JP5434462B2 - 基地局装置 - Google Patents

基地局装置 Download PDF

Info

Publication number
JP5434462B2
JP5434462B2 JP2009238964A JP2009238964A JP5434462B2 JP 5434462 B2 JP5434462 B2 JP 5434462B2 JP 2009238964 A JP2009238964 A JP 2009238964A JP 2009238964 A JP2009238964 A JP 2009238964A JP 5434462 B2 JP5434462 B2 JP 5434462B2
Authority
JP
Japan
Prior art keywords
base station
synchronization
correction
downlink signal
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009238964A
Other languages
English (en)
Other versions
JP2011087151A (ja
Inventor
剛史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009238964A priority Critical patent/JP5434462B2/ja
Priority to US13/498,449 priority patent/US9084193B2/en
Priority to BR112012007750A priority patent/BR112012007750A2/pt
Priority to PCT/JP2010/067457 priority patent/WO2011043341A1/ja
Priority to EP10822011A priority patent/EP2487972A1/en
Priority to CN2010800448412A priority patent/CN102577549A/zh
Publication of JP2011087151A publication Critical patent/JP2011087151A/ja
Application granted granted Critical
Publication of JP5434462B2 publication Critical patent/JP5434462B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、端末装置との間で無線通信を行う基地局装置に関する。
端末装置との間で通信を行う基地局装置は、広範囲なエリアをカバーするために多数設置される。このとき、複数の基地局装置間で、通信フレームのタイミング等の同期をとる基地局間同期が行われることがある。
例えば、特許文献1には、基地局装置が、同期元となる他の基地局装置からの送信信号を用いて基地局間同期を行うことが開示されている。
特開2009−177532号公報
上記特許文献1では、基地局装置と端末装置との間の通信が時分割複信(TDD;Time Division Duplex)で行われる場合について開示されているが、仮に、端末装置との間の通信を周波数分割複信(FDD;Frequency Division Duplex)で行う基地局装置に、上記基地局間同期を行わせる場合、以下のような態様で行うことが考えられる。
すなわち、周波数分割複信方式による下り信号の通信フレームには、図13に示すように、一定周期で、端末装置が基地局装置のスキャニングや基地局装置の識別、基地局装置に対する同期等を行うために用いられる第一同期信号及び第二同期信号が配置されている。これら両同期信号は、既知の信号であるので、同期元となる他の基地局装置との間で基地局間同期をしようとする基地局装置に、当該他の基地局装置が送信する下り信号に含まれる両同期信号を利用させて基地局間同期を行わせることが考えられる。
FDDを採用した基地局装置の下り信号は、図13に示すように、複数のサブフレームを時間軸方向に配列することで構成されており、自己及び他の基地局装置間の送信タイミングについての基地局間同期は、両者のサブフレームの送信タイミングの間の同期誤差を検出し、この同期誤差を解消して両者のサブフレームの送信タイミングを互いに一致させることで実現される。
自己の下り信号を他の基地局装置の下り信号に同期させるためには、自己の下り信号を構成する複数のサブフレームの内、いずれかのサブフレームの送信タイミングを、他の基地局装置の下り信号におけるサブフレームのタイミングに一致するように補正する必要がある。
ここで、自己の下り信号の送信タイミングが他の基地局装置の送信タイミングよりも早い場合には、補正対象のサブフレームの送信タイミングを遅延させることで同期をとることができる。
一方、自己の下り信号の送信タイミングが他の基地局装置の送信タイミングよりも遅延している場合には、その同期誤差を解消するために、補正対象のサブフレームの送信タイミングを早める必要がある。
FDDによる下り信号におけるサブフレームは、上述のように、時間軸方向に配列されているので、補正対象のサブフレームの送信タイミングを早めるように補正しようとすると、当該補正対象のサブフレームの前に配列されているサブフレームとの間で重なりが生じ、シンボル間干渉を生じさせ、端末装置側で復調時の誤り率が高くなる等といった影響が現れるおそれがある。
互いに隣接するサブフレームの間には、通常、マルチパス等の遅延波により生じるシンボル間干渉に耐えうるように、ガードインターバルやサイクリック・プレフィックスといった領域が設けられているので、サブフレームの送信タイミングを早めたとしても、同期誤差の誤差量が比較的小さいことで送信タイミングの補正量が少なければ、これらの領域によってシンボル間干渉により生じる影響を回避することができる。
しかし、例えば他の基地局装置の送信タイミングとの同期誤差の誤差量が比較的大きいことで上記領域によって対応できない程度に送信タイミングを補正する必要がある場合には、シンボル間干渉による影響を回避できない可能性が高まる。
また、自己及び他の基地局装置間のキャリア周波数の誤差についての同期をとる場合についても上記と同様であり、キャリア周波数を補正する際に、同期誤差の誤差量の大きさによってはサブキャリア間の干渉による影響を回避できない場合があった。
このように、同期誤差の誤差量によっては適切に基地局間同期を行うことができないおそれがあった。
本発明はこのような事情に鑑みてなされたものであり、同期誤差の誤差量に応じて適切に基地局間同期を行うことができる基地局装置を提供することを目的とする。
(1)本発明は、一定の時間長さを持つ通信単位領域を時間軸に複数配置することで構成された下り信号を用い、周波数分割複信によって端末装置との間で通信を行う基地局装置であって、他の基地局装置からの下り信号を受信する受信部と、前記受信部が受信した前記他の基地局装置からの下り信号に基づいて、前記他の基地局装置の下り信号の通信単位領域と自己の下り信号の通信単位領域との間の同期誤差を検出する同期誤差検出部と、前記同期誤差に基づいて、前記自己の下り信号を補正することで前記他の基地局装置の下り信号に同期させる補正部と、前記同期誤差の誤差量に応じて、複数種類の補正の方法の中から前記補正部が行う補正の方法を選択する補正制御部と、を備えていることを特徴としている。
上記構成の基地局装置によれば、補正部が、同期誤差検出部が検出した同期誤差に基づいて、前記自己の下り信号を補正することで前記他の基地局装置の下り信号に同期させることで、他の基地局装置との間で基地局間同期を行うことができる。
また、本基地局装置によれば、補正制御部が同期誤差の誤差量に応じて補正部が行う補正の方法を選択するので、状況に応じた好適な補正の方法によって自己の下り信号の通信単位領域を補正することができる。このため、例えば、誤差量が大きいことからある補正の方法によっては、隣接する通信単位領域同士が大きく重なることでシンボル間干渉の影響を受けるおそれがある場合でも、シンボル間干渉の影響を回避しうる他の補正の方法を選択することができる。この結果、同期誤差の誤差量に関わらずシンボル間干渉の影響を回避でき好適に基地局間同期を行うことができる。
このように、本発明の基地局装置によれば、同期誤差の誤差量に応じて適切に基地局間同期を行うことができる。
(2)前記複数種類の補正の方法には、前記同期誤差の誤差量について複数回に分けて補正を行う第一の方法を含むものであることが好ましく、この場合、一の誤差量を複数回に分けて補正するので、各回ごとの補正時の補正量を少なくすることができ、互いに隣接する通信単位領域同士が大きく重なり合うのを防止することができる。
(3)具体的に、前記下り信号が、複数のサブフレームからなる基本フレームを有しており、前記通信単位領域が、前記サブフレームである場合には、前記第一の方法は、前記同期誤差の誤差量について前記複数のサブフレームごとに補正を行うことが好ましい。
(4)また、前記通信単位領域における前記端末装置に対するリソース割当を制御するリソース割当制御部をさらに備え、前記複数種類の補正の方法には、前記リソース割当部が補正対象である被補正通信単位領域の前に配置される通信単位領域におけるリソース割当を制限した上で、前記被補正通信単位領域の補正を行う第二の方法を含んでいるものであってもよい。
この場合、第二の方法が被補正通信単位領域の前に配置される通信単位領域に対するリソース割当を制限するので、例えば、被補正通信単位領域とその前に配置される通信単位領域とが大きく重なることでシンボル間干渉が生じたとしても、その影響が現れるのを回避できる。
(5)さらに、前記第二の方法において、前記被補正通信単位領域の前に配置される通信単位領域における自己の下り信号の送信を休止してもよい。
この場合、被補正通信単位領域の前における通信単位領域の時間長さの区間の範囲で被補正通信単位領域を補正したとしても、当該区間の範囲では下り信号の送信を休止するのでシンボル間干渉が生じない。
(6)上記第二の方法では、被補正通信単位領域の前に配置される、リソース割当が制限される通信単位領域の範囲で、自己の通信単位領域の補正が可能となるので、補正を行うにあたって、比較的大きい補正幅を確保できる。このため、前記補正制御部は、前記同期誤差の誤差量が予め定められた閾値よりも大きい場合、前記第二の方法を選択するものであることが好ましい。
(7)前記閾値は、隣接する前記通信単位領域同士の間に挿入されるガードインターバル区間の時間長さに応じて設定されることが好ましい。
この場合、例えば、前記閾値を、ガードインターバル区間の時間長さ以上に補正を行なう必要があると判断できる誤差量に設定することができ、ガードインターバル区間の時間長さ以上に補正を行なう必要があると判断される場合には、比較的大きい補正幅を確保できる第二の方法を選択するように構成することができる。これによって、誤差量に応じた好適な補正の方法を選択することができる。
(8)また、例えば、同期誤差の誤差量が比較的大きい場合であっても、前記データ量が比較的少ないときには、シンボル間干渉が生じたとしても端末装置に及ぶ影響が少ない。このため、上記基地局装置においては、自己の下り信号によって前記端末装置に送信すべきデータ量を検知する検知部をさらに備え、前記補正制御部は、前記同期誤差の誤差量及び前記検知部の検知結果に応じて、第二の方法を選択するか否かを決定するものであってもよい。
この場合、例えば、同期誤差の誤差量が比較的大きく、かつ、前記データ量が比較的多い場合には、補正制御部は、第二の方法を選択しリソース割当を制限することで、端末装置にシンボル間干渉による影響が及ぶのを回避できる。一方、同期誤差の誤差量が比較的大きい場合であっても、前記データ量が比較的少ないときには、シンボル間干渉が生じたとしても端末装置に及ぶ影響が少ないので、補正制御部は、第二の方法以外の他の方法を選択することもできる。
このように、補正制御部が、同期誤差の誤差量に加え、検知部の検知結果である端末装置に送信すべきデータ量に応じて、第二の方法を選択するか否かを決定することで、シンボル間干渉により端末装置に及ぶ影響を考慮しつつ、より好適に基地局間同期を行うことができる。
(9)具体的に、前記下り信号が、複数のサブフレームからなる基本フレームを有しており、前記通信単位領域が、前記サブフレームである場合には、前記第二の方法は、前記サブフレームごとにリソース割当を制限するものであることが好ましい。
本発明の基地局装置によれば、同期誤差の誤差量に応じて適切に基地局間同期を行うことができる。
本発明の一実施形態に係る無線通信システムの構成を示す概略図である。 LTEにおける上り及び下りそれぞれの通信フレームの構造を示す図である。 DLフレームの詳細な構造を示す図である。 サブフレームを構成するスロットの詳細な構成を説明するための図である。 フェムト基地局装置の構成を示すブロック図である。 RF部の詳細を示すブロック図である。 他の基地局装置との間で基地局間同期をとる同期処理を行うための同期処理部の構成を示すブロック図である。 同期処理部が行う同期処理の態様の一例を説明するための図であり、補正方法1の態様を示している。 補正方法2の態様を説明するための図である。 補正方法3の態様を説明するための図である。 補正制御部が補正の方法を選択する処理の態様を示すフローチャートである。 同期処理及びメジャメント処理が行われるタイミングを示す図である。 従来の基地局装置において採りうる同期処理の態様を説明するための図である。
以下、本発明の好ましい実施形態について添付図面を参照しながら説明する。
[1.通信システムの構成]
図1は、本発明の一実施形態に係る無線通信システムの構成を示す概略図である。
この無線通信システムは、複数の基地局装置1と、この基地局装置1との間で無線通信を行うことができる複数の端末装置2(移動端末;Mobile Station)とを備えている。
複数の基地局装置1は、例えば数キロメートルの大きさの通信エリア(マクロセル)MCを形成する複数のマクロ基地局装置(Macro Base Station)1aと、各マクロセルMC内に設置され数十メートル程度の比較的小さなフェムトセルFCを形成する複数のフェムト基地局装置(Femto Base Station)1bとを含んでいる。
各マクロ基地局装置1a(以下、マクロBS1aともいう。)は、自己のマクロセルMC内にある端末装置2との間で無線通信を行うことができる。
また、フェムト基地局装置1b(以下、フェムトBS1bともいう)は、例えば、屋内等、マクロBS1aの無線波を受信し難い場所等に配置され、上記フェムトセルFCを形成する。フェムトBS1bは、自己が形成するフェムトセルFC内にある端末装置2(以下、MS2ともいう)との間で無線通信が可能であり、本システムでは、マクロBS1aの無線波が受信し難い場所等においても、その場所に比較的小さいフェムトセルFCを形成するフェムトBS1bを設置することで、MS2に対して十分なスループットでのサービスの提供を可能にする。
上記無線通信システムにおいて、フェムトBS1bは、マクロBS1aの設置後、当該マクロBS1aが形成するマクロセルMC内に設置され、フェムトセルFCをマクロセルMC内に形成する。このため、フェムトBS1bは、マクロBS1aやこのマクロBS1aと通信を行っているMS2等との間で干渉等が生じるおそれがある。
このため、フェムトBS1bは、マクロBS1aや自己以外の他のフェムトBS1bといった、他の基地局装置における送信電力や使用周波数といった送信状況をモニタリング(メジャメント処理)を行う機能、及びその結果に基づいて、マクロセルMCにおける通信に対して影響を与えないように送信電力や使用周波数等の送信条件を調整する機能を有している。フェムトBS1bは、この機能によって他の基地局装置の通信に影響を与えることなく、マクロセルMC内にフェムトセルFCを形成することができる。
また、本実施形態の通信システムでは、マクロBS1a及びフェムトBS1bを含む複数の基地局装置間で通信フレームのタイミングの同期をとる基地局間同期が行われる。
基地局間同期は、親(同期元)となる基地局装置が、自己のセル内のMS2に向けて送信した信号を、別の基地局装置が受信することで同期をとる「エア同期」によって実行される。
親(同期元)となる基地局装置は、さらに他の基地局装置との間でエア同期をとるものであってもよいし、GPS信号によってフレームタイミングを自律的に決定する等、エア同期以外の方法によってフレームタイミングを決定するものであってもよい。
ただし、マクロBS1aは、他のマクロBS1aを親とすることはできるが、フェムトBS1bを親とすることはできない。フェムトBS1bは、マクロBS1aを親とすることもできるし、他のフェムトBS1bを親とすることもできる。
本実施形態の無線通信システムは、例えば、LTE(Long Term Evolution)が適用される携帯電話用のシステムであり、各基地局装置と、端末装置との間において、LTEに準拠した通信が行われる。LTEでは、周波数分割複信(FDD)方式を採用することができ、本実施形態では、本通信システムがFDD方式を採用しているものとして説明する。なお、通信システムとしては、LTEに限られるものではなく、また、FDD方式に限られるものでもなく、例えば、TDD(時分割複信)方式であってもよい。
[2.LTEのフレーム構造]
本実施形態の通信システムが準拠するLTEにおいて採用可能なFDD方式においては、上り信号(端末装置から基地局装置への送信信号)と、下り信号(基地局装置から端末装置への送信信号)との間で、互いに異なる使用周波数を割り当てることで、上り通信と下り通信とを同時に行う。
図2は、LTEにおける上り及び下りそれぞれの無線フレームの構造を示す図である。LTEにおける下り側の基本フレームである無線フレーム(DLフレーム)及び上り側の無線フレーム(ULフレーム)は、その1無線フレーム分の時間長さがそれぞれ10ミリ秒であり、#0〜#9まで10個のサブフレーム(一定の時間長さを持つ通信単位領域)によって構成されている。これらDLフレームとULフレームは、そのタイミングが揃えられた状態で、時間軸方向に配列される。
図3は、DLフレームの詳細な構造を示す図である。図中、縦軸方向は周波数を示しており、横軸方向は時間を示している。
DLフレームを構成するサブフレームは、それぞれ2つのスロット(例えば、スロット♯0,♯1)により構成されている。また、1つのスロットは、7個(♯0〜♯6)のOFDMシンボルにより構成されている(ノーマル・サイクリック・プレフィックス:Normal Cyclic Prefixの場合)。
また、図中、データ伝送の上での基本単位(最小単位)であるリソースブロック(RB:Resource Block)は、周波数軸方向に12サブキャリア、時間軸方向に7OFDMシンボル(1スロット)で定められる。従って、例えば、DLフレームの周波数帯域幅が5MHzに設定されている場合、300個のサブキャリアが配列されるので、リソースブロックは、周波数軸方向に25個配置される。
図3に示すように、各サブフレームの先頭には、基地局装置が端末装置に対し、下り通信に必要な情報を送信するための制御チャネルが割り当てられている。制御チャネルは、各サブフレームにおいて先頭側に位置するスロットのシンボル♯0〜♯2(最大で3シンボル)で割り当てられる。この制御チャネルには、DL制御情報や、当該サブフレームのリソース割当情報、ハイブリッド自動再送要求(HARQ:Hybrid Automatic Repeat Request)による受信成功通知(ACK:Acknowledgement)、受信失敗通知(NACK:Negative Acknowledgement)等が格納される。
また、DLフレームにおいて、1番目のサブフレーム♯0には、ブロードキャスト送信によってシステムの帯域幅等を端末装置に通知するための同報チャネル(PBCH:Physical Broadcast Channel)が割り当てられる。同報チャネルは、時間軸方向において、1番目のサブフレーム♯0における後方側のスロットのシンボル♯0〜♯3の位置に4つのシンボル幅で配置され、周波数軸方向において、DLフレームの帯域幅の中央の位置に6リソースブロック幅分(72サブキャリア)で割り当てられる。この同報チャネルは、4フレームにわたって同一の情報を送信することで、40ミリ秒ごとに更新されるように構成されている。
同報チャネルには、通信帯域幅や、送信アンテナ数、制御情報の構造等の主要なシステム情報が格納される。
また、DLフレームを構成する10個のサブフレームの内、1番目(♯0)及び6番目(♯5)のサブフレームそれぞれには、基地局装置やセルを識別するための信号である、第一同期信号及び第二同期信号(P−SCH:Primary Synchronizaiton Channel,S−SCH:Secondary Synchronizaiton Channel)が割り当てられている。
第一同期信号は、時間軸方向において、サブフレーム♯0及びサブフレーム♯5それぞれにおける先頭側のスロットの最後のOFDMシンボルであるシンボル♯6の位置に1つのシンボル幅で配置され、周波数軸方向において、DLフレームの帯域幅の中央の位置に6リソースブロック幅分(72サブキャリア)で配置されている。この第一同期信号は、端末装置が、基地局装置のセルを分割した複数(3個)のセクタそれぞれを識別するための情報であり、3パターン定義されている。
第二同期信号は、時間軸方向において、サブフレーム♯0及びサブフレーム♯5それぞれにおける先頭側のスロットの最後から2番目のOFDMシンボルであるシンボル♯5の位置に1つのシンボル幅で配置され、周波数軸方向において、DLフレームの帯域幅の中央の位置に6リソースブロック幅分(72サブキャリア)で配置されている。この第二同期信号は、端末装置が、複数の基地局装置の通信エリア(セル)それぞれを識別するための情報であり、168パターン定義されている。
第一同期信号及び第二同期信号は、相互に組み合わせることによって504種類(168×3)のパターンが定義されている。端末装置は、基地局装置から送信された第一同期信号及び第二同期信号を取得することで、自端末が、どの基地局装置のどのセクタに存在するかを認識することができる。
第一同期信号及び第二同期信号がとり得る複数のパターンは、通信規格において予め定められており、各基地局装置及び各端末装置において既知である。つまり、第一同期信号及び第二同期信号は、それぞれ、複数のパターンをとり得る既知信号である。
第一同期信号及び第二同期信号は、端末装置が基地局装置との間で同期をとる場合のほか、基地局装置間において通信タイミング及び/又は周波数を同期させる基地局間同期のための信号としても用いられるが、この点については後述する。
上述の各チャネルが割り当てられていない他の領域(図中ハッチングのない領域)のリソースブロックは、ユーザデータ等を格納するためのDL共有チャネル(PDSCH:Physical Downlink Shared Channel)として用いられる。このDL共有チャネルは、複数の端末装置による通信のために共有されるエリアであり、ユーザデータの他、各端末装置個別の制御情報等も格納される。
DL共有チャネルに格納されるユーザデータの割り当てについては、各サブフレームの先頭に割り当てられている上記制御チャネル内のリソース割当情報により規定されており、端末装置は、このリソース割当情報によって、そのサブフレーム内に自己に対するデータが格納されているか否かを判断できる。
図4は、サブフレームを構成するスロットの詳細な構成を説明するための図である。なお、図4では、ノーマル・サイクリック・プレフィックスを採用した場合のスロットの構成を示している。
スロットは、上述のように7個(♯0〜♯6)のOFDMシンボルにより構成されている。各シンボルそれぞれの先頭側には、ガードインターバルと同様の機能を有しているサイクリック・プレフィックス(以下、CPともいう)が配置されており、このCPは互いに隣接するシンボル間に挿入されている。
CPは、図4に示すように、各シンボルの後半部分の一部をコピーすることで生成され、そのシンボルの先頭側に配置される。CPを挿入することによって、このCPの時間長さTcp以下のマルチパスによる遅延波を受信しシンボル間干渉が生じたとしても、サブキャリア間の直交性を維持でき、端末装置側で復調時の誤り率が高くなる等の影響が現れるのを防止できる。
また、ノーマル・サイクリック・プレフィックスの場合、CPは、その時間長さTcpが約5.21マイクロ秒(シンボル♯0に係るCP)、又は約4.69マイクロ秒(その他のシンボルのCP)に設定されている。
従って、互いに隣接するサブフレーム同士の間には、約5.21マイクロ秒の時間長さのCPが挿入される。
[3.フェムト基地局装置の構成]
図5は、図1中、フェムト基地局装置の構成を示すブロック図である。なお、ここでは、フェムトBS1bの構成について説明するが、マクロBS1aの構成も、フェムトBS1bとほぼ同様である。
フェムトBS1b1は、アンテナ3と、アンテナ3が接続された送受信部(RF部)4と、RF部4との間で授受が行われる送受信信号の信号処理の他、基地局間同期についての処理や、メジャメント等を行う信号処理部5とを備えている。
[3.1 RF部]
図6は、RF部4の詳細を示すブロック図である。RF部4は、上り信号受信部11、下り信号受信部12、及び送信部13を備えている。上り信号受信部11は、端末装置2からの上り信号を受信するためのものであり、下り信号受信部12は、他のマクロBS1a又は他のフェムトBS1bからの下り信号を受信するためのものである。送信部13は、端末装置2へ下り信号を送信するためのものである。
また、RF部4は、サーキュレータ14を備えている。このサーキュレータ14は、アンテナ3からの受信信号を、上り信号受信部11及び下り信号受信部12側へ与え、送信部13から出力された送信信号を、アンテナ3側へ与えるためのものである。このサーキュレータ14と送信部13の第4フィルタ135によって、アンテナ3からの受信信号が送信部13側へ伝わることが防止されている。
また、サーキュレータ14と上り信号受信部の第1フィルタ111によって、送信部13から出力された送信信号が上り受信部11へ伝わることが防止されている。さらに、サーキュレータ14と第5フィルタ121によって、送信部13から出力された送信信号が上り信号受信部12へ伝わることが防止されている。
この上り信号受信部11は、スーパーヘテロダイン受信機として構成されており、IF(中間周波数)サンプリングを行うよう構成されている。より具体的には、上り信号受信部11は、第1フィルタ111、第1増幅器112、第1周波数変換部113、第2フィルタ114、第2増幅器115、第2周波数変換部116、及びA/D変換部117を備えている。
第1フィルタ111は、端末装置2からの上り信号だけを通過させるためのものであり、上り信号の周波数fuだけを通過させる帯域通過フィルタによって構成されている。第1フィルタ111を通過した受信信号は、第1増幅器(高周波増幅器)112によって増幅され、第1周波数変換部113によって周波数fuから第1中間周波数への変換がなされる。なお、第1周波数変換部113は、発振器113a及びミキサ113bによって構成されている。
第1周波数変換部113の出力は、第1中間周波数だけを通過させる第2フィルタ114を経て、第2増幅器(中間周波増幅器)115によって再び増幅される。第2増幅器115の出力は、第2周波数変換部116によって、第1中間周波数から第2中間周波数に変換され、さらにA/D変換部117によってデジタル信号に変換される。なお、第2周波数変換部116も発振器116a及びミキサ116bによって構成されている。
A/D変換部117の出力(第1受信部11の出力)は、復調回路としての機能を有する信号処理部5に与えられ、端末装置2からの受信信号の復調処理が行われる。
このように、上り信号受信部11は、端末装置からの上り信号を受信するために上り信号周波数fuに適合して構成された受信部であって、基地局装置として本来的に必要な受信部である。
また、前記送信部13は、信号処理部5から出力される同相信号I及び直交信号Qを受け取り、アンテナ3から信号を送信させるものであり、ダイレクトコンバージョン送信機として構成されている。この送信部13は、D/A変換器131a,131bと、直交変調器132と、第3フィルタ133、第3増幅器(高出力増幅器;HPA)134、及び第4フィルタ135を備えている。
前記D/A変換器131a,131bは、信号処理部5から与えられる同相信号I及び直交信号QそれぞれについてD/A変換を行う。D/A変換器131a,131bの出力は、直交変調器132に与えられ、この直交変調器132によって、搬送波周波数がfd(下り信号周波数)である送信信号が生成される。
直交変調器132の出力は、周波数fdだけを通過させる第3フィルタ133を経て、第3増幅器134によって増幅され、さらに周波数fdだけを通過させる第4フィルタ135を得て、アンテナ3から送信され、端末装置への下り信号となる。
以上の上り信号受信部11及び送信部13は、端末装置との間の本来的な通信を行うために必要な機能であるが、本実施形態の基地局装置1は、更に下り信号受信部12を備えている。この下り信号受信部12は、他の基地局装置が送信した下り信号を受信するためのものである。
本実施形態において、下り信号受信部12によって受信した他の基地局装置の下り信号は、基地局間同期処理、及び、他の基地局装置の送信電力等の送信状況のメジャメントに用いられる。
ここで、他の基地局装置が送信した下り信号の周波数は、fdであり、上り信号の周波数fuとは異なるため、上り信号処理部11だけを備えた通常の基地局装置では、他の基地局装置が送信した下り信号を受信することができない。
つまり、FDD方式では、TDD方式と異なり、伝送路上において上り信号と下り信号が同時に存在するため、上り信号受信部11には、上り信号周波数fuの信号だけを通過させ、下り信号周波数fdの信号を通過させないように設計される。具体的には、上り信号受信部11には、上り信号周波数fuの信号だけを通過させる第1フィルタ111や、周波数fuから変換された第1中間周波数だけを通過させる第2フィルタ114が備わっているため、周波数fu以外の周波数(下り信号の周波数fd)の信号が第1受信部11に与えられても、上り信号受信部11を通過することはできない。
すなわち、上り信号受信部11は、上り信号受信部11内に備わったフィルタ111,114によって、上り信号周波数fuの信号の受信に適合したものとなっており、他の周波数の信号(特に、下り信号)の受信はできない。
そこで、本実施形態のRF部4には、上り信号受信部11とは別に、他の基地局装置が送信した周波数fdの下り信号の受信を行うための下り信号受信部12が備わっている。
この下り信号受信部12は、第5フィルタ121、第4増幅器(高周波増幅器)122、第3周波数変換部123、第6フィルタ124、第5増幅器(中間周波増幅器)125、第4周波数変換部126、及びA/D変換部127を備えている。
第5フィルタ121は、他の基地局装置からの下り信号だけを通過させるためのものであり、下り信号の周波数fdだけを通過させる帯域通過フィルタによって構成されている。第5フィルタ121を通過した受信信号は、第4増幅器(高周波増幅器)122によって増幅され、第4増幅器122の出力は、第3周波数変換部123によって下り信号周波数fdから第1中間周波数への変換がなされる。なお、第3周波数変換部123は、発振器123a及びミキサ123bによって構成されている。
第3周波数変換部123の出力は、第3周波数変換部123から出力された第1中間周波数だけを通過させる第6フィルタ124を経て、第5増幅器(中間周波増幅器)125によって再び増幅される。第5増幅器125の出力は、第4周波数変換部126によって、第1中間周波数から第2中間周波数に変換され、さらにA/D変換部127によってデジタル信号に変換される。なお、第4周波数変換部126も発振器126a及びミキサ126bによって構成されている。
A/D変換部127から出力された信号は、信号処理部5が有する後述する同期処理部5b及びメジャメント処理部5cに与えられる。
なお、上り信号受信部11や下り信号受信部11は、ダイレクトコンバージョン受信機として構成してもよい。
また、下り信号受信部11と送信部13とでは、アンテナキャリブレーションにより、下り信号受信部11と送信部13における上りと下りの対称性が確保されているのが好ましい。アンテナキャリブレーションは、下り信号受信部11及び/又は送信部13に、図示しないゲイン・位相調整器を設けることで行える。
[3.2 信号処理部]
信号処理部5は、RF部4との間で授受が行われる送受信信号の信号処理を行うための機能を有しており、当該信号処理部5の上位レイヤから与えられる各種送信データを送信信号に変調するとともに、RF部4から与えられる受信信号を受信データに復調する処理を行う変復調部5aを備えている。変復調部5aでは、後述の同期処理部5bによって算出された同期誤差(タイミングオフセット、周波数オフセット)に基づき、同期誤差を補正した状態で変復調の処理が行われる。
さらに、信号処理部5は、RF部4に与える送信信号についての無線フレームごとの送信タイミングを決定するためのフレームカウンタ(図示せず)を備えている。
また、信号処理部5は、他の基地局装置との間で基地局間同期をとる同期処理を行うための同期処理部5b、メジャメントを行うためのメジャメント処理部5cの他、リソース割当制御部5dと、自己及び他の基地局装置に接続する端末装置の通信状況を検知するための検知部5eとを備えている。
以下、同期処理部5bの構成について説明する。
[3.2.1 同期処理部について]
図7は、他の基地局装置との間で基地局間同期をとる同期処理を行うための同期処理部5bの構成を示すブロック図である。
基地局間同期は、各基地局装置がGPS受信機を備えて、GPS信号によって同期をとったり、基地局間を有線で接続して同期をとったりしてもよいが、本実施形態では、無線信号(下り信号)によって同期を行う「エア同期」による基地局間同期を採用している。
すなわち、同期処理部5bは、下り信号受信部12が受信する他の基地局装置の下り信号を取得し、当該下り信号の無線フレームに含まれる既知信号である第一同期信号(P−SCH)及び第二同期信号(S−SCH)に基づいて、自基地局装置1の通信タイミング及び通信周波数を、他の基地局装置との間で同期させる同期処理を行う。
同期処理部5bは、上記同期処理が所定の周期で行われるように、下り信号受信部12から与えられる、他の基地局装置の下り信号を取得するタイミングをサブフレーム単位で設定する。また、同期処理部5bは、検知部5eの検知結果に応じて、同期処理のための下り信号を取得するタイミングの周期を調整することで、同期処理を行うタイミングを調整する機能を有している。
同期処理部5bは、自己が設定した下り信号を取得するタイミング(同期処理の開始タイミング)に対応するサブフレームの区間において、送信部13による送信信号の送信を休止させることで、同期処理を開始する。同期処理部5bは、送信信号の送信を休止させている間に、下り信号受信部12に他の基地局装置の下り信号を受信させ、受信した下り信号を取得する。その後、この下り信号を利用して自己のフレームタイミング(サブフレームの送信タイミング)や通信周波数の補正を行い、同期処理を終える。なお、上記送信信号の送信を休止させる区間は、同期処理のために下り信号を取得するタイミングに対応するサブフレームとその後に続く一又は複数のサブフレーム分に設定することもできる。
また、上記送信信号の送信の休止のほか、端末装置からの上り信号の受信の休止も行っても良い。
また、同期処理部5bは、送信信号の送信を休止させる区間に対応するサブフレームを特定するための情報である同期タイミング情報をリソース割当制御部5d及びメジャメント処理部5cに出力する。
同期処理部5bは、同期誤差検出部14、フレームカウンタ補正部15、周波数オフセット推定部16、周波数補正部17、記憶部18、及び補正制御部19を備えており、フレーム送信タイミングの同期を行うとともに、キャリア周波数の補正も行う機能を有している。
同期誤差検出部14は、下り信号に含まれる既知信号を利用して、他の基地局装置のフレーム送信タイミングを検出するとともに、自基地局装置1におけるフレーム送信タイミングとの誤差(フレーム同期誤差;通信タイミングオフセット)を検出する。
なお、送信タイミングの検出は、受信した下り信号のフレーム中の所定位置にある既知信号(波形も既知)である、第一同期信号及び第二同期信号のタイミングを検出することで行える。
また、同期誤差検出部14は、検出したフレーム同期誤差を補正制御部19に与えるほか、検出される度に記憶部18にも与える。記憶部18は、これら検出されたフレーム同期誤差を蓄積する。
補正制御部19は、同期誤差検出部14からのフレーム同期誤差、及び検知部5eからの自己に接続しているMS2に送信すべきデータ量(後に述べる)を取得すると、このフレーム同期誤差を補正するためのフレームタイミングに関する制御情報を生成し、フレームカウンタ補正部15に与える。フレームカウンタ補正部15は、補正制御部19から与えられる、フレームタイミングに関する制御情報にしたがって、前記フレームカウンタの値を調整し、上記同期誤差に応じたフレームタイミングの補正を行う。
補正制御部19は、フレーム同期誤差、及び自己に接続しているMS2に送信すべきデータ量を取得すると、これらに応じて、フレームカウンタ補正部15が行うフレームタイミングの補正の方法について、複数種類の補正の方法の中から一の補正の方法を選択する。そして、補正制御部19は、フレームカウンタ補正部15に、選択した補正の方法で上記同期誤差を解消すべくフレームタイミングの補正を行わせるようにを制御する。
フレームカウンタ補正部15は、補正制御部19の制御情報に従い、自己の下り信号におけるサブフレームの送信タイミングを、他の基地局装置の下り信号におけるサブフレームの送信タイミングに一致するように補正する。なお、上記補正の方法については、後に詳述する。
前記周波数オフセット推定部16は、検出部14によって検出された同期誤差に基づいて、受信側である基地局装置自身が内蔵する内蔵クロック発生器(図示省略)のクロック周波数と、送信側である他の基地局装置の内蔵クロック発生器のクロック周波数との差(クロック周波数誤差)を推定し、そのクロック周波数誤差からキャリア周波数誤差(キャリア周波数オフセット)を推定する。
前記周波数オフセット推定部16は、エア同期が周期的に実行される状況下において、前回のエア同期において検出されたフレーム同期誤差t1と、今回のエア同期において検出されたフレーム同期誤差t2とに基づいて、クロック誤差を推定する。なお、前回のフレーム同期誤差t1は、記憶部18から取得することができる。
例えば、キャリア周波数が2.6[GHz]である場合に、前回のエア同期のタイミング(同期タイミング=t1)において、フレーム同期誤差としてT1が検出され、T1分のタイミングの修正がなされたものとする。修正後の同期誤差(タイミングオフセット)は0[msec]である。そして、T=10秒後の今回のエア同期のタイミング(同期タイミング=t2)においても、再び同期誤差(タイミングオフセット)が検出され、その同期誤差(タイミングオフセット)はT2=0.1[msec]であったとする。
このとき、10秒間の間に生じた0.1[msec]の同期誤差(タイミングオフセット)は他の基地局装置のクロック周期と自基地局装置のクロック周期の誤差の蓄積値である。
すなわち、同期誤差(タイミングオフセット)とクロック周期の間には以下の等式が成り立つ。
同期元基地局のクロック周期:同期先基地局のクロック周期=T:(T+T2)=10:(10+0.0001)
そして、クロック周波数はクロック周期の逆数であるから、
(同期元基地局のクロック周波数−同期先基地局のクロック周波数)
=同期元基地局のクロック周波数×T2/(T+T2)
≒同期元基地局のクロック周波数×0.00001
となる。
したがって、この場合、送信側である他の基地局装置のクロック周波数と、受信側である自基地局装置のクロック周波数に、0.00001=10[ppm]の誤差があることになる。周波数オフセット推定部16では、上記のようにしてクロック周波数誤差を推定する。
そして、キャリア周波数と同期誤差(タイミングオフセット)は同じようにずれるため、キャリア周波数にも、10[ppm]分のズレ、すなわち、2.6[GHz]×1×10-5=26[kHz]のずれが生じる。このようにして、周波数オフセット推定部16では、クロック周波数誤差から、キャリア周波数誤差(キャリア周波数オフセット)も推定することができる。
周波数オフセット推定部16が推定したキャリア周波数誤差は、周波数補正部17に与えられる。
周波数補正部17は、このキャリア周波数誤差に基づいて、キャリア周波数の補正を行う。なお、キャリア周波数の補正は、上り信号のキャリア周波数だけでなく、下り信号のキャリア周波数についておこなうことができる。
次に、メジャメント処理部5cの機能について説明する。
[3.2.2 メジャメント処理部について]
メジャメント処理部5cは、他の基地局装置における送信電力や使用周波数といった下り信号の送信状況の測定(メジャメント処理)を行うための機能を有しており、下り信号受信部12が受信する他の基地局装置の下り信号を取得して、当該下り信号の受信電力を求める。
メジャメント処理部5cは、メジャメント処理を行うために下り信号を取得するタイミングをサブフレーム単位で設定する。さらに、メジャメント処理部5cは、検知部5eの検知結果に応じて、メジャメント処理のための下り信号を取得するタイミングを設定し調整することで、メジャメント処理を行うタイミングを調整する機能を有している。
なお、メジャメント処理は、後述するように、同期処理を行った直後に行うことが好ましい。このため、メジャメント処理部5cは、同期処理部5bから与えられる同期タイミング情報に応じて、メジャメント処理を行うタイミングを設定する。
例えば、メジャメント処理部5cは、受け取った同期タイミング情報に基づいて同期処理が開始されるサブフレームを特定し、その特定したサブフレームが属する無線フレームの次の無線フレームに属するサブフレームでメジャメント処理を行うように設定する。
メジャメント処理部5cは、自己が設定したメジャメント処理のための下り信号を取得するタイミング(メジャメント処理の開始タイミング)に対応するサブフレームの区間について、送信部13による送信信号の送信を休止させることで、メジャメント処理を開始する。メジャメント処理部5cは、送信信号の送信を休止させている間に、下り信号受信部12に他の基地局装置の下り信号を受信させ、その受信した下り信号を取得する。その後、下り信号の受信電力等を測定し、メジャメント処理を終える。なお、上記送信信号の送信を休止させる区間は、下り信号の取得を開始するタイミングに対応するサブフレームとその後に続く一又は複数のサブフレーム分に設定することができる。
また、上記送信信号の送信の休止のほか、端末装置からの上り信号の受信の休止も行っても良い。
また、メジャメント処理部5cは、送信信号の送信を休止させる区間に対応するサブフレームを特定するための情報であるメジャメントタイミング情報をリソース割当制御部5dに出力する。
メジャメント処理部5cは、下り信号受信部12から取得した下り信号から、リソースブロックごとの受信電力の平均値(電力平均値)を求める。
メジャメント処理部5cは、取得した下り信号から、リソースブロック単位であると推定される部分を時間軸方向に分けて取り出す。さらに取り出した部分それぞれから、リソースブロックの周波数幅ごとの部分を取り出し、その周波数ごとの部分の電力をリソースブロックの電力平均値として求める。
メジャメント処理部5cは、上記電力平均値を求めると、この電力平均値を示すメジャメント結果情報を、リソース割当制御部5d、検知部5e、及び出力制御部5fに出力する。
メジャメント処理部5cは、下り信号受信部12から取得した直交変調された(復調前の)信号である下り信号を取得し、この信号からリソースブロックごとの電力平均値を求めるので、当該信号から、リソースブロック単位であると推定される部分を時間軸方向に分けて取り出す。このため、下り信号の送信元である他の基地局装置のフレームタイミングを認識する必要がある。
ここで、他の基地局装置と自己との間でフレームタイミングの同期がとれていれば、自己のフレームタイミングから、他の基地局装置のフレームタイミングを把握できるので、メジャメント処理部5cは、時間軸方向におけるリソースブロックの単位を精度よく推定でき、精度よく電力平均値を求めることができる。このため、メジャメント処理は、同期処理を行った直後に行うことが好ましい。
[3.2.3 検知部について]
検知部5eは、自己及び他の基地局装置に接続するMS2との間の通信状況を検知する機能を有している。
より具体的には、検知部5eは、通信状況として、現状、自己及び他の基地局装置に接続しているMS2の数を検知する。なお、ここで、検知部5eの検出対象となる他の基地局装置に接続しているMS2は、自己の下り信号が到達する可能性のあるMS2である。
検知部5eは、信号処理部5の上位レイヤから自己に接続するMS2の数、及びこれらMS2に送信すべきデータ量についての情報を取得する。
一方、他の基地局装置に接続するMS2の数については、メジャメント処理部5cからのメジャメント結果情報に基づいて推定する。
メジャメント処理は、他の基地局装置からの下り信号を受信して行われるものであり、他の基地局装置は、自己の周辺に位置することで双方の下り信号が到達可能な範囲に位置する基地局装置である。よって、この他の基地局装置に接続するMS2に対して、自己の下り信号が到達する可能性がある。
従って、検知部5eは、上記のような他の基地局装置の下り信号についてのメジャメント結果情報から、自己の下り信号が到達する可能性のあるMS2を検出することができる。
検知部5eは、メジャメント結果情報に含まれる、リソースブロックごとの電力平均値に基づいて、他の基地局装置にMS2が接続しているか否かを判断するとともに、他の基地局装置に接続するMS2の数を推定する。つまり、他の基地局装置が自身のセル内のMS2と通信を行っていれば、その送信信号に当該MS2に向けたユーザデータが割り当てられており、データが割り当てられている部分の電力は、データが割り当てられていない部分と比較して相対的に増加する。これにより、検知部5eは、送信信号の受信電力に基づいて、当該他の基地局装置にMS2が接続しているか否かを判断できる。
また、MS2が接続していると判断できる場合、リソースブロックごとにユーザデータが割り当てられているか否かを判断できる。従って、検知部5eは、その割り当て状況から、他の基地局装置に接続するMS2の数を推定することができる。
検知部5eは、検知した、自己及び他の基地局装置に接続しているMS2の数に関する情報、及び、自己に接続するMS2に送信すべきデータ量に関する情報を同期処理部5bに出力する。
[3.2.4 リソース割当制御部及び出力制御部について]
リソース割当制御部5dは、無線フレーム中のDL共有チャネルに、各端末装置2に送信するためのユーザデータを割り当てる機能を有している。
また、リソース割当制御部5dは、前記同期タイミング情報、前記メジャメントタイミング情報、及び後述する補正制御部19からのリソース割当制限情報が、同期処理部5b及びメジャメント制御部5fから与えられると、これら情報により特定されるサブフレームにユーザデータの割り当てを制限する。さらに、リソース割当制御部5dは、メジャメント処理部5cからメジャメント結果情報が与えられると、この情報に基づいて、ユーザデータの割り当てを決定する。
出力制御部5fは、RF部4の送信部13による送信電力を制御する機能を有している。出力制御部5fは、メジャメント処理部5cが求めた他の基地局装置の電力平均値が与えられると、その電力平均値に基づいて、他の基地局装置及びこの他の基地局装置に接続するMS2に対して、自己の送信信号が干渉しないように、自己の送信電力を調整する。
[4. 同期処理について]
図8は、同期処理部が行う同期処理の態様の一例を説明するための図である。図8では、他の基地局装置であるマクロBS1a、及び自己の基地局装置であるフェムトBS1bそれぞれが送信するフレームを同一の時間軸上で示しており、フェムトBS1bが、同期元であるマクロBS1aの下り信号に対して同期を行う態様を示している。
図8中、タイミングT4より前の区間において、フェムトBS1bの各サブフレームの先頭が、対応するマクロBS1aのサブフレームの先頭に対してタイミングのずれが生じており、互いのサブフレームの送信タイミングに誤差量ΔDで同期誤差が生じている状態を示している。
ここで、フェムトBS1bの同期処理部5bが、同期処理のための下り信号を取得するタイミングを5番目のサブフレーム♯4に相当するサブフレームSF1と設定した場合、当該同期処理部5bは、このサブフレームSF1を特定するための情報を含む同期タイミング情報を、リソース割当制御部5d及びメジャメント処理部5cに出力する。なお、図例では、送信信号の送信を休止させる区間については、同期処理の開始のタイミングに対応するサブフレームSF1の区間のみの場合を示している。
同期処理部5bは、この無線フレームが送信される際、サブフレームSF1の送信タイミングで、送信部13による送信信号の送信を休止させる一方、下り信号受信部12にマクロBS1aの下り信号を受信させ、受信した下り信号を取得する。
そして、同期処理部5bは、取得したマクロBS1aの下り信号に含まれる第一同期信号及び第二同期信号を利用して当該マクロBS1aのフレーム送信タイミングを検出するとともに、自己のフレーム送信タイミングとの間のフレーム同期誤差の誤差量ΔDを検出する。
なお、同期処理部5bは、記憶部18に蓄積された過去の同期処理の際の同期誤差から、他の基地局装置であるマクロBS1aの下り信号における、第一同期信号及び第二同期信号を含むサブフレーム(♯0又は♯5)の送信タイミングを把握できるので、その送信タイミングに対応する自己のサブフレームの区間で送信信号を休止させるように設定することができる。
一方、前記同期タイミング情報が与えられたリソース割当制御部5dは、サブフレームSF1の区間に対して、端末装置2のユーザデータの割り当てを制限するので、この区間において送信信号の送信を休止させることで、フェムトBS1bに接続する端末装置2が当該フェムトBS1bと通信できなくとも、無駄に基地局のスキャニングを行ったり、何らかの異常が発生したと認識することはなく、円滑な通信が維持できる。
同期処理部5bは、上記のようにマクロBS1aの下り信号を取得した後、この下り信号に含まれる同期信号に基づいて誤差量ΔDを検出し、その後、サブフレームのフレームタイミングの補正を行う。
ここで、同期処理部5bの補正制御部19は、サブフレームのフレームタイミングの補正を行うにあたって、補正の方法を選択する。
補正制御部19は、複数の補正の方法として、3つの補正方法1〜3を記憶しており、これら3つの補正方法の内のいずれか一つを選択してその選択した補正方法でフレームタイミングの補正を行うようにフレームカウンタ補正部15を制御する。
以下、3つの補正方法について説明する。
[4.1 補正方法1について]
補正方法1は、図8に示すように、一のサブフレームで、検出した誤差量ΔDを補正するものである。すなわち、補正制御部19は、補正方法1を選択するとまず、フレームタイミングの補正を行うべきサブフレーム被補正サブフレームを特定する。なお、図8では、被補正サブフレームとして、下り信号を受信した無線フレームの次に配置される無線フレームの先頭に位置するサブフレーム♯0を特定した場合を示している。
次いで、補正制御部19は、フレームカウンタ補正部15に、被補正サブフレームでフレームタイミングの補正を行わせる。
補正前のサブフレーム♯0の先頭がタイミングT3であるとすると、フレームカウンタ補正部15は、サブフレーム♯0の先頭が、タイミングT3から誤差量ΔDだけ早いタイミングとなる方向にずれたタイミングT4となるように前記フレームカウンタの値を調整する。これにより、自己の下り信号におけるサブフレーム♯0の送信タイミングを補正し、マクロBS1aの下り信号におけるサブフレーム♯1の送信タイミングに一致させる。
ついで、この補正したサブフレーム♯0に続いて配置されるサブフレーム(無線フレーム)を、当該補正後のサブフレーム♯0のタイミングに応じて時間軸方向の位置を調整し順次配置する。
このように、補正制御部19が補正方法1を選択した場合、同期処理部5bは、一のサブフレームで、検出した誤差量ΔDを補正し、自己であるフェムトBS1bのフレームタイミングを、マクロBS1aのフレームタイミングに一致させて同期処理を終える。
次に補正方法2(第一の方法)について説明する。
[4.2 補正方法2について]
図9は、補正方法2の態様を説明するための図である。なお、マクロBS1aの下り信号を受信し、同期誤差の誤差量ΔDを得るまでの態様は、補正方法1,2ともに同様であり、図8に示した通りである。図9では、補正方法1とは異なる態様である、タイミングT4以降を示している。
補正方法2は、図9に示すように、検出した誤差量ΔDについて複数回に分けて補正を行うものである。すなわち、補正制御部19は、補正方法2を選択すると、補正を開始するサブフレームを特定し、フレームカウンタ補正部15に、特定したサブフレームからフレームタイミングの補正を行わせる。なお、図9では、補正を開始するサブフレームとして、下り信号を受信した無線フレームの次に配置される無線フレームの先頭に位置するサブフレーム♯0を特定した場合を示している。
補正を開始するサブフレーム♯0の補正前の先頭がタイミングT3であるとすると、フレームカウンタ補正部15は、サブフレーム♯0の先頭が、タイミングT3から補正量Δd(補正量Δd = 誤差量ΔD / 10)だけ早いタイミングとなる方向にずれたタイミングT4となるように前記フレームカウンタの値を調整する。
次いで、フレームカウンタ補正部15は、サブフレーム♯1の先頭が、補正後のサブフレーム♯0に応じて配置したときの当該サブフレーム♯1の先頭のタイミングT5から補正量ΔdだけずれたタイミングT6となるように前記フレームカウンタの値を調整する。
以降、同様に各サブフレームの補正を行い、フレームカウンタ補正部15は、サブフレーム♯0〜♯9までの一無線フレーム分についてフレームタイミングの補正を行う。
つまり、フレームカウンタ補正部15は、誤差量ΔDについて、補正量Δdずつ10回に分けて補正を行い、これにより、次に並ぶ無線フレームの先頭のタイミングであるタイミングT7において、マクロBS1aの下り信号におけるサブフレーム♯1の送信タイミングに一致させる。
このように、補正制御部19が補正方法2を選択した場合、同期処理部5bは、検出した誤差量ΔDを10回に分けて補正し、自己であるフェムトBS1bのフレームタイミングを、マクロBS1aのフレームタイミングに一致させて同期処理を終える。
上記補正方法2では、一の誤差量ΔDを10回に分けて補正するので、各回ごとの補正時の補正量を少なくすることができ、互いに隣接するサブフレーム同士がフレームタイミングの補正によって大きく重なり合うのを防止することができる。
次に補正方法3(第二の方法)について説明する。
[4.3 補正方法3について]
図10は、補正方法3の態様を説明するための図である。なお、この補正方法3では、補正方法を選択し、フレームタイミングの補正を行うべきサブフレームである被補正サブフレームを特定するまでは、補正方法1と同様であり、図10では、被補正サブフレームとして、下り信号を受信した無線フレームの次に配置される無線フレームの先頭に位置するサブフレーム♯0を特定した場合を示している。
補正方法3は、図10に示すように、補正方法1と同様に、一のサブフレームで、検出した誤差量ΔDを補正するものであるが、被補正サブフレームであるサブフレーム♯0の前に配置されるサブフレーム♯9におけるリソース割当を制限した上で、被補正サブフレームでフレームタイミングの補正を行う点で相違している。
補正制御部19は、被補正サブフレーム♯0を特定すると、さらにこの被補正サブフレーム♯0の前に配置されるサブフレーム♯9を特定し、このサブフレーム♯9を特定するための情報をリソース割当制限情報として、リソース割当制御部5dに通知する。これにより、当該サブフレーム♯9におけるリソース割当が制限される。
次いで、フレームカウンタ補正部15は、上記補正方法1と同様に、被補正サブフレームであるサブフレーム♯0で、誤差量ΔDを補正し、自己であるフェムトBS1bのフレームタイミングを、マクロBS1aのフレームタイミングに一致させて同期処理を終える。
上記補正方法3では、被補正サブフレームの前に配置されるサブフレームに対するリソース割当を制限するので、被補正サブフレームとその前に配置されるサブフレームとが大きく重なることでシンボル間干渉が生じたとしても、その影響が現れるのを回避できる。
なお、上記各補正方法1〜3の説明では、フレームタイミングの同期についてのみ説明したが、キャリア周波数の補正についてもフレームタイミングの同期に付随して行われる。周波数補正部17は、周波数オフセット推定部16が推定したキャリア周波数誤差の誤差量について、各補正方法1〜3と同様の補正を行う。
次に、補正制御部19が行う、上記各補正方法を選択するための処理について説明する。
[4.4 補正方法の選択について]
図11は、補正制御部が補正の方法を選択する処理の態様を示すフローチャートである。
図11に示すように、まず補正制御部19は、同期誤差検出部14が検出した同期誤差の誤差量ΔDを取得するとともに、検知部5eから自己に接続しているMS2に送信すべきデータ量を取得すると(ステップS101)、取得した誤差量ΔDが、予め設定された閾値Dth1以下であるか否かを判断する(ステップS102)。
ステップS102において、誤差量ΔDが閾値Dth1以下と判断された場合、補正制御部19は、一のサブフレームで誤差量ΔDを補正する方法である補正方法1を選択し(ステップS103)、処理を終える。
ここで、閾値Dth1は、各サブフレーム間に挿入されるCP(図4参照)の時間長さに設定される。補正方法1では、一のサブフレームで誤差量ΔDを補正するので、誤差量ΔDがCPの時間長さTcpよりも大きくなると、補正を行ったサブフレームが、CPを越えてその前に配置されるサブフレームに重なることとなり、シンボル間干渉を生じさせるおそれが生じるからである。つまり、閾値Dth1は、補正方法1を選択したときに一のサブフレームについてCPの時間長さTcp以上に補正を行なう必要があるか否かを判断できる値に設定されている。
ステップS102において閾値Dth1以下でないと判断された場合、補正制御部19は、さらに、誤差量ΔDが、予め設定された閾値Dth2以下であるか否かを判断する(ステップS104)。
ステップS104において、誤差量ΔDが閾値Dth2以下と判断された場合、補正制御部19は、複数回に分けて補正する方法である補正方法2を選択し(ステップS105)、処理を終える。
ここで、閾値Dth2は、各サブフレーム間に挿入されるCP(図4参照)の時間長さの10倍の時間長さに設定される。補正方法2では、誤差量ΔDを10回に分けて補正を行うので、誤差量ΔDがCPの時間長さTcpの10倍の時間長さよりも大きくなると、補正を行った各サブフレームが、CPを越えてその前に配置されるサブフレームに重なることとなり、シンボル間干渉を生じさせるおそれが生じるからである。つまり、閾値Dth2は、補正方法2を選択したときに一のサブフレームについてCPの時間長さTcp以上に補正を行なう必要があるか否かを判断できる値に設定されている。
ステップS104において閾値Dth2以下でないと判断された場合、補正制御部19は、自己に接続しているMS2に送信すべきデータ量が、予め設定された閾値Rより大きいか否かを判断する(ステップS106)。
ステップS106において、前記データ量が閾値Rよりも大きくないと判断された場合には、補正制御部19は、ステップS105に進み、補正方法2を選択し(ステップS105)、処理を終える。
この場合、補正方法2による補正が行われると、補正を行った各サブフレームが、CPを越えてその前に配置されるサブフレームに重なることとなり、シンボル間干渉を生じさせるおそれが生じる。
ここで、上記閾値Rは、隣接するサブフレーム同士の間で多少の重なりが生じ、シンボル間干渉が生じたとしても、問題が生じない程度のデータ量に設定されており、多少のシンボル間干渉については許容することができる。
一方、ステップS106において、前記データ量が閾値Rよりも大きいと判断された場合、補正制御部19は、補正方法3を選択し(ステップS107)、処理を終える。
この補正方法3によりフレームタイミングの補正を行う場合、被補正サブフレームの前に配置される、リソース割当が制限されるサブフレームの範囲で、自己のサブフレームの送信タイミングの補正が可能となるので、送信タイミングの補正を行うにあたって、比較的大きい補正幅を確保できる。このため、補正制御部19は、誤差量ΔDが閾値Dth2よりも大きい場合、補正方法3を選択することができる。
なお、閾値Dth2は、隣接するサブフレーム同士の間に挿入されるガードインターバルとしての機能を有するCPの時間長さTcpに応じて設定される。つまり、閾値Dth2は、補正方法2を選択したときに一のサブフレームについてCPの時間長さTcp以上に補正を行なう必要があると判断できる誤差量に設定されているので、一のサブフレームについてCPの時間長さTcp以上に補正を行なう必要があると判断される場合には、比較的大きい補正幅を確保できる補正方法3を選択するように構成されている。これによって、補正制御部19は、誤差量ΔDに応じた好適な補正の方法を選択することができる。
また、補正方法3を選択するにあたっては、ステップS102により誤差量ΔDが考慮されることに加え、ステップS106によりMS2に送信すべきデータ量も考慮される。すなわち、同期誤差の誤差量ΔDが閾値Dth2より大きいことで比較的大きいと判断でき、かつ、前記データ量が閾値Rより多いことで比較的多いと判断できる場合には、補正制御部は、補正方法3を選択しリソース割当を制限することで、MS2にシンボル間干渉による影響が及ぶのを回避できる。
一方、同期誤差の誤差量ΔDが閾値Dth2よりも大きい場合であっても、前記データ量が閾値R以下であることにより比較的少ないと判断できるときには、シンボル間干渉が生じたとしても端末装置に及ぶ影響が少ないので、補正制御部19は、補正方法3以外の他の方法である補正方法2を選択することができる。
このように、本実施形態では、補正制御部19が、同期誤差の誤差量ΔDに加え、検知部の検知結果であるMS2に送信すべきデータ量に応じて、補正方法3を選択するか否かを決定するので、シンボル間干渉によりMS2に及ぶ影響を考慮しつつ、より好適に基地局間同期を行うことができる。
以上、詳述したように、上記構成の基地局装置によれば、フレームカウンタ補正部15が、同期誤差検出部14が検出した同期誤差に基づいて、自己の下り信号のフレームタイミングを補正することでマクロBS1aの下り信号のフレームタイミングに一致させることで、他の基地局装置との間で基地局間同期を行うことができる。
また、補正制御部19が同期誤差の誤差量ΔDに応じてフレームカウンタ補正部15が行う補正方法を選択するので、状況に応じた好適な補正の方法によって自己の下り信号のフレームタイミングを補正することができる。このため、仮に、ある補正方法によっては、隣接するサブフレーム同士が大きく重なることでシンボル間干渉の影響を受けるおそれがある場合でも、シンボル間干渉の影響を回避しうる他の補正方法を選択することができる。この結果、同期誤差の誤差量ΔDに関わらずシンボル間干渉の影響を回避でき好適に基地局間同期を行うことができる。
このように本実施形態の基地局装置によれば、同期誤差の誤差量に応じて適切に基地局間同期を行うことができる。
[5. 同期処理、メジャメント処理のタイミングについて]
図12は、同期処理及びメジャメント処理が行われるタイミングを示す図である。図10では、時間軸方向に並ぶ複数の無線フレームの内、同期処理が行われるサブフレームを含む無線フレームF1及びメジャメント処理が行われるサブフレームを含む無線フレームF2の配置を示している。
本実施形態において、同期処理部5bは、同期処理が一定の周期で行われるように同期処理を行うタイミングを設定する。また、メジャメント処理部5cは、同期処理部5bが同期処理を行う無線フレームF1の次に続く無線フレームF2に含まれるサブフレームにおいてメジャメント処理が行われるように設定する。
図12では、5無線フレームを1周期として同期処理が行われるように設定されている場合を示している。
ここで、同期処理部5bは、検知部5eの検知結果に応じて、同期処理の開始タイミングの周期を調整することで、同期処理を行うタイミングを調整する。
検知部5eは、同期処理が行われる前の無線フレームF2において行われるメジャメント処理で得られるメジャメント結果情報から、他の基地局装置と接続するMS2の数を推定する。また、検知部5eは、メジャメント処理の後、次の同期処理が行われるフレームまでの間で、自己に接続するMS2の数についての情報を上位レイヤから取得する。
検知部5eは、他の基地局装置と接続するMS2の推定数と、自己に接続するMS2の数についての情報を検知結果として、同期処理部5bに与える。
これら情報が与えられた同期処理部5bは、他の基地局装置と接続するMS2の推定数、及び、自己に接続するMS2の数に応じて、同期処理の開始タイミングの周期を調整する。また、同期処理部5bが同期処理の周期を調整した後、メジャメント処理部5cは、同期処理の周期に応じて、メジャメント処理の周期を設定する。
本実施形態では、メジャメント処理部5cは、同期処理部5bが調整した同期処理の周期に応じてメジャメント処理の周期を設定する場合を例示したが、同期処理の周期に関わらず、必要に応じて、自立的にメジャメント処理を行うタイミングを設定することもできる。なお、この場合、メジャメント処理部5cは、同期処理部5bと同様、検知部5eの検知結果に基づいて、メジャメント処理を行うタイミングを設定する。
なお、本発明は、上記各実施形態に限定されることはない。
上記実施形態では、基地局装置の下り信号の無線フレームを構成する各スロット間に挿入されるCPについて、ノーマル・サイクリック・プレフィックスを採用した場合を例示したが、拡張サイクリック・プレフィックスを採用した場合においても、本発明を適用することができる。この場合、スロットを構成するシンボル数が減少することでスループットが若干低下するが、CPの時間長さTcpがより長く設定されるので、各補正方法におけるフレームタイミングの補正量をより大きく設定することができ、より大きな同期誤差について補正を行うことができる。
また、上記実施形態の補正方法2において、同期誤差の誤差量ΔDに対して10回に分けて補正を行う場合を例示したが、この補正の回数は、複数であればよく、例えば、2回でもよいし、より多くの回数に設定することもできる。さらに、この補正の回数は固定値である必要はなく、誤差量ΔDに応じて補正の回数を適応的に設定することもできる。
ただし、補正の回数が増加すれば、その回数に応じてサブフレームの送信タイミングの補正を行うことになるので、同期誤差を検出してから補正を終えるまでの時間が長期となり、同期精度が低下するおそれがある。このため、補正の回数の上限値は、1無線フレーム内に収まる程度(サブフレーム単位で補正を行う場合には10回程度)であることが好ましい。
また、上記実施形態の補正方法3では、被補正サブフレームの前に配置されるサブフレームについて、リソース割当を制限したが、このリソース割当を制限したサブフレームのタイミングで下り信号の送信を休止してもよい。
この場合、被補正サブフレームの前におけるサブフレームの時間長さの区間の範囲で被補正サブフレームを補正したとしても、当該区間の範囲では下り信号の送信を休止するのでシンボル間干渉が生じない。また、この区間においては、リソース割当が制限されるので、送信を休止することによってMS2に影響が及ぶのを抑制できる。
上記実施形態では、各補正方法において、無線フレームの先頭に位置する1番目のサブフレーム♯0でフレームタイミングの補正が行われ、又は補正が開始される場合を例示したが、他のサブフレームでフレームタイミングの補正を行い、又は開始してもよい。
また、上記実施形態では、自己の下り信号における第一及び第二同期信号を含むサブフレーム♯0、又はサブフレーム♯5が、マクロBS1aの下り信号におけるサブフレーム♯1の送信タイミングに一致するように基地局間同期を行う場合を例示したが、マクロBS1aの下り信号における他のサブフレーム♯0,♯2〜9の送信タイミングに、自己の下り信号におけるサブフレーム♯0、又はサブフレーム♯5が一致するように基地局間同期を行ってもよい。
また、上記実施形態では、同期処理の対象となる、一定の時間長さを持つ通信単位領域をサブフレームとした場合を例示したが、下り信号を構成する他の単位、例えば、無線フレームや、スロットを同期処理の対象である前記通信単位領域とすることもできるし、シンボルにより画定される区間等を前記通信単位領域とすることもできる。
なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
1 基地局装置
5b 同期処理部
5d リソース割当制御部
5e 検知部
12 下り信号受信部
14 同期誤差検出部
15 フレームカウンタ補正部
17 周波数補正部
19 補正制御部

Claims (9)

  1. 一定の時間長さを持つ通信単位領域を時間軸に複数配置することで構成された下り信号を用い、周波数分割複信によって端末装置との間で通信を行う基地局装置であって、
    他の基地局装置からの下り信号を受信する受信部と、
    前記受信部が受信した前記他の基地局装置からの下り信号に基づいて、前記他の基地局装置の下り信号の通信単位領域と自己の下り信号の通信単位領域との間の同期誤差を検出する同期誤差検出部と、
    前記同期誤差に基づいて、前記自己の下り信号を補正することで前記他の基地局装置の下り信号に同期させる補正部と、
    前記同期誤差の誤差量に応じて、複数種類の補正の方法の中から前記補正部が行う補正の方法を選択する補正制御部と、を備えていることを特徴とする基地局装置。
  2. 前記複数種類の補正の方法には、前記同期誤差の誤差量について複数回に分けて補正を行う第一の方法を含む請求項1に記載の基地局装置。
  3. 前記下り信号が、複数のサブフレームからなる基本フレームを有しており、
    前記通信単位領域が、前記サブフレームであり、
    前記第一の方法は、前記同期誤差の誤差量について前記複数のサブフレームごとに補正を行うものである請求項2に記載の基地局装置。
  4. 前記通信単位領域における前記端末装置に対するリソース割当を制御するリソース割当制御部をさらに備え、
    前記複数種類の補正の方法には、前記リソース割当部が補正対象である被補正通信単位領域の前に配置される通信単位領域におけるリソース割当を制限した上で、前記被補正通信単位領域の補正を行う第二の方法を含んでいる請求項1〜3のいずれか一項に記載の基地局装置。
  5. 前記第二の方法は、前記被補正通信単位領域の前に配置される通信単位領域における自己の下り信号の送信を休止するものである請求項4に記載の基地局装置。
  6. 前記補正制御部は、前記同期誤差の誤差量が予め定められた閾値よりも大きい場合、前記第二の方法を選択する請求項4又は5に記載の基地局装置。
  7. 前記閾値は、隣接する前記通信単位領域同士の間に挿入されるガードインターバル区間の時間長さに応じて設定される請求項6に記載の基地局装置。
  8. 自己の下り信号によって前記端末装置に送信すべきデータ量を検知する検知部をさらに備え、
    前記補正制御部は、前記同期誤差の誤差量及び前記検知部の検知結果に応じて、第二の方法を選択するか否かを決定する請求項4又は5に記載の基地局装置。
  9. 前記下り信号が、複数のサブフレームからなる基本フレームを有しており、
    前記通信単位領域が、前記サブフレームであり、
    前記第二の方法は、前記サブフレームごとにリソース割当を制限する請求項4〜8のいずれか一項に記載の基地局装置。
JP2009238964A 2009-10-05 2009-10-16 基地局装置 Expired - Fee Related JP5434462B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009238964A JP5434462B2 (ja) 2009-10-16 2009-10-16 基地局装置
US13/498,449 US9084193B2 (en) 2009-10-05 2010-10-05 Base station device
BR112012007750A BR112012007750A2 (pt) 2009-10-05 2010-10-05 dispositivo de estação base
PCT/JP2010/067457 WO2011043341A1 (ja) 2009-10-05 2010-10-05 基地局装置
EP10822011A EP2487972A1 (en) 2009-10-05 2010-10-05 Base station apparatus
CN2010800448412A CN102577549A (zh) 2009-10-05 2010-10-05 基站装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238964A JP5434462B2 (ja) 2009-10-16 2009-10-16 基地局装置

Publications (2)

Publication Number Publication Date
JP2011087151A JP2011087151A (ja) 2011-04-28
JP5434462B2 true JP5434462B2 (ja) 2014-03-05

Family

ID=44079774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238964A Expired - Fee Related JP5434462B2 (ja) 2009-10-05 2009-10-16 基地局装置

Country Status (1)

Country Link
JP (1) JP5434462B2 (ja)

Also Published As

Publication number Publication date
JP2011087151A (ja) 2011-04-28

Similar Documents

Publication Publication Date Title
WO2011043341A1 (ja) 基地局装置
US11304165B2 (en) Method and apparatus for performing sidelink communication in wireless communication system
JP5870695B2 (ja) 無線通信装置
WO2011043411A1 (ja) 基地局装置
US9603025B2 (en) Method and apparatus for synchronization mechanisms on un-licensed band
US20110170527A1 (en) Base station device
CN109891957A (zh) Ue补偿的定时提前
JP5451853B2 (ja) 基地局装置、及び同期信号取得方法
JP5838813B2 (ja) 基地局装置
WO2011043372A1 (ja) 基地局装置、基地局装置用の信号処理装置、phy処理装置、及びmac処理装置
JP5083096B2 (ja) 基地局装置
JP2011082833A (ja) 基地局装置
JP5605107B2 (ja) 基地局装置
JP5391985B2 (ja) 基地局装置、基地局装置用の信号処理装置、phy処理装置、及びmac処理装置
JP5476911B2 (ja) 基地局装置、基地局装置用の信号処理装置、phy処理装置、及びmac処理装置
JP5434462B2 (ja) 基地局装置
JP5434453B2 (ja) 基地局装置
JP2010041712A (ja) 基地局装置
US10616846B2 (en) Raster offset prediction for improved acquisition performance in NB-IoT
JP4983834B2 (ja) 基地局装置
JP5523951B2 (ja) 基地局、通信端末及び無線通信システム並びに基地局での通信方法、通信端末での通信方法及び無線通信システムでの通信方法
JP5762595B2 (ja) 基地局、通信端末、無線通信システム及び通信方法
JP2010178085A (ja) 基地局装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees