JP5432468B2 - Horizontal furnace equipment - Google Patents

Horizontal furnace equipment Download PDF

Info

Publication number
JP5432468B2
JP5432468B2 JP2008102063A JP2008102063A JP5432468B2 JP 5432468 B2 JP5432468 B2 JP 5432468B2 JP 2008102063 A JP2008102063 A JP 2008102063A JP 2008102063 A JP2008102063 A JP 2008102063A JP 5432468 B2 JP5432468 B2 JP 5432468B2
Authority
JP
Japan
Prior art keywords
process tube
peripheral surface
heat
heat insulating
high heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008102063A
Other languages
Japanese (ja)
Other versions
JP2009253179A (en
Inventor
眞 伊藤
義治 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Thermo Systems Corp
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2008102063A priority Critical patent/JP5432468B2/en
Publication of JP2009253179A publication Critical patent/JP2009253179A/en
Application granted granted Critical
Publication of JP5432468B2 publication Critical patent/JP5432468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、主面を垂直にした複数枚のシリコン基板やガラス基板を、プロセスチューブ内に水平(横)方向に沿って並べて熱処理を行う横型炉装置に関する。   The present invention relates to a horizontal furnace apparatus that heat-treats a plurality of silicon substrates or glass substrates whose main surfaces are vertical in a process tube along a horizontal (lateral) direction.

半導体の製造工程には、シリコン基板やガラス基板等の基板を高温で加熱する熱処理が含まれる。基板に対して熱処理を施す装置として、主面を垂直にした複数枚の基板をプロセスチューブ内に水平(横)方向に並べて収納する横型炉装置が用いられる。   The semiconductor manufacturing process includes a heat treatment for heating a substrate such as a silicon substrate or a glass substrate at a high temperature. As an apparatus for performing a heat treatment on a substrate, a horizontal furnace apparatus is used in which a plurality of substrates whose main surfaces are vertical are arranged and stored in a horizontal (lateral) direction in a process tube.

横型炉装置は、軸方向を水平(横)方向にして配置されたプロセスチューブの周囲にプロセスチューブ内を加熱するヒータを配置している。プロセスチューブは第1の端面が開閉自在にされており、横型炉装置の第1の端面を炉口として、複数枚の基板を搭載したボートがプロセスチューブの内部に水平(横)方向に沿って搬入出される。熱処理時には、プロセスチューブの第2の端面から第1の端面に向かって処理用ガスが導入される。   In the horizontal furnace apparatus, a heater for heating the inside of the process tube is arranged around the process tube arranged with the axial direction set in the horizontal (lateral) direction. The process tube has a first end face that can be freely opened and closed. With the first end face of the horizontal furnace apparatus as a furnace port, a boat on which a plurality of substrates are mounted extends along the horizontal (lateral) direction inside the process tube. Carry in and out. During the heat treatment, a processing gas is introduced from the second end surface of the process tube toward the first end surface.

横型炉装置の炉口の側方には熱処理前後の基板が出し入れされるが、熱処理前後の基板にヒータの熱が作用すると、適正な熱処理を施すことができない。また、ヒータの熱が外部に漏れると、プロセスチューブ内の温度を効率よく所定の処理温度に維持することが困難になるだけでなく、環境温度の上昇によってプロセスチューブ内への導入前の処理用ガスの変質や作業性の低下を招来する。   Although the substrate before and after the heat treatment is taken in and out of the side of the furnace port of the horizontal furnace apparatus, if the heat of the heater acts on the substrate before and after the heat treatment, an appropriate heat treatment cannot be performed. Also, if the heat from the heater leaks to the outside, not only will it be difficult to efficiently maintain the temperature in the process tube at the specified processing temperature, but it will also be used for processing prior to introduction into the process tube due to an increase in environmental temperature. It causes deterioration of gas and deterioration of workability.

そこで、横型炉装置におけるプロセスチューブの軸方向の両端部には、ヒータとプロセスチューブとの間隙からの熱の漏出を防止すべく、耐熱断熱部材が配置されている。従来の横型炉装置おけるプロセスチューブの軸方向の両端部に配置される耐熱断熱部材は、シリカ繊維やシリカ系セラミックファイバ等を素材として構成されている(例えば、特許文献1参照。)。
実開平5−50727号公報
Therefore, heat-resistant and heat insulating members are arranged at both ends in the axial direction of the process tube in the horizontal furnace apparatus in order to prevent heat leakage from the gap between the heater and the process tube. The heat-resistant and heat-insulating members arranged at both ends in the axial direction of the process tube in the conventional horizontal furnace apparatus are made of silica fiber, silica-based ceramic fiber, or the like (for example, see Patent Document 1).
Japanese Utility Model Publication No. 5-50727

しかし、従来の横型炉装置は、プロセスチューブの軸方向の両端部の耐熱断熱部材としてシリカ繊維やアルミナ・シリカ系セラミックファイバ等を素材として用いていたため、数百℃程度の温度下での経時変化によって繊維が剥離し、外部に対する断熱性が損なわれるとともに、処理ガスの変質、炉口廻りや処理前後の基板を汚損する問題がある。これは、非晶質であるシリカやアルミナ・シリカ系セラミックは、結晶化温度が比較的低く、熱処理時におけるプロセスチューブの両端部の温度で結晶化して脆くなるためと考えられる。また、同様の理由により、従来の横型炉装置は、処理温度が1000℃以上となるような熱処理に使用することができない問題があった。   However, the conventional horizontal furnace equipment used silica fibers, alumina / silica ceramic fibers, etc. as heat-resistant heat insulation members at both ends in the axial direction of the process tube. As a result, the fibers are peeled off, and the heat insulating property to the outside is impaired, and there is a problem that the processing gas is altered, the furnace opening and the substrate before and after the processing are soiled. This is presumably because amorphous silica and alumina / silica ceramics have a relatively low crystallization temperature, and crystallize and become brittle at both ends of the process tube during heat treatment. For the same reason, the conventional horizontal furnace apparatus has a problem that it cannot be used for heat treatment such that the processing temperature becomes 1000 ° C. or higher.

この発明の目的は、プロセスチューブの軸方向の両端部から外部への熱の漏出を確実に防止するとともに、熱処理時の温度下で高耐熱断熱部材からの繊維の剥離を防止し、炉口廻りの高温化や汚損を生じることがなく、炉口廻りの温度が1000℃以上となるような熱処理にも使用することができる横型炉装置を提供することにある。   The object of the present invention is to reliably prevent heat leakage from both ends in the axial direction of the process tube to the outside, and to prevent the fibers from peeling off from the heat-resistant heat insulating member under the temperature during heat treatment. It is an object of the present invention to provide a horizontal furnace apparatus that can be used for heat treatment such that the temperature around the furnace port becomes 1000 ° C. or higher without causing high temperature and fouling.

この発明に係る横型炉装置は、プロセスチューブ、ヒータ、第1及び第2の支持体、第1及び第2の高耐熱断熱部材を備えている。プロセスチューブは、第1の端面が開放した筒状を呈し、軸方向を水平向きにして配置される。ヒータは、プロセスチューブの外周面との間に間隙を設けて配置され、プロセスチューブの外周面を全周にわたって包囲する。第1及び第2の支持体は、プロセスチューブの軸方向の両端部のそれぞれが貫通するとともに外周面にヒータの軸方向の両端部のそれぞれが全周にわたって外嵌する。第1及び第2の高耐熱断熱部材は、プロセスチューブの外周面における両端部のそれぞれと第1及び第2の支持体のそれぞれの内周面との間にプロセスチューブの全周にわたって配置され、SiCの長繊維で構成された環状を呈する。第1及び第2の高耐熱断熱部材は、何れも半円形に形成され、それぞれ2個1組で全体として環状を構成する。
プロセスチューブの第2の端面は小径の処理ガス導入用の導入管部を除いて閉塞されており、第2の支持体を、内周面がプロセスチューブの外周面に全周にわたって対向する第1部材と、第1部材に嵌入して内側面が第2の端面に対向する第2部材と、から構成している。また、第1部材の内周面と第2部材の外周面との接触部分に全周にわたって第2部材の外側面側から嵌入する第4の高耐熱断熱部材であって、SiCの長繊維で構成された環状を呈する第4の高耐熱断熱部材をさらに備えている。プロセスチューブの第2の端面に導入管部が設けられている場合にも第2の端面近傍から外部への熱の漏出を確実に防止できる。
The horizontal furnace apparatus according to the present invention includes a process tube, a heater, first and second supports, and first and second high heat resistant heat insulating members. The process tube has a cylindrical shape with the first end face opened, and is arranged with the axial direction set to the horizontal direction. The heater is disposed with a gap between the heater and the outer peripheral surface of the process tube, and surrounds the outer peripheral surface of the process tube over the entire periphery. Each of the first and second support bodies passes through both end portions in the axial direction of the process tube, and both end portions in the axial direction of the heater are fitted around the entire outer periphery of the process tube. The first and second high heat-resistant heat insulating members are disposed over the entire circumference of the process tube between each of both end portions of the outer peripheral surface of the process tube and each inner peripheral surface of the first and second supports. It presents a ring made of SiC long fibers. Each of the first and second high heat-resistant heat insulating members is formed in a semicircular shape, and each of two sets constitutes an annular shape as a whole.
The second end surface of the process tube is closed except for an introduction pipe portion for introducing a small-diameter processing gas, and the second support is arranged in such a manner that the inner peripheral surface faces the outer peripheral surface of the process tube over the entire periphery. It is comprised from the member and the 2nd member which inserts in a 1st member and an inner surface opposes a 2nd end surface. The fourth high heat-resistant heat insulating member fitted from the outer surface side of the second member to the contact portion between the inner peripheral surface of the first member and the outer peripheral surface of the second member from the outer surface side of the second member. A fourth high heat-resistant heat insulating member having an annular shape is further provided. Even when the introduction tube portion is provided on the second end surface of the process tube, leakage of heat from the vicinity of the second end surface to the outside can be reliably prevented.

この構成では、プロセスチューブの軸方向の両端部で、プロセスチューブの外周面と第1及び第2の支持体のそれぞれとの間が、プロセスチューブの全周にわたって第1及び第2の高耐熱断熱部材によって閉塞される。プロセスチューブとヒータとの間から外部への熱伝導が、SiCの長繊維で構成された環状体の高耐熱断熱部材によって抑制される。SiCの結晶化温度は、熱処理時にプロセスチューブ及びヒータから熱伝導を受ける第1及び第2の支持体の温度に比較して十分に高い。したがって、高耐熱断熱部材は経時変化によって脆化せず、可撓性を失うこともないため、高耐熱断熱部材から繊維が剥離することがなく、炉口廻りの断熱性が維持されるとともに、炉口廻りや処理前後の基板を汚損することがない。   In this configuration, the first and second high heat-resistant insulations are provided between the outer peripheral surface of the process tube and each of the first and second supports at both ends in the axial direction of the process tube over the entire circumference of the process tube. It is blocked by the member. Heat conduction from between the process tube and the heater to the outside is suppressed by an annular high heat resistant heat insulating member made of SiC long fibers. The crystallization temperature of SiC is sufficiently higher than the temperatures of the first and second supports that receive heat conduction from the process tube and the heater during heat treatment. Therefore, the high heat-resistant heat insulating member does not become brittle due to changes over time and does not lose flexibility, so that the fibers do not peel from the high heat-resistant heat insulating member, and the heat insulating property around the furnace port is maintained, The substrate around the furnace opening and the substrate before and after processing are not soiled.

この構成において、プロセスチューブとヒータとの間の間隙に筒状のライナー管をさらに備えてもよい。プロセスチューブとヒータとの間の均熱化が図られ、プロセスチューブ内の温度制御を容易に行うことができる。   In this configuration, a cylindrical liner tube may be further provided in the gap between the process tube and the heater. Temperature equalization between the process tube and the heater is achieved, and temperature control in the process tube can be easily performed.

また、ヒータは、軸方向の両端部のそれぞれの内周面が第1及び第2の支持体のそれぞれの外周面に当接する環状の断熱部材を備えたものであってもよい。ヒータの軸方向の両端部と第1及び第2の支持体との間から外部への熱の漏出を低減できる。   The heater may include an annular heat insulating member in which inner peripheral surfaces of both end portions in the axial direction are in contact with outer peripheral surfaces of the first and second supports. It is possible to reduce the leakage of heat to the outside from between the both ends of the heater in the axial direction and the first and second supports.

さらに、プロセスチューブの外周面における第1の高耐熱断熱部材の配置位置よりも第1の端面側に全周にわたって配置されるSiCの長繊維で構成された環状を呈する第3の高耐熱断熱部材を備えてもよい。プロセスチューブの炉口側に配置される炉口廻り排気装置等の高温化を抑制して動作不良の発生を防止できる。この場合に、第3の高耐熱断熱部材は、周方向の一部に切断部が形成され、切断部の両側に固定用部材を有するものとしてもよい。切断部を両側に開いてプロセスチューブの外周面に巻着させた後に固定用部材で固定することにより、第3の高耐熱断熱部材をプロセスチューブの所定の位置に容易に配置でき、交換作業を容易に行うことができる。   Furthermore, the 3rd high heat-resistant insulation member which exhibits the cyclic | annular form comprised by the continuous fiber of SiC arrange | positioned over the perimeter to the 1st end surface side rather than the arrangement position of the 1st high heat-resistant heat insulation member in the outer peripheral surface of a process tube May be provided. Occurrence of malfunctions can be prevented by suppressing the increase in temperature of the exhaust system around the furnace port disposed on the furnace port side of the process tube. In this case, the third high heat-resistant heat insulating member may have a cut portion formed in a part in the circumferential direction and have fixing members on both sides of the cut portion. By opening the cutting part on both sides and winding it around the outer peripheral surface of the process tube, and fixing it with a fixing member, the third high heat resistant heat insulating member can be easily placed at a predetermined position on the process tube, It can be done easily.

この発明によれば、プロセスチューブの軸方向の両端部の形状及び耐熱断熱部材の材質を適正にすることができる。これによって、プロセスチューブの軸方向の両端部から外部への熱の漏出を確実に防止できるとともに、熱処理時の温度下で高耐熱断熱部材からの繊維の剥離を防止できる。炉口廻りの高温化や汚損を生じることがなく、炉口廻りの温度が1000℃以上となるような熱処理にも使用することができる。   According to this invention, the shape of the both ends of the axial direction of a process tube and the material of a heat-resistant heat insulation member can be made appropriate. Accordingly, it is possible to reliably prevent leakage of heat from the both ends in the axial direction of the process tube to the outside, and it is possible to prevent the fibers from peeling off from the high heat-resistant heat insulating member at the temperature during the heat treatment. It can be used for heat treatment in which the temperature around the furnace port is 1000 ° C. or higher without causing high temperature and fouling around the furnace port.

図1は、この発明の実施形態に係る横型炉装置の概略の断面図である。横型炉装置10は、プロセスチューブ1、ヒータ2、第1の支持体3、第2の支持体4、第1の高耐熱断熱部材5、第2の高耐熱断熱部材6、第3の高耐熱断熱部材7及び第4の高耐熱断熱部材8を備えている。横型炉装置10の側方には、炉口廻り排気装置20が配置されている。   FIG. 1 is a schematic cross-sectional view of a horizontal furnace apparatus according to an embodiment of the present invention. The horizontal furnace apparatus 10 includes a process tube 1, a heater 2, a first support 3, a second support 4, a first high heat and heat insulation member 5, a second high heat and heat insulation member 6, and a third high heat resistance. A heat insulating member 7 and a fourth heat resistant heat insulating member 8 are provided. An exhaust device 20 around the furnace port is disposed on the side of the horizontal furnace device 10.

プロセスチューブ1は、例えば、石英ガラスを素材として円筒形状に形成されている。プロセスチューブ1の第1の端面11は、炉口として開放しており、オートドア13によって開閉自在にされている。プロセスチューブ1の第2の端面12は、中心部分に形成された導入管15を除いて閉塞されている。プロセスチューブ1の内部には、炉口から主面を垂直に立てた複数枚の基板100を水平(横)方向に並べて搭載したボート30が搬入出される。プロセスチューブ1における第1の端面11側の一部は、炉口廻り排気装置20内に挿入されている。   The process tube 1 is formed in a cylindrical shape using, for example, quartz glass as a material. The first end surface 11 of the process tube 1 is open as a furnace port and can be opened and closed by an automatic door 13. The second end face 12 of the process tube 1 is closed except for the introduction pipe 15 formed in the central portion. Inside the process tube 1 is loaded and unloaded a boat 30 on which a plurality of substrates 100 whose main surfaces are vertically arranged from the furnace port are arranged in the horizontal (lateral) direction. A part of the process tube 1 on the first end face 11 side is inserted into the exhaust device 20 around the furnace port.

ヒータ2は、軸方向の両端面が開放した筒状を呈し、プロセスチューブ1の外周面を全周にわたって間隙を設けて包囲する。ヒータ2は、プロセスチューブ1の内部温度が所定の処理温度となるように制御される。ヒータ2の軸方向の両端部には、それぞれ断熱部21、22が全周にわたって備えられている。   The heater 2 has a cylindrical shape whose both end surfaces in the axial direction are open, and surrounds the outer peripheral surface of the process tube 1 with a gap around the entire periphery. The heater 2 is controlled so that the internal temperature of the process tube 1 becomes a predetermined processing temperature. At both end portions of the heater 2 in the axial direction, heat insulating portions 21 and 22 are provided over the entire circumference, respectively.

第1の支持体3は、断熱材料を素材として環状に形成されており、プロセスチューブ1の第1の端面11側に配置されている。支持体3は、取付具31によってフレーム40に取り付けられている。支持体3には、プロセスチューブ1の第1の端面11側の一部が貫通しており、ヒータ2の断熱部21が外嵌している。   The first support 3 is formed in an annular shape using a heat insulating material as a raw material, and is disposed on the first end face 11 side of the process tube 1. The support 3 is attached to the frame 40 by a fixture 31. A part of the process tube 1 on the first end face 11 side passes through the support 3, and a heat insulating portion 21 of the heater 2 is fitted on the support 3.

第2の支持体4は、第1部材41及び第2部材42によって構成され、プロセスチューブ1の第2の端面12側に配置されている。第1部材41は、断熱材料を素材として円筒状に形成されており、取付具43によってフレーム50に取り付けられている。第1部材41には、プロセスチューブ1の第2の端面12側の一部が貫通しており、ヒータ2の断熱部22が外嵌している。第2部材42は、断熱材料を素材として環状に形成されており、第1部材41に嵌入している。第2部材42の内径は、プロセスチューブ1の外径より小さく、導入管15の外径より大きい。第2部材42には、導入管15の一部が貫通している。   The second support 4 is constituted by a first member 41 and a second member 42 and is disposed on the second end face 12 side of the process tube 1. The first member 41 is formed in a cylindrical shape using a heat insulating material as a raw material, and is attached to the frame 50 by a fixture 43. A part of the process tube 1 on the second end face 12 side passes through the first member 41, and the heat insulating portion 22 of the heater 2 is fitted on the first member 41. The second member 42 is formed in an annular shape using a heat insulating material as a raw material, and is fitted into the first member 41. The inner diameter of the second member 42 is smaller than the outer diameter of the process tube 1 and larger than the outer diameter of the introduction tube 15. A part of the introduction pipe 15 passes through the second member 42.

第1の高耐熱断熱部材5は、SiCの長繊維によって環状に形成されており、第1の端面11側でプロセスチューブ1の外周面と支持体3の内周面との間に全周にわたって配置されている。   The first high heat-resistant heat insulating member 5 is formed in an annular shape by SiC long fibers, and extends between the outer peripheral surface of the process tube 1 and the inner peripheral surface of the support 3 on the first end surface 11 side. Has been placed.

第2の高耐熱断熱部材6は、SiCの長繊維によって環状に形成されており、第2の端面12側で導入管15の外周面と支持体4の第2部材42の内周面との間に全周にわたって配置されている。   The second high heat-resistant heat insulating member 6 is formed in an annular shape by SiC long fibers, and on the second end surface 12 side, the outer peripheral surface of the introduction tube 15 and the inner peripheral surface of the second member 42 of the support 4 are formed. It is arranged all around.

プロセスチューブ1は、第1の端面11側の外周面、及び導入管15で、第1の高耐熱断熱部材5及び第2の高耐熱断熱部材6を介して第1の支持体3及び第2の支持体4に支持される。   The process tube 1 includes an outer peripheral surface on the first end face 11 side and an introduction pipe 15, and the first support 3 and the second support member 5 through the first high heat resistant heat insulating member 5 and the second high heat resistant heat insulating member 6. The support 4 is supported.

なお、プロセスチューブ1とヒータ2との間隙には、周方向の一部に保持部材9が配置されている。基板100及びボート30の荷重が作用することによるプロセスチューブ1の変形や破断を防止している。   A holding member 9 is disposed in a part of the circumferential direction in the gap between the process tube 1 and the heater 2. The deformation and breakage of the process tube 1 due to the action of the load on the substrate 100 and the boat 30 are prevented.

第1の支持体3の内径は、プロセスチューブ1の外径よりも大きい。このため、第1の支持体3の内周面とプロセスチューブ1の外周面との間には間隙が形成されるが、この間隙は第1の高耐熱断熱部材5によって閉塞される。このため、プロセスチューブ1とヒータ2との間の熱が、第1の端面11側に漏出することがない。   The inner diameter of the first support 3 is larger than the outer diameter of the process tube 1. For this reason, a gap is formed between the inner peripheral surface of the first support 3 and the outer peripheral surface of the process tube 1, but this gap is closed by the first high heat-resistant heat insulating member 5. For this reason, the heat between the process tube 1 and the heater 2 does not leak to the first end face 11 side.

また、第3の高耐熱断熱部材7は、SiCの長繊維によって筒状に形成されており、プロセスチューブ1の外周面における第1の高耐熱断熱部材5の配置位置よりも第1の端面11側の部分であって脱酸素装置20内に挿入されている部分に装着している。このため、熱処理中にプロセスチューブ1の熱が、外部に放出されることを抑制できる。   Further, the third high heat-resistant heat insulating member 7 is formed in a cylindrical shape by SiC long fibers, and the first end face 11 is located on the outer peripheral surface of the process tube 1 rather than the arrangement position of the first high heat-resistant heat insulating member 5. It is attached to the side portion that is inserted into the deoxidizer 20. For this reason, it can suppress that the heat of the process tube 1 is discharge | released outside during heat processing.

これらによって、熱処理中に脱酸素装置20の温度上昇を抑制することができ、脱酸素装置20の動作不良や故障の発生を防止することができる。また、脱酸素装置20内を経由してプロセスチューブ1内に搬入出される熱処理前後の基板の変質を防止できる。さらに、環境温度の上昇を抑えることができ、基板の搬入出エリアの環境の劣化を防止できるとともに、クリーンルームへの熱負荷の増加を抑えることができる。   By these, the temperature rise of the deoxygenation apparatus 20 can be suppressed during heat treatment, and the malfunction and failure of the deoxygenation apparatus 20 can be prevented. In addition, it is possible to prevent the substrate from being deteriorated before and after the heat treatment carried in and out of the process tube 1 through the deoxidizer 20. Furthermore, an increase in the environmental temperature can be suppressed, environmental deterioration of the substrate loading / unloading area can be prevented, and an increase in heat load on the clean room can be suppressed.

第1の高耐熱断熱部材5及び第3の高耐熱断熱部材7の素材であるSiCは、結晶化温度が熱処理時におけるプロセスチューブ1の表面温度に比較して十分に高い。このため、第1の高耐熱断熱部材5及び第3の高耐熱断熱部材7は、熱処理の繰り返しによっても長期間にわたって脆化による繊維の剥離を生じることがない。これによって、熱処理前後の基板や脱酸素装置20の汚損を防止できる。   SiC, which is a material of the first high heat resistant heat insulating member 5 and the third high heat resistant heat insulating member 7, has a crystallization temperature sufficiently higher than the surface temperature of the process tube 1 during the heat treatment. For this reason, the first high heat resistant heat insulating member 5 and the third high heat resistant heat insulating member 7 do not cause fiber separation due to embrittlement over a long period of time even by repeated heat treatment. As a result, the substrate before and after the heat treatment and the deoxidation apparatus 20 can be prevented from being damaged.

第2の支持体4の第2部材42の内径は、導入管15の外径よりも大きい。このため、第2部材42の内周面と導入管15の外周面との間には間隙が形成されるが、この間隙は第2の高耐熱断熱部材6によって閉塞される。また、第4の高耐熱断熱部材8は、SiCの長繊維によって環状に形成されており、支持体4の第2部材42の外周面と第1部材41の内周面との間に全周にわたって配置されている。したがって、プロセスチューブ1とヒータ2との間の熱が第2の端面12側に漏出することがない。   The inner diameter of the second member 42 of the second support 4 is larger than the outer diameter of the introduction tube 15. For this reason, a gap is formed between the inner peripheral surface of the second member 42 and the outer peripheral surface of the introduction pipe 15, but this gap is closed by the second high heat resistant heat insulating member 6. Further, the fourth high heat-resistant heat insulating member 8 is formed in an annular shape by SiC long fibers, and the entire circumference is between the outer peripheral surface of the second member 42 of the support 4 and the inner peripheral surface of the first member 41. Is arranged over. Therefore, heat between the process tube 1 and the heater 2 does not leak to the second end face 12 side.

これらによって、導入管15の周辺の温度上昇を抑制することができ、導入前の処理用ガスの温度制御を適正に行うことができる。また、環境温度の上昇を抑えることができ、作業性の悪化を防止できる。   By these, the temperature rise around the introduction pipe 15 can be suppressed, and the temperature control of the processing gas before introduction can be appropriately performed. In addition, an increase in environmental temperature can be suppressed and workability can be prevented from deteriorating.

第2の高耐熱断熱部材6及び第4の高耐熱断熱部材8の素材であるSiCは、結晶化温度が熱処理時におけるプロセスチューブ1の表面温度に比較して十分に高い。このため、第2の高耐熱断熱部材6及び第4の高耐熱断熱部材8は、熱処理の繰り返しによっても長期間にわたって脆化による繊維の剥離を生じることがない。これによって、導入管15の周辺の汚損を防止できる。   SiC, which is a material of the second high heat resistant heat insulating member 6 and the fourth high heat resistant heat insulating member 8, has a crystallization temperature sufficiently higher than the surface temperature of the process tube 1 during the heat treatment. For this reason, the second high heat resistant heat insulating member 6 and the fourth high heat resistant heat insulating member 8 do not cause fiber separation due to embrittlement over a long period of time even when heat treatment is repeated. As a result, contamination around the introduction pipe 15 can be prevented.

なお、図2及び図3に示すように、第1の高耐熱断熱部材3及び第2の高耐熱断熱部材6は、半円形に形成されており、それぞれ2個1組で全体として環状を形成する。この形状により、プロセスチューブ1を第1の支持体3及び第2の支持体4から取り外すことなく第1の高耐熱断熱部材5及び第2の高耐熱断熱部材6を所定の位置に着脱することができ、第1の高耐熱断熱部材5及び第2の高耐熱断熱部材6を容易に交換できる。第4の高耐熱断熱部材8も第1の高耐熱断熱部材5と寸法は異なるが同様の形状を呈している。このため、第1部材41に第2部材42を嵌入したままで第4の高耐熱断熱部材8を着脱することができ、第4の高耐熱断熱部材8を容易に交換できる。   As shown in FIGS. 2 and 3, the first high heat resistant heat insulating member 3 and the second high heat resistant heat insulating member 6 are formed in a semicircular shape, and each of the two sets forms a ring as a whole. To do. With this shape, the first high heat resistant heat insulating member 5 and the second high heat heat insulating member 6 can be attached to and detached from the predetermined positions without removing the process tube 1 from the first support 3 and the second support 4. The first high heat resistant heat insulating member 5 and the second high heat resistant heat insulating member 6 can be easily replaced. The fourth high heat resistant heat insulating member 8 also has the same shape as the first high heat resistant heat insulating member 5 although the dimensions are different. For this reason, the 4th high heat-resistant heat insulation member 8 can be attached or detached with the 2nd member 42 inserted in the 1st member 41, and the 4th high heat-resistant heat insulation member 8 can be replaced | exchanged easily.

図4(A)及び(B)は、第3の高耐熱断熱部材の正面図及び側面図である。第3の高耐熱断熱部材7は、円筒状に形成されており、周方向の一部に切断部7Aが形成されている。第3の高耐熱断熱部材7の周面で切断部7Aの両側には、この発明の固定部材である紐体71A,71B,72A,72B(紐体72Aは図示されない。)が延出している。第3の高耐熱断熱部材7は、SiCの長繊維を素材として構成されているため可撓性を有し、切断部7Aを周方向の両側に拡げることでプロセスチューブ1の外周面に着脱することができる。切断部7Aを拡げてプロセスチューブ1の外周面に装着した後に、紐体71Aと紐体71Bとを結び、紐体72Aと紐体72Bとを結ぶことで、第3の高耐熱断熱部材7をプロセスチューブ1の外周面に固定することができる。   4 (A) and 4 (B) are a front view and a side view of the third high heat resistant heat insulating member. The third high heat resistant heat insulating member 7 is formed in a cylindrical shape, and a cut portion 7A is formed in a part of the circumferential direction. String bodies 71A, 71B, 72A, 72B (the string body 72A is not shown), which are fixing members of the present invention, extend on both sides of the cut portion 7A on the circumferential surface of the third high heat-resistant heat insulating member 7. . The third high heat resistant heat insulating member 7 is flexible because it is made of SiC long fibers, and is attached to and detached from the outer peripheral surface of the process tube 1 by expanding the cut portions 7A on both sides in the circumferential direction. be able to. After the cutting portion 7A is expanded and attached to the outer peripheral surface of the process tube 1, the string body 71A and the string body 71B are connected, and the string body 72A and the string body 72B are connected, whereby the third high heat-resistant heat insulating member 7 is attached. It can be fixed to the outer peripheral surface of the process tube 1.

図5は、この発明の別の実施形態に係る横型炉装置の概略の断面図である。横型炉装置110は、プロセスチューブ101、ヒータ102、ライナー管108、第1の支持体103、第2の支持体104、第1の高耐熱断熱部材105、第2の高耐熱断熱部材106及び第3の高耐熱断熱部材107を備えている。   FIG. 5 is a schematic cross-sectional view of a horizontal furnace apparatus according to another embodiment of the present invention. The horizontal furnace apparatus 110 includes a process tube 101, a heater 102, a liner tube 108, a first support 103, a second support 104, a first high heat-resistant heat insulating member 105, a second high heat-resistant heat insulating member 106, and a first 3 high heat-resistant heat insulating members 107 are provided.

プロセスチューブ101は、例えば、石英ガラスを素材として円筒形状に形成されている。プロセスチューブ1の第1の端面11は、炉口として開放しており、図示しないオートドアによって開閉自在にされている。プロセスチューブ101の第2の端面112は、中心部分に形成された小径管115を除いて閉塞されている。プロセスチューブ101の内部には、炉口から主面を垂直に立てた複数枚の基板100が図示しないボート上に水平(横)方向に並べて搭載されて搬入出される。   For example, the process tube 101 is formed in a cylindrical shape using quartz glass as a material. The first end surface 11 of the process tube 1 is opened as a furnace port and can be opened and closed by an automatic door (not shown). The second end surface 112 of the process tube 101 is closed except for the small diameter tube 115 formed in the central portion. Inside the process tube 101, a plurality of substrates 100 whose main surfaces are set up vertically from the furnace port are mounted in a horizontal (lateral) direction on a boat (not shown) and carried in and out.

ヒータ102は、軸方向の両端面が開放した筒状を呈し、プロセスチューブ101の外周面を全周にわたって間隙を設けて包囲する。ヒータ102は、プロセスチューブ101の内部温度が所定の処理温度となるように駆動される。ヒータ102の軸方向の両端部には、それぞれ断熱部121、122が全周にわたって備えられている。   The heater 102 has a cylindrical shape in which both end surfaces in the axial direction are open, and surrounds the outer peripheral surface of the process tube 101 with a gap around the entire periphery. The heater 102 is driven so that the internal temperature of the process tube 101 becomes a predetermined processing temperature. At both ends in the axial direction of the heater 102, heat insulating portions 121 and 122 are respectively provided over the entire circumference.

ライナー管108は、例えばSiCを素材として円筒形状に形成されており、プロセスチューブ101とヒータ102との間に配置される。ライナー管108は、プロセスチューブ101内の温度分布を均一化する。   The liner tube 108 is formed in a cylindrical shape using, for example, SiC as a material, and is disposed between the process tube 101 and the heater 102. The liner tube 108 makes the temperature distribution in the process tube 101 uniform.

第1の支持体103は、断熱材料を素材として円筒状に形成されており、プロセスチューブ101の第1の端面111側に配置されている。支持体103は、取付具131によってフレーム140に取り付けられている。支持体103には、プロセスチューブ101の第1の端面111側の一部が貫通しており、ヒータ102の断熱部121が外嵌している。   The first support 103 is formed in a cylindrical shape using a heat insulating material as a raw material, and is disposed on the first end face 111 side of the process tube 101. The support 103 is attached to the frame 140 by a fixture 131. A part of the process tube 101 on the first end surface 111 side passes through the support body 103, and the heat insulating portion 121 of the heater 102 is externally fitted.

第2の支持体104は、第1部材141及び第2部材142によって構成され、プロセスチューブ101の第2の端面112側に配置されている。第1部材141は、断熱材料を素材として円筒状に形成されている。第1部材141には、プロセスチューブ101の第2の端面112側の一部が貫通しており、ヒータ102の断熱部122が外嵌している。第2部材142は、断熱材料を素材として環状に形成されており、第1部材141に当接している。第2部材142の内径は、プロセスチューブ101の外径より小さく、小径管115の外径より大きい。第2部材142には、小径管115の一部が貫通している。第1部材141及び第2部材142は、取付具143によってフレーム150に取り付けられている。   The second support 104 is constituted by the first member 141 and the second member 142 and is disposed on the second end face 112 side of the process tube 101. The first member 141 is formed in a cylindrical shape using a heat insulating material as a raw material. A part of the process tube 101 on the second end surface 112 side passes through the first member 141, and the heat insulating portion 122 of the heater 102 is fitted on the first member 141. The second member 142 is formed in an annular shape using a heat insulating material as a material, and is in contact with the first member 141. The inner diameter of the second member 142 is smaller than the outer diameter of the process tube 101 and larger than the outer diameter of the small diameter tube 115. A part of the small diameter tube 115 passes through the second member 142. The first member 141 and the second member 142 are attached to the frame 150 by a fixture 143.

第1の高耐熱断熱部材105は、SiCの長繊維によって環状に形成されており、第1の端面111側でプロセスチューブ101の外周面と第1の支持体103の内周面との間に全周にわたって配置されている。   The first high heat-resistant heat insulating member 105 is formed in an annular shape by SiC long fibers, and is located between the outer peripheral surface of the process tube 101 and the inner peripheral surface of the first support 103 on the first end surface 111 side. It is arranged all around.

第2の高耐熱断熱部材106は、SiCの長繊維によって環状に形成されており、第2の端面112側で小径管115の外周面と第2の支持体104の第2部材142の内周面との間に全周にわたって配置されている。   The second high heat-resistant heat insulating member 106 is formed in an annular shape by SiC long fibers, and on the second end surface 112 side, the outer peripheral surface of the small diameter tube 115 and the inner periphery of the second member 142 of the second support member 104. It is arrange | positioned over the perimeter between surfaces.

第3の高耐熱断熱部材107は、SiCの長繊維によって環状に形成されており、第2の端面112側で小径管115の外周面に全周にわたって外嵌している。   The third high heat-resistant heat insulating member 107 is formed in an annular shape by SiC long fibers, and is externally fitted to the outer peripheral surface of the small diameter tube 115 on the second end surface 112 side.

プロセスチューブ101は、第1の端面111側の外周面、及び小径管115で、第1の高耐熱断熱部材105及び第2の高耐熱断熱部材106を介して第1の支持体103及び第2の支持体104に支持される。   The process tube 101 is an outer peripheral surface on the first end surface 111 side and a small-diameter tube 115, and the first support body 103 and the second support member 105 are interposed via the first high heat-resistant heat insulating member 105 and the second high heat-resistant heat insulating member 106. The support 104 is supported.

なお、第1の支持体103並びに第2の支持体104の第1部材141及び第2部材142は孔部を偏心させて形成されている。このため、プロセスチューブ101とライナー管108との管の間隙は全周にわたって一定であるが、ライナー管108とヒータ102との間隙は上部で広く下部で狭くされている。気中では下部に比較して上部の方が高温になることから、上下方向についてヒータ102よるプロセスチューブ101の加熱状態を均一にするためでもある。   Note that the first support member 103 and the first member 141 and the second member 142 of the second support member 104 are formed with eccentric holes. Therefore, the gap between the process tube 101 and the liner pipe 108 is constant over the entire circumference, but the gap between the liner pipe 108 and the heater 102 is wide at the top and narrow at the bottom. In the atmosphere, the temperature of the upper part is higher than that of the lower part, so that the heating state of the process tube 101 by the heater 102 is made uniform in the vertical direction.

第1の支持体103の内径は、プロセスチューブ101の外径よりも大きい。このため、第1の支持体103の内周面とプロセスチューブ101の外周面との間には間隙が形成されるが、この間隙は第1の高耐熱断熱部材105によって閉塞される。このため、プロセスチューブ101とヒータ102との間の熱が、第1の端面111側に漏出することがない。   The inner diameter of the first support 103 is larger than the outer diameter of the process tube 101. For this reason, a gap is formed between the inner peripheral surface of the first support 103 and the outer peripheral surface of the process tube 101, but this gap is closed by the first high heat-resistant heat insulating member 105. For this reason, the heat between the process tube 101 and the heater 102 does not leak to the first end face 111 side.

これによって、熱処理中に第1の端面111側の環境温度の上昇を抑制することができ、外部装置の動作不良や故障の発生、並びに基板の搬入出エリアの環境の劣化を防止できるとともに、クリーンルームへの熱負荷を抑えることができる。また、第1の端面111を経由してプロセスチューブ101内に搬入出される熱処理前後の基板の変質を防止できる。   As a result, an increase in the environmental temperature on the first end surface 111 side during the heat treatment can be suppressed, the malfunction of the external device and the occurrence of failure, and the deterioration of the environment in the substrate loading / unloading area can be prevented, and a clean room can be prevented. The heat load on can be suppressed. In addition, it is possible to prevent the substrate from being deteriorated before and after the heat treatment carried in and out of the process tube 101 via the first end surface 111.

第1の高耐熱断熱部材105の素材であるSiCは、結晶化温度が熱処理時におけるプロセスチューブ101の表面温度に比較して十分に高い。このため、第1の高耐熱断熱部材105は、熱処理の繰り返しによっても長期間にわたって脆化による繊維の剥離を生じることがない。これによって、熱処理前後の基板や外部装置の汚損を防止できる。   SiC, which is the material of the first high heat resistant heat insulating member 105, has a sufficiently high crystallization temperature as compared with the surface temperature of the process tube 101 during the heat treatment. For this reason, the 1st high heat-resistant heat insulation member 105 does not produce the peeling of the fiber by embrittlement over a long period of time by repeating heat processing. As a result, it is possible to prevent the substrate and the external device from being stained before and after the heat treatment.

第2の支持体104の第2部材142の孔部は、内側の小径部と外側の大径部とで構成されている。小径部及び大径部の何れの内径も小径管115の外径よりも大きい。このため、第2部材142の内周面と小径管115の外周面との間には間隙が形成されるが、第2部材142の大径部と小径管115の外周面との間隙は第2の高耐熱断熱部材106によって閉塞される。また、第3の高耐熱断熱部材107は、SiCの長繊維によって環状に形成されており、支持体104の第2部材142の大径部の内周面と第2の高耐熱断熱部材106の外周面との接触部分に全周にわたって外側から当接している。したがって、プロセスチューブ101とヒータ102との間の熱が第2の端面112側に漏出することがない。   The hole of the second member 142 of the second support body 104 is composed of an inner small diameter portion and an outer large diameter portion. The inner diameter of each of the small diameter portion and the large diameter portion is larger than the outer diameter of the small diameter tube 115. Therefore, a gap is formed between the inner peripheral surface of the second member 142 and the outer peripheral surface of the small diameter tube 115, but the gap between the large diameter portion of the second member 142 and the outer peripheral surface of the small diameter tube 115 is the first. 2 high heat-resistant heat insulating members 106. Further, the third high heat resistant heat insulating member 107 is formed in an annular shape by SiC long fibers, and the inner peripheral surface of the large diameter portion of the second member 142 of the support 104 and the second high heat resistant heat insulating member 106 are formed. It abuts from the outside over the entire circumference in contact with the outer peripheral surface. Therefore, the heat between the process tube 101 and the heater 102 does not leak to the second end face 112 side.

これによって、小径管115の周辺の温度上昇を抑制することができ、導入前の処理用ガスの温度制御を適正に行うことができる。また、環境温度の上昇を抑えることができ、作業性の悪化を防止できる。   Thereby, the temperature rise around the small-diameter pipe 115 can be suppressed, and the temperature control of the processing gas before introduction can be appropriately performed. In addition, an increase in environmental temperature can be suppressed and workability can be prevented from deteriorating.

第2の高耐熱断熱部材106及び第3の高耐熱断熱部材107の素材であるSiCは、結晶化温度が熱処理時におけるプロセスチューブ101の表面温度に比較して十分に高い。このため、第2の高耐熱断熱部材106及び第3の高耐熱断熱部材107は、熱処理の繰り返しによっても長期間にわたって脆化による繊維の剥離を生じることがない。これによって、小径管115の周辺の汚損を防止できる。   SiC, which is a material of the second high heat resistant heat insulating member 106 and the third high heat resistant heat insulating member 107, has a crystallization temperature sufficiently higher than the surface temperature of the process tube 101 during the heat treatment. For this reason, the second high heat resistant heat insulating member 106 and the third high heat resistant heat insulating member 107 do not cause fiber separation due to embrittlement over a long period of time even when heat treatment is repeated. As a result, contamination around the small diameter tube 115 can be prevented.

なお、図6に示すように、第2の高耐熱断熱部材106及び第3の高耐熱断熱部材107は、半円形に形成されており、それぞれ2個1組で全体として環状を形成する。この形状により、プロセスチューブ101を第2の支持体104から取り外すことなく第2の高耐熱断熱部材106及び第3の高耐熱断熱部材107を所定の位置に着脱することができ、第2の高耐熱断熱部材106及び第3の高耐熱断熱部材107を容易に交換できる。第1の高耐熱断熱部材105も図1に示した第1の高耐熱断熱部材3と寸法は異なるが同様の形状を呈している。このため、第1の支持体部材103からプロセスチューブ101を取り外すことなく第1の高耐熱断熱部材103を着脱することができ、第1の高耐熱断熱部材103を容易に交換できる。   In addition, as shown in FIG. 6, the 2nd high heat-resistant heat insulation member 106 and the 3rd high heat-resistant heat insulation member 107 are formed in the semicircle, and each form a ring as a whole by two each. With this shape, it is possible to attach and detach the second high heat resistant heat insulating member 106 and the third high heat resistant heat insulating member 107 at predetermined positions without removing the process tube 101 from the second support member 104. The heat resistant heat insulating member 106 and the third high heat resistant heat insulating member 107 can be easily replaced. The first high heat resistant heat insulating member 105 also has the same shape as the first high heat resistant heat insulating member 3 shown in FIG. For this reason, the 1st heat-resistant heat insulation member 103 can be attached or detached without removing the process tube 101 from the 1st support body member 103, and the 1st heat-resistant heat insulation member 103 can be replaced | exchanged easily.

上述の実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The above description of the embodiment is to be considered in all respects as illustrative and not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

本発明の実施形態に係る横型炉装置の概略を示す断面図である。It is sectional drawing which shows the outline of the horizontal furnace apparatus which concerns on embodiment of this invention. (A)及び(B)は、同縦型炉装置に用いられる第1の高耐熱断熱部材の正面図及び側面図である。(A) And (B) is the front view and side view of a 1st high heat-resistant heat insulation member which are used for the vertical furnace apparatus. (A)及び(B)は、同縦型炉装置に用いられる第2の高耐熱断熱部材の正面図及び側面図である。(A) And (B) is the front view and side view of a 2nd high heat-resistant heat insulation member which are used for the vertical furnace apparatus. (A)及び(B)は、同縦型炉装置に用いられる第3の高耐熱断熱部材の正面図及び側面図である。(A) And (B) is the front view and side view of a 3rd high heat-resistant heat insulation member which are used for the vertical furnace apparatus. 本発明の第2の実施形態に係る横型炉装置の概略を示す断面図である。It is sectional drawing which shows the outline of the horizontal furnace apparatus which concerns on the 2nd Embodiment of this invention. (A)及び(B)は、同縦型炉装置に用いられる第2及び第3の高耐熱断熱部材の正面図及び側面図である。(A) And (B) is the front view and side view of the 2nd and 3rd high heat-resistant heat insulation member which are used for the vertical furnace apparatus.

符号の説明Explanation of symbols

1−プロセスチューブ
2−ヒータ
3−第1の支持体
4−第2の支持体
5−第1の高耐熱断熱部材
6−第2の高耐熱断熱部材
7−第3の高耐熱断熱部材
8−第4の高耐熱断熱部材
10−横型炉装置
15−導入管
1-process tube 2-heater 3-first support 4-second support 5-first heat-resistant heat-insulating member 6-second heat-resistant heat-insulating member 7-third heat-resistant heat-insulating member 8- 4th high heat-resistant heat insulation member 10- horizontal furnace apparatus 15- introduction pipe

Claims (4)

第1の端面が開放した筒状のプロセスチューブであって軸方向を水平向きにして配置されたプロセスチューブと、
前記プロセスチューブの外周面との間に間隙を設けて配置され、前記プロセスチューブの外周面を全周にわたって包囲する筒状のヒータと、
前記プロセスチューブの軸方向の両端部のそれぞれが貫通するとともに外周面に前記ヒータの軸方向の両端部のそれぞれが外嵌する環状の第1及び第2の支持体と、
前記プロセスチューブの外周面における両端部のそれぞれと前記第1及び第2の支持体のそれぞれの内周面との間に前記プロセスチューブの全周にわたって配置され、SiCの長繊維で構成された環状を呈する第1及び第2の高耐熱断熱部材と、を備え、
前記第1及び第2の高耐熱断熱部材は、何れも半円形に形成され、それぞれ2個1組で全体として環状を構成し、
前記プロセスチューブは、第2の端面が小径の処理ガス導入用の導入管部を除いて閉塞され
前記第2の支持体は、内周面が前記プロセスチューブの外周面に全周にわたって対向する第1部材と、前記第1部材に嵌入して内側面が前記第2の端面に全周にわたって対向する第2部材と、からなり、
前記第1部材の内周面と前記第2部材の外周面との接触部分に全周にわたって前記第2部材の外側面側から嵌入する第4の高耐熱断熱部材であって、SiCの長繊維で構成された環状を呈する第4の高耐熱断熱部材をさらに備えた横型炉装置。
A cylindrical process tube having an open first end face, the process tube being arranged with the axial direction horizontal;
A cylindrical heater which is disposed with a gap between the outer peripheral surface of the process tube and surrounds the outer peripheral surface of the process tube over the entire circumference;
Annular first and second supports that each of the axial ends of the process tube penetrate and each of the axial ends of the heater are fitted on the outer peripheral surface;
An annular ring formed of SiC long fibers disposed over the entire circumference of the process tube between each of both end portions on the outer circumferential surface of the process tube and the inner circumferential surface of each of the first and second supports. A first and a second high heat-resistant heat insulating member exhibiting
Each of the first and second high heat-resistant heat insulating members is formed in a semicircular shape, each of which constitutes a ring as a whole ,
The process tube is closed except for an introduction pipe portion for introducing a processing gas having a second end surface having a small diameter ,
The second support body has a first member whose inner peripheral surface faces the outer peripheral surface of the process tube over the entire circumference, and an inner surface that fits into the first member and faces the second end surface over the entire circumference. And a second member that
4th high heat-resistant heat insulation member inserted in the contact part of the inner peripheral surface of the said 1st member, and the outer peripheral surface of the said 2nd member from the outer surface side of the said 2 member over the perimeter, Comprising: The long fiber of SiC The horizontal furnace apparatus further provided with the 4th high heat-resistant heat insulation member which exhibits the cyclic | annular form comprised by this .
前記プロセスチューブと前記ヒータとの間の間隙に筒状のライナー管をさらに備えた請求項1に記載の横型炉装置。   The horizontal furnace apparatus according to claim 1, further comprising a cylindrical liner tube in a gap between the process tube and the heater. 前記ヒータは、軸方向の両端部のそれぞれの内周面が前記第1及び第2の支持体のそれぞれの外周面に当接する環状の断熱部材を備えた請求項1又は2に記載の横型炉装置。   The horizontal furnace according to claim 1 or 2, wherein the heater includes an annular heat insulating member in which inner peripheral surfaces of both end portions in the axial direction are in contact with outer peripheral surfaces of the first and second supports. apparatus. 前記プロセスチューブの外周面における前記第1の高耐熱断熱部材の配置位置よりも前記第1の端面側に全周にわたって配置されるSiCの長繊維で構成された環状を呈する第3の高耐熱断熱部材であって、周方向の一部に切断部が形成され、切断部の両側に固定用部材を備えた第3の高耐熱断熱部材をさらに備えた請求項1乃至3の何れかに記載の横型炉装置。   A third heat resistant heat insulation exhibiting an annular shape composed of SiC long fibers disposed over the entire circumference on the first end face side relative to the arrangement position of the first heat resistant heat insulation member on the outer peripheral surface of the process tube. 4. The member according to claim 1, further comprising a third high heat-resistant heat insulating member that is a member, wherein a cut portion is formed in a part of the circumferential direction, and a fixing member is provided on both sides of the cut portion. Horizontal furnace device.
JP2008102063A 2008-04-10 2008-04-10 Horizontal furnace equipment Expired - Fee Related JP5432468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008102063A JP5432468B2 (en) 2008-04-10 2008-04-10 Horizontal furnace equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008102063A JP5432468B2 (en) 2008-04-10 2008-04-10 Horizontal furnace equipment

Publications (2)

Publication Number Publication Date
JP2009253179A JP2009253179A (en) 2009-10-29
JP5432468B2 true JP5432468B2 (en) 2014-03-05

Family

ID=41313560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008102063A Expired - Fee Related JP5432468B2 (en) 2008-04-10 2008-04-10 Horizontal furnace equipment

Country Status (1)

Country Link
JP (1) JP5432468B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8796250B2 (en) 2003-05-20 2014-08-05 Bayer Healthcare Llc Diaryl ureas for diseases mediated by PDGFR

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020215240A1 (en) 2020-12-02 2022-06-02 centrotherm international AG High-temperature process chamber arrangement and device for the high-temperature treatment of substrates

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261770A (en) * 1985-09-09 1987-03-18 Toyota Motor Corp Metallic member having heat insulating layer consisting of long fibers and its production
JPS6343422U (en) * 1986-09-04 1988-03-23
JPH0275722U (en) * 1988-11-28 1990-06-11
JPH02198134A (en) * 1989-01-27 1990-08-06 Mitsubishi Electric Corp Apparatus for manufacturing semiconductor
JPH0313732U (en) * 1989-06-27 1991-02-12
JPH07106268A (en) * 1993-09-30 1995-04-21 Sony Corp Furnace core tube
JP2889166B2 (en) * 1995-11-06 1999-05-10 川崎製鉄株式会社 Furnace wall repair equipment for coke ovens
JP2002319546A (en) * 2001-04-23 2002-10-31 Hitachi Kokusai Electric Inc Semiconductor manufacturing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8796250B2 (en) 2003-05-20 2014-08-05 Bayer Healthcare Llc Diaryl ureas for diseases mediated by PDGFR

Also Published As

Publication number Publication date
JP2009253179A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5135915B2 (en) Mounting table structure and heat treatment apparatus
JP2002118066A (en) Gas inlet pipe for semiconductor heat treatment oven
TWI466216B (en) Substrate processing device, method for manufacturing semiconductor device and roof insulator
JP5432468B2 (en) Horizontal furnace equipment
TWI446969B (en) A silicon resin supporting device and a silicon resin heating and quench unit using the supporting device
JP2001210649A (en) Ultra high-temperature heat-treating apparatus
JP5432461B2 (en) Vertical furnace equipment
JP2009224504A (en) Substrate processing apparatus
US8420554B2 (en) Wafer support ring
JP5432465B2 (en) Vertical furnace equipment
KR20010062144A (en) Substrate holder for heat treatment, heat treatment apparatus and method of substrate
JP2009049095A (en) Vertical thermal treatment equipment
KR20080035639A (en) Placing table structure, method for manufacturing placing table structure and heat treatment apparatus
KR20100029576A (en) Wafer annealing apparatus
JP4435221B2 (en) Empty baking method for heat treatment equipment
JP2010028099A (en) Setter for substrate heat-treating, and method of heat-treating tft substrate using the same
JP2005249276A (en) Clean oven
JPS6245020A (en) Method for sealing quartz tube for semiconductor heating
JP2007134450A (en) Method and apparatus for manufacturing semiconductor
JP5347319B2 (en) Vertical heat treatment equipment
JP5304068B2 (en) Vertical heat treatment equipment
KR101550262B1 (en) Electric heaters for semiconductor processing equipment
JP4525905B2 (en) Horizontal heat treatment furnace and annealed wafer manufacturing method
JP5593474B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, ceiling insulator, and heating apparatus
JP2009059844A (en) Heat treatment furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5432468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees