパスを算出するかの識別子である。候補仮想NW793は指定された仮想NWID785にパス設定要求の条件を満たすパスが存在しない場合に,計算結果をパスの計算を失敗とするか,異なる仮想ネットワークでパス設定要求の条件を満たすパスを算出するかの識別子である。   The presence / absence of backup path 787 is an identifier of whether or not to set a backup path to be used when a failure occurs in a link or node through which the current path passes, in addition to the currently used working path. Jitter 788 is the jitter that is guaranteed by the end-to-end of the path from the start point node 782 to the end point node 783 of the path. The packet loss rate 789 is the rate of packet loss that is guaranteed by the end-to-end of the path starting point node 782 to the end point node 783 for traffic passing through the set path. The protection path bandwidth securing method 790 is a method for securing the bandwidth of the protection path. For example, for the protection paths, the same bandwidth as the bandwidth of the working path is secured 1: 1, and the working path is different with the same end point. There are a path share for sharing a backup path between paths, a link share for sharing a link bandwidth between backup paths that are communication paths having different working paths, and the like. The directionality 791 indicates the directionality of the path, and includes one-way communication from the start point node 782 to the end point node 783 and bidirectional communication between the start point node 782 and the end point node 783. Candidate path 792 is an identifier indicating whether the calculation result is a path calculation failure or a path close to the path setting request condition is calculated when there is no path satisfying the path setting request condition. The candidate virtual NW793 calculates a path that satisfies the path setting request condition in a different virtual network, if the specified virtual NWID785 does not have a path that satisfies the path setting request condition, It is an identifier of whether to do.

本発明は、例えば、パス経路の候補を自動的に計算するネットワークシステムに適用することができる。   The present invention can be applied to, for example, a network system that automatically calculates path route candidates.

100…トランスポート制御サーバ、111~118…ノード、200…制御処理部、201…パス設定部、202…サービス受付部、204…経路・リソース計算部、205…通信特性計算部、206…メッセージ送受信部、210…通信IF、211…データ記憶部、208…パス情報記憶部、209…トポロジ情報記憶部、212…帯域情報記憶部 DESCRIPTION OF SYMBOLS 100 ... Transport control server, 111-118 ... Node, 200 ... Control processing part, 201 ... Path setting part, 202 ... Service reception part, 204 ... Path | route / resource calculation part, 205 ... Communication characteristic calculation part, 206 ... Message transmission / reception 210: Communication IF, 211 ... Data storage unit, 208 ... Path information storage unit, 209 ... Topology information storage unit, 212 ... Band information storage unit

Claims (9)

複数のノードがリンクで接続されたパス経路において通信されるデータの遅延を計算する制御サーバであって、
前記複数のノードに接続されるインタフェースと、
前記ノードにおける前記データの処理による転送遅延の計算に用いる値を記憶する記憶部と、
前記ノードにおける前記転送遅延を計算する計算部と、を有し、
前記記憶部は、
処理可能な帯域に対する、パス設定要求者が設定する帯域の割合である収容率を、前記ノードの構成部毎に記憶し、
前記計算部は、
前記構成部毎の前記収容率を用いて、前記構成部各々の処理時間を計算し、
各々のパス経路が前記ノードを経由する際に経由する構成部を特定し、
特定した前記経由する構成部各々の、前記計算した処理時間に基づいて、前記ノードにおける前記パス経路各々の転送遅延を計算する
ことを特徴とする制御サーバ。
A control server that calculates a delay of data communicated in a path route in which a plurality of nodes are connected by links,
An interface connected to the plurality of nodes;
A storage unit for storing a value used for calculating a transfer delay due to processing of the data in the node;
A calculation unit for calculating the transfer delay in the node,
The storage unit
The accommodation rate , which is the ratio of the bandwidth set by the path setting requester to the bandwidth that can be processed , is stored for each component of the node ,
The calculator is
Using the accommodation rate for each component, calculate the processing time for each component,
Identify the components through which each path route passes through the node,
The control server , wherein a transfer delay of each of the path routes in the node is calculated based on the calculated processing time of each of the specified components passing through .
請求項に記載の制御サーバにおいて、
前記記憶部は、前記ノードの前記構成部毎の前記収容率を、前記構成部において処理される仮想ネットワーク毎に記憶しており、
前記計算部は、
前記仮想ネットワーク毎の前記収容率を用いて、前記構成部各々の、前記仮想ネットワーク各々の処理時間を計算し、
前記パス経路が属する仮想ネットワークを特定し、
計算した前記仮想ネットワーク各々の処理時間に基づいて、前記仮想ネットワークに属する前記パス経路の、前記ノードにおける前記転送遅延を計算する
ことを特徴とする制御サーバ。
The control server according to claim 1 ,
The storage unit, the storage ratio of each of the components of the node, and remembers for each virtual network to be processed in the forming section,
The calculator is
Using the accommodation rate for each virtual network, calculate the processing time for each of the virtual networks for each of the components.
Identify the virtual network to which the path route belongs,
A control server that calculates the transfer delay in the node of the path route belonging to the virtual network based on the calculated processing time of each virtual network .
請求項1または2に記載の制御サーバであって、The control server according to claim 1 or 2,
前記計算部は、前記パス経路が前記ノードを経由する際の、入口ポートと、出口ポートと、から、前記パス経路が経由する前記構成部を特定するThe calculation unit specifies the configuration unit through which the path route passes from an entrance port and an exit port when the path route passes through the node.
ことを特徴とする制御サーバ。A control server characterized by that.
請求項1から3のいずれか一に記載の制御サーバであって、
前記計算部は、
前記複数のノードのうち第1のノードと第2のノードを端点とし、一つ以上の前記ノードを経由する一つ以上のパス経路を構成する前記ノードにおけるデータの転送遅延を計算し、
計算した前記転送遅延を用いて、前記パス経路において通信される前記データの遅延を計算する
ことを特徴とする制御サーバ。
The control server according to any one of claims 1 to 3,
The calculator is
A first node and a second node of the plurality of nodes as end points, and calculating a data transfer delay in the node constituting one or more path paths passing through the one or more nodes,
A control server that calculates a delay of the data communicated in the path route by using the calculated transfer delay.
請求項4に記載の制御サーバであって、
前記記憶部は、前記パスを構成する前記リンク各々の、伝送遅延の値を記憶し、
前記計算部は、前記パス経路が経由する前記ノードの前記転送遅延の値と前記パス経路が経由するリンクの前記伝送遅延とに基づいて、前記第1のノードと前記第2のノードを端点とするパス経路の探索と、探索する前記パス経路において通信されるデータの遅延の計算と、を行う
ことを特徴とする制御サーバ。
The control server according to claim 4,
The storage unit stores a transmission delay value of each of the links constituting the path,
The calculation unit uses the first node and the second node as endpoints based on the transfer delay value of the node through which the path route passes and the transmission delay of the link through which the path route passes. A control server that searches for a path route to be searched and calculates a delay of data communicated in the path route to be searched.
請求項5に記載の制御サーバであって、
前記パス経路のうち、通信される前記データの遅延が所定値以下となるパス経路を選択するパス設定部を備える
ことを特徴とする制御サーバ。
The control server according to claim 5,
A control server comprising: a path setting unit that selects a path route in which a delay of the data to be communicated is a predetermined value or less from the path route.
請求項5または6に記載の制御サーバであって、
前記計算部は、
前記パス経路の探索において、探索途中の遅延の値が所定の値を超えた場合に、当該パス経路の探索を終了する
ことを特徴とする制御サーバ。
The control server according to claim 5 or 6,
The calculator is
In the search for the path route, when the delay value in the middle of the search exceeds a predetermined value, the search for the path route is terminated.
請求項1から7のいずれか一に記載の制御サーバと、管理端末と、を備えたネットワークシステムであって、
前記管理端末は、前記パス設定要求者が入力した収容率を前記制御サーバに送信する送受信部を有し、
前記制御サーバの前記記憶部は、
前記管理端末から受信した前記収容率を記憶する
ことを特徴とするネットワークシステム。
A network system comprising the control server according to any one of claims 1 to 7 and a management terminal,
The management terminal has a transmission / reception unit that transmits the accommodation rate input by the path setting requester to the control server,
The storage unit of the control server is
A network system that stores the accommodation rate received from the management terminal.
請求項5から7のいずれか一に記載の制御サーバと、管理端末と、を備えたネットワークシステムであって、
前記管理端末は、前記パス設定要求者が入力した収容率と、通信されるデータの遅延が所定の値を満たすパス経路の設定要求と、を前記制御サーバに送信し、
前記制御サーバは、
前記管理端末から受信した前記収容率を、前記記憶部に記憶し、
前記計算部による、前記設定要求に基づいて、パス経路の前記探索と、通信されるデータの遅延の前記計算と、を行い、
前記管理端末へ、前記探索結果と前記計算結果とに基づく通知を行う
ことを特徴とするネットワークシステム。
A network system comprising the control server according to any one of claims 5 to 7 and a management terminal,
The management terminal transmits the accommodation rate input by the path setting requester and a path route setting request in which a delay of data to be communicated satisfies a predetermined value to the control server,
The control server
Storing the accommodation rate received from the management terminal in the storage unit;
Based on the setting request by the calculation unit, the search of the path route and the calculation of the delay of the data to be communicated,
A network system that performs notification based on the search result and the calculation result to the management terminal.
JP2010148490A 2010-06-30 2010-06-30 Control server and network system Expired - Fee Related JP5439297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148490A JP5439297B2 (en) 2010-06-30 2010-06-30 Control server and network system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148490A JP5439297B2 (en) 2010-06-30 2010-06-30 Control server and network system

Publications (2)

Publication Number Publication Date
JP2012015668A JP2012015668A (en) 2012-01-19
JP5439297B2 true JP5439297B2 (en) 2014-03-12

Family

ID=45601612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148490A Expired - Fee Related JP5439297B2 (en) 2010-06-30 2010-06-30 Control server and network system

Country Status (1)

Country Link
JP (1) JP5439297B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5771832B2 (en) * 2012-02-14 2015-09-02 株式会社日立製作所 Transmission system, management computer, and logical path construction method
CN103684827B (en) * 2012-09-18 2017-04-26 中兴通讯股份有限公司 Business-based communication network evaluation method and device
JP6161335B2 (en) * 2013-03-06 2017-07-12 国立大学法人 東京大学 Mesh point device and program
JP6633502B2 (en) * 2016-12-01 2020-01-22 日本電信電話株式会社 Communication device
JP6996549B2 (en) 2017-03-08 2022-01-17 日本電気株式会社 Equipment and methods for communication networks
CN109218190B (en) 2017-06-29 2020-08-07 华为技术有限公司 Transmission path determining method and node
CN110661633B (en) * 2018-06-29 2022-03-15 中兴通讯股份有限公司 Virtualization method, device and equipment for physical network element node and storage medium
JP6950633B2 (en) * 2018-07-02 2021-10-13 日本電信電話株式会社 Transmission system management device and transmission system design method
US20230412950A1 (en) * 2021-01-12 2023-12-21 Nippon Telegraph And Telephone Corporation Optical transmission system, orchestrator, control method and program

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339432A (en) * 2000-05-29 2001-12-07 Hitachi Ltd Managing server and recording medium
JP3611798B2 (en) * 2001-03-01 2005-01-19 日本電信電話株式会社 Label switch network protection
JP3720734B2 (en) * 2001-06-20 2005-11-30 日本電信電話株式会社 Packet transfer quality estimation system, apparatus, method, program, and recording medium
JP2003209568A (en) * 2002-01-15 2003-07-25 Nippon Telegr & Teleph Corp <Ntt> Node, packet communication network, packet communication method, program, and recording medium
JP4510728B2 (en) * 2005-08-31 2010-07-28 富士通株式会社 Quality assurance method for mobile terminal communication
CN1941737A (en) * 2005-09-30 2007-04-04 富士通株式会社 Method and device for pre-determining time delay in node, and method and device for guarantee of time delay
JP4603519B2 (en) * 2006-08-15 2010-12-22 日本電信電話株式会社 Route calculation method, route calculation program, route calculation device, and node
JP5163462B2 (en) * 2008-12-09 2013-03-13 富士通株式会社 Network device, edge router and packet communication system

Also Published As

Publication number Publication date
JP2012015668A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5439297B2 (en) Control server and network system
US6778531B1 (en) Multicast routing with service-level guarantees between ingress egress-points in a packet network
JP4828865B2 (en) Efficient and robust routing independent of traffic pattern variability
US7298704B2 (en) Dynamic path routing with service level guarantees in optical networks
US8194546B2 (en) Traffic flow determination in communications networks
KR100411251B1 (en) A constrained multipath routing method
JP4598640B2 (en) Route selection method and apparatus in telecommunication network
US20030028670A1 (en) Network resource allocation methods and systems
JP5409565B2 (en) Transport control server, transport control system, and transport control method
US9077479B2 (en) Method and system for adjusting network interface metrics
EP1776813A2 (en) Method for forwarding traffic having a predetermined category of transmission service in a connectionless communications network
JP2007104677A (en) Node delay prediction method and apparatus, and delay guarantee method and apparatus
Porxas et al. QoS-aware virtualization-enabled routing in software-defined networks
EP3684017B1 (en) Route selection with bandwidth sharing optimization over rings
US7061869B2 (en) Apparatus and method for graceful reassignment of out-of-kilter communications paths
JPWO2013157234A1 (en) Network control method and apparatus
Jiawei et al. Dynamic Multipath Routing Mechanism for Multimedia Data Flow Scheduling Over Software Defined Networks
WO2022176028A1 (en) Network controller, network control method, and network control program
JP2004343215A (en) Traffic monitor analysis method and system
JP2008278007A (en) Group path reservation control method, and route reserving device, system, and program
Hong et al. A Congestion Contribution-based Traffic Engineering Scheme using Software-Defined Networking
Yu et al. An integrated design of multipath routing with failure survivability in MPLS networks
KR20060015051A (en) Method for setting of routing path in multi protocol label switch network
Varela et al. Multi-Service: A Service Aware Routing Protocol for the Next Generation Internet.
Chua et al. Edge-to-edge QoS Mechanisms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

LAPS Cancellation because of no payment of annual fees