JP5437507B2 - Manufacturing method of low thermal expansion linear body - Google Patents

Manufacturing method of low thermal expansion linear body Download PDF

Info

Publication number
JP5437507B2
JP5437507B2 JP2013007396A JP2013007396A JP5437507B2 JP 5437507 B2 JP5437507 B2 JP 5437507B2 JP 2013007396 A JP2013007396 A JP 2013007396A JP 2013007396 A JP2013007396 A JP 2013007396A JP 5437507 B2 JP5437507 B2 JP 5437507B2
Authority
JP
Japan
Prior art keywords
thermal expansion
low thermal
linear body
swaging
cylindrical conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013007396A
Other languages
Japanese (ja)
Other versions
JP2013101957A (en
Inventor
弘貴 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2013007396A priority Critical patent/JP5437507B2/en
Publication of JP2013101957A publication Critical patent/JP2013101957A/en
Application granted granted Critical
Publication of JP5437507B2 publication Critical patent/JP5437507B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Extraction Processes (AREA)

Description

本発明は、低熱膨張線状体の製作方法に関するものである。   The present invention relates to a method for producing a low thermal expansion linear body.

トロリ線、吊架線と言った線状材料では温度変化に伴う熱伸縮が大きく、敷設や保守管理において問題となっている。
そこで、熱伸縮に伴う架線支持部構造への影響を低減し、設備の簡素化やメンテナンスフリー化といったニーズに応えるために、線膨張係数の小さい材料の適用による低熱膨張線状材料の研究開発を進めている(下記特許文献1〜4参照)。
In linear materials such as trolley wires and suspension wires, thermal expansion and contraction due to temperature changes is large, which is a problem in laying and maintenance management.
Therefore, in order to reduce the influence on the structure of the overhead wire support due to thermal expansion and contraction, and to meet the needs such as simplification of equipment and maintenance-free operation, research and development of low thermal expansion linear materials by applying materials with low linear expansion coefficient (See Patent Documents 1 to 4 below).

これまでに、銅と低熱膨張線状材料として有望な有機系新材料で負の線膨張係数をもつPBO繊維「ザイロン(商品名)」との複合材料として、銅板とザイロンプリプレグシートを接着により積層した積層複合試料や、短尺の溝付き銅線にザイロンを挿入した構造や、銅パイプ内にザイロンを挿入した構造をした接着による短尺のザイロン充填銅線を製作し、その線膨張係数を測定して線膨張係数の制御の可能性を確認してきた。   Up to now, copper and Zylon prepreg sheets are laminated by bonding as a composite material of copper and PBO fiber "Zylon (trade name)", which is a promising new organic material as a low thermal expansion linear material and has a negative linear expansion coefficient We manufactured a short laminated zilon-filled copper wire with a laminated composite sample, a structure in which a xylon was inserted into a short grooved copper wire, or a structure in which a xylon was inserted into a copper pipe, and measured its linear expansion coefficient. The possibility of controlling the linear expansion coefficient has been confirmed.

特開2003−281942号公報JP 2003-281942 A 特開2006−085915号公報JP 2006-085915 A 特開2006−164692号公報JP 2006-164692 A 特開2006−172838号公報JP 2006-172838 A

しかしながら、これまでのエポキシ系接着剤を用いた接着による複合方法では、耐熱性や接着後の曲げなどの変形が難しいといった実用上の問題があった。
また、従来は導電性材料に低熱膨張材料を処理せずにそのまま挿入し、機械加工を行い複合することが提案されていた。この方法でも、導電性材料と低熱膨張材料は複合することができ、送電線やき電線などの電線に用いる導電性を有する低熱膨張線材として問題なく使用できる。
However, conventional composite methods using an epoxy adhesive have practical problems such as heat resistance and difficulty in deformation such as bending after bonding.
Conventionally, it has been proposed to insert a low thermal expansion material into a conductive material as it is without being processed, and to perform machining to make a composite. Even in this method, the conductive material and the low thermal expansion material can be combined, and can be used without any problem as a conductive low thermal expansion wire used for electric wires such as power transmission lines and feeders.

しかし、機械加工だけで複合した低熱膨張線状体をトロリ線として用いた場合、使用により表面が摩耗してしまい、内部に挿入している低熱膨張材料が露出してばらけるなどの問題が発生する。
本発明は、上記状況に鑑みて、円筒形状導電体内に、めっき処理を施し表面に導電性材料の層が形成された低熱膨張材料を配置し、スエージング加工機のダイスの径を小さくしながら繰り返しスエージング加工を行い、接着剤を用いることなく、導電体材料と低熱膨張材料とのそれぞれの特性を保持しつつ信頼性の高い複合構造化を図ることができる低熱膨張線状体の製作方法を提供することを目的とする。
However, if a low thermal expansion linear body combined only by machining is used as a trolley wire, the surface will wear due to use, causing problems such as exposure and dispersion of the low thermal expansion material inserted inside. To do.
In view of the above situation, the present invention arranges a low thermal expansion material in which a conductive material layer is formed on a surface of a cylindrical conductor, while reducing the diameter of a swaging machine die. A method of manufacturing a low thermal expansion linear body that can be repeatedly swaging processed and can achieve a highly reliable composite structure while maintaining the respective characteristics of the conductor material and the low thermal expansion material without using an adhesive. The purpose is to provide.

本発明は、上記目的を達成するために、
〕低熱膨張線状体の製作方法において、円筒形状導電体内に、めっき処理を施し表面に導電性材料の層が形成された低熱膨張材料を配置し、スエージング加工機のダイスの径を小さくしながら繰り返しスエージング加工を行い、前記円筒形状導電体を絞り、該円筒形状導電体の外径を徐々に縮小させ、前記円筒形状導電体と前記低熱膨張材料との接触面を加工し、前記円筒形状導電体と前記低熱膨張材料およびメッキされた低熱膨張材料同士を密着させて複合し、低熱膨張線状体を製作することを特徴とする。
In order to achieve the above object, the present invention provides
[ 1 ] In the manufacturing method of a low thermal expansion linear body, a low thermal expansion material in which a plating process is performed and a conductive material layer is formed on the surface is disposed in a cylindrical conductor, and the diameter of the die of the swaging machine is set. Repeated swaging while reducing, squeezing the cylindrical conductor, gradually reducing the outer diameter of the cylindrical conductor, processing the contact surface between the cylindrical conductor and the low thermal expansion material, The cylindrical conductor, the low thermal expansion material, and the plated low thermal expansion material are in close contact with each other to form a low thermal expansion linear body.

〕上記〔〕記載の低熱膨張線状体の製作方法において、前記スエージング加工は、外側に配置された前記円筒形状導電体の表面にウロコ状の圧痕が生じる程度まで十分に行うことを特徴とする。
〕上記〔〕又は〔〕記載の低熱膨張線状体の製作方法において、前記低熱膨張材料に撚りを加えることを特徴とする。
[ 2 ] In the method for manufacturing a low thermal expansion linear body according to [ 1 ], the swaging process should be sufficiently performed to the extent that a scale-shaped indentation is generated on the surface of the cylindrical conductor disposed outside. It is characterized by.
[ 3 ] In the method for producing a low thermal expansion linear body according to [ 1 ] or [ 2 ], the low thermal expansion material is twisted.

〕上記〔〕記載の低熱膨張線状体の製作方法において、前記低熱膨張材料の撚り方が、組紐であることを特徴とする。
〕上記〔〕又は〔〕記載の低熱膨張線状体の製作方法において、前記低熱膨張材料には前記めっき処理を施す前に撚りが加えられていることを特徴とする。
〕上記〔〕又は〔〕記載の低熱膨張線状体の製作方法において、前記円筒形状導電体は銅であることを特徴とする。
[ 4 ] The method for producing a low thermal expansion linear body according to [ 3 ], wherein the low thermal expansion material is twisted in a braided manner.
[ 5 ] The method for producing a low thermal expansion linear body according to [ 1 ] or [ 2 ], wherein the low thermal expansion material is twisted before the plating treatment.
[ 6 ] In the method for producing a low thermal expansion linear body according to [ 1 ] or [ 2 ], the cylindrical conductor is copper.

〕上記〔〕記載の低熱膨張線状体の製作方法において、前記表面に形成された導電材料の層が銅であることを特徴とする。
〕上記〔〕又は〔〕記載の低熱膨張線状体の製作方法において、前記低熱膨張材料はPBO繊維であることを特徴とする。
[ 7 ] The method for producing a low thermal expansion linear body according to [ 1 ], wherein the conductive material layer formed on the surface is copper.
[ 8 ] In the method for producing a low thermal expansion linear body according to [ 1 ] or [ 2 ], the low thermal expansion material is a PBO fiber.

本発明の低熱膨張線状体の製作方法によれば、接着剤を用いることなく、導電体材料と低熱膨張材料とのそれぞれの特性を保持しつつ信頼性の高い円筒形状導電体と低熱膨張材料との複合構造化を図ることができる。
また、導電性材料に低熱膨張材料を処理せずにそのまま挿入してスエージング加工を行っても、導電性材料と低熱膨張材料を複合することができ、送電線やき電線などの電線に用いる導電性を有する低熱膨張線材として問題なく使用できる。
According to the method for manufacturing a low thermal expansion linear body of the present invention, a cylindrical conductor and a low thermal expansion material having high reliability while maintaining the characteristics of the electrical conductor material and the low thermal expansion material without using an adhesive. And a composite structure can be achieved.
In addition, even if a low thermal expansion material is inserted into the conductive material without being treated and swaging is performed, the conductive material and the low thermal expansion material can be combined, and the conductive material used for electric wires such as transmission lines and feeders can be used. It can be used without any problem as a low thermal expansion wire having a property.

さらに、低熱膨張材料にめっきを施した上でスエージング加工を行うようにしたので、導電性材料と低熱膨張材料の複合力及び密着性が向上し、機械加工だけで複合した低熱膨張線状体をトロリ線へ用いた時のように、使用により表面が摩耗してしまい、内部に挿入している低熱膨張材料が露出してばらけるなどの問題を防止することができる。   In addition, since the swaging process is performed after plating the low thermal expansion material, the composite force and adhesion of the conductive material and the low thermal expansion material are improved, and the low thermal expansion linear body combined only by machining. As in the case of using the trolley wire, the surface is worn by use, and the problem that the low thermal expansion material inserted therein is exposed and scattered can be prevented.

本発明の参考例を示す低熱膨張線状体の斜視図である。It is a perspective view of the low thermal expansion linear body which shows the reference example of this invention. 本発明の参考例を示す低熱膨張線状体の断面図である。It is sectional drawing of the low thermal expansion linear body which shows the reference example of this invention. 本発明で用いるスエージング加工機を示す図面代用の写真である。It is a drawing substitute photograph which shows the swaging processing machine used by this invention. 本発明にかかるスエージング加工状況を示す工程断面図である。It is process sectional drawing which shows the swaging process condition concerning this invention. 本発明の参考例を示すスエージング加工による低熱膨張線状体の製作工程を示す図である。It is a figure which shows the manufacturing process of the low thermal expansion linear body by the swaging process which shows the reference example of this invention. 本発明にかかるスエージング加工回数と円筒形状導電体の外径の関係を示す図である。It is a figure which shows the relationship between the number of swaging processes concerning this invention, and the outer diameter of a cylindrical conductor. 本発明にかかるスエージング加工の最終加工工程であることを判断するためのウロコ状の圧痕を示す図である。It is a figure which shows the scale-like impression for judging that it is the last process process of the swaging process concerning this invention. 本発明にかかる試料を電気温風式オーブンに入れ、設定温度を−20から80℃までの間で10℃ずつ変化させた場合の線膨張係数の測定結果を示す図である。It is a figure which shows the measurement result of a linear expansion coefficient at the time of putting the sample concerning this invention into an electric hot air type oven, and changing preset temperature by 10 degreeC between -20 to 80 degreeC. 本発明の実施例を示す低熱膨張線状体の模式図である。It is a schematic diagram of a low thermal expansion linear body showing the actual施例of the present invention. 本発明の実施例を示す円筒形状導電体内に配置する低熱膨張材料へのめっき処理の工程図である。It is a process diagram of a plating process to a low thermal expansion material arranged in a cylindrical shape conductive body showing the actual施例of the present invention. 従来の銅めっきしないPBO繊維を有する低熱膨張線状体の破断状態を示す図面代用の写真である。It is the photograph instead of drawing which shows the fracture state of the low thermal expansion linear body which has the PBO fiber which does not have copper plating conventionally. 本発明の実施例を示す銅めっきしたPBO繊維を有する低熱膨張線状体の破断状態を示す図面代用の写真である。It is a photograph alternative to a drawing showing a broken state of low thermal expansion linear body having a PBO fibers copper plating shows a real施例of the present invention.

本発明の低熱膨張線状体の製作方法は、円筒形状導電体内に、めっき処理を施し表面に導電性材料の層が形成された低熱膨張材料を配置し、スエージング加工機のダイスの径を小さくしながら繰り返しスエージング加工を行い、前記円筒形状導電体を絞り、該円筒形状導電体の外径を徐々に縮小させ、前記円筒形状導電体と前記低熱膨張材料との接触面を加工し、前記円筒形状導電体と前記低熱膨張材料およびメッキされた低熱膨張材料同士を密着させて複合し、低熱膨張線状体を製作する。   The method for producing a low thermal expansion linear body of the present invention includes disposing a low thermal expansion material in which a plating process is performed and a layer of a conductive material is formed on a surface in a cylindrical conductor, and the diameter of the die of the swaging machine is reduced. Repeated swaging while reducing, squeezing the cylindrical conductor, gradually reducing the outer diameter of the cylindrical conductor, processing the contact surface between the cylindrical conductor and the low thermal expansion material, The cylindrical conductor, the low thermal expansion material, and the plated low thermal expansion material are brought into close contact with each other to produce a low thermal expansion linear body.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明の参考例を示す低熱膨張線状体の斜視図、図2は本発明の参考例を示す低熱膨張線状体の断面図、図3は本発明で用いるスエージング加工機を示す図面代用の写真である。なお、図1及び図2ではスエージング加工が完了した低熱膨張線状体を示している。
Hereinafter, embodiments of the present invention will be described in detail.
Figure 1 is a perspective view of a low thermal expansion linear body showing a reference example of the present invention, FIG. 2 is a sectional view of the low thermal expansion linear body showing a reference example of the present invention, the swaging machine 3 for use in the present invention It is the photograph substituted for drawing shown. 1 and 2 show a low thermal expansion linear body that has been swaged.

これらの図において、1はスエージング加工後の円筒形状導電体(銅パイプ)、2はスエージング加工後の円筒形状導電体1内に複合される低熱膨張材料(PBO繊維、例えばザイロン)、3はスエージング加工により円筒形状導電体1に低熱膨張材料2が加圧されて複合された低熱膨張線状体である。
スエージング加工は、スエージング加工機5に装着されるダイス(金型)6を高速回転させ連続的に絞り加工を行う加工法であり、丸棒、パイプ絞りをはじめ、ワイヤーカシメ、砲弾形状など、多くの分野で使用されている。スエージング加工の特徴は、回転式鍛造のため真円精度を高く加工できること、熱間、冷間の加工や、ソリッドおよびパイプ絞り加工が可能であること、加圧力が大きいこと、また、ワイヤー材の連続加工が可能であることなどである。特に、ロール、線引きなどの機械加工では、有機材料やカーボンなどの低熱膨張材料は高強度で弾性が小さく延び難いため、それらの低熱膨張材料が破断してしまい、特性を保持しつつ複合することが難しかったが、本発明におけるスエージング加工の採用により、円筒形状導電体内への低熱膨張材料の円滑な複合が可能となった。
In these drawings, 1 is a cylindrical conductor (copper pipe) after swaging, 2 is a low thermal expansion material (PBO fiber such as xylon) composited in the cylindrical conductor 1 after swaging, 3 Is a low thermal expansion linear body in which the low thermal expansion material 2 is pressed and combined with the cylindrical conductor 1 by swaging.
Swaging processing is a processing method in which a die (die) 6 mounted on the swaging processing machine 5 is rotated at a high speed to perform continuous drawing processing, such as round bar, pipe drawing, wire caulking, shell shape, etc. Is used in many fields. Swaging is characterized by high roundness accuracy due to rotary forging, hot and cold processing, solid and pipe drawing, high pressure, and wire material It is possible to perform continuous machining. In particular, in low-expansion materials such as rolls and wire drawing, low thermal expansion materials such as organic materials and carbon are difficult to stretch because of their high strength and elasticity, so these low thermal expansion materials break and are combined while maintaining their properties. However, by adopting the swaging process in the present invention, it was possible to smoothly combine the low thermal expansion material into the cylindrical conductor.

そこで、本発明では、スエージング加工の大きな加圧力、連続加工などの特徴を生かして円筒形状導電体としての銅パイプ中に、低熱膨張材料としてのザイロンを挿入してスエージング加工することにより、銅とザイロンを加圧し複合するようにした。
図4は本発明にかかるスエージング加工状況を示す工程断面図である。
この図において、1′はスエージング加工前の円筒形状導電体(銅パイプ)、2′はスエージング加工前の低熱膨張材料(PBO繊維)である。
Therefore, in the present invention, swaging is performed by inserting a xylon as a low thermal expansion material into a copper pipe as a cylindrical conductor by taking advantage of features such as a large applied pressure of swaging and continuous processing. Copper and Zylon were pressed and combined.
FIG. 4 is a process sectional view showing a swaging process according to the present invention.
In this figure, 1 'is a cylindrical conductor (copper pipe) before swaging, and 2' is a low thermal expansion material (PBO fiber) before swaging.

まず、図4(a)に示すように、円筒形状導電体1′に低熱膨張材料(PBO繊維)2′を充填する。次に、図4(b)に示すように、低熱膨張材料が充填された円筒形状導電体をスエージング加工することにより、図4(c)に示すような円筒形状導電体1へ低熱膨張材料2が複合された低熱膨張線状体3を製作することができる。
図5は本発明の参考例を示すスエージング加工による低熱膨張線状体の製作工程を示す図、図6は本発明にかかるスエージング加工回数と円筒形状導電体の外径の関係を示す図である。
First, as shown in FIG. 4A, a cylindrical conductor 1 ′ is filled with a low thermal expansion material (PBO fiber) 2 ′. Next, as shown in FIG. 4B, the low-temperature expansion material is transformed into the cylindrical-shaped conductor 1 as shown in FIG. 4C by swaging the cylindrical-shaped conductor filled with the low thermal expansion material. A low thermal expansion linear body 3 in which 2 is combined can be manufactured.
FIG. 5 is a diagram showing a manufacturing process of a low thermal expansion linear body by swaging processing showing a reference example of the present invention, and FIG. 6 is a diagram showing a relationship between the number of swaging processing and the outer diameter of the cylindrical conductor according to the present invention. It is.

ここに、低熱膨張線状体3を製作するスエージング加工工程を図5を参照しながら説明する。
まず、図5(a)に示すように、外径10mm、内径7mmの円筒形状導電体(銅パイプ)1′に低熱膨張材料としてのPBO繊維(例えば、ザイロン3270dtex×44束)2′を充填する。そこで、スエージング加工機のダイスの径を小さくしながら繰り返しスエージング加工を行う。すなわち、1回目のスエージング加工後〔図5(b)〕、3回目のスエージング加工後〔図5(c)〕、5回目のスエージング加工後〔図5(d)〕、7回目のスエージング加工後〔図5(e)〕、9回目のスエージング加工後〔図5(f)〕、最終回である11回目のスエージング加工後〔図5(g)〕と加工されて、低熱膨張線状体3が製作される。つまり、スエージング加工を繰り返し行うことにより、円筒形状導電体(銅パイプ)1′の外径が徐々に縮小するとともに、内径も同時に縮小して、PBO繊維2′と密着していく。なお、これは加工の一例で、11回のスエージング加工で複合化できた例であり、スエージング加工の回数は適宜設定することができる。
Here, a swaging process for manufacturing the low thermal expansion linear body 3 will be described with reference to FIG.
First, as shown in FIG. 5 (a), a cylindrical conductor (copper pipe) 1 'having an outer diameter of 10 mm and an inner diameter of 7 mm is filled with PBO fibers (for example, Zyron 3270 dtex × 44 bundle) 2' as a low thermal expansion material. To do. Therefore, swaging is repeatedly performed while reducing the diameter of the die of the swaging machine. That is, after the first swaging process [FIG. 5 (b)], after the third swaging process [FIG. 5 (c)], after the fifth swaging process [FIG. 5 (d)], the seventh time After swaging processing [FIG. 5 (e)], after the ninth swaging processing [FIG. 5 (f)], after the eleventh swaging processing (FIG. 5 (g)), the final processing, A low thermal expansion linear body 3 is manufactured. That is, by repeatedly performing the swaging process, the outer diameter of the cylindrical conductor (copper pipe) 1 ′ is gradually reduced, and the inner diameter is also reduced at the same time so as to be in close contact with the PBO fiber 2 ′. This is an example of processing, and is an example in which the number of swaging processes can be set as appropriate.

このように、スエージング加工機のダイスの径を小さくしながら繰り返しスエージング加工を行って、円筒形状導電体1′を絞り外径を徐々に縮小させることで、円筒形状導電体1′と低熱膨張材料2′との接触面を加工し、円筒形状導電体1′と低熱膨張材料2′とを密着させて複合し、低熱膨張線状体3を製作する。
上記のように加工することで、最初外径10mm、内径7mmの円筒形状導電体(銅パイプ)1′に低熱膨張材料(ザイロン3270dtex×44束)2′が充填されていたものが、図6に示されるように、円筒形状導電体1′の外径は次第に絞られて細くなっていく。同時に、円筒形状導電体1′の内径も絞られ、その肉厚も増加している。そして、最終回である11回目のスエージング加工後には低熱膨張線状体3(円筒形状導電体1)の外径は7.67mmとなった。一方、加工前に端部より出ていた充填したザイロンは、円筒形状導電体1が軸方向にも多少延びるため、加工後見えなくなった。
In this way, swaging is repeatedly performed while reducing the diameter of the die of the swaging machine, and the cylindrical conductor 1 ′ is gradually reduced in the outer diameter of the cylindrical conductor 1, so that the cylindrical conductor 1 ′ and the low heat are reduced. The contact surface with the expansion material 2 ′ is processed, and the cylindrical conductor 1 ′ and the low thermal expansion material 2 ′ are brought into close contact with each other to form a low thermal expansion linear body 3.
By processing as described above, a cylindrical conductor (copper pipe) 1 ′ having an outer diameter of 10 mm and an inner diameter of 7 mm was initially filled with a low thermal expansion material (Zyron 3270 dtex × 44 bundle) 2 ′. As shown in FIG. 2, the outer diameter of the cylindrical conductor 1 'is gradually narrowed and narrowed. At the same time, the inner diameter of the cylindrical conductor 1 'is reduced and its thickness is increased. And after the 11th swaging process which is the last time, the outer diameter of the low thermal expansion linear body 3 (cylindrical conductor 1) became 7.67 mm. On the other hand, the filled xylon that protruded from the end portion before processing became invisible after processing because the cylindrical conductor 1 slightly extended in the axial direction.

最終的に低熱膨張線状体3が十分複合されたかは、図7に示すようなウロコ状の圧痕が低熱膨張線状体3の表面に出たかどうかでほぼ判断することができる。なお、再度同じ径のダイスに通すスキンパスにより、そのウロコ状の圧痕は無くすことができる。
更に、表1のように、加工前の円筒形状導電体(銅パイプ)の外径・内径及び低熱膨張材料(ザイロン)の挿入本数を変えて複数の試料を製作した。銅パイプ内にザイロンを充填する際に、銅パイプの一端では、ザイロンを挿入して接着した銅製のキャップをネジ止めすることでザイロンを固定し、他端はフリーの状態にした。スエージング加工により、銅パイプの肉厚は増加し、長さは伸びる。それぞれの試料A〜Eは、外径の縮小が止まるまで十分にスエージング加工を行い、最終的に表1のような外径まで絞られて加圧され、ザイロンと密着して複合された。なお、試料E(参考例)のみ、同条件の試料Dよりスエージング加工の回数を減らして絞り量を抑え、加圧力を小さくした。
Whether or not the low thermal expansion linear body 3 is finally sufficiently compounded can be almost determined by whether or not the scale-like indentation as shown in FIG. 7 appears on the surface of the low thermal expansion linear body 3. In addition, the scale-like impression can be eliminated by a skin pass that passes through a die having the same diameter again.
Further, as shown in Table 1, a plurality of samples were manufactured by changing the outer diameter and inner diameter of the cylindrical conductor (copper pipe) before processing and the number of inserted low thermal expansion materials (Zylon). When filling the copper pipe with xylon, the xylon was fixed at one end of the copper pipe by screwing a copper cap inserted and bonded, and the other end was free. Swaging increases the thickness and length of copper pipes. Each of the samples A to E was sufficiently swaged until the reduction of the outer diameter stopped, and finally was compressed to the outer diameter as shown in Table 1 and pressurized, and was in close contact with Zylon and combined. In addition, only the sample E (reference example) reduced the number of swaging processes compared with the sample D of the same conditions, restrained the amount of drawing, and made the applied pressure small.

なお、上記した低熱膨張材料に撚りを加えるようにしてもよい。また、低熱膨張材料の撚り方を、組紐とするようにしてもよい。
次に、作製された低熱膨張線状体の線膨張定数の測定方法について説明する。
In addition, you may make it add a twist to the above-mentioned low thermal expansion material. Further, the method of twisting the low thermal expansion material may be a braid.
Next, a method for measuring the linear expansion constant of the produced low thermal expansion linear body will be described.

試料に温度補償型の歪みゲージを貼り付け、温度変化を与えた時の歪み量を測定し、使用した歪みゲージが温度変化で生じる見かけ歪みによる影響を除去して線膨張係数を算出した。なお、リード線の温度勾配や温度変化の影響を除去するために1アクティブゲージ法3線式で、データロガーを用いて測定した。
試料を電気温風式オーブンに入れ、設定温度を−20から80℃までの間で10℃ずつ変化させた場合の線膨張係数の測定結果を図8に示す。
A temperature-compensated strain gauge was attached to the sample, the amount of strain when the temperature change was applied was measured, and the linear expansion coefficient was calculated by removing the effect of the apparent strain caused by the temperature change of the used strain gauge. In addition, in order to remove the influence of the temperature gradient of the lead wire and the temperature change, it was measured using a data logger with a 1-active gauge method 3-wire system.
FIG. 8 shows the measurement result of the linear expansion coefficient when the sample was put in an electric hot air oven and the set temperature was changed by 10 ° C. between −20 and 80 ° C.

測定結果から、各試料の25℃付近の線膨張係数の平均値を求めると表1に示すようになる。十分にスエージング加工して銅パイプとザイロンが複合された試料B,C,Dの線膨張係数は、銅パイプのみの試料Aに比べて、小さく抑えられている。一方、試料Dと同じ条件で、途中でスエージング加工を止めた試料Eは、銅パイプと同程度の線膨張係数を示しており、銅パイプとザイロンが複合できず、外側に配置される銅パイプの値のみが寄与している。また、銅パイプとザイロンが複合された試料において線膨張係数を比較すると、ザイロンの割合が大きい試料Dが最も小さく、ザイロンの割合が大きいほど線膨張係数を抑制できていることが分かる。   From the measurement results, the average value of the linear expansion coefficient around 25 ° C. of each sample is obtained as shown in Table 1. The linear expansion coefficients of samples B, C, and D, which are sufficiently swaged and combined with a copper pipe and xylon, are suppressed to be smaller than those of sample A with only a copper pipe. On the other hand, sample E, which has been swaged halfway under the same conditions as sample D, shows a linear expansion coefficient comparable to that of copper pipes, and copper pipes and xylon cannot be combined, and copper disposed outside Only the pipe value contributes. Further, when the linear expansion coefficient is compared in the sample in which the copper pipe and the xylon are combined, it can be seen that the sample D having a large ratio of xylon is the smallest, and the linear expansion coefficient can be suppressed as the ratio of zylon is large.

このように、銅パイプとザイロンの複合方法として、接着剤などを用いず、銅パイプ中にザイロンを挿入してスエージング加工する機械的な複合方法を用いて試料を製作し、線膨張係数を測定した。その結果、スエージング加工を十分に行うことで銅パイプとザイロンを複合した線膨張係数が小さい低熱膨張線状体を製作することができる。さらに、ザイロンの割合により線膨張係数が制御できる可能性があることを確認した。   In this way, as a composite method of copper pipe and xylon, a sample is manufactured using a mechanical composite method in which zylon is inserted into a copper pipe and swaging is performed without using an adhesive, and the linear expansion coefficient is determined. It was measured. As a result, it is possible to manufacture a low thermal expansion linear body having a small coefficient of linear expansion, which is a composite of a copper pipe and xylon, by sufficiently performing swaging. Furthermore, it was confirmed that the linear expansion coefficient could be controlled by the ratio of zylon.

なお、本発明の実施例で用いた低熱膨張材料としてのザイロンは、室温付近での線膨張係数が−6×10-6/℃程度の負の膨張を示し、高強力高弾性率で耐衝撃性が高く、比重が小さいなどの特性も持つ有機系材料である。また、負の線膨張係数を持つ線状体の材料としては、ザイロンに代えて、超高分子量ポリエチレン繊維「ダイニーマ」やカーボン繊維などを用いてもよい。 The xylon as a low thermal expansion material used in the examples of the present invention exhibits a negative expansion with a linear expansion coefficient of about −6 × 10 −6 / ° C. near room temperature, and has a high strength and high elastic modulus and impact resistance. It is an organic material with high properties and low specific gravity. In addition, as a material of the linear body having a negative linear expansion coefficient, ultra high molecular weight polyethylene fiber “Dyneema”, carbon fiber, or the like may be used instead of xylon.

次に、第2実施例について説明する。
図9は本発明の実施例を示す低熱膨張線状体の模式図、図10はその円筒形状導電体内に配置する低熱膨張材料へのめっき処理の工程図である。
図9において、11は低熱膨張材料(例えば、PBO繊維からなる線状体)、12は低熱膨張材料11に施されるめっき層(例えば、銅めっき層)、13はめっき層12付きの単線、14は単線13が円筒形状導電体(例えば、銅)に充填されてスエージング加工された低熱膨張線状体である。
Next, a second embodiment will be described.
Figure 9 is a schematic diagram, FIG. 10 is a process diagram of a plating process to a low thermal expansion material arranged on the cylindrical conductive body of low thermal expansion linear body showing the actual施例of the present invention.
In FIG. 9, 11 is a low thermal expansion material (for example, a linear body made of PBO fibers), 12 is a plating layer (for example, a copper plating layer) applied to the low thermal expansion material 11, 13 is a single wire with the plating layer 12, Reference numeral 14 denotes a low thermal expansion linear body in which a single wire 13 is filled in a cylindrical conductor (for example, copper) and swaged.

以下、低熱膨張材料11に施されるめっき工程を図10を参照しながら説明する。
(1)まず、図10(a)に示すように、低熱膨張材料11(例えば、ザイロンまたはダイニーマなどのPBO繊維)を芯材として用意する。
(2)次いで、図10(b)に示すように、その低熱膨張材料11をめっき槽21に浸して、導電性材料(例えば、銅)をめっきしてめっき層12を形成する。めっき槽21では電着させようとする金属板22(ここでは銅の板状体)と低熱膨張材料11を電解液23中に浸す。次に、この低熱膨張材料11を陰極とし、金属板22を陽極として、直流電流を流すと、図10(c)に示すように、低熱膨張材料11上に導電性材料のめっき層12(ここでは銅)を形成することができる。
Hereinafter, the plating process performed on the low thermal expansion material 11 will be described with reference to FIG.
(1) First, as shown in FIG. 10A, a low thermal expansion material 11 (for example, PBO fiber such as zylon or dyneema) is prepared as a core material.
(2) Next, as shown in FIG. 10B, the low thermal expansion material 11 is immersed in a plating tank 21, and a conductive material (for example, copper) is plated to form a plating layer 12. In the plating tank 21, a metal plate 22 (here, a copper plate-like body) to be electrodeposited and the low thermal expansion material 11 are immersed in the electrolytic solution 23. Next, when a direct current is applied using the low thermal expansion material 11 as a cathode and the metal plate 22 as an anode, as shown in FIG. 10C, a conductive material plating layer 12 (here) is formed on the low thermal expansion material 11. Then, copper) can be formed.

このようにしてめっき処理を施した低熱膨張材料を円筒形状導電体に充填し、以降は参考例と同様にスエージング加工機のダイスの径を小さくしながら繰り返しスエージング加工を行い、円筒形状導電体を絞りその外径を徐々に減少させることで、円筒形状導電体と低熱膨張材料との接触面を加工し、前記円筒形状導電体と前記低熱膨張材料とを密着させて複合し、図9に示すような低熱膨張線状体14を製作する。このとき、低熱膨張材料(繊維)11の表面にあるめっきされた導電性材料(めっき層12)も絞られて、繊維同士の接触面も加工されてお互いに一体となり複合することができるので、導電体繊維の複合効果も向上する。 The low thermal expansion material plated in this way is filled into a cylindrical conductor, and then the swaging process is repeated while reducing the diameter of the die of the swaging machine in the same manner as in the reference example. The body is squeezed and the outer diameter thereof is gradually reduced to process the contact surface between the cylindrical conductor and the low thermal expansion material, and the cylindrical conductor and the low thermal expansion material are brought into close contact with each other to form a composite. A low thermal expansion linear body 14 as shown in FIG. At this time, since the plated conductive material (plating layer 12) on the surface of the low thermal expansion material (fiber) 11 is also squeezed, the contact surface between the fibers can be processed and integrated with each other, The composite effect of conductor fibers is also improved.

図11は従来の銅めっきしないPBO繊維を有する低熱膨張線状体の破断状態を示す図面代用の写真、図12は本発明の実施例を示す銅めっきしたPBO繊維を有する低熱膨張線状体の破断状態を示す図面代用の写真である。
図11に示すように、従来は、低熱膨張材料としてのPBO繊維(ザイロン)101にめっきなどの前処理を行わない状態で円筒形状導電体としての銅パイプ102に挿入し機械加工を行っていた。
Figure 11 is a low thermal expansion linears drawing-substitute photograph showing a fracture state of having a PBO fiber without conventional copper plating, 12 low thermal expansion linear body having a PBO fibers copper plating shows a real施例of the present invention FIG.
As shown in FIG. 11, conventionally, PBO fibers (Zylon) 101 as a low thermal expansion material were inserted into a copper pipe 102 as a cylindrical conductor without being subjected to pretreatment such as plating, and machined. .

これに対して、本発明は、図12に示すように、低熱膨張材料としてのPBO繊維(ザイロン)31にめっきによる前処理を行い、めっき層(銅層)32を形成してから、スエージング加工を行うようにした。このように構成することにより、従来は、PBO繊維(ザイロン)101部分に銅が入り込まず、PBO繊維(ザイロン)101束の周囲のみ銅パイプ102と接触した状態で、複合効果が十分とは言えなかったが、本発明により、PBO繊維(ザイロン)1本ずつにめっき層(銅層)32が構成でき、PBO繊維間に銅が入り、繊維同士の密着性も向上して複合効果が向上する。また、内部の繊維が露出してもばらけることはない。   In contrast, in the present invention, as shown in FIG. 12, the PBO fiber (Zylon) 31 as a low thermal expansion material is pretreated by plating to form a plating layer (copper layer) 32, and then swaging. Processing was performed. With this configuration, conventionally, copper does not enter the PBO fiber (Zylon) 101 portion, and the combined effect is sufficient when only the periphery of the bundle of PBO fibers (Zylon) 101 is in contact with the copper pipe 102. However, according to the present invention, a plating layer (copper layer) 32 can be formed for each PBO fiber (Zylon), copper enters between the PBO fibers, and the adhesion between the fibers is improved, thereby improving the composite effect. . Moreover, even if an internal fiber is exposed, it does not come apart.

また、以下の点は、参考例と同様に実施することができる。
(1)スエージング加工は、外側に配置された円筒形状導電体の表面にウロコ状の圧痕が生じる程度まで十分に行う。
(2)低熱膨張材料に撚りを加えるようにしてもよい。また、撚りを加え後の低熱膨張材料上にめっき処理を行うようにしてもよい。つまり、撚りを加えるのは、めっき前でも後でも可能である。
Moreover, the following points can be implemented similarly to the reference example.
(1) The swaging process is sufficiently performed to the extent that a scale-like impression is generated on the surface of the cylindrical conductor disposed outside.
(2) Twist may be added to the low thermal expansion material. Moreover, you may make it perform a plating process on the low thermal expansion material after adding a twist. That is, the twist can be added before or after plating.

(3)低熱膨張材料の撚り方が、組紐であるようにしてもよい。
(4)円筒形状導電体として銅を用いることができる。
(5)低熱膨張材料としてPBO繊維を用いることができる。
この実施例によれば、めっき層を施すことにより導電性材料と低熱膨張材料の複合を助け密着性を向上させ、弾性の小さい低熱膨張材料の機械加工による破断を防ぐことができる。低熱膨張線状体をトロリ線として利用する場合、摩耗により内部部分の低熱膨張材料が露出する可能性があるが、導電性材料と低熱膨張材料の間、さらにめっき層を施したことにより繊維の間にも導電性材料が存在するため、導電材料と低熱膨張材料の複合力、密着性が向上し、摩耗して低熱膨張材料が露出してもばらけることなく、複合の効果が継続できる。
(3) The method of twisting the low thermal expansion material may be a braid.
(4) Copper can be used as the cylindrical conductor.
(5) PBO fiber can be used as the low thermal expansion material.
According to this embodiment, by providing the plating layer, it is possible to help the composite of the conductive material and the low thermal expansion material, to improve the adhesion, and to prevent the low thermal expansion material having low elasticity from being broken by machining. When a low thermal expansion linear body is used as a trolley wire, there is a possibility that the low thermal expansion material in the inner part may be exposed due to abrasion. However, a further plating layer is provided between the conductive material and the low thermal expansion material, so Since the conductive material exists between them, the composite force and adhesion between the conductive material and the low thermal expansion material are improved, and the composite effect can be continued without being worn even if the low thermal expansion material is exposed due to wear.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の低熱膨張線状体の製作方法は、円筒形状導電体と低熱膨張材料との複合構造化された低熱膨張線状体の製作方法として利用することができる。   The method for producing a low thermal expansion linear body of the present invention can be used as a method for producing a low thermal expansion linear body having a composite structure of a cylindrical conductor and a low thermal expansion material.

1′ スエージング加工前の円筒形状導電体(銅パイプ)
2′ スエージング加工前の低熱膨張材料(PBO繊維:ザイロン)
1 スエージング加工後の円筒形状導電体(銅パイプ)
2 スエージング加工後の低熱膨張材料(PBO繊維:ザイロン)
3,14 スエージング加工後の低熱膨張線状体
5 スエージング加工機
6 ダイス(金型)
11,31 低熱膨張材料(PBO繊維:ザイロンまたはダイニーマ)
12,32 めっき層(銅層)
13 めっき層付きの単線
21 めっき槽
22 金属板
23 電解液
1 'Cylindrical conductor (copper pipe) before swaging
2 'Low thermal expansion material before swaging (PBO fiber: Zylon)
1 Cylindrical conductor (copper pipe) after swaging
2 Low thermal expansion material after swaging (PBO fiber: Zylon)
3,14 Low thermal expansion linear body after swaging processing 5 Swaging processing machine 6 Die (die)
11,31 Low thermal expansion material (PBO fiber: Xylon or Dyneema)
12, 32 Plating layer (copper layer)
13 Solid wire with plating layer 21 Plating tank 22 Metal plate 23 Electrolyte

Claims (8)

円筒形状導電体内に、めっき処理を施し表面に導電性材料の層が形成された低熱膨張材料を配置し、スエージング加工機のダイスの径を小さくしながら繰り返しスエージング加工を行い、前記円筒形状導電体を絞り、該円筒形状導電体の外径を徐々に縮小させ、前記円筒形状導電体と前記低熱膨張材料との接触面を加工し、前記円筒形状導電体と前記低熱膨張材料およびメッキされた低熱膨張材料同士を密着させて複合し、低熱膨張線状体を製作することを特徴とする低熱膨張線状体の製作方法。   In the cylindrical conductor, a low thermal expansion material that is plated and formed with a conductive material layer is placed on the surface, and swaging is repeated while reducing the diameter of the die of the swaging machine. The conductor is squeezed, the outer diameter of the cylindrical conductor is gradually reduced, the contact surface between the cylindrical conductor and the low thermal expansion material is processed, and the cylindrical conductor and the low thermal expansion material are plated. A method for producing a low-thermal-expansion linear body, characterized in that a low-thermal-expansion linear body is produced by closely adhering low-thermal-expansion materials. 請求項記載の低熱膨張線状体の製作方法において、前記スエージング加工は、外側に配置された前記円筒形状導電体の表面にウロコ状の圧痕が生じる程度まで十分に行うことを特徴とする低熱膨張線状体の製作方法。 2. The method of manufacturing a low thermal expansion linear body according to claim 1 , wherein the swaging is sufficiently performed to the extent that a scale-shaped indentation is generated on a surface of the cylindrical conductor disposed outside. Manufacturing method of low thermal expansion linear body. 請求項又は記載の低熱膨張線状体の製作方法において、前記低熱膨張材料に撚りを加えることを特徴とする低熱膨張線状体の製作方法。 3. The method for producing a low thermal expansion linear body according to claim 1 , wherein twisting is applied to the low thermal expansion material. 請求項記載の低熱膨張線状体の製作方法において、前記低熱膨張材料の撚り方が、組紐であることを特徴とする低熱膨張線状体の製作方法。 4. The method for manufacturing a low thermal expansion linear body according to claim 3 , wherein the twisting method of the low thermal expansion material is a braid. 請求項又は記載の低熱膨張線状体の製作方法において、前記低熱膨張材料には前記めっき処理を施す前に撚りが加えられていることを特徴とする低熱膨張線状体の製作方法。 3. The method for producing a low thermal expansion linear body according to claim 1 , wherein the low thermal expansion material is twisted before the plating treatment. 請求項又は記載の低熱膨張線状体の製作方法において、前記円筒形状導電体は銅であることを特徴とする低熱膨張線状体の製作方法。 3. The method for manufacturing a low thermal expansion linear body according to claim 1 , wherein the cylindrical conductor is copper. 請求項記載の低熱膨張線状体の製作方法において、前記表面に形成された導電材料の層が銅であることを特徴とする低熱膨張線状体の製作方法。 2. The method of manufacturing a low thermal expansion linear body according to claim 1 , wherein the conductive material layer formed on the surface is copper. 請求項又は記載の低熱膨張線状体の製作方法において、前記低熱膨張材料はPBO繊維であることを特徴とする低熱膨張線状体の製作方法。 3. The method for producing a low thermal expansion linear body according to claim 1 , wherein the low thermal expansion material is PBO fiber.
JP2013007396A 2007-02-19 2013-01-18 Manufacturing method of low thermal expansion linear body Expired - Fee Related JP5437507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013007396A JP5437507B2 (en) 2007-02-19 2013-01-18 Manufacturing method of low thermal expansion linear body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007037651 2007-02-19
JP2007037651 2007-02-19
JP2013007396A JP5437507B2 (en) 2007-02-19 2013-01-18 Manufacturing method of low thermal expansion linear body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008035725A Division JP5295585B2 (en) 2007-02-19 2008-02-18 Manufacturing method of low thermal expansion linear body

Publications (2)

Publication Number Publication Date
JP2013101957A JP2013101957A (en) 2013-05-23
JP5437507B2 true JP5437507B2 (en) 2014-03-12

Family

ID=39907800

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008035725A Expired - Fee Related JP5295585B2 (en) 2007-02-19 2008-02-18 Manufacturing method of low thermal expansion linear body
JP2013007396A Expired - Fee Related JP5437507B2 (en) 2007-02-19 2013-01-18 Manufacturing method of low thermal expansion linear body

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008035725A Expired - Fee Related JP5295585B2 (en) 2007-02-19 2008-02-18 Manufacturing method of low thermal expansion linear body

Country Status (1)

Country Link
JP (2) JP5295585B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7018532B1 (en) 2021-05-07 2022-02-10 株式会社ソディック Electrostatic precipitator and laminated modeling equipment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5659241B2 (en) * 2010-11-11 2015-01-28 藤森工業株式会社 Manufacturing method of sealing film and sealing film
JP5570022B2 (en) * 2010-12-16 2014-08-13 公益財団法人鉄道総合技術研究所 Compound trolley wire
JP2012129093A (en) * 2010-12-16 2012-07-05 Railway Technical Research Institute Composite trolley wire
JP5559672B2 (en) * 2010-12-16 2014-07-23 公益財団法人鉄道総合技術研究所 Manufacturing method of composite wire
JP2014167925A (en) * 2014-04-22 2014-09-11 Railway Technical Research Institute Method of producing composite electric wire
KR102418503B1 (en) * 2020-11-27 2022-07-07 주식회사 헤리노브 Manufacturing method of a pipe using carbon fiber and pipe manufactured by this

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223061A (en) * 1997-02-04 1998-08-21 Kurabe Ind Co Ltd Heat resistant electric wire
JP2002162532A (en) * 2000-11-27 2002-06-07 Yazaki Corp Method for fixing optical fiber cable and ferrule
JP2004329575A (en) * 2003-05-08 2004-11-25 Kanai Hiroaki Wire for clasping body of medical brush, and medical brush

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7018532B1 (en) 2021-05-07 2022-02-10 株式会社ソディック Electrostatic precipitator and laminated modeling equipment

Also Published As

Publication number Publication date
JP2013101957A (en) 2013-05-23
JP5295585B2 (en) 2013-09-18
JP2008235259A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP5437507B2 (en) Manufacturing method of low thermal expansion linear body
KR102005669B1 (en) Metallic/carbon nanotube composite wire
EP3367390A1 (en) Electrically conductive carbon nanotube wire having a metallic coating and methods of forming same
JP2004504483A (en) Aluminum matrix composite wire, cable and method
EP2814040A1 (en) Composite electrically conductive structures
JP6185419B2 (en) Aluminum plated stainless steel wire
US10633756B2 (en) Plated fiber, carbon fiber, wire harness and plating method
CN102812792A (en) Composite for electromagnetic shielding
JPH0731939B2 (en) High strength, highly flexible conductor
CN108292538A (en) Cable and wire rod with the conducting element formed by improved aluminum-zirconium alloy
JP6324164B2 (en) Composite stranded wire
JP6108951B2 (en) Method for manufacturing aluminum wire
JP2012216526A (en) Metal-coated carbon fiber wire
CN107316693A (en) The insulated electric conductor and wire harness that can highly bend
CN112534075A (en) Aluminum alloy material, and braided shield wire, conductive member, battery member, fastening member, spring member, structural member, and rubber-insulated cable using same
JP3454981B2 (en) Robot electric wire and robot cable using the same
JP2001101929A (en) Flexible high strength and light weight conductor
CN108063003A (en) Aluminium twisted wire and harness
JP7347570B2 (en) Manufacturing method of electric wire with terminal
CN1305078C (en) Non-magnetic stainless steel wire, overhead electric lead method of making steel wire and overhead electric lead
EP1118397A1 (en) A deformed metal composite wire
CN113871059B (en) Preparation process of carbon fiber composite aluminum alloy overhead cable
JP2020027758A (en) Terminal-equipped wire
JP2015080281A (en) Assembled conductor and motor
JP2020161263A (en) Wire harness twist wire

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Ref document number: 5437507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees