JP5437769B2 - Surge absorber - Google Patents

Surge absorber Download PDF

Info

Publication number
JP5437769B2
JP5437769B2 JP2009239081A JP2009239081A JP5437769B2 JP 5437769 B2 JP5437769 B2 JP 5437769B2 JP 2009239081 A JP2009239081 A JP 2009239081A JP 2009239081 A JP2009239081 A JP 2009239081A JP 5437769 B2 JP5437769 B2 JP 5437769B2
Authority
JP
Japan
Prior art keywords
insulating layer
auxiliary electrode
main electrodes
base
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009239081A
Other languages
Japanese (ja)
Other versions
JP2011086523A (en
Inventor
高志 正留
和彦 牛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabuchi Electric Co Ltd
Original Assignee
Tabuchi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabuchi Electric Co Ltd filed Critical Tabuchi Electric Co Ltd
Priority to JP2009239081A priority Critical patent/JP5437769B2/en
Publication of JP2011086523A publication Critical patent/JP2011086523A/en
Application granted granted Critical
Publication of JP5437769B2 publication Critical patent/JP5437769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Description

本発明は、サージなどの過電圧を放電動作で吸収可能にするサージ吸収素子に関するものである。   The present invention relates to a surge absorbing element that can absorb an overvoltage such as a surge in a discharging operation.

サージ吸収素子は、不活性ガス封入容器中に一対の放電電極を対向配置し、両放電電極間への雷撃等の過電圧印加により当該放電電極間で放電を発生させて上記過電圧を吸収して、過電圧がこのサージ吸収素子以降に接続された回路内に進入することを制限する。そのためサージ吸収素子の放電開始電圧はサージ吸収素子を用いる回路の仕様等に応じて決定される。この場合、サージ吸収素子に放電開始電圧以上の過電圧が印加されてから放電開始までの時間に遅れが可能な限り短いかまたは無いことが好ましい。   The surge absorbing element has a pair of discharge electrodes opposed to each other in an inert gas enclosure, absorbs the overvoltage by generating a discharge between the discharge electrodes by applying an overvoltage such as a lightning strike between the two discharge electrodes, It limits that an overvoltage enters into the circuit connected after this surge absorption element. Therefore, the discharge start voltage of the surge absorbing element is determined according to the specification of the circuit using the surge absorbing element. In this case, it is preferable that the delay from the application of an overvoltage equal to or higher than the discharge start voltage to the surge absorbing element until the start of discharge is as short or as short as possible.

従来のこの種の対策のため、特許文献1にかかるサージ吸収素子においては、一対の主電極を第1間隔で対向させ、両主電極間にフローティング電極(補助電極)を配置したものであり、主電極間に、所定電圧以上の過電圧が印加されると、主電極間の電界強度に比べて主電極と補助電極との間の電界強度の方を先に高め、主電極と補助電極との間で、相対的に放電遅れの少ない放電を開始させ、この初期的な放電によって容器内の電位やイオンを増やし、主電極間に速やかにグロー放電を生起させ、ついでアーク放電に移行させることで主電極間に大きな電流を流しサージを吸収するようになっている。   For this type of conventional countermeasure, in the surge absorbing element according to Patent Document 1, a pair of main electrodes are opposed to each other at a first interval, and a floating electrode (auxiliary electrode) is disposed between the two main electrodes. When an overvoltage of a predetermined voltage or higher is applied between the main electrodes, the electric field strength between the main electrode and the auxiliary electrode is first increased compared to the electric field strength between the main electrodes, By starting a discharge with relatively little discharge delay, the potential and ions in the container are increased by this initial discharge, a glow discharge is quickly generated between the main electrodes, and then the arc discharge is started. A large current is passed between the main electrodes to absorb surges.

特開2001−284011号公報JP 2001-284011 A

上記従来のサージ吸収素子においては、上記補助電極により、初期放電の遅れが軽減されるものの、当該補助電極が火花放電の繰り返しの都度、高温状態となるために、金属からなる補助電極が揮発減耗すると共に揮発した補助電極成分が容器内を汚染すると共に放電開始電圧の変動も来たすなどの課題があった。そのうえ、補助電極は両主電極間に露出状態で配置されているから、両主電極間の沿面距離は補助電極により短くなり、このことが放電開始電圧の安定化に影響する。   In the conventional surge absorbing element, although the delay of the initial discharge is reduced by the auxiliary electrode, the auxiliary electrode is in a high temperature state every time the spark discharge is repeated, so that the auxiliary electrode made of metal is volatilized and depleted. In addition, there are problems such as volatilization of the auxiliary electrode component that volatilizes the inside of the container and fluctuations in the discharge start voltage. In addition, since the auxiliary electrode is disposed in an exposed state between the two main electrodes, the creepage distance between the two main electrodes is shortened by the auxiliary electrode, which affects the stabilization of the discharge start voltage.

したがって本発明においては、主電極間に補助電極を配置して過電圧印加時での放電開始遅れを軽減ないし無くす一方で、当該補助電極が、放電繰り返しにより揮発減耗することがないようにして補助電極成分による容器内汚染、放電開始電圧の変動を排除し、かつ、両電極間に補助電極が配置されていても、両主電極間の所定以上の沿面距離の確保を可能として放電開始電圧が安定化したサージ吸収素子を提供するものである。   Therefore, in the present invention, the auxiliary electrode is arranged between the main electrodes to reduce or eliminate the discharge start delay when the overvoltage is applied, while preventing the auxiliary electrode from volatilizing and depleting due to repeated discharge. Eliminates contamination in the container due to components and fluctuations in the discharge start voltage, and even if an auxiliary electrode is placed between both electrodes, it is possible to ensure a creepage distance greater than a predetermined distance between the two main electrodes and stabilize the discharge start voltage. Provided is a surge absorbing element.

本発明によるサージ吸収素子においては、不活性ガス封入容器内のベース上において対向配置した少なくとも一対の主電極の対向間に補助電極を配置したサージ吸収素子において、上記補助電極を耐熱性の絶縁層で覆ったことを特徴とするものである。   In the surge absorbing element according to the present invention, in the surge absorbing element in which the auxiliary electrode is disposed between at least a pair of the main electrodes opposed to each other on the base in the inert gas enclosure, the auxiliary electrode is formed of a heat-resistant insulating layer. It is characterized by being covered with.

上記主電極の対向間とは封入容器を含めたもので、主電極と同等の高さだけでなく、主電極より低い箇所、主電極よりも高い箇所を含み、例えば封入容器を構成するガラス製管、ベース、封入容器内空間の全てを含むよう広く解釈されるべきである。   The space between the opposing main electrodes includes the enclosure, and includes not only the same height as the main electrode, but also the lower part of the main electrode and the higher part of the main electrode. It should be construed broadly to include all of the tube, base, and enclosure space.

好ましくは、上記補助電極を両主電極間に単一または複数配置することである。   Preferably, a single or a plurality of the auxiliary electrodes are disposed between the main electrodes.

好ましくは、上記補助電極を上記ベース上から所定高さの位置に配置するか、またはベース中に埋設することである。   Preferably, the auxiliary electrode is disposed at a predetermined height from the base, or is embedded in the base.

好ましくは、上記絶縁層を、補助電極周囲を直接覆う基礎絶縁層と、基礎絶縁層上を覆う1層ないし複数層からなる補強絶縁層とにより形成することである。   Preferably, the insulating layer is formed of a basic insulating layer that directly covers the periphery of the auxiliary electrode, and a reinforcing insulating layer that includes one layer or a plurality of layers that covers the basic insulating layer.

好ましくは、上記基礎絶縁層と補強絶縁層との間、あるいは補強絶縁層間に強化絶縁層を設けることである。   Preferably, a reinforced insulating layer is provided between the basic insulating layer and the reinforcing insulating layer or between the reinforcing insulating layers.

本発明によれば、補助電極を耐熱性の絶縁層で覆ったから、補助電極が、過電圧印加に際しての放電繰り返しで高温になっても、蒸発するようなことがなくなり、これにより、補助電極の蒸発成分による容器内汚染や絶縁劣化が無くなり、放電開始電圧も適正を保てるようになる結果、信頼性が高いサージ吸収素子を提供することができる。また、本発明では、両主電極の対向間に補助電極を配置する構造であっても、補助電極が絶縁層で覆われていることにより、両主電極の空間や沿面距離を確保することができるようになる。   According to the present invention, since the auxiliary electrode is covered with the heat-resistant insulating layer, the auxiliary electrode does not evaporate even when the temperature is increased due to repeated discharge during overvoltage application. As a result of eliminating contamination in the container and deterioration of insulation due to components and maintaining appropriate discharge starting voltage, a highly reliable surge absorbing element can be provided. In the present invention, even if the auxiliary electrode is arranged between the two main electrodes, the space between the two main electrodes and the creeping distance can be secured by covering the auxiliary electrode with the insulating layer. become able to.

図1は本発明の実施の形態にかかるサージ吸収素子の断面構成を示す図である。FIG. 1 is a diagram showing a cross-sectional configuration of a surge absorber according to an embodiment of the present invention. 図2は図1のA−A線に沿う断面構成を示す図である。FIG. 2 is a diagram showing a cross-sectional configuration along the line AA in FIG. 図3は他の実施の形態にかかるサージ吸収素子の断面構成を示す図である。FIG. 3 is a diagram showing a cross-sectional configuration of a surge absorbing element according to another embodiment. 図4はさらに他の実施の形態にかかるサージ吸収素子の断面構成を示す図である。FIG. 4 is a diagram showing a cross-sectional configuration of a surge absorber according to still another embodiment. 図5は補助電極の変形例を示す図である。FIG. 5 is a view showing a modification of the auxiliary electrode. 図6は補助電極の他の変形例を示す図である。FIG. 6 is a view showing another modification of the auxiliary electrode. 図7は補助電極のさらに他の変形例を示す図である。FIG. 7 is a view showing still another modification of the auxiliary electrode. 図8は補助電極のさらに他の変形例を示す図である。FIG. 8 is a view showing still another modification of the auxiliary electrode. 図9は補助電極のさらに他の変形例を示す図である。FIG. 9 is a view showing still another modification of the auxiliary electrode. 図10は主電極の対向間を示す図である。FIG. 10 is a diagram showing the interval between the opposing main electrodes.

以下、添付した図面を参照して、本発明の実施の形態に係るサージ吸収素子を説明する。図1を参照して、サージ吸収素子1は、容器2を備える。この容器2は円板状絶縁性のベース3にガラス製円筒管4を被せ付け、内部に不活性ガスが密封されている。ガラスは耐熱製のものであれば特に限定しない。またガラス厚さも特に限定しない。この容器2内において一対の主電極5,5がベース3上から所定電極高さを有して所定距離を隔てて相対向平行配置されている。両主電極5,5は容器2内を上端側へ長手状ストレートに延びた断面矩形形状をなし、かつ、下端側がベース3を介して外部リード6,6に接続されて過電圧印加可能となっている。   Hereinafter, a surge absorber according to an embodiment of the present invention will be described with reference to the accompanying drawings. Referring to FIG. 1, the surge absorbing element 1 includes a container 2. In this container 2, a glass cylindrical tube 4 is placed on a disk-like insulating base 3, and an inert gas is sealed inside. If glass is a heat-resistant thing, it will not specifically limit. Also, the glass thickness is not particularly limited. In the container 2, a pair of main electrodes 5, 5 have a predetermined electrode height from the base 3 and are arranged in parallel with each other at a predetermined distance. Both the main electrodes 5 and 5 have a rectangular cross section extending in a straight shape in the container 2 toward the upper end side, and the lower end side is connected to the external leads 6 and 6 via the base 3 so that an overvoltage can be applied. Yes.

両主電極5,5の対向間のベース3上にはフローティングした補助電極7が配置されている。補助電極7は便宜的に図示した形状は短円柱形状であるが、角柱状でも内部中空の円筒形であっても、内部中実または中空の球形であってもよく、その形状は特に限定しない。補助電極7のベース3上からの電極高さは図示では十分に低いが、その電極高さは特に限定されず、主電極5,5のそれより低くても高くてもよい。   A floating auxiliary electrode 7 is disposed on the base 3 between the opposed main electrodes 5 and 5. For convenience, the auxiliary electrode 7 has a short cylindrical shape, but may have a prismatic shape, an internal hollow cylindrical shape, an internal solid shape or a hollow spherical shape, and the shape is not particularly limited. . Although the electrode height from above the base 3 of the auxiliary electrode 7 is sufficiently low in the drawing, the electrode height is not particularly limited, and may be lower or higher than that of the main electrodes 5 and 5.

以上の構成において、本実施の形態が特徴とする構成は、補助電極7周囲を当該補助電極7が露出しないように電気的に絶縁性を有しかつ耐熱性の絶縁層8で覆っていることである。絶縁層8は耐熱性を有して補助電極7周囲を覆うので補助電極7が放電を繰り返して高温状態とっても、補助電極7は蒸発を阻止される。絶縁層8は耐熱性を有した絶縁材料として、ガラス、磁器(セラミック含む)を例示することができる。また、補助電極7は導電性を有する電極材料であれば、特に限定せず、液体、固体、粉体を問わず、金属、導電性樹脂、グラファイト(黒鉛)、水銀、等で構成することができる。   In the above configuration, the configuration characterized in the present embodiment is that the periphery of the auxiliary electrode 7 is covered with a heat-resistant insulating layer 8 that is electrically insulating so that the auxiliary electrode 7 is not exposed. It is. Since the insulating layer 8 has heat resistance and covers the periphery of the auxiliary electrode 7, the auxiliary electrode 7 is prevented from evaporating even if the auxiliary electrode 7 repeatedly discharges to a high temperature state. As the insulating material having heat resistance, the insulating layer 8 can be exemplified by glass and porcelain (including ceramics). The auxiliary electrode 7 is not particularly limited as long as it is a conductive electrode material, and may be composed of metal, conductive resin, graphite (graphite), mercury, etc., regardless of liquid, solid, or powder. it can.

以上の構成を備えたサージ吸収素子1においては、主電極5,5間に、所定電圧以上の過電圧が印加されると、主電極5,5間の電界強度に比べて主電極5,5と補助電極7との間の電界強度の方が先に高くなり、主電極5,5と補助電極7との間で放電が開始し、この初期的な放電によって容器2内の電位やイオンを増やし、主電極5,5間に速やかにグロー放電を生起し、ついでアーク放電に移行して主電極5,5間にサージが吸収される。なお、補助電極7は、主電極5,5間のどの位置に配置してもよいが、例えば主電極5,5の中間に配置する。補助電極7が主電極5,5のいずれか一方に片寄っていると、近い方の主電極5,5との間で放電を生起することが多くなり、中間に配置すれば主電極5,5のいずれにでも放電を発生させる機会が増え、放電開始遅れを防止すという観点よりすれば、補助電極7を主電極5,5の略中央に配置することが好ましい。   In the surge absorbing element 1 having the above configuration, when an overvoltage of a predetermined voltage or higher is applied between the main electrodes 5 and 5, the main electrodes 5 and 5 are compared with the electric field strength between the main electrodes 5 and 5. The electric field strength between the auxiliary electrode 7 becomes higher first, and discharge starts between the main electrodes 5 and 5 and the auxiliary electrode 7, and this initial discharge increases the potential and ions in the container 2. Then, glow discharge is quickly generated between the main electrodes 5 and 5, and then arc discharge is performed to absorb surge between the main electrodes 5 and 5. The auxiliary electrode 7 may be disposed at any position between the main electrodes 5 and 5, but is disposed, for example, between the main electrodes 5 and 5. If the auxiliary electrode 7 is offset to one of the main electrodes 5 and 5, discharge often occurs between the main electrodes 5 and 5, and the main electrodes 5 and 5 are disposed in the middle. In any of these cases, it is preferable to dispose the auxiliary electrode 7 substantially at the center of the main electrodes 5 and 5 from the viewpoint of increasing the chance of generating a discharge and preventing the discharge start delay.

そして、上記補助電極7は放電が繰り返されて高温の状態となるのであるが、その表面が耐熱性絶縁層8で覆われているために、その高温状態により蒸発するようなことがなくなり、容器2内汚染や絶縁劣化と共に放電開始電圧の変動を来たすなどの問題が無い。また、補助電極7が両主電極間に配置されているが、補助電極7が絶縁層8で覆われているので、導電性部分である両主電極5,5間の空間を通る最短距離である空間距離、両主電極5,5間の絶縁物の表面であるベース3表面に沿った最短距離である沿面距離が短くならずに済み、放電開始電圧を所期通りに維持することができる。このような空間距離および沿面距離は、両主電極5,5間を絶縁物で隔離することなく電気的絶縁を達成するためには空間距離と沿面距離との双方を確保する必要がある。実施の形態では絶縁層8で被覆されている補助電極7のベース3上からの高さは主電極5のベース3上からの高さより低いが、構造上の図示を略するが、補助電極7のベース3上からの高さを主電極5のベース3上からの高さよりも高くしてもよく、この場合では、主電極5,5間の空間距離と沿面距離との双方共を長くすることができる。   The auxiliary electrode 7 is repeatedly discharged and is in a high temperature state. Since the surface is covered with the heat-resistant insulating layer 8, the auxiliary electrode 7 does not evaporate due to the high temperature state. There are no problems such as fluctuations in the discharge start voltage with internal contamination or insulation deterioration. In addition, the auxiliary electrode 7 is disposed between the two main electrodes. Since the auxiliary electrode 7 is covered with the insulating layer 8, the shortest distance passing through the space between the two main electrodes 5 and 5, which are conductive portions. It is not necessary to shorten the creepage distance, which is the shortest distance along the surface of the base 3, which is the surface of the insulator between the main electrodes 5 and 5, and the discharge start voltage can be maintained as expected. . In order to achieve electrical insulation without separating the main electrodes 5 and 5 with an insulator, it is necessary to ensure both the spatial distance and the creepage distance. In the embodiment, the height of the auxiliary electrode 7 covered with the insulating layer 8 from above the base 3 is lower than the height of the main electrode 5 from above the base 3. The height of the main electrode 5 from above the base 3 may be higher than the height of the main electrode 5 from above the base 3. In this case, both the spatial distance and the creepage distance between the main electrodes 5 and 5 are increased. be able to.

上記の場合、絶縁層8は単層であったが、複数層で構成することが好ましい。図3を参照して絶縁層8を複数層8a,8bで構成した例を説明すると、絶縁層8は一方8aを基礎絶縁層として、他方8bを補強(付加とも称することができる)絶縁層として含む。基礎絶縁層8aは、補助電極7表面を直接覆うものであり、過電圧印加からの絶縁破壊から保護する基礎となる絶縁層である。補強絶縁層8bは基礎絶縁層8a表面を覆い、基礎絶縁層8aが絶縁破壊した場合に、さらに絶縁破壊から保護を与えるため、基礎絶縁層8aに追加適用される独立した絶縁層である。補強絶縁層8bは単層でも複数層でもよい。そして、絶縁層8をこのように複数の基礎絶縁層8a,補強絶縁層8bの2重絶縁層で構成することにより、主電極5,5の対向間における空間や沿面距離をより確実に確保することができるようになる。この場合、補強絶縁層7を1層ではなく、複数層としてもよい。この場合、基礎絶縁層8aと、補強絶縁層8bとを耐熱性接着剤により接着する場合、図4で示すようにこの接着剤層を強化絶縁層8cとしてもよい。   In the above case, the insulating layer 8 is a single layer, but is preferably composed of a plurality of layers. Referring to FIG. 3, an example in which the insulating layer 8 is composed of a plurality of layers 8a and 8b will be described. As for the insulating layer 8, one 8a serves as a basic insulating layer, and the other 8b serves as a reinforcing (also referred to as addition) insulating layer. Including. The basic insulating layer 8a directly covers the surface of the auxiliary electrode 7, and is a basic insulating layer that protects against dielectric breakdown from overvoltage application. The reinforcing insulating layer 8b is an independent insulating layer that is additionally applied to the basic insulating layer 8a so as to cover the surface of the basic insulating layer 8a and to provide further protection from the dielectric breakdown when the basic insulating layer 8a breaks down. The reinforcing insulating layer 8b may be a single layer or a plurality of layers. Then, the insulating layer 8 is constituted by the double insulating layer of the plurality of basic insulating layers 8a and the reinforcing insulating layer 8b as described above, so that the space and the creepage distance between the opposed electrodes of the main electrodes 5 and 5 are more reliably ensured. Will be able to. In this case, the reinforcing insulating layer 7 may be a plurality of layers instead of a single layer. In this case, when the basic insulating layer 8a and the reinforcing insulating layer 8b are bonded with a heat-resistant adhesive, the adhesive layer may be a reinforced insulating layer 8c as shown in FIG.

この耐熱性接着剤としては例えばエポキシ樹脂を例示することができる。強化絶縁層8cは上記基礎絶縁層8aと補強絶縁層8bとの二重絶縁によるものと同等以上に絶縁破壊から保護を与える単一の絶縁層である。また、基礎絶縁層8aと補強絶縁層8bとを直接、超音波接合させてもよい。この場合、補強絶縁層8bは強化絶縁層とも称することができる。   An example of the heat resistant adhesive is an epoxy resin. The reinforced insulating layer 8c is a single insulating layer that provides protection from dielectric breakdown as much as or more than that obtained by double insulation of the basic insulating layer 8a and the reinforcing insulating layer 8b. Further, the basic insulating layer 8a and the reinforcing insulating layer 8b may be directly ultrasonically bonded. In this case, the reinforcing insulating layer 8b can also be referred to as a reinforced insulating layer.

また、上記では、補助電極7は両主電極5,5間に単一であったが、図5で示すように、2以上の複数配置してもよい。また、補助電極7を複数配置する場合、図6(a)で示すように主電極5,5間に複数一列に配置したり、図6(b)あるいは(c)で示すように主電極5,5間に個別に配置したりしてもよい。図6(b)では複数の補助電極7を主電極5,5に対して平行一列に配置し、図6(c)では複数の補助電極7を主電極5,5に対して行/列状に配置している。   In the above description, the auxiliary electrode 7 is single between the main electrodes 5 and 5. However, as shown in FIG. When a plurality of auxiliary electrodes 7 are arranged, a plurality of auxiliary electrodes 7 are arranged in a line between the main electrodes 5 and 5 as shown in FIG. 6A, or the main electrode 5 is shown as shown in FIG. 6B or 6C. , 5 may be arranged individually. In FIG. 6B, a plurality of auxiliary electrodes 7 are arranged in a line parallel to the main electrodes 5, 5, and in FIG. 6C, the plurality of auxiliary electrodes 7 are arranged in rows / columns with respect to the main electrodes 5, 5. Is arranged.

また、上記では補助電極7はベース3上に配置したが、ベース3は絶縁物であるので、図7(a)で示すようにベース3中に補助電極7を埋設してもよいし、さらに、図7(b)で示すように、ベース3を基礎絶縁層とし、その上に補強絶縁層8を形成し、この補強絶縁層8下の基礎絶縁層であるベース3中に補助電極7を埋設してもよい。この場合、ベース3の材料としてはガラス、磁器等を例示することができる。   In the above description, the auxiliary electrode 7 is disposed on the base 3. However, since the base 3 is an insulator, the auxiliary electrode 7 may be embedded in the base 3 as shown in FIG. 7 (b), the base 3 is a basic insulating layer, a reinforcing insulating layer 8 is formed thereon, and the auxiliary electrode 7 is placed in the base 3 which is the basic insulating layer below the reinforcing insulating layer 8. It may be buried. In this case, examples of the material of the base 3 include glass and porcelain.

また、図8で示すように、補助電極7のベース3上からの高さを主電極5のベース3上からの高さよりも高くしてもよく、この場合では、主電極5,5間の空間距離と沿面距離との双方共を長くすることができる。   Further, as shown in FIG. 8, the height of the auxiliary electrode 7 from above the base 3 may be made higher than the height of the main electrode 5 from above the base 3. Both the spatial distance and the creepage distance can be increased.

さらに、図9(a)で示すように、主電極5,5の対向間において、ガラス製円筒管4の下面に絶縁層8で覆った補助電極7を配置したり、図9(b)で示すように、主電極5,5の対向間において、ガラス製円筒管4の内部に当該円筒管4を絶縁層として補助電極7を覆った形状で当該補助電極7を配置してもよい。   Furthermore, as shown in FIG. 9A, an auxiliary electrode 7 covered with an insulating layer 8 is disposed on the lower surface of the glass cylindrical tube 4 between the opposing main electrodes 5 and 5, or in FIG. 9B. As shown, the auxiliary electrode 7 may be disposed between the opposing main electrodes 5 and 5 in the shape of the cylindrical tube 4 covering the auxiliary electrode 7 with the cylindrical tube 4 as an insulating layer.

図10では、主電極5,5の対向間をハッチングで示している。このハッチングで示す箇所であれば、絶縁層で覆った補助電極7を配置することができる。   In FIG. 10, the interval between the main electrodes 5 and 5 is indicated by hatching. The auxiliary electrode 7 covered with an insulating layer can be disposed at a location indicated by hatching.

以上説明したように本実施の形態では、補助電極を絶縁層で覆ったので、補助電極が、過電圧印加ごとの放電の繰り返しで高温になっても、絶縁層により蒸発を防止することができ、結果として、補助電極の蒸発成分による容器内汚染や絶縁劣化が無くなり、放電開始電圧も適正を保てるようになる。これにより、本発明では、信頼性が高いサージ吸収素子を提供することができる。さらに、本実施の形態では、両主電極の対向間に補助電極を配置する構造であっても、補助電極が絶縁層で覆われているので、両主電極の空間や沿面距離を確保することができるようになる。   As described above, in the present embodiment, since the auxiliary electrode is covered with the insulating layer, the auxiliary electrode can prevent evaporation even if the auxiliary electrode becomes high temperature due to repeated discharge for each overvoltage application, As a result, there is no container contamination or insulation deterioration due to the evaporation component of the auxiliary electrode, and the discharge start voltage can be kept appropriate. Thereby, in this invention, a highly reliable surge absorption element can be provided. Furthermore, in this embodiment, even if the auxiliary electrode is arranged between the two main electrodes, the auxiliary electrode is covered with an insulating layer, so that the space and creepage distance between the two main electrodes are ensured. Will be able to.

1 サージ吸収素子
2 容器
3 ベース
4 ガラス製円筒管
5 主電極
7 補助電極
8 絶縁層
8a 基礎絶縁層
8b 補強絶縁層
8c 強化絶縁層
DESCRIPTION OF SYMBOLS 1 Surge absorption element 2 Container 3 Base 4 Glass cylindrical tube 5 Main electrode 7 Auxiliary electrode 8 Insulating layer 8a Basic insulating layer 8b Reinforcing insulating layer 8c Reinforcing insulating layer

Claims (3)

不活性ガス封入容器内のベース上において対向配置した少なくとも一対の主電極の対向間に補助電極を配置したサージ吸収素子において、上記補助電極を耐熱性の絶縁層で覆い、
上記絶縁層は、補助電極周囲を直接覆う基礎絶縁層と、基礎絶縁層上を覆う1層ないし複数層からなる補強絶縁層とを含み、
上記基礎絶縁層と補強絶縁層との間、あるいは補強絶縁層間にこれら同士を接着する接着剤からなる強化絶縁層を設けた、ことを特徴とするサージ吸収素子。
In the surge absorber element disposed an auxiliary electrode between opposing at least one pair of main electrodes disposed facing on the base of the inert gas sealed in the container, not covering the auxiliary electrodes with a heat-resistant insulating layer,
The insulating layer includes a basic insulating layer that directly covers the periphery of the auxiliary electrode, and a reinforcing insulating layer composed of one or more layers that covers the basic insulating layer,
A surge absorbing element comprising a reinforced insulating layer made of an adhesive that bonds the basic insulating layer and the reinforcing insulating layer or between the reinforcing insulating layers .
上記絶縁層で覆った補助電極を上記両主電極間に単一または複数配置した、ことを特徴とする請求項1に記載のサージ吸収素子。 The surge absorbing element according to claim 1, wherein a single or a plurality of auxiliary electrodes covered with the insulating layer are disposed between the two main electrodes. 上記絶縁層で覆った補助電極を上記ベース上から所定高さの位置に配置するか、またはベース中に埋設した、ことを特徴とする請求項1または2に記載のサージ吸収素子。 The surge absorbing element according to claim 1 or 2, wherein the auxiliary electrode covered with the insulating layer is disposed at a predetermined height from the base or embedded in the base.
JP2009239081A 2009-10-16 2009-10-16 Surge absorber Active JP5437769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009239081A JP5437769B2 (en) 2009-10-16 2009-10-16 Surge absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009239081A JP5437769B2 (en) 2009-10-16 2009-10-16 Surge absorber

Publications (2)

Publication Number Publication Date
JP2011086523A JP2011086523A (en) 2011-04-28
JP5437769B2 true JP5437769B2 (en) 2014-03-12

Family

ID=44079318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009239081A Active JP5437769B2 (en) 2009-10-16 2009-10-16 Surge absorber

Country Status (1)

Country Link
JP (1) JP5437769B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2346174B2 (en) * 1973-09-13 1977-04-07 Siemens AG, 1000 Berlin und 8000 München SURGE ARRESTERS
JPH0992430A (en) * 1995-09-22 1997-04-04 Yoshinobu Kakihara Surge absorbing element
JP3164781B2 (en) * 1997-07-02 2001-05-08 岡谷電機産業株式会社 Discharge type surge absorbing element
JP2001284011A (en) * 2000-03-31 2001-10-12 Tohoku Erebamu Kk Surge absorbing element
JP2005276666A (en) * 2004-03-25 2005-10-06 Mitsubishi Materials Corp Surge absorber
JP4479470B2 (en) * 2004-11-05 2010-06-09 三菱マテリアル株式会社 surge absorber
JP4844673B2 (en) * 2007-06-22 2011-12-28 株式会社村田製作所 Method for manufacturing ESD protection element
JP2009238377A (en) * 2008-03-25 2009-10-15 Hitoshi Kijima Discharge device
WO2010061519A1 (en) * 2008-11-26 2010-06-03 株式会社 村田製作所 Esd protection device and method for manufacturing same
WO2010067503A1 (en) * 2008-12-10 2010-06-17 株式会社 村田製作所 Esd protection device

Also Published As

Publication number Publication date
JP2011086523A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP2010205687A (en) Lightning arrester
JP2010532069A (en) Devices and modules for protection against lightning strikes and overvoltages
JP2008226683A (en) Charged particle beam device
US11025037B2 (en) Arrester for protection against overvoltages
JP5437769B2 (en) Surge absorber
JP2019527932A (en) Overvoltage protection component having two varistors and arresters in a single element and use thereof
JP2009238563A (en) Overvoltage protection component, electric circuit using the same and overvoltage protection method
RU2302053C1 (en) Controllable spark-gap
US9614370B2 (en) Surge arrester
WO2014168589A1 (en) Flat gas discharge tube
TWI440271B (en) Surge absorber
JP7268145B2 (en) Arrangement for igniting the spark gap
JP2012191045A (en) High voltage power capacitor element and high voltage power capacitor using the element
JP5946534B2 (en) Laminated gas filled surge arrester
JP2008218712A (en) Arrester
JP6434643B2 (en) Lightning arrestor
JP5365543B2 (en) surge absorber
JP6646873B2 (en) Surge protection element
JP6658433B2 (en) Surge protection element
JP3102776U (en) Surge absorbing element
JP6668720B2 (en) Surge protection element
CN206194686U (en) Low electric capacity does not have afterflow gas discharge tube
US10923885B2 (en) Surge protection component and method for producing a surge protection component
JP2018156800A (en) Surge protective element
JP2024070997A (en) Surge protection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121011

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131212

R150 Certificate of patent or registration of utility model

Ref document number: 5437769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250