JP5432430B2 - Coating liquid for forming transparent film and substrate with transparent film - Google Patents

Coating liquid for forming transparent film and substrate with transparent film Download PDF

Info

Publication number
JP5432430B2
JP5432430B2 JP2006301738A JP2006301738A JP5432430B2 JP 5432430 B2 JP5432430 B2 JP 5432430B2 JP 2006301738 A JP2006301738 A JP 2006301738A JP 2006301738 A JP2006301738 A JP 2006301738A JP 5432430 B2 JP5432430 B2 JP 5432430B2
Authority
JP
Japan
Prior art keywords
niobium
oxide fine
dispersion
fine particles
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006301738A
Other languages
Japanese (ja)
Other versions
JP2008115323A (en
Inventor
龍久 内野
通郎 小松
博和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2006301738A priority Critical patent/JP5432430B2/en
Publication of JP2008115323A publication Critical patent/JP2008115323A/en
Application granted granted Critical
Publication of JP5432430B2 publication Critical patent/JP5432430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、透明被膜形成用塗布液および該塗布液を用いて形成された透明被膜付基材に関し、さらに詳しくは、高い屈折率を有し、透過率が高く、干渉縞もなく、耐擦傷性、耐衝撃性、耐薬品性、耐候性、耐光性、紫外線吸収性能、耐熱水性、可撓性および染色性などに優れ、ガラス、プラスチックなどの基材との密着性にも優れた透明被膜を基材の表面に形成するための塗布液およびこの塗布液を用いて形成された透明被膜付基材に関する。   The present invention relates to a coating liquid for forming a transparent film and a substrate with a transparent film formed using the coating liquid. More specifically, the present invention has a high refractive index, high transmittance, no interference fringes, and scratch resistance. Transparent film with excellent adhesion, impact resistance, chemical resistance, weather resistance, light resistance, UV absorption performance, hot water resistance, flexibility and dyeability, and excellent adhesion to substrates such as glass and plastic The present invention relates to a coating solution for forming a film on the surface of a substrate and a substrate with a transparent coating formed using the coating solution.

従来より、透明プラスチック、ガラスなどの基材の表面に、基材の屈折率に近いか、あるいは同等の屈折率を有する高屈折率ハードコート膜の形成方法が種々提案されている。
これに関して、特にジエチレングリコールピス(アリルカーポネート)樹脂レンズは、ガラスレンズに比較して安全性、易加工性、ファッション性などにおいて優れており、さらに近年反射防止技術、ハードコート技術、ハードコート技術+反射防止技術、プライマー技術+ハードコート技術+反射防止技術等が開発されたことにより、急速に普及してきた。しかしながら、ジエチレングリコールピス(アリルカーポネート)樹脂の屈折率が1.50とガラスレンズに比べ低いため、近視用レンズでは外周部がガラスレンズに比べ厚
くなるという欠点があった。このため合成樹脂製眼鏡レンズの分野では、高屈折率樹脂材料によって薄型化を図る試みが積極的に行われている。このような試みとして、特開昭59−133211号公報(特許文献1)、特開昭63−46213号公報(特許文献2)、特開平2−270859号公報(特許文献3)などには、1.60さらにはそれ以上の
屈折率を有する高屈折率樹脂材料が提案されている。
Conventionally, various methods for forming a high refractive index hard coat film having a refractive index close to or equivalent to the refractive index of a substrate such as transparent plastic and glass have been proposed.
In this regard, in particular, diethylene glycol pis (allyl carbonate) resin lenses are superior in safety, easy processability, fashionability, etc. compared to glass lenses, and in recent years antireflection technology, hard coat technology, hard coat technology + With the development of anti-reflection technology, primer technology + hard coat technology + anti-reflection technology, etc., it has rapidly spread. However, since the refractive index of diethylene glycol bis (allyl carbonate) resin is 1.50, which is lower than that of a glass lens, the near vision lens has a drawback that its outer peripheral portion is thicker than that of a glass lens. For this reason, in the field of synthetic resin spectacle lenses, attempts to reduce the thickness by using a high refractive index resin material have been actively made. As such an attempt, Japanese Patent Application Laid-Open No. 59-133211 (Patent Document 1), Japanese Patent Application Laid-Open No. 63-46213 (Patent Document 2), Japanese Patent Application Laid-Open No. 2-270859 (Patent Document 3), etc. A high refractive index resin material having a refractive index of 1.60 or more has been proposed.

一方、プラスチック眼鏡レンズは傷が付き易いという欠点があるため、シリコン系のハードコート被膜をプラスチックレンズ表面に設ける方法が一般的に行われている。しかし、1.54以上の高屈折率樹脂レンズに同様の方法を適用した場合には、樹脂レンズとコ
ーティング膜の屈折率差による干渉縞が発生し、外観不良の原因となることがあった。この問題点を解決するために、特公昭61−54331号公報(特許文献4)、特公昭63−37142号公報(特許文献5)には、シリコン系被膜形成用塗布液(以下、被膜形成用塗布液をコーティング組成物ということがある)に使われている二酸化ケイ素微粒子のコロイド状分散体を高屈折率を有するAl、Ti、Zr、Sn、Sbの無機酸化物微粒子のコ
ロイド状分散体に置き換える技術が開示されている。また、特開平1−301517号公報(特許文献6)には、二酸化チタンと二酸化セリウムとの複合系ゾルの製造方法が開示されており、特開平2−264902号公報(特許文献7)にはTiとCeの複合無機酸化物微粒子が開示されており、特開平3−68901号公報(特許文献8)にはTi、CeおよびSiの複合酸化物を有機ケイ素化合物で処理した微粒子を含むコーティング組成物が
開示されている。
On the other hand, since the plastic spectacle lens has a drawback that it is easily damaged, a method of providing a silicon hard coat film on the surface of the plastic lens is generally performed. However, when the same method is applied to a high refractive index resin lens of 1.54 or more, interference fringes are generated due to a difference in refractive index between the resin lens and the coating film, which may cause poor appearance. In order to solve this problem, Japanese Patent Publication No. 61-54331 (Patent Document 4) and Japanese Patent Publication No. 63-37142 (Patent Document 5) disclose a coating solution for forming a silicon-based film (hereinafter referred to as a film forming film). The colloidal dispersion of silicon dioxide fine particles used in coating solutions (sometimes referred to as coating compositions) is made into a colloidal dispersion of Al, Ti, Zr, Sn, and Sb inorganic oxide fine particles having a high refractive index. A replacement technique is disclosed. JP-A-1-301517 (Patent Document 6) discloses a method for producing a composite sol of titanium dioxide and cerium dioxide, and JP-A-2-264902 (Patent Document 7). A composite inorganic oxide fine particle of Ti and Ce is disclosed, and JP-A-3-68901 (Patent Document 8) includes a coating composition containing fine particles obtained by treating a composite oxide of Ti, Ce and Si with an organosilicon compound. Things are disclosed.

また特開平5−2102号公報(特許文献9)および特開平7−76671号公報(特許文献10)では、Ti、Fe、Siの複合無機酸化物を有機ケイ素化合物で処理した粒子
を含むコーティング組成物ならびにそれを用いた硬化被膜が開示されている。
In JP-A-5-2102 (Patent Document 9) and JP-A-7-76671 (Patent Document 10), a coating composition containing particles obtained by treating a composite inorganic oxide of Ti, Fe, and Si with an organosilicon compound. And cured films using the same are disclosed.

さらに、本出願人は、特開平8−48940号公報(特許文献11)で、Ti、SiおよびZrの複合無機酸化物を有機ケイ素化合物で処理した微粒子を含むコーティング組成物
および硬化被膜を開示している。
Further, the present applicant discloses in JP-A-8-48940 (Patent Document 11) a coating composition and a cured film containing fine particles obtained by treating a composite inorganic oxide of Ti, Si and Zr with an organosilicon compound. ing.

また、近年、プラスチックレンズ(有機ガラス)の屈折率がさらに高くなっており、例えば屈折率が1.71から1.74のプラスチックレンズが市販されている。しかしながら
、この高屈折率レンズは染色性に劣る他、耐衝撃性が悪い為、レンズ基材とハードコート層の間に耐衝撃性改良の為のプライマー層を設けるなどの必要があり、このときに光干渉を発生させないようなプライマー層を設けることが特開平6-82604号公報(特許文
献12)、特開平6-138301号公報(特許文献13)に開示されている。
特開昭59−133211号公報 特開昭63−46213号公報 特開平2−270859号公報 特公昭61−54331号公報 特公昭63−37142号公報 特開平1−301517号公報 特開平2−264902号公報 特開平3−68901号公報 特開平5−2102号公報 特開平7−76671号公報 特開平8−48940号公報 特開平6-82604号公報 特開平6-138301号公報
In recent years, the refractive index of plastic lenses (organic glass) has further increased. For example, plastic lenses having a refractive index of 1.71 to 1.74 are commercially available. However, since this high refractive index lens is inferior in dyeability and has poor impact resistance, it is necessary to provide a primer layer for improving impact resistance between the lens substrate and the hard coat layer. JP-A-6-82604 (Patent Document 12) and JP-A-6-138301 (Patent Document 13) disclose provision of a primer layer that does not cause optical interference.
JP 59-133211 JP-A-63-46213 Japanese Patent Laid-Open No. 2-270859 Japanese Patent Publication No. 61-54331 Japanese Patent Publication No. 63-37142 JP-A-1-301517 JP-A-2-264902 Japanese Patent Laid-Open No. 3-68901 JP-A-5-2102 JP 7-76671 A JP-A-8-48940 JP-A-6-82604 JP-A-6-138301

しかしながら、特許文献4および特許文献5に教示されているコーティング用組成物は、以下のような課題を有していた。
例えば、Al、Zr、Sn、Sbの無機酸化物微粒子のコロイド状分散体を1.54以上の高
屈折率樹脂レンズのコーティング組成物として用いた場合、シリコン系のコーティング組成物に比べ塗布、硬化後の干渉縞の程度を改善できるものの、Al、Sbの無機酸化物微粒子を用いた場合は、コーティング被膜としての屈折率に限界があるため、屈折率が1.6
0以上のレンズ基材に対しては、干渉縞を完全に抑えることは不可能であった。この理由は、Al、Sbの無機酸化物微粒子単体としては、1.60以上の屈折率を有するものの、
一般にコーティング材料として用いる際には、有機ケイ素化合物、エポキシ樹脂等をマトリックス成分あるいはバインダー成分として混合使用するため、充填率が下がり被膜としての屈折率が基材レンズより低くなってしまうためである。
However, the coating compositions taught in Patent Document 4 and Patent Document 5 have the following problems.
For example, when a colloidal dispersion of Al, Zr, Sn, and Sb inorganic oxide fine particles is used as a coating composition for a high refractive index resin lens having a refractive index of 1.54 or more, it is applied and cured compared to a silicon-based coating composition. Although the degree of interference fringes can be improved later, when Al or Sb inorganic oxide fine particles are used, the refractive index as a coating film is limited, so that the refractive index is 1.6.
It was impossible to completely suppress interference fringes with respect to zero or more lens substrates. The reason for this is that although the inorganic oxide fine particles of Al and Sb have a refractive index of 1.60 or more,
In general, when used as a coating material, an organic silicon compound, an epoxy resin, or the like is mixed and used as a matrix component or a binder component, so that the filling rate is lowered and the refractive index as a coating becomes lower than that of the base lens.

また、Zr、Snの無機酸化物微粒子を用いる場合は、その分散性が不安定であるため、このような無機酸化物微粒子を多量に含むコーティング組成物を調製することは困難であった。   Further, when inorganic oxide fine particles of Zr and Sn are used, it is difficult to prepare a coating composition containing a large amount of such inorganic oxide fine particles because the dispersibility is unstable.

これに対し、Tiの無機酸化物微粒子のコロイド状分散体を含むコーティング用組成物
は、TiO2 自身が前記無機酸化物に比べ高い屈折率を有するために、形成された被膜は
1.60前後さらにはそれ以上の高屈折率を示し、このため干渉縞を抑制できるとともに
被膜の屈折率の選択の幅も広くなるという長所がある。しかしながら、TiO2は耐候性に劣り、紫外線照射により酸素を放出するためTiO2 は還元され黄、灰色、青色などに変
色し、放出された酸素はTiO2 から形成された被膜中の有機ケイ素化合物の有機成分の
分解、エポキシ樹脂成分の分解さらには、樹脂基材表面での被膜の劣化を起こすため耐久性に問題があった。
In contrast, the coating composition comprising a colloidal dispersion of inorganic oxide fine particles of Ti, in order to TiO 2 itself has a higher refractive index than that of the inorganic oxide, formed coating 1.60 before and after Further, it has a higher refractive index than that, and therefore has the advantage that interference fringes can be suppressed and the range of the refractive index of the coating becomes wider. However, TiO 2 is inferior in weather resistance and releases oxygen when irradiated with ultraviolet rays. Therefore, TiO 2 is reduced and discolored to yellow, gray, blue, etc., and the released oxygen is an organosilicon compound in the coating formed from TiO 2 . The organic component, the epoxy resin component, and the coating film on the surface of the resin base material deteriorated.

このため、特許文献7および8には、二酸化チタンの耐候性を改良するために二酸化チタンと二酸化セリウムを複合化した微粒子を含むコーティング組成物が開示されているが、得られる被膜は耐候性の点で必ずしも満足のいくものでなく、二酸化セリウムが黄色味を持つためにこれらの複合ゾルから得られる硬化披膜は多少なりとも黄色味を帯びたものとなる欠点があった。   For this reason, Patent Documents 7 and 8 disclose coating compositions containing fine particles in which titanium dioxide and cerium dioxide are combined in order to improve the weather resistance of titanium dioxide. In this respect, it is not always satisfactory, and since cerium dioxide has a yellowish color, the cured film obtained from these composite sols has a drawback that it is somewhat yellowish.

また特許文献9、10の二酸化チタン、二酸化ケイ素および酸化鉄からなる複合酸化物微粒子を含むコーティング組成物は、二酸化チタンの耐候性および耐光性を改良するために、少なくとも一部の鉄原子を二酸化チタンの結晶中に固溶化し、さらに二酸化ケイ素にて微粒子を被覆することにより耐候性および耐光性を改良したものであるが、得られる被膜は耐候性およぴ耐光性の点で未だ不十分であった。また、この場合も酸化鉄自体が黄色味を持つため、これらの複合酸化物ゾルから得られる硬化披膜も多少の黄色味を帯びたものとなる欠点があった。   In addition, the coating composition containing fine composite oxide particles composed of titanium dioxide, silicon dioxide and iron oxide described in Patent Documents 9 and 10 contains at least a part of iron atoms in order to improve the weather resistance and light resistance of titanium dioxide. Although it has improved the weather resistance and light resistance by solid solution in titanium crystals and coating with fine particles with silicon dioxide, the resulting coating is still insufficient in terms of weather resistance and light resistance Met. Also in this case, since iron oxide itself has a yellowish color, the cured film obtained from these composite oxide sols has a drawback that it is somewhat yellowish.

さらに、特許文献11の複合無機酸化物ゾルは、無色透明であり、このゾルを用いたコーティング組成物から得られる披膜も当初は無色透明である。しかしながら、長期の時間経過にしたがって酸化チタンが還元され被膜が青みを帯びてくることがあり、耐候性および耐光性の点で充分とはいえなかった。   Furthermore, the composite inorganic oxide sol of Patent Document 11 is colorless and transparent, and the film obtained from the coating composition using this sol is initially colorless and transparent. However, as the titanium oxide is reduced over time, the coating may become bluish, which is not sufficient in terms of weather resistance and light resistance.

また、特許文献12および13号には、酸化ケイ素、酸化鉄、酸化チタン、酸化セリウム、酸化スズ、酸化タングステン、酸化タンタル、酸化アンチモン、酸化ジルコニウム、酸化アルミニウムなどの酸化物の他一部の窒化物、ホウ化物、硫化物があげられているが、ケイ素およびアルミニウムの酸化物は屈折率が低いために高屈折率用のプライマーには使用できず、チタン、セリウム、スズ、タングステン、アンチモン等の酸化物は光活性が強い為、経時的にプライマー層を劣化させる問題がある。   Patent Documents 12 and 13 disclose nitriding of other oxides such as silicon oxide, iron oxide, titanium oxide, cerium oxide, tin oxide, tungsten oxide, tantalum oxide, antimony oxide, zirconium oxide, and aluminum oxide. Although oxides of silicon and aluminum cannot be used as a primer for high refractive index due to low refractive index, titanium, cerium, tin, tungsten, antimony, etc. Since the oxide has a strong photoactivity, there is a problem of deteriorating the primer layer over time.

さらに最近はプラスチックレンズを染色するとき、ハードコート層とプライマー層を染色して色付きプラスチックレンズに加工する場合があり、これらの酸化物は光活性が強い為、染料を分解し、色付レンズが退色する欠点を有している。また、ジルコニウムとタンタルの酸化物は不安定である為、高濃度でプライマー用塗料に配合すると凝集するか沈殿を発生し、使用できない。また、窒化物、ホウ化物、硫化物は屈折率の高い物は有るが、ほとんどが有色である為、多量に配合することができず、高屈折率で透明なプライマーを得ることが困難である。   More recently, when dyeing plastic lenses, the hard coat layer and primer layer may be dyed and processed into colored plastic lenses. Since these oxides are highly photoactive, the dyes decompose and the colored lenses Has the disadvantage of fading. Moreover, since the oxides of zirconium and tantalum are unstable, if they are blended in a primer coating at a high concentration, they aggregate or precipitate and cannot be used. In addition, nitrides, borides, and sulfides are high in refractive index, but most of them are colored, so they cannot be blended in large quantities, and it is difficult to obtain a transparent primer with a high refractive index. .

本発明者らは、上記のような従来技術における問題点を解決するために鋭意検討した結果、いままで使用されていなかった、ニオブ系酸化物微粒子を透明被膜形成用に使用すれば上記課題を何れも解消しうることを見出した。   As a result of intensive studies to solve the problems in the prior art as described above, the present inventors have solved the above problems if niobium-based oxide fine particles that have not been used so far are used for forming a transparent film. It was found that both can be solved.

本発明の要旨は以下の通りである。
[1]ニオブ系酸化物微粒子とマトリックス形成成分とを含有することを特徴とする透明被
膜形成用塗布液。
[2]前記ニオブ系酸化物微粒子が、ニオブ酸化物とともに、Fe、Ce、Si、Zr、Al、Ti、Sn、Sb、W、Znの酸化物から選ばれる1種以上の酸化物を含む複合酸化物微粒
子である[1]の透明被膜形成用塗布液。
[3]前記ニオブ系酸化物微粒子が[1]または[2]のニオブ系酸化物微粒子または他の無機酸
化物微粒子を核粒子とし、該核粒子をNb、Fe、Ce、Si、Zr、Al、Ti、Sb、W、Znの酸化物から選ばれる1種以上の酸化物で被覆したコア−シェル構造を有する[1]〜[2]の透明被膜形成用塗布液。
[4]前記ニオブ系酸化物微粒子が、その表面を有機ケイ素化合物またはアミン系化合物で
処理されている[1]〜[3]の透明被膜形成用塗布液。
[5]前記マトリックス形成成分が、熱硬化性樹脂、熱可塑性樹脂、および紫外線硬化樹脂
の1種以上から選ばれた樹脂である[1]〜[4]の透明被膜形成用塗布液。
[6]前記マトリックス形成成分が加水分解性有機ケイ素化合物および/または加水分解性
有機ケイ素化合物の加水分解物である[1]〜[4]の透明被膜形成用塗布液。
[7]基材表面に[1]〜[6]の透明被膜塗布液を用いて形成された透明被膜を有する透明被膜
付基材。
The gist of the present invention is as follows.
[1] A coating solution for forming a transparent film, comprising niobium-based oxide fine particles and a matrix-forming component.
[2] A composite in which the niobium-based oxide fine particles contain at least one oxide selected from oxides of Fe, Ce, Si, Zr, Al, Ti, Sn, Sb, W, and Zn together with niobium oxide. A coating liquid for forming a transparent film of [1], which is oxide fine particles.
[3] The niobium-based oxide fine particles are [1] or [2] niobium-based oxide fine particles or other inorganic oxide fine particles as core particles, and the core particles are Nb, Fe, Ce, Si, Zr, Al. The coating liquid for forming a transparent film according to [1] to [2], which has a core-shell structure coated with one or more oxides selected from oxides of Ti, Sb, W, and Zn.
[4] The coating liquid for forming a transparent film according to [1] to [3], wherein the niobium-based oxide fine particles have a surface treated with an organosilicon compound or an amine-based compound.
[5] The coating liquid for forming a transparent film according to [1] to [4], wherein the matrix forming component is a resin selected from one or more of a thermosetting resin, a thermoplastic resin, and an ultraviolet curable resin.
[6] The coating liquid for forming a transparent film according to [1] to [4], wherein the matrix-forming component is a hydrolyzable organosilicon compound and / or a hydrolyzate of the hydrolyzable organosilicon compound.
[7] A substrate with a transparent coating, which has a transparent coating formed on the surface of the substrate using the transparent coating solution of [1] to [6].

本発明に係る透明被膜形成用塗布液を用いて基材上に形成された被膜は、透過率が高く、無色透明であって、基材との密着性、耐候性、耐光性、紫外線吸収特性、可撓性、耐薬品性、耐熱水性および染色性に優れ、しかも表面硬度が高く、耐擦傷性、耐衝撃性に優れている。このため、これらの被膜付基材は、眼鏡レンズ、カメラなどの各種光学レンズ、各種表示素子用フィルターなどに好適に使用される。   The film formed on the substrate using the coating liquid for forming a transparent film according to the present invention has high transmittance, is colorless and transparent, and has adhesion with the substrate, weather resistance, light resistance, and ultraviolet absorption characteristics. It is excellent in flexibility, chemical resistance, hot water resistance and dyeing property, and has high surface hardness, excellent scratch resistance and impact resistance. Therefore, these coated substrates are suitably used for various optical lenses such as spectacle lenses and cameras, various display element filters, and the like.

また、本発明に係わる透明被膜形成用塗布液から得られる被膜は、高屈折率であることから、屈折率が1.54以上、特に1.66以上のレンズ基材の表面にこのような被膜を形成する場合、レンズ基材と同等の高屈折率被膜が形成できるので、干渉縞のない高屈折率レンズが得られる。   Further, since the film obtained from the coating liquid for forming a transparent film according to the present invention has a high refractive index, such a film is formed on the surface of a lens substrate having a refractive index of 1.54 or more, particularly 1.66 or more. In the case of forming the lens, a high refractive index film equivalent to the lens substrate can be formed, so that a high refractive index lens without interference fringes can be obtained.

以下、本発明に係る透明被膜形成用塗布液についてより詳細に説明する。
[透明被膜形成用塗布液]
本発明に係わる透明被膜形成用塗布液は、ニオブ系酸化物微粒子とマトリックス形成成分とを含んでいる。
Hereinafter, the coating liquid for forming a transparent film according to the present invention will be described in more detail.
[Transparent coating solution]
The coating liquid for forming a transparent film according to the present invention contains niobium oxide fine particles and a matrix forming component.

[ニオブ系酸化物微粒子]
本発明の透明被膜形成用塗布液に用いるニオブ系酸化物微粒子は、ニオブ酸化物(Nb25)を主成分とする微粒子である。ニオブ系酸化物微粒子は、ニオブ酸化物単独で構成
されるものであっても、Nb25とFe、Ce、Si、Zr、Al、Ti、Sn、Sb、W、Zn
等の酸化物から選ばれる1種以上の酸化物を含む複合酸化物から構成されるものであってもよい。なかでも、Fe、Ce、Si、Zr、Al、Ti、Snの酸化物から選ばれる1種以上の酸化物を含む複合酸化物微粒子は好適に用いることができる。Fe、Ce、Zr、Ti、Snの酸化物のいずれかを含む場合は、安定性に優れた塗布液を得ることができる。また、得られる透明被膜は、屈折率が高く透明で、基材の屈折率が1.60以上、特に1.66以上であっても干渉縞を抑制することができ、耐熱水性、耐候性、耐光性、紫外線吸収性能、耐擦傷性、耐摩耗性、可撓性および染色性に優れ、しかも基材との密着性にも優れている。
[Niobium oxide fine particles]
The niobium-based oxide fine particles used in the coating liquid for forming a transparent film of the present invention are fine particles mainly composed of niobium oxide (Nb 2 O 5 ). Even if the niobium-based oxide fine particles are composed of niobium oxide alone, Nb 2 O 5 and Fe, Ce, Si, Zr, Al, Ti, Sn, Sb, W, Zn
It may be composed of a composite oxide containing one or more oxides selected from such oxides. Among these, composite oxide fine particles containing one or more oxides selected from oxides of Fe, Ce, Si, Zr, Al, Ti, and Sn can be suitably used. When any of the oxides of Fe, Ce, Zr, Ti, and Sn is included, a coating solution having excellent stability can be obtained. Further, the obtained transparent film has a high refractive index and is transparent, and can suppress interference fringes even when the refractive index of the base material is 1.60 or more, particularly 1.66 or more, hot water resistance, weather resistance, It excels in light resistance, ultraviolet absorption performance, scratch resistance, abrasion resistance, flexibility and dyeability, and also has excellent adhesion to the substrate.

また、Si、Al、W、Snの酸化物のいずれかを含む場合は、塗布液の安定性がさらに優れており、得られる透明被膜は、屈折率が高く透明で、基材の屈折率が1.54以上、特に1.60以上であっても干渉縞を抑制することができ、耐熱水性、耐候性、耐光性、紫外線吸収性能、耐擦傷性、耐摩耗性、可撓性および染色性に優れ、しかも基材との密着性にも優れている。   In addition, when any of Si, Al, W, and Sn oxides is included, the stability of the coating solution is further improved, and the obtained transparent film has a high refractive index and is transparent, and the refractive index of the substrate is high. Interference fringes can be suppressed even if it is 1.54 or more, particularly 1.60 or more, hot water resistance, weather resistance, light resistance, ultraviolet absorption performance, scratch resistance, abrasion resistance, flexibility and dyeability. In addition, it has excellent adhesion to the substrate.

ニオブ系酸化物微粒子中のニオブ酸化物の含有量はNbとして50重量%以上、
さらには60〜95重量%の範囲にあることが好ましい。
ニオブ系酸化物微粒子中のニオブ酸化物の含有量はNbとして50重量%未満の場
合は、他の酸化物の屈折率によっても異なるが干渉縞を充分抑制することができない場合があったり、また、他の酸化物の種類によっても異なるが耐熱水性、耐候性、耐光性、紫外線吸収性能が不充分となることがある。
The content of niobium oxide in the niobium-based oxide fine particles is 50% by weight or more as Nb 2 O 5 ,
Furthermore, it is preferable that it exists in the range of 60 to 95 weight%.
When the content of niobium oxide in the niobium-based oxide fine particles is less than 50% by weight as Nb 2 O 5 , the interference fringes may not be sufficiently suppressed depending on the refractive index of other oxides. Depending on the type of other oxides, the hot water resistance, weather resistance, light resistance, and ultraviolet absorption performance may be insufficient.

また、ニオブ系酸化物微粒子がニオブ酸化物のみからなる場合は、ニオブ酸化物は結晶性のニオブ酸化物であることが好ましく、結晶性が高いほど屈折率が高く、本発明の透明被膜に好適に用いることができる。   Further, when the niobium-based oxide fine particles are composed only of niobium oxide, the niobium oxide is preferably a crystalline niobium oxide, and the higher the crystallinity, the higher the refractive index, which is suitable for the transparent film of the present invention. Can be used.

ニオブ系酸化物微粒子が他の酸化物を含む場合は、例えば、Tiの酸化物を含む場合は結晶性のTiNb27、TiNb617等であることが好ましく、Sbの酸化物を含む場
合は結晶性のSbNbO4等であることが好ましく、Feの酸化物を含む場合は結晶性の
FeNbO4等であることが好ましい。
When the niobium-based oxide fine particles include other oxides, for example, when the oxides of Ti are included, it is preferably crystalline TiNb 2 O 7 , TiNb 6 O 17, etc., and the oxides of Sb are included. In this case, crystalline SbNbO 4 or the like is preferable, and when Fe oxide is included, crystalline FeNbO 4 or the like is preferable.

ニオブ系酸化物微粒子の平均粒子径は1〜100nmの範囲にあることが好ましい。より好ましくは2〜60nm、特に好ましくは2〜15nmの範囲である。
平均粒径が100nmを越えると、得られる透明被膜が白濁することがあり、平均粒径が1nm未満の場合は得られる透明被膜の硬度が不充分で、耐擦傷性、耐摩耗性に劣ると同時に屈折率が充分高くならないことがある。
The average particle diameter of the niobium oxide fine particles is preferably in the range of 1 to 100 nm. More preferably, it is 2-60 nm, Most preferably, it is the range of 2-15 nm.
If the average particle size exceeds 100 nm, the resulting transparent coating may become cloudy. If the average particle size is less than 1 nm, the resulting transparent coating has insufficient hardness and is inferior in scratch resistance and abrasion resistance. At the same time, the refractive index may not be sufficiently high.

本発明に用いるニオブ系酸化物微粒子としては、前記ニオブ系酸化物微粒子または他の無機酸化物微粒子を核粒子とし、該核粒子をNb、Fe、Ce、Si、Zr、Al、Ti、Sb
、W、Znの酸化物から選ばれる1種以上の酸化物で被覆したコア−シェル構造を有する粒子も好適に用いることができる。
As the niobium-based oxide fine particles used in the present invention, the niobium-based oxide fine particles or other inorganic oxide fine particles are used as core particles, and the core particles are Nb, Fe, Ce, Si, Zr, Al, Ti, Sb.
Particles having a core-shell structure coated with one or more oxides selected from oxides of W, Zn and Zn can also be suitably used.

核粒子として他の無機酸化物微粒子を用いる場合、他の無機酸化物としてはTi、Zr、Fe、Ce、Snおよびこれらを主成分とする複合酸化物からなり、屈折率が1.8以上の無機酸化物粒子であれば好適に用いることができる。   When other inorganic oxide fine particles are used as the core particles, the other inorganic oxides are composed of Ti, Zr, Fe, Ce, Sn and complex oxides containing these as main components, and the refractive index is 1.8 or more. Any inorganic oxide particles can be suitably used.

また、ニオブ系酸化物微粒子を核粒子とする場合、シェルに必ずしもニオブ酸化物を含む必要はないが、他の無機酸化物微粒子を核粒子として用いる場合、シェルにはニオブ酸化物を含むことが必須であり、いずれの場合も最終的に用いるニオブ系酸化物微粒子中のニオブ酸化物の含有量がNbとして50重量%以上であることが好ましい。 Further, when niobium-based oxide fine particles are used as core particles, the shell does not necessarily contain niobium oxide, but when other inorganic oxide fine particles are used as the core particles, the shell may contain niobium oxide. In any case, the content of niobium oxide in the niobium-based oxide fine particles to be finally used is preferably 50% by weight or more as Nb 2 O 5 .

コアーシェル構造を有するニオブ系酸化物微粒子の場合も平均粒子径は1〜100nm、さらには2〜60nm、特に2〜15nmの範囲にあることが好ましい。
このような、本発明に用いることのできるニオブ系酸化物微粒子の製造方法について説明する。
[ニオブ系酸化物微粒子分散液の製造方法]
本発明に用いるニオブ系酸化物微粒子は、微粒子の主成分がニオブ酸化物からなるものの場合、ニオブ酸分散液に過酸化水素を加えて溶解および/または解膠して得られた溶液を、必要に応じてニオブ化合物以外の化合物の共存下、80〜300℃で水熱処理することで製造される。
Also in the case of niobium-based oxide fine particles having a core-shell structure, the average particle diameter is preferably 1 to 100 nm, more preferably 2 to 60 nm, and particularly preferably 2 to 15 nm.
A method for producing such niobium-based oxide fine particles that can be used in the present invention will be described.
[Production Method of Niobium Oxide Fine Particle Dispersion]
The niobium-based oxide fine particles used in the present invention require a solution obtained by dissolving and / or peptizing a niobic acid dispersion by adding hydrogen peroxide when the main component of the fine particles is a niobium oxide. According to the above, it is produced by hydrothermal treatment at 80 to 300 ° C. in the presence of a compound other than the niobium compound.

ニオブ酸は、過酸化水素に溶解および/または解膠することができれば特に制限はなく、従来公知のニオブ酸を用いることができる。ここでニオブ酸とはニオブの水酸化物(またはニオブ酸化物の水和物)をいい、Nb25・nH2Oで表すことができ、nが概ね1〜5の範囲のものをいう。 Niobic acid is not particularly limited as long as it can be dissolved and / or peptized in hydrogen peroxide, and conventionally known niobic acid can be used. Here, niobic acid refers to a hydroxide of niobium (or a hydrate of niobium oxide), which can be represented by Nb 2 O 5 .nH 2 O, where n is approximately in the range of 1 to 5. .

このようなニオブ酸は例えば以下のような方法によって得ることができる。
(1)五塩化ニオブおよび/またはオキシ塩化ニオブを出発原料とし、加水分解した後、洗浄する。
(2)ニオブ金属あるいは酸化ニオブなどを酸で溶解した溶液、または五フッ化ニオブの水溶液を中和および/または加水分解した後、洗浄する。
(3)オルトニオブ酸塩あるいはメタニオブ酸塩の溶液を中和および/または加水分解した後、洗浄する。
Such niobic acid can be obtained, for example, by the following method.
(1) Using niobium pentachloride and / or niobium oxychloride as a starting material, hydrolyzing and then washing.
(2) A solution obtained by dissolving niobium metal or niobium oxide with an acid or an aqueous solution of niobium pentafluoride is neutralized and / or hydrolyzed and then washed.
(3) The solution of orthoniobate or metaniobate is neutralized and / or hydrolyzed and then washed.

上記において、中和あるいは加水分解には、必要に応じて酸またはアルカリを添加する
ことができる。アルカリとしてはアンモニア水が好適である。
また、洗浄はイオン交換樹脂法、フィルター法、限外濾過法などの方法によって行うことができ、洗浄後のニオブ酸中のアルカリおよび酸根はニオブ酸のNb25に対して0.5重量%以下であることが好ましい。0.5重量%を越えると、最終的に得られるニオブ酸
化物微粒子分散ゾル中のアルカリおよび/または酸根が多すぎてゾルの安定性や透明性が低下したり、また安定性がないなどのために用途が制限される問題がある。
In the above, acid or alkali can be added to neutralization or hydrolysis as necessary. As the alkali, ammonia water is suitable.
The washing can be performed by an ion exchange resin method, a filter method, an ultrafiltration method, or the like. The alkali and the acid radical in the niobic acid after washing are 0.5% by weight with respect to Nb 2 O 5 of niobic acid. % Or less is preferable. If it exceeds 0.5% by weight, there will be too much alkali and / or acid radicals in the finally obtained niobium oxide fine particle dispersed sol, and the stability and transparency of the sol will decrease, and there will be no stability. Therefore, there is a problem that the use is limited.

ニオブ酸化物と他の酸化物とからなる複合酸化物粒子を製造する場合、ニオブ酸分散液とともにニオブ以外の元素の化合物の混合分散液または混合溶液を用いる。ニオブ以外の元素としては前記したとおりであり、かかる元素の硝酸塩、硫酸塩、塩化物塩、有機酸塩、酸化物等が用いられる。具体的には、塩化第1鉄、塩化第2鉄、硝酸第2鉄、硝酸セリウム、塩化アルミニウム、硫酸アルミニウム、4塩化チタン、硫酸チタニル、硝酸錫、5塩化アンチモン、タングステン酸アンモニウム、硝酸亜鉛、酸化鉄、酸化セリウム、シリカ、酸化アルミニウム、酸化チタン、酸化錫、酸化アンチモン、酸化タングステン、酸化亜鉛等が挙げられる。ここで、酸化物は水酸化物、水和物を含み、これらのゾルを用いることが好ましい。   When producing composite oxide particles composed of niobium oxide and another oxide, a mixed dispersion or mixed solution of compounds of elements other than niobium is used together with the niobic acid dispersion. Elements other than niobium are as described above, and nitrates, sulfates, chloride salts, organic acid salts, oxides, and the like of these elements are used. Specifically, ferrous chloride, ferric chloride, ferric nitrate, cerium nitrate, aluminum chloride, aluminum sulfate, titanium tetrachloride, titanyl sulfate, tin nitrate, antimony pentachloride, ammonium tungstate, zinc nitrate, Examples thereof include iron oxide, cerium oxide, silica, aluminum oxide, titanium oxide, tin oxide, antimony oxide, tungsten oxide, and zinc oxide. Here, the oxide includes hydroxide and hydrate, and these sols are preferably used.

ニオブ酸とニオブ以外の元素の化合物の混合分散液または溶液、あるいはニオブ以外の元素の化合物の分散液または溶液(以下、ニオブ酸等という)に過酸化水素を加えるが、過酸化水素の使用量は、ニオブ酸等を酸化物に換算し、合計酸化物1重量部に対して濃度が概ね5〜40重量%の過酸化水素をH22に換算して1.5〜6重量部、好ましくは2
〜4重量部加える。このときのニオブ酸等の濃度は酸化物に換算した濃度で0.5〜10
重量%、好ましくは1〜5重量%となるように調整する。
Hydrogen peroxide is added to a mixed dispersion or solution of compounds of elements other than niobic acid and niobium, or to a dispersion or solution of compounds of elements other than niobium (hereinafter referred to as niobic acid, etc.). Is converted from niobic acid or the like to an oxide, and hydrogen peroxide having a concentration of approximately 5 to 40% by weight to 1 part by weight of the total oxide is converted to H 2 O 2 by 1.5 to 6 parts by weight. Preferably 2
Add ~ 4 parts by weight. The concentration of niobic acid, etc. at this time is 0.5 to 10 in terms of oxide.
It adjusts so that it may become weight%, Preferably 1-5 weight%.

以上のように調製したニオブ酸分散液または溶液、およびニオブ以外の元素の化合物との分散液または溶液(以下、これらをまとめてニオブ酸等という)に過酸化水素を加えるが、過酸化水素の使用量は、ニオブ酸等を酸化物に換算し、合計酸化物1重量部に対して濃度が概ね5〜40重量%の過酸化水素をH22に換算して1.5〜6重量部、好ましく
は2〜4重量部加える。このときのニオブ酸等の濃度は酸化物に換算した濃度で0.5〜
10重量%、好ましくは1〜5重量%となるように調整する。
Hydrogen peroxide is added to the niobic acid dispersion or solution prepared as described above and a dispersion or solution with a compound of an element other than niobium (hereinafter collectively referred to as niobic acid or the like). The amount used is 1.5 to 6 weights by converting niobic acid or the like into an oxide, and converting hydrogen peroxide having a concentration of approximately 5 to 40% by weight into H 2 O 2 with respect to 1 part by weight of the total oxide. Parts, preferably 2-4 parts by weight. The concentration of niobic acid, etc. at this time is 0.5 to 0.5 in terms of oxide.
It is adjusted to 10 wt%, preferably 1 to 5 wt%.

22の使用量が少ない場合は、ニオブ酸、ニオブ以外の元素の化合物が完全に溶解および/または解膠せず、未反応のニオブ酸等が残存するので好ましくない。ニオブ酸等に対するH22のモル数が多すぎると、溶解および/または解膠する速度は大きく、反応は低温であるいは短時間で終了するが、過剰の過酸化水素が系内に残存することになり、経済的でなく、また水熱処理の際に酸素ガスが発生したり、圧力の上昇を伴う危険がある。 When the amount of H 2 O 2 used is small, niobic acid and compounds of elements other than niobium are not completely dissolved and / or peptized and unreacted niobic acid and the like remain, which is not preferable. When the number of moles of H 2 O 2 with respect to niobic acid or the like is too large, the dissolution and / or peptization rate is high, and the reaction is completed at a low temperature or in a short time, but excess hydrogen peroxide remains in the system. In other words, it is not economical, and there is a risk that oxygen gas is generated during the hydrothermal treatment or that the pressure increases.

ニオブ酸等に対するH22の使用量が上記範囲にあれば、加熱溶解温度にもよるが、ニオブ酸は0.5〜5時間で完全に溶解および/または解膠することができる。
また、ニオブ酸等の濃度が低い場合、濃度が低すぎて生産効率が低く、ニオブ酸等の濃度が高すぎても得られるニオブ系酸化物微粒子分散液の粘度が高くなりすぎたり安定性に欠けることがある。
If the amount of H 2 O 2 used for niobic acid or the like is within the above range, niobic acid can be completely dissolved and / or peptized in 0.5 to 5 hours, depending on the heating and melting temperature.
Also, when the concentration of niobic acid or the like is low, the production efficiency is low because the concentration is too low, and the viscosity of the niobium-based oxide fine particle dispersion obtained even if the concentration of niobic acid or the like is too high becomes too stable or stable. It may be missing.

なお、溶解および/または解膠する際に、必要に応じて加熱することができる。加熱温度としては概ね30〜100℃の範囲にあることが好ましい。加熱温度が低いと、溶解、解膠が不充分となることがあり、水熱処理して得られるニオブ系酸化物微粒子分散液の微粒子の粒子径分布が不均一になったり、溶解および/または解膠時間が長くなりすぎて生産効率が低くなることがある。また、加熱温度が100℃を越えた場合、溶解および/または解膠時間が短くなるものの、水熱処理して得られるニオブ系酸化物微粒子分散液の微粒子の粒子径分布が不均一になる傾向がある。   In addition, it can heat as needed when melt | dissolving and / or peptizing. The heating temperature is preferably in the range of approximately 30 to 100 ° C. If the heating temperature is low, dissolution and peptization may be insufficient, and the particle size distribution of the niobium oxide fine particle dispersion obtained by hydrothermal treatment may become non-uniform, and dissolution and / or dissolution may occur. The glue time may become too long and the production efficiency may be lowered. Further, when the heating temperature exceeds 100 ° C., the dissolution and / or peptization time is shortened, but the particle size distribution of the fine particles of the niobium oxide fine particle dispersion obtained by hydrothermal treatment tends to be non-uniform. is there.

本発明で用いるニオブ系酸化物微粒子の第1の製造方法は、前記したように、ニオブ酸分散液・溶液またはニオブ酸とニオブ以外の元素の化合物の混合分散液または混合溶液に過酸化水素を加えて溶解および/または解膠して得られた溶液を80〜300℃で水熱処理する。第2の製造方法は、ニオブ酸分散液に過酸化水素を加えて溶解および/または解膠して得られた溶液とニオブ以外の元素の化合物の分散液または溶液に過酸化水素を加えて溶解および/または解膠して得られた溶液とを混合し、80〜300℃で水熱処理する。第3の製造方法は、ニオブ酸分散液に過酸化水素を加えて溶解および/または解膠して得られた溶液にニオブ以外の元素の化合物の分散液または溶液を混合し、80〜300℃で水熱処理する。   As described above, the first method for producing niobium-based oxide fine particles used in the present invention comprises adding hydrogen peroxide to a niobic acid dispersion liquid / solution or a mixed dispersion liquid or mixture of compounds of elements other than niobic acid and niobium. In addition, the solution obtained by dissolution and / or peptization is hydrothermally treated at 80 to 300 ° C. In the second production method, hydrogen peroxide is added to a niobic acid dispersion and dissolved and / or peptized, and hydrogen peroxide is added to and dissolved in a dispersion or solution of a compound of an element other than niobium. And / or the solution obtained by peptization is mixed and hydrothermally treated at 80 to 300 ° C. In the third production method, a dispersion or solution of a compound of an element other than niobium is mixed with a solution obtained by dissolving and / or peptizing hydrogen peroxide in a niobic acid dispersion, Hydrothermally treat with.

これらのいずれの方法で、本発明で使用するニオブ系酸化物微粒子を調製することができる。水熱処理温度が低いとニオブ酸の脱水による酸化物化が充分進行しない。また、得られるニオブ系酸化物微粒子分散液は安定性に欠けることがあり、水熱処理温度が80〜300℃の範囲にあれば、粒子径が均一のニオブ系酸化物微粒子が得られるばかりか、安定性に優れたニオブ系酸化物微粒子分散液が得られる。好ましい水熱処理温度は100〜250℃の範囲である。   The niobium-based oxide fine particles used in the present invention can be prepared by any of these methods. If the hydrothermal treatment temperature is low, niobic acid is not sufficiently oxidized by dehydration. Further, the obtained niobium-based oxide fine particle dispersion may lack stability, and if the hydrothermal treatment temperature is in the range of 80 to 300 ° C., not only niobium-based oxide fine particles having a uniform particle diameter can be obtained, A niobium oxide fine particle dispersion having excellent stability can be obtained. A preferable hydrothermal treatment temperature is in the range of 100 to 250 ° C.

前記した水熱処理は下記粒子成長調整剤の存在下で行うことが好ましい。
粒子成長調整剤
本発明に用いる粒子成長調整剤としては、カルボン酸またはカルボン酸塩、ヒドロキシカルボン酸(1分子内にカルボキシル基とアルコール性水酸基とを有する)、ヒドロキシカルボン酸塩が用いられる。
The hydrothermal treatment described above is preferably performed in the presence of the following particle growth regulator.
Particle Growth Modifier As the particle growth regulator used in the present invention, carboxylic acid or carboxylate, hydroxycarboxylic acid (having a carboxyl group and an alcoholic hydroxyl group in one molecule), and hydroxycarboxylate are used.

具体的には、蟻酸、酢酸、蓚酸、アクリル酸(不飽和カルボン酸)、グルコン酸等のモノカルボン酸およびモノカルボン酸塩、リンゴ酸、シュウ酸、マロン酸、コハク酸、グルタール酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、などの多価カルボン酸および多価カルボン酸塩等が挙げられる。   Specifically, monocarboxylic acids and monocarboxylic acid salts such as formic acid, acetic acid, succinic acid, acrylic acid (unsaturated carboxylic acid), gluconic acid, malic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid And polyvalent carboxylic acids such as sebacic acid, maleic acid, fumaric acid, and phthalic acid, and polyvalent carboxylic acid salts.

また、α−乳酸、β−乳酸、γ−ヒドロキシ吉草酸、グリセリン酸、酒石酸、クエン酸、トロパ酸、ベンジル酸のヒドロキシカルボン酸およびヒドロキシカルボン酸塩が挙げられる。   Further, α-lactic acid, β-lactic acid, γ-hydroxyvaleric acid, glyceric acid, tartaric acid, citric acid, tropic acid, hydroxycarboxylic acid and hydroxycarboxylate of benzylic acid can be mentioned.

このような粒子成長調整剤は、ニオブ酸を調製する際にニオブ化合物に加えて加水分解してもよく、調製したニオブ酸等に加えてもよく、また過酸化水素を加えて溶解、解膠した後に加えてもよい。   Such a particle growth regulator may be hydrolyzed in addition to the niobium compound when preparing niobic acid, or may be added to the prepared niobic acid or the like, or dissolved or peptized by adding hydrogen peroxide. It may be added after.

粒子成長調整剤の使用量は、ニオブ化合物、ニオブ酸、ニオブ以外の元素の化合物の合計モル数(Nm)と粒子成長調整剤のモル数(Pm)とのモル比(Pm)/(Nm)は0.0
1〜1、さらには0.1〜0.5の範囲にあることが好ましい。
The amount of the particle growth regulator used is the molar ratio (Pm) / (Nm) of the total number of moles (Nm) of niobium compounds, niobic acid, and compounds of elements other than niobium and the number of moles of grain growth regulator (Pm). Is 0.0
It is preferably in the range of 1-1, more preferably 0.1-0.5.

前記モル比が小さいと粒子成長調整剤が不足し、水熱処理して得られるニオブ系酸化物微粒子の粒子径が不均一であったり、粗大な粒子が生成することがある。前記モル比が高すぎても、さらに粒子径を均一にしたり、粗大粒子の生成を抑制する効果がさらに向上することもなく、加えて粒子成長調整剤が多いことおよび収率が低下することがあり、経済性が低下する問題がある。   When the molar ratio is small, the particle growth regulator is insufficient, and the niobium oxide fine particles obtained by hydrothermal treatment may have nonuniform particle sizes or coarse particles. Even if the molar ratio is too high, the effect of suppressing the generation of coarse particles evenly and making the particle diameter more uniform, and in addition, there are many particle growth regulators and the yield may be reduced. There is a problem that the economy is reduced.

本発明では、前記水熱処理を種粒子の存在下で行うことが好ましい。
種粒子としてはAlなどの周期律表第III族、Ti、Zr、Si、Snなどの第IV族、V、Nb、Sbなどの第V族、Wなどの第VI族およびFeなどの第VIII族から選ばれ
た1種または2種以上の元素の無機化合物が用いられる。
In the present invention, the hydrothermal treatment is preferably performed in the presence of seed particles.
Seed particles include group III of the periodic table such as Al, group IV such as Ti, Zr, Si, and Sn, group V such as V, Nb, and Sb, group VI such as W, and group VIII such as Fe. An inorganic compound of one or more elements selected from the group is used.

無機化合物の形態としては、塩、酸化物、水酸化物またはオキシ酸あるいはオキシ酸塩等が用いられる。好ましくは、酸化物、水酸化物またはオキシ酸等のゲルまたはゾルを用いる。なかでもゾルは分散性、安定性、粒子径の均一性が高く、均一な粒子径のニオブ系酸化物微粒子を得ることができる。   As the form of the inorganic compound, salts, oxides, hydroxides, oxyacids or oxyacid salts are used. Preferably, a gel or sol such as oxide, hydroxide or oxyacid is used. Among them, the sol has high dispersibility, stability, and uniform particle size, and niobium-based oxide fine particles having a uniform particle size can be obtained.

種粒子の平均粒径は5nm未満であることが好ましいが、特に0.5〜3nmの範囲にあることが好ましい。また、種粒子の使用量はニオブ化合物、ニオブ酸、ニオブ以外の元素の化合物の酸化物としての合計重量の1〜30重量%、さらには2〜20重量%の範囲にあることが好ましい。種粒子の使用量が少ないと、粒子径を均一にする効果が不充分となることがあり、種粒子の使用量が多すぎても種粒子がニオブ化合物以外の場合にニオブ系酸化物の含有量が不充分となり、得られるニオブ系酸化物微粒子の半導体、光学特性、誘電体特性、紫外線遮蔽特性、耐光性、耐候性等が低下し用途が制限されることがある。   The average particle size of the seed particles is preferably less than 5 nm, and particularly preferably in the range of 0.5 to 3 nm. Moreover, it is preferable that the usage-amount of a seed particle exists in the range of 1-30 weight% of the total weight as an oxide of the compound of niobium compound, niobic acid, and elements other than niobium, Furthermore, it is 2-20 weight%. If the amount of seed particles used is small, the effect of making the particle diameter uniform may be insufficient, and if the seed particles are other than niobium compounds even if the amount of seed particles used is excessive, the inclusion of niobium-based oxides Insufficient amounts may reduce the semiconductor, optical properties, dielectric properties, ultraviolet shielding properties, light resistance, weather resistance, and the like of the resulting niobium-based oxide fine particles, thereby limiting the application.

さらに、本発明では、水熱処理を前記種粒子に代えて核粒子の存在下で行うことができる。核粒子としては、前記種粒子と同種の粒子であって、平均粒子径が5〜50nm、好ましくは10〜30nmの範囲にある酸化物または水酸化物の粒子が用いられる。
核粒子の使用量はニオブ化合物、ニオブ酸、ニオブ以外の元素の化合物の酸化物としての合計重量の5〜50重量%、さらには10〜30重量%の範囲にあることが好ましい。特に、最終的に得られるニオブ系酸化物微粒子中のNbの含有量が50重量%以上であることが好ましい。ニオブ系酸化物微粒子中のNbの含有量が少ないと得られるニオブ系酸化物微粒子の半導体、光学特性、誘電体特性、紫外線遮蔽特性、耐光性、耐候性等が不充分となることがある。
Furthermore, in the present invention, hydrothermal treatment can be performed in the presence of core particles instead of the seed particles. As the core particles, oxide or hydroxide particles having the same kind as the seed particles and having an average particle diameter of 5 to 50 nm, preferably 10 to 30 nm are used.
The amount of the core particles used is preferably in the range of 5 to 50% by weight, more preferably 10 to 30% by weight, based on the total weight of oxides of niobium compounds, niobic acid, and compounds of elements other than niobium. In particular, the content of Nb 2 O 5 in the finally obtained niobium-based oxide fine particles is preferably 50% by weight or more. When the content of Nb 2 O 5 in the niobium-based oxide fine particles is small, the semiconductor, optical properties, dielectric properties, ultraviolet shielding properties, light resistance, weather resistance, etc. of the obtained niobium-based oxide fine particles are insufficient. There is.

コア−シェル構造を有する粒子は、以下の方法で調製することが可能である。
前記のようにして得られたニオブ系酸化物微粒子を核粒子として、該分散液に、(1)ニオブ酸分散液・溶液、(2)ニオブ酸とニオブ以外の元素の化合物の分散液または溶液、(3)ニオブ以外の元素の化合物の分散液または溶液、のいずれかに過酸化水素を加えて溶解および/または解膠して得られた溶液を混合し、80〜300℃で水熱処理してニオブ系酸化物微粒子分散液を調製することもできる。
Particles having a core-shell structure can be prepared by the following method.
The niobium-based oxide fine particles obtained as described above are used as core particles, and (1) a niobic acid dispersion / solution, (2) a dispersion or solution of a compound of elements other than niobic acid and niobium. (3) A solution obtained by adding hydrogen peroxide to a dispersion or solution of a compound of an element other than niobium and dissolving and / or peptizing is mixed, and hydrothermally treated at 80 to 300 ° C. A niobium oxide fine particle dispersion can also be prepared.

この場合、ニオブ系酸化物微粒子がコアで、ニオブ酸等を溶解および/または解膠した溶液から誘導される酸化物でコア粒子を被覆してシェルを形成したコア−シェル構造を有するニオブ系酸化物微粒子の分散液が得られる。例えば、(1)の場合はコア粒子としてのニオブ系酸化物微粒子をニオブ酸化物で被覆したニオブ系酸化物微粒子が得られ、(2)の場合はコア粒子としてのニオブ系酸化物微粒子をニオブ酸とニオブ以外の元素の複合酸化物で被覆したニオブ系酸化物微粒子が得られ、(3)の場合はコア粒子としてのニオブ系酸化物微粒子をニオブ酸化物を含まない酸化物、複合酸化物で被覆したニオブ系酸化物微粒子が得られる。   In this case, niobium-based oxide particles having a core-shell structure in which the niobium-based oxide fine particles are the core and the core particles are coated with an oxide derived from a solution in which niobic acid or the like is dissolved and / or peptized. A fine particle dispersion is obtained. For example, in the case of (1), niobium-based oxide fine particles obtained by coating niobium-based oxide fine particles as core particles with niobium oxide are obtained. In the case of (2), niobium-based oxide fine particles as core particles are converted to niobium. Niobium-based oxide fine particles coated with a complex oxide of an element other than acid and niobium can be obtained. In the case of (3), the niobium-based oxide fine particles as core particles are converted to oxides or complex oxides that do not contain niobium oxide. Niobium-based oxide fine particles coated with can be obtained.

さらに、核粒子として、ニオブ以外の酸化物からなる無機酸化物微粒子を使用し、該微粒子分散液に、(1)ニオブ酸分散液・溶液、または(2)ニオブ酸とニオブ以外の元素の化合物の分散液または溶液に過酸化水素を加えて溶解および/または解膠した溶液を混合し、80〜300℃で水熱処理してニオブ系酸化物微粒子分散液を調製することもできる。   Furthermore, inorganic oxide fine particles composed of oxides other than niobium are used as the core particles, and (1) niobic acid dispersion / solution or (2) compounds of elements other than niobic acid and niobium are used in the fine particle dispersion. It is also possible to prepare a niobium oxide fine particle dispersion by mixing a solution obtained by adding hydrogen peroxide to a dispersion or solution of the above and dissolving and / or peptizing the solution and hydrothermally treating at 80 to 300 ° C.

上記におけるニオブ以外の元素がFe、Ce、Si、Zr、Al、Ti、Sn、Sb、W、Znから選ばれる1種以上であることが好ましく、ニオブ以外の元素の化合物としては前記と同様の化合物が用いられる。 水熱処理温度は、前記と同様80〜300℃、さらには
100〜250℃の範囲にあることが好ましい。
The elements other than niobium in the above are preferably at least one selected from Fe, Ce, Si, Zr, Al, Ti, Sn, Sb, W, and Zn. The compounds of elements other than niobium are the same as described above. A compound is used. The hydrothermal treatment temperature is preferably in the range of 80 to 300 ° C, more preferably 100 to 250 ° C, as described above.

上記のようにして得られたニオブ系酸化物微粒子分散液は、必要に応じてイオン交換樹脂などにより残存するイオンを除去して用いることもできる。しかしながら、本発明で得られるニオブ酸化物微粒子分散液には不純物やイオンが洗浄工程で予め低減されているので必ずしもその必要はない。   The niobium-based oxide fine particle dispersion obtained as described above can be used after removing remaining ions with an ion exchange resin or the like, if necessary. However, the niobium oxide fine particle dispersion obtained in the present invention is not necessarily required because impurities and ions are reduced in advance in the washing step.

また、ロータリーエバポレーターなどでメタノール、エタノールなどのアルコール、1.3-ブチレングリコールなどのグルコール類やグリセリンなど所望の溶媒に置換して用いることもできる。前記の方法で得られたニオブ酸化物微粒子分散液は分散媒が有機溶媒であっても非常に安定であり、凝集したり、ゲル化したり、沈殿が生ずることはない。   Moreover, it can also be used by substituting with a desired solvent such as alcohols such as methanol and ethanol, glycols such as 1.3-butylene glycol, and glycerin with a rotary evaporator. The niobium oxide fine particle dispersion obtained by the above method is very stable even when the dispersion medium is an organic solvent, and does not aggregate, gel, or precipitate.

本発明の製造方法によって得られるニオブ系酸化物微粒子分散液の微粒子の平均粒子径は概ね1〜100nm、好ましくは2〜60nmの範囲にある。
平均粒子径が小さいものは、安定性が不充分となり濃度の高い微粒子分散ゾルを得ることができないことがあり、平均粒子径が大きいものは、粒子が大きすぎて沈降したり、透明性が不充分となることがある。
The average particle size of the fine particles of the niobium-based oxide fine particle dispersion obtained by the production method of the present invention is generally in the range of 1 to 100 nm, preferably 2 to 60 nm.
If the average particle size is small, the stability may be insufficient and a fine particle dispersed sol may not be obtained.If the average particle size is large, the particles are too large to settle or have poor transparency. May be sufficient.

また、上記のようにして得られたニオブ酸化物微粒子分散液は、そのまま各種用途に用いることもできるし、必要に応じて希釈したり濃縮して用いることもできる。
このようなニオブ系酸化物微粒子分散液の濃度は、酸化物として5〜40重量%、さらには10〜30重量%の範囲にあることが好ましい。この範囲にあれば実用的に問題もなく、また分散液の分散性にも優れている。
Moreover, the niobium oxide fine particle dispersion obtained as described above can be used for various purposes as it is, or can be diluted or concentrated as necessary.
The concentration of such a niobium-based oxide fine particle dispersion is preferably in the range of 5 to 40% by weight, more preferably 10 to 30% by weight as an oxide. Within this range, there is no practical problem and the dispersibility of the dispersion is excellent.

本発明では、得られたニオブ系酸化物微粒子分散液を乾燥し、必要に応じて焼成してニオブ系酸化物微粒子として用いることができる。
乾燥温度は、ニオブ酸化物微粒子粉体が得られればとくに制限はなく、通常室温〜120℃で乾燥する。
In the present invention, the obtained niobium-based oxide fine particle dispersion can be dried and calcined as necessary to be used as niobium-based oxide fine particles.
The drying temperature is not particularly limited as long as niobium oxide fine particle powder can be obtained, and it is usually dried at room temperature to 120 ° C.

焼成温度としては300〜700℃の範囲であればよい、このような温度範囲で焼成すると酸化物化あるいは成分によっては結晶化が充分進行し、光学特性、紫外線遮蔽性、耐候性等に優れたニオブ系酸化物微粒子を得ることができる。なお高温で焼成すると、粒子径にもよるが粒子が凝集したり、互いに融着することがある。   The firing temperature may be in the range of 300 to 700 ° C. When firing in such a temperature range, oxidization or crystallization sufficiently proceeds depending on the component, and niobium excellent in optical properties, ultraviolet shielding properties, weather resistance, etc. Systemic oxide fine particles can be obtained. When firing at a high temperature, depending on the particle size, the particles may aggregate or be fused together.

また、本発明においては、上記の方法で得られたニオブ系酸化物微粒子分散液をあらかじめ乾燥などして微粉末の状態で用いてもよく、水および/または有機溶媒からなる分散媒にコロイド状に分散した分散液の状態で用いると、優れた透明被膜付基材を得ることができる。   In the present invention, the niobium-based oxide fine particle dispersion obtained by the above method may be dried in advance and used in the form of fine powder. The dispersion medium composed of water and / or an organic solvent may be colloidal. When used in the state of a dispersion dispersed in, an excellent substrate with a transparent film can be obtained.

なお、ニオブ系酸化物微粒子は、透明被膜形成用塗布液に配合するに際し、撥水性、撥油性を付与するなどのために表面をシリコーンやフッ素化合物等で処理して用いることもできる。   The niobium-based oxide fine particles can be used by treating the surface with silicone, a fluorine compound or the like in order to impart water repellency and oil repellency when blended in the coating liquid for forming a transparent film.

さらに、ニオブ系酸化物微粒子はシランカップリング剤等の加水分解性有機ケイ素化合物で表面処理したり表面被覆して用いることもできる。表面処理方法あるいは表面被覆方法としては特に制限はなく、例えば、分散液中に加水分解性有機ケイ素化合物を添加し、所定温度、所定時間反応させることによって、表面が有機シラン化合物で被覆される。   Furthermore, the niobium-based oxide fine particles can be used by surface treatment or surface coating with a hydrolyzable organosilicon compound such as a silane coupling agent. The surface treatment method or the surface coating method is not particularly limited, and for example, the surface is coated with an organosilane compound by adding a hydrolyzable organosilicon compound to the dispersion and reacting for a predetermined time at a predetermined temperature.

ここで用いられる加水分解性有機ケイ素化合物の種類は、用途に応じて適宜選定される。
表面改質用加水分解性有機ケイ素化合としては、具体的には、テトラメトキシシラン、テトラエトキシシランなどのテトラアルコキシシラン類、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリアセトキシシラン、メチルトリプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリプロポキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−(β−グリシドキシエトキシ)プロピルトリメトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリ工トキシシランなどのトリアルコキシまたはトリアシルオキシシラン類、およぴジメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジメトキシシラン、ジメチルジアセトキシシラン、γ−メタクリルオキシプロピルメチルジメトキシシラン、γ−メルカプトプロビルメチルジメトキシシラン、γ−アミノプロピルメチルジメトキシシランなどのジアルコキシシランまたはジアシルオキシシラン類またはトリメチルクロロシランなどが挙げられ、単独または2種以上組合せることも可能である。
The kind of the hydrolyzable organosilicon compound used here is appropriately selected according to the application.
Specific examples of hydrolyzable organosilicon compounds for surface modification include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriacetoxysilane, and methyltripropoxy. Silane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltripropoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ- (β- Trialkoxy or triacyloxysilanes such as lysidoxyethoxy) propyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, and dimethyldimethoxysilane, Dimethyldiethoxysilane, phenylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylphenyldiethoxysilane, γ-chloropropylmethyldimethoxysilane, dimethyldiacetoxysilane, γ-methacryloxypropyl Dialkoxysilanes or diacyloxysilanes such as methyldimethoxysilane, γ-mercaptoprovirmethyldimethoxysilane, γ-aminopropylmethyldimethoxysilane Or trimethylchlorosilane, and the like can be used alone or in combination of two or more.

ニオブ系酸化物微粒子粒子表面をよりよく改質するには、上記加水分解性有機ケイ素化合物のアルコール溶液とニオブ系酸化物微粒子分散液とを混合し、必要に応じて加水分解触媒として酸またはアルカリを加え、一定温度、一定時間反応させた後、混合液中の水を分離することによって有機溶剤に分散したニオブ系酸化物微粒子ができる。このようにすると、有機溶媒中での分散安定性が向上する。   In order to improve the surface of the niobium oxide fine particles, the alcohol solution of the hydrolyzable organosilicon compound and the niobium oxide fine particle dispersion are mixed, and an acid or alkali is used as a hydrolysis catalyst as necessary. And reacting at a constant temperature for a certain period of time, and then separating the water in the mixed solution to produce niobium oxide fine particles dispersed in an organic solvent. If it does in this way, the dispersion stability in an organic solvent will improve.

[マトリックス形成成分]
本発明に係る透明被膜形成用塗布液の他の構成成分であるマトリックス形成成分は、熱硬化性樹脂、熱可塑性樹脂および紫外線硬化樹脂から選ばれた透明な樹脂が用いられ、これらの樹脂の1種以上の混合物または共重合樹脂も用いられる。
[Matrix forming component]
As the matrix forming component which is another component of the coating liquid for forming a transparent film according to the present invention, a transparent resin selected from a thermosetting resin, a thermoplastic resin and an ultraviolet curable resin is used. Mixtures or copolymer resins of seeds or more are also used.

このような樹脂としては、具体的には、エポキシ樹脂、アクリル酸エステル及び/また
はメタクリル酸エステルの共重合体(この中には他のビニルモノマーとの共重合体も含む)、ポリアミド、ポリエステル(アルキッド樹脂、不飽和ポリエステル樹脂を含む)、メラミン樹脂、尿素樹脂などのアミノ樹脂、ウレタン樹脂、ポリカーボネート樹脂、ポリ酢酸ビニル、ポリビニル樹脂、シリコン系樹脂、アクリレート系紫外線硬化樹脂、エポキシ系紫外線硬化樹脂、アクリケート系γ線硬化樹脂、ジエチレングリコールビスアリルカーボネート系樹脂などを挙げることができる。
Specific examples of such resins include epoxy resins, acrylic acid ester and / or methacrylic acid ester copolymers (including copolymers with other vinyl monomers), polyamides, polyesters ( Alkyd resin, unsaturated polyester resin), melamine resin, urea resin and other amino resins, urethane resin, polycarbonate resin, polyvinyl acetate, polyvinyl resin, silicone resin, acrylate UV curable resin, epoxy UV curable resin, Examples thereof include acrylate γ-ray curable resins and diethylene glycol bisallyl carbonate resins.

さらに、上記の樹脂以外に加水分解性有機ケイ素化合物も本発明に係わる塗布液のマトリックス形成成分として好適である。このような加水分解性有機ケイ素化合物としては、例えば、下記一般式(I)で表されるシラン化合物が用いられる。   In addition to the above resins, hydrolyzable organosilicon compounds are also suitable as the matrix forming component of the coating liquid according to the present invention. As such a hydrolyzable organosilicon compound, for example, a silane compound represented by the following general formula (I) is used.

Figure 0005432430
Figure 0005432430

(ただし、式中、a、bは、0ないし2の整数であり、a+bは、1ないし3である。R1は、アルキル基、アルケニル基、フェニル基、ハロゲン化炭化水素基であり、R2は、
エポキシ基、アミノ基、アミド基、メルカプト基、メタクリロキシ基、シアノ基、ビニル基、ハロゲンで核置換された芳香環を含む有機基であり、Xは、加水分解可能な基、例えばハロゲン原子またはアルコキシル基、アルコキシアルコキシル基、アシルオキシ基である。)
前記式(I)で表されるシラン化合物としては、具体的には、テトラメトキシシラン、テトラエトキシシランなどの4官能シラン、メチルトリメトキシシラン、メチルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エ
ポキシシクロヘキシル)エチルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−ウ
レイドプロピルトリメトキシシラン、γ−シアノプロピルトリメトキシシラン、γ−モルフォリノプロピルトリメトキシシラン、N−フェニルアミノプロピルトリメトキシシラン
などの3官能シラン、前記3官能シランの1部がメチル基、エチル基、ビニル基で置換された2官能シランなどが挙げられる。これらの有機ケイ素化合物は2種以上を混合して用いてもよい。
(Wherein, a and b are integers of 0 to 2, and a + b is 1 to 3. R 1 is an alkyl group, an alkenyl group, a phenyl group, or a halogenated hydrocarbon group; 2 is
An epoxy group, an amino group, an amide group, a mercapto group, a methacryloxy group, a cyano group, a vinyl group, an organic group containing an aromatic ring nucleus-substituted with halogen, and X is a hydrolyzable group such as a halogen atom or alkoxyl A group, an alkoxyalkoxyl group, and an acyloxy group. )
Specific examples of the silane compound represented by the formula (I) include tetrafunctional silanes such as tetramethoxysilane and tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, γ-chloropropyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, N-β- (aminoethyl) 3 functional silanes such as γ-aminopropyltrimethoxysilane, γ-ureidopropyltrimethoxysilane, γ-cyanopropyltrimethoxysilane, γ-morpholinopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, 3 1 of functional silane And bifunctional silanes in which a part is substituted with a methyl group, an ethyl group, or a vinyl group. These organosilicon compounds may be used in combination of two or more.

また、これらの有機ケイ素化合物は、そのままの状態でも、あるいは加水分解して用いることもできる。本発明に係わる透明被膜形成用塗布液にこのような有機ケイ素化合物を用いる場合には、有機ケイ素化合物によって形成される被膜の硬化を促進するため、塗布液はさらに硬化用触媒を含んでいてもよい。   These organosilicon compounds can be used as they are or after being hydrolyzed. When such an organosilicon compound is used in the coating liquid for forming a transparent film according to the present invention, the coating liquid may further contain a curing catalyst in order to promote curing of the film formed by the organosilicon compound. Good.

このような硬化用触媒としては、具体的には、n−ブチルアミン、トリエチルアミン、
グアニジンなどのアミン、グリシンなどのアミノ酸、2-メチルイミダゾール、2,4−ジエ
チルイミダゾール、2-フェニルイミダゾールなどのイミダゾール、アルミニウムアセチルアセトネート、チタンアセチルアセトネート、クロムアセチルアセトネートなどの金属アセチルアセトネート、酢酸ナトリウム、ナフテン酸亜鉛、オクチル酸スズなどの有機酸金属塩、SnCl4、TiCl4、ZnCl2などのルイス酸、過塩素酸マグネシウムなどが挙げら
れる。
Specific examples of such a curing catalyst include n-butylamine, triethylamine,
Amines such as guanidine, amino acids such as glycine, imidazoles such as 2-methylimidazole, 2,4-diethylimidazole and 2-phenylimidazole, metal acetylacetonates such as aluminum acetylacetonate, titanium acetylacetonate and chromium acetylacetonate Organic acid metal salts such as sodium acetate, zinc naphthenate and tin octylate, Lewis acids such as SnCl 4 , TiCl 4 and ZnCl 2, and magnesium perchlorate.

本発明に係る透明被膜形成用塗布液は、前記のようなニオブ系酸化物微粒子とマトリックス形成成分とを有機溶媒および必要に応じてその他の成分とを混合することによって調製される。   The coating liquid for forming a transparent film according to the present invention is prepared by mixing the niobium-based oxide fine particles and the matrix-forming component as described above with an organic solvent and, if necessary, other components.

本発明に係る透明被膜形成用塗布液において、ニオブ系酸化物微粒子の含有量は、ニオブ系酸化物微粒子をNb25 と他の酸化物との合計の酸化物の重量が、透明被膜(Nb25 +他の酸化物+マトリックス固形分)100重量部に対し、1〜90重量部、好ましくは10〜80重量部となるように用いる。 In the coating liquid for forming a transparent film according to the present invention, the content of the niobium-based oxide fine particles is such that the weight of the total oxide of Nb 2 O 5 and other oxides in the niobium-based oxide fine particles Nb 2 O 5 + other oxide + matrix solid content) is used in an amount of 1 to 90 parts by weight, preferably 10 to 80 parts by weight per 100 parts by weight.

ニオブ系酸化物微粒子が合計酸化物として1重量部未満ではニオブ系酸化物微粒子を添加した効果がなく、90重量部を越えると被膜にクラックが発生し易くなり、また基材との密着性も低下し、かつ透明性も低下するなどの問題を生ずることある。また、このときの塗布液中の固形分濃度(合計酸化物+マトリックス固形分)は、塗布できれば特に制限はなく、目的に応じて適宜選択される。   If the niobium oxide fine particles are less than 1 part by weight as the total oxide, there is no effect of adding the niobium oxide fine particles, and if it exceeds 90 parts by weight, cracks are likely to occur in the coating, and the adhesion to the substrate is also good. This may cause problems such as lowering of transparency and transparency. Further, the solid content concentration (total oxide + matrix solid content) in the coating solution at this time is not particularly limited as long as it can be applied, and is appropriately selected according to the purpose.

透明被膜形成用塗布液に用いられる有機溶媒としては、具体的には、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類、メチルセロソルブ、エチルセロソルブなどのセロソルブ類、N,N−ジメチ
ルホルムアミドなどのアミド類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、酢酸エチル、酢酸ブチル、等のエチル類、γ−ブチルラクトン、N−メチル−2−ピロリドンの溶媒を単独または2種以上を混合して
用いてもよい。
Specific examples of the organic solvent used in the coating solution for forming a transparent film include alcohols such as methanol, ethanol and isopropyl alcohol, ketones such as acetone and methyl ethyl ketone, cellosolves such as methyl cellosolve and ethyl cellosolve, N, Amides such as N-dimethylformamide, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl acetate such as ethyl acetate and butyl acetate, γ-butyl lactone, N-methyl-2-pyrrolidone solvents alone or in combination You may mix and use the above.

さらにこの塗布液には、透明被膜を形成する基材の用途などに応じて、界面活性剤、紫外線吸収剤、酸化防止剤、顔料、染料、帯電防止剤、導電性物質、粘土調整材などを添加してもよい。また多官能性エポキシ化合物、多価アルコール、多価カルボン酸、多価カルボン酸無水物、ヒンダードアミン系化合物などを添加すると、形成される被膜の染色性向上、あるいは各種耐久性が向上する。
[透明被膜]
本発明に係る透明被膜は、ガラス、プラスチックなどの基材表面に上記のような透明被膜形成用塗布液をディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷などの方法で塗布した後乾燥し、次いでこのようにして加熱して硬化するなどの方法により得られる。
In addition, this coating solution contains surfactants, ultraviolet absorbers, antioxidants, pigments, dyes, antistatic agents, conductive substances, clay modifiers, etc., depending on the use of the substrate for forming the transparent film. It may be added. Further, when a polyfunctional epoxy compound, polyhydric alcohol, polycarboxylic acid, polycarboxylic acid anhydride, hindered amine compound, or the like is added, the dyeing property of the formed film is improved or various durability is improved.
[Transparent coating]
The transparent film according to the present invention is obtained by applying the above-described coating liquid for forming a transparent film on the surface of a substrate such as glass or plastic by a method such as dipping, spinner, spray, roll coater, or flexographic printing. It is obtained by a method of drying and then curing by heating in this way.

このようにして得られる本発明の透明被膜の膜厚は、通常0.05〜20μm、好まし
くは0.08〜7μmの範囲にあることが望ましい。透明被膜の膜厚が薄いと、透明被膜
の膜厚が薄いために透明被膜表面に加わる応力を充分吸収することができないために耐擦傷性等のいわゆるハードコート機能が不充分になることがある。透明被膜の膜厚が厚すぎると、膜の厚さを均一になるように塗布したり乾燥することが困難となり、このためクラックやボイドの発生により得られる透明被膜の強度や透明性が不充分となることがある。
The film thickness of the transparent coating of the present invention thus obtained is usually 0.05 to 20 μm, preferably 0.08 to 7 μm. If the film thickness of the transparent film is small, the film thickness of the transparent film is so thin that the stress applied to the surface of the transparent film cannot be sufficiently absorbed, and so-called hard coat functions such as scratch resistance may be insufficient. . If the film thickness of the transparent film is too thick, it becomes difficult to apply and dry the film uniformly so that the strength and transparency of the transparent film obtained by the generation of cracks and voids are insufficient. It may become.

基材
本発明に用いられるガラス、プラスチックなどの基材として、具体的には眼鏡レンズ、カメラなどの各種光学レンズ、各種表示素子フィルター、ルッキンググラス、窓ガラス、自動車などの塗料膜やライトカバーが挙げられる。特に、外観および耐久性に優れた薄型合成樹脂製レンズを得るため、レンズ基材の屈折率が1.54以上のものが好ましく、さ
らに透明性、染色性、耐熱性、吸水性、曲げ強度、耐衝撃性、耐候性、加工性等の点から所望の特性を満足できる基材レンズとして、含硫ウレタン系や(メタ)アクリル系、エピスルフィド系レンズ基材などが好適であり、屈折率が1.66から1.71程度あるいはさらに高く、同時にアッベ数が30を越えるレンズ基材は好適である。
Substrate As a substrate such as glass and plastic used in the present invention, specifically, various optical lenses such as spectacle lenses and cameras, various display element filters, looking glass, window glass, automobiles, paint films and light covers Can be mentioned. In particular, in order to obtain a thin synthetic resin lens excellent in appearance and durability, a lens base having a refractive index of 1.54 or more is preferable, and further, transparency, dyeability, heat resistance, water absorption, bending strength, As a base lens that can satisfy desired characteristics in terms of impact resistance, weather resistance, workability, etc., a sulfur-containing urethane type, (meth) acrylic type, episulfide type lens base material, etc. are suitable, and the refractive index is 1. A lens base material of about .66 to 1.71 or higher and simultaneously having an Abbe number exceeding 30 is suitable.

なお、透明被膜付基材を製造するに際し、基材、例えばレンズ基材と透明被膜の密着性を向上させる目的で、基材表面を予めアルカリ、酸または界面活性剤で処理したり、無機または有機微粒子で研磨したり、プライマー処理またはプラズマ処理を行ってもよい。   In producing a substrate with a transparent coating, the surface of the substrate is treated with an alkali, acid or surfactant in advance for the purpose of improving the adhesion between the substrate, for example, the lens substrate and the transparent coating, Polishing with organic fine particles, primer treatment or plasma treatment may be performed.

反射防止膜
本発明では、透明被膜上にさらに反射防止を目的に従来公知の無機物からなる単層あるいは多層の反射防止膜を設けることもできる。反射防止膜を設けることによって、反射の低減、透過率の向上を図ることができる。無機物としては、SiO、SiO2、Si34、Al23、MgF2、Ta23 等が挙げられ、真空蒸着法等の薄膜形成法により形成すること
ができる。また、SiO2を主成分とし、必要に応じて低屈折率成分を含む塗布液を塗布し、乾燥し、硬化させる等従来公知の湿式法による薄膜形成法により形成することもできる。
プライマー膜
本発明では、プライマー膜を基材と透明被膜との間に設けてもよい。プライマー膜を設けることにより耐衝撃性や密着性を向上させることができる。プライマー膜は、マトリックスとして塗料用樹脂好ましくはポリウレタン系樹脂、ポリエステル系樹脂、エポキシ系樹脂、アクリル系樹脂等の塗料用樹脂を含む塗布液をもちいて形成することができる。
Antireflection Film In the present invention, a single-layer or multilayer antireflection film made of a conventionally known inorganic substance can be further provided on the transparent coating for the purpose of antireflection. By providing an antireflection film, reflection can be reduced and transmittance can be improved. Examples of inorganic substances include SiO, SiO 2 , Si 3 N 4 , Al 2 O 3 , MgF 2 , Ta 2 O 3 and the like, and they can be formed by a thin film forming method such as a vacuum evaporation method. Alternatively, it can be formed by a conventionally known wet film forming method such as applying a coating solution containing SiO 2 as a main component and containing a low refractive index component, if necessary, and drying.
Primer film In the present invention, a primer film may be provided between the substrate and the transparent film. By providing a primer film, impact resistance and adhesion can be improved. The primer film can be formed using a coating liquid containing a coating resin, preferably a polyurethane resin, a polyester resin, an epoxy resin, an acrylic resin, or the like, as a matrix.

[実施例]
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれら実施例に限定さ
れるものではない。
[実施例1]
ニオブ系酸化物微粒子(A1)分散液の調製
濃度35.3重量%のKNbO3溶液1917gと水23083gを混合し、濃度2.71重量%のKNbO3溶液とし、これに1mol/Lの酢酸を添加し、中和した。この時のpHは5.5であった。これを濾過し、蒸留水で洗浄してニオブ酸のゲル1990gを得た。こ
のゲルの固形分濃度は、Nb25換算で24.01重量%であった。
[Example]
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.
[Example 1]
Nb based oxide particles (A1) were mixed to prepare a concentration 35.3% by weight of the KNbO 3 solution 1917g of water 23083g of the dispersion, the concentration of 2.71 wt% of KNbO 3 solution, to which the 1 mol / L acetic acid Added and neutralized. The pH at this time was 5.5. This was filtered and washed with distilled water to obtain 1990 g of niobic acid gel. The solid content concentration of this gel was 24.01% by weight in terms of Nb 2 O 5 .

得られたニオブ酸のゲル1460gに水33540gを添加し、充分撹拌した後、濃度35重量%の過酸化水素水4000gを加え、80℃で2時間加熱溶解した。得られた溶液に水を加え、Nb25換算で濃度0.5重量%とした後、オートクレーブにて150℃で18時間水熱処理を行った。 After adding 33540 g of water to 1460 g of the resulting niobic acid gel and stirring sufficiently, 4000 g of 35% by weight hydrogen peroxide was added and dissolved by heating at 80 ° C. for 2 hours. Water was added to the resulting solution to adjust the concentration to 0.5% by weight in terms of Nb 2 O 5 , and then hydrothermal treatment was performed at 150 ° C. for 18 hours in an autoclave.

ついで、これを濃縮し、Nb25換算で濃度10重量%のニオブ系酸化物微粒子(A1)水
分散液3500gを得た。
ついで、ニオブ系酸化物微粒子(A1)分散液の一部について、分散媒の水をメタノールで置換するとともに濃縮して、固形分濃度20重量%のニオブ系酸化物微粒子(A1)メタノール分散液を得た。
Next, this was concentrated to obtain 3500 g of an aqueous dispersion of niobium oxide fine particles (A1) having a concentration of 10% by weight in terms of Nb 2 O 5 .
Next, a portion of the niobium-based oxide fine particle (A1) dispersion is replaced with methanol as the dispersion medium and concentrated to obtain a niobium-based oxide fine particle (A1) methanol dispersion having a solid content of 20% by weight. Obtained.

各粒子について平均粒子径をレーザー法(PARTICLE SIZING SYSTEM社製:NICOMP380)にて測定し、粒子径の均一性を観察し、さらに粒子中の酸根を測定し、結果を表1に示した。また、各分散液について安定性、透明性、粒子の屈折率を評価し、結果を表1に示した。
粒子径の均一性
ニオブ系酸化物微粒子(A1)メタノール分散液から採取したニオブ系酸化物微粒子(A1)の透過型電子顕微鏡写真を撮影し、以下の基準で評価した。
平均粒子径の1/2以下の粒子または2倍以上の粒子が殆ど認められない : ○
平均粒子径の1/2以下の粒子または2倍以上の粒子が僅かに認められる : △
平均粒子径の1/2以下の粒子または2倍以上の粒子が明らかに認められる : X
メタノール分散液安定性の測定
Nb25換算で濃度20重量%に調整した直後のニオブ酸化物微粒子分散液の粘度と、
これを50℃で10日間加熱した後の粘度とを測定し、以下の基準で評価した。
粘度上昇率10%未満 : ◎
粘度上昇率10〜20%未満 : ○
粘度上昇率20〜50%未満 : △
粘度上昇率50%以上 : ×
透明性の測定
Nb25換算で濃度0.1重量%に調整したニオブ酸化物微粒子分散液を、厚さ10mmの石英セルに入れ、透過率測定装置(日本分光(株)製:V−550、波長550nm)で透
過率を測定し、以下の基準で評価した。
For each particle, the average particle size was measured by a laser method (manufactured by PARTICS SIZING SYSTEM: NICOM 380), the uniformity of the particle size was observed, the acid radicals in the particles were further measured, and the results are shown in Table 1. Further, the stability, transparency, and refractive index of the particles were evaluated for each dispersion, and the results are shown in Table 1.
Uniform Niobium Oxide Fine Particles (A1) Transmission electron micrographs of niobium oxide fine particles (A1) collected from a methanol dispersion were taken and evaluated according to the following criteria.
Almost no particles smaller than 1/2 of the average particle diameter or particles larger than 2 times are recognized: ○
Slightly less than 1/2 the average particle size or more than twice the average particle size: Δ
Particles with an average particle size of ½ or less or twice or more are clearly recognized: X
Measurement of methanol dispersion stability Viscosity of niobium oxide fine particle dispersion immediately after adjustment to a concentration of 20% by weight in terms of Nb 2 O 5 ,
The viscosity after heating at 50 ° C. for 10 days was measured and evaluated according to the following criteria.
Viscosity increase rate is less than 10%: ◎
Viscosity increase rate less than 10-20%: ○
Viscosity increase rate 20 to less than 50%: Δ
Viscosity increase rate 50% or more: ×
Transparency Measurement A niobium oxide fine particle dispersion liquid adjusted to a concentration of 0.1% by weight in terms of Nb 2 O 5 was placed in a quartz cell having a thickness of 10 mm, and a transmittance measuring device (manufactured by JASCO Corporation: V- The transmittance was measured at 550 and a wavelength of 550 nm, and evaluated according to the following criteria.

透過率90%以上 : ○
透過率90%未満 : ×
透明被膜形成用塗布液(A1)の調製
撹拌装置を備えたフラスコ中にメタノール363.47g、γ-グリシドキシプロピルトリメトキシシラン339.35g、テトラエトキシシラン39.53gを混合し、反応液の温度を5℃に保持し、撹拌しながら0.05mol/Lの塩酸水溶液93.2g加え、30分間撹拌した。続いてシリコン系界面活性剤(日本ユニカ(株)製:L-7604)を35g、
さらにアルミニウムアセチルアセテート0.03gを添加後、3℃にて24時間熟成を行
った後、イソプロパノール565gを加え、ついで上記ニオブ酸化物微粒子(A1) メタノ
ール分散液を847.8g添加し、良く撹拌しながら、さらに3℃で24時間熟成を行い
、透明被膜形成用塗布液(A1)を得た。
Transmission 90% or more: ○
Transmittance less than 90%: ×
Preparation of coating solution for forming transparent film (A1) In a flask equipped with a stirrer, 363.47 g of methanol, 339.35 g of γ-glycidoxypropyltrimethoxysilane and 39.53 g of tetraethoxysilane were mixed, and the reaction solution was mixed. While maintaining the temperature at 5 ° C., 93.2 g of 0.05 mol / L hydrochloric acid aqueous solution was added with stirring and stirred for 30 minutes. Subsequently, 35 g of a silicon surfactant (manufactured by Nippon Unica Co., Ltd .: L-7604),
Further, 0.03 g of aluminum acetyl acetate was added, followed by aging at 3 ° C. for 24 hours, then 565 g of isopropanol was added, and then 847.8 g of the above-mentioned niobium oxide fine particle (A1) methanol dispersion was added and stirred well. Then, aging was further performed at 3 ° C. for 24 hours to obtain a coating liquid for forming a transparent film (A1).

透明被膜付レンズ(A1)の形成
基材としてプラスチックレンズ(三井東圧(株)製:MR-7)を用い、先ず47℃で濃
度13重量%のNaOH水溶液中に数分間浸漬して、基材表面を充分に水洗した。
A plastic lens (manufactured by Mitsui Toatsu Co., Ltd .: MR-7) is used as a base material for forming the lens (A1) with a transparent coating, and first immersed in an aqueous NaOH solution having a concentration of 13% by weight at 47 ° C. for several minutes. The material surface was thoroughly washed with water.

次いでこのレンズ基材を、透明被膜形成用塗布液(A1)中に浸漬した後に引上げ速度80mm/分で引上げ、90℃で18分間乾燥し、104℃で90分間加熱硬化して透明被膜付レンズ(A1)を形成した。   Next, this lens substrate is immersed in the coating solution (A1) for forming a transparent film, then pulled up at a pulling rate of 80 mm / min, dried at 90 ° C. for 18 minutes, and heat-cured at 104 ° C. for 90 minutes to obtain a lens with a transparent film (A1) was formed.

得られた透明被膜付レンズ(A1)につき、以下の特性を評価した。結果を表1に示す。
(a)高屈折性能
透明被膜付レンズ(A1)の透明被膜表面の反射干渉スペクトルの解析結果から得られた屈折率が、1.65以上である場合を○とした。
(b)耐擦傷性
透明被膜付レンズ(A1)の膜面に♯000のスチールウールを2kg/cm2の荷重をか
けながら10回往復させて被膜を前記スチールウールで摩擦し、傷の程度を目視で観察し、次の段階に分類して評価した。
The following characteristics were evaluated for the obtained lens with transparent coating (A1). The results are shown in Table 1.
(A) High refractive performance The case where the refractive index obtained from the analysis result of the reflection interference spectrum of the transparent coating surface of the lens (A1) with a transparent coating is 1.65 or more was evaluated as ◯.
(B) Scratch resistance The # 000 steel wool is reciprocated 10 times on the film surface of the lens (A1) with a transparent coating while applying a load of 2 kg / cm 2 , and the coating is rubbed with the steel wool. They were visually observed and classified into the following stages for evaluation.

A…殆ど傷がついていない
B…少し傷がついている
C…ひどく傷がついている
(c)外観
染色を旋さない透明被膜付レンズ(白レンズ)の着色の有無を肉眼で評価した。
(d)透明性
分光光度計で染色を旋さない透明被膜付レンズ(白色レンズ)の可視光の平均透過率を測定した。
(e)染色性
赤、青および黄色の3種類の分散染料が溶解している92℃の熱水に透明被膜付レンズ(A1)を5分間浸漬し、SMカラーコンピューター(スガ試験機 (株) 製)を用いて波長550nmにおける減光率を測定し、下記のように評価した。
A: scarcely scratched B: slightly scratched C: severely scratched (c) Appearance The presence or absence of coloring of the transparent coated lens (white lens) that does not rotate dyeing was evaluated with the naked eye.
(D) Transparency The average visible light transmittance of a lens with a transparent coating (white lens) that does not rotate staining with a spectrophotometer was measured.
(E) Dyeing property A lens (A1) with a transparent coating is immersed for 5 minutes in 92 ° C hot water in which three types of disperse dyes of red, blue and yellow are dissolved, and SM color computer (Suga Test Instruments Co., Ltd.) Was used to measure the light attenuation rate at a wavelength of 550 nm and evaluated as follows.

○ …減光率が30%以上
△ …減光率が20%以上30%未満
× …減光率が20%未満
(f)密着性
透明被膜付レンズ(A1)を、70℃の温水中に2時間浸漬した後、レンズ表面にナイフで縦横にそれぞれ1mm間隔で11本の平行線状の傷を付け、100個のマス目を作りセロファンテープを接着・剥離後に、被膜が剥がれずに残ったマス目の数で評価した。
(g)雲化度
黒い背景と3波長型白昼蛍光灯の間に透明被膜付レンズ(A1)を設置し、このレンズを透過して背景に映る光のパターンを目視で観察し、雲化度を○、△、×の3段階で評価した

(h)ヘーズ
ヘーズメーター(スガ試験機(株)製)を用いて、染色を施さない透明被膜付レンズ(白
レンズ)のヘーズを次式により算出した。
[数1]
ヘーズ=(拡散光線透過率/全光線透過率)×100(%)
(i)耐候性
カーボンアークによるウェザーメーター(スガ試験機 (株) 製)を用いて400時間暴露した後、以下の評価を行った。
1) 外観 :前記(c)による。
2) 透過率:前記(d)による。
3) 密着性:前記(f)と同様の試験を暴露面について行った。
(j)長期安定性
透明被膜形成用塗布液を5℃で25日および45日保存した後に前記と同様にして透明被膜を形成して前記(a)〜(g)を評価し、調製直後の透明被膜形成用塗布液で形成した透明被膜との差異を○、△、×の3段階で評価した。
○… Light attenuation rate is 30% or more △… Light attenuation rate is 20% or more and less than 30% ×… Light attenuation rate is less than 20% (f) Adhesion The lens with transparent coating (A1) is placed in 70 ° C warm water. After immersion for 2 hours, 11 parallel line-shaped scratches were made on the lens surface vertically and horizontally with a 1 mm interval, and 100 cells were formed, and after the cellophane tape was adhered and peeled, the film remained without peeling off. Evaluation was based on the number of squares.
(G) Clouding degree A lens (A1) with a transparent coating is installed between a black background and a three-wavelength daylight fluorescent lamp, and the pattern of light that passes through this lens and appears in the background is visually observed. Was evaluated in three stages: ○, △, and ×.
(H) Haze Using a haze meter (manufactured by Suga Test Instruments Co., Ltd.), the haze of a transparent coated lens (white lens) that was not dyed was calculated according to the following formula.
[Equation 1]
Haze = (diffuse light transmittance / total light transmittance) × 100 (%)
(I) Weather resistance After exposure for 400 hours using a weather meter using carbon arc (manufactured by Suga Test Instruments Co., Ltd.), the following evaluation was performed.
1) Appearance: According to (c) above.
2) Transmittance: According to (d) above.
3) Adhesiveness: The same test as in (f) was performed on the exposed surface.
(J) Long-term stability After the coating liquid for forming a transparent film was stored at 5 ° C. for 25 and 45 days, a transparent film was formed in the same manner as described above, and (a) to (g) were evaluated. Differences from the transparent coating formed with the coating solution for forming a transparent coating were evaluated in three stages, ◯, Δ, and ×.

(a)〜(j)の結果を表1に示す。
[実施例2]
ニオブ系酸化物微粒子(A2)分散液の調製
実施例1の1mol/Lの酢酸溶液の代わりに、1mol/Lのシュウ酸に変えた以外は、実施例1と同様にして、ニオブ系酸化物微粒子(A2) メタノール分散液を得た。
Table 1 shows the results of (a) to (j).
[Example 2]
Preparation of Niobium Oxide Fine Particle (A2) Dispersion Niobium Oxide in the same manner as in Example 1 except that instead of the 1 mol / L acetic acid solution of Example 1, it was changed to 1 mol / L oxalic acid. Fine particles (A2) A methanol dispersion was obtained.

ニオブ系酸化物微粒子(A2)粒子について平均粒子径、粒子径の均一性、粒子中の酸根を測定し、結果を表1に示した。また、分散液について安定性、透明性、粒子の屈折率を評価し、結果を表1に示した。   The average particle diameter, the uniformity of the particle diameter, and the acid radical in the particles were measured for the niobium oxide fine particles (A2), and the results are shown in Table 1. In addition, the stability, transparency, and refractive index of the particles were evaluated for the dispersion, and the results are shown in Table 1.

透明被膜形成用塗布液(A2)の調製
ニオブ酸化物微粒子(A2)メタノール分散液を用いた以外は、実施例1と同様にして、透明被膜形成用塗布液(A2)を調製した。
Preparation of Transparent Film Forming Coating Liquid (A2) A transparent film forming coating liquid (A2) was prepared in the same manner as in Example 1 except that the niobium oxide fine particles (A2) methanol dispersion was used.

透明被膜付レンズ(A2)の形成
透明被膜形成用塗布液(A2)を用い、実施例1と同様にして透明被膜付レンズ(A2)を形成した。
Formation of lens (A2) with a transparent coating A lens (A2) with a transparent coating was formed in the same manner as in Example 1 using the coating solution (A2) for forming a transparent coating.

得られた透明被膜付レンズ(A2)につき、実施例1と同様の特性を評価した。結果を表1に示した。
[実施例3]
ニオブ酸化物微粒子(A3)分散液の調製
実施例1の1mol/Lの酢酸溶液の代わりに、1mol/Lの塩酸に変えた以外は、実施例1と同様にしてニオブ系酸化物微粒子(A3)メタノール分散液を得た。
The same characteristics as in Example 1 were evaluated for the obtained lens (A2) with a transparent coating. The results are shown in Table 1.
[Example 3]
Preparation of Niobium Oxide Fine Particles (A3) Dispersion Niobium oxide fine particles (A3) in the same manner as in Example 1 except that 1 mol / L hydrochloric acid was used instead of the 1 mol / L acetic acid solution of Example 1. ) A methanol dispersion was obtained.

ニオブ系酸化物微粒子(A3)について平均粒子径、粒子径の均一性、粒子中の酸根を測定し、結果を表1に示した。また、分散液について安定性、透明性、粒子の屈折率を評価し、結果を表1に示した。   The niobium oxide fine particles (A3) were measured for average particle size, uniformity of particle size, and acid radicals in the particles. The results are shown in Table 1. In addition, the stability, transparency, and refractive index of the particles were evaluated for the dispersion, and the results are shown in Table 1.

透明被膜形成用塗布液(A3)の調製
ニオブ酸化物微粒子(A3)メタノール分散液を用いた以外は、実施例1と同様にして、透明被膜形成用塗布液(A3)を調製した。
Preparation of Transparent Film Forming Coating Liquid (A3) A transparent film forming coating liquid (A3) was prepared in the same manner as in Example 1 except that the niobium oxide fine particles (A3) methanol dispersion was used.

透明被膜付レンズ(A3)の形成
透明被膜形成用塗布液(A3)を用い、実施例1と同様にして透明被膜付レンズ(A3)を形成した。
Formation of lens (A3) with a transparent coating A lens (A3) with a transparent coating was formed in the same manner as in Example 1 using the coating solution (A3) for forming a transparent coating.

得られた透明被膜付レンズ(A3)につき、実施例1と同様の特性を評価した。結果を表1に示した。
[実施例4]
ニオブ系酸化物微粒子(A4)分散液の調製
実施例1で得たニオブ酸化物微粒子(A1) メタノール分散液1000gと純水1000
gを反応容器にとり、63℃に加熱した後、撹拌しながらテトラエトキシシランとメタノール(重量比153/1000)の混合液2リットルを除々に添加した。添加終了後、さらに溶液の温度を63℃に維持して熟成し、ついでメタノールで溶媒置換するとともに濃縮し、固形分濃度30.5重量%のテトラエトキシシランで表面改質されたニオブ系酸化
物微粒子(A4) メタノール分散液を得た。
About the obtained lens (A3) with a transparent coating, the characteristic similar to Example 1 was evaluated. The results are shown in Table 1.
[Example 4]
Preparation of Niobium Oxide Fine Particle (A4) Dispersion Niobium Oxide Fine Particle (A1) Obtained in Example 1 1000 g of methanol dispersion and pure water 1000
g was placed in a reaction vessel, heated to 63 ° C., and 2 liters of a mixed solution of tetraethoxysilane and methanol (weight ratio 153/1000) was gradually added while stirring. After completion of the addition, the temperature of the solution is further maintained at 63 ° C. for aging, and then the solvent is replaced with methanol and concentrated, and the surface is modified with tetraethoxysilane having a solid concentration of 30.5% by weight. Fine particles (A4) A methanol dispersion was obtained.

ニオブ系酸化物微粒子(A4) メタノール分散液安定性、透明性、粒子の屈折率を評価し
、結果を表1に示した。
透明被膜形成用塗布液(A4)の調製
ニオブ酸化物微粒子(A4)メタノール分散液を用いた以外は、実施例1と同様にして、透明被膜形成用塗布液(A4)を調製した。
Niobium Oxide Fine Particles (A4) The stability of the methanol dispersion, transparency, and refractive index of the particles were evaluated, and the results are shown in Table 1.
Preparation of Transparent Film Forming Coating Liquid (A4) A transparent film forming coating liquid (A4) was prepared in the same manner as in Example 1 except that the niobium oxide fine particles (A4) methanol dispersion was used.

透明被膜付レンズ(A4)の形成
透明被膜形成用塗布液(A4)を用い、実施例1と同様にして透明被膜付レンズ(A4)を形成した。
Formation of lens (A4) with a transparent coating A lens (A4) with a transparent coating was formed in the same manner as in Example 1 using the coating solution (A4) for forming a transparent coating.

得られた透明被膜付レンズ(A4)につき、実施例1と同様の特性を評価した。結果を表1に示した。
[実施例5]
ニオブ系酸化物微粒子(A5)分散液の調製
実施例4のテトラエキトキシシランをメチルトリメトキシシランに代えた以外は実施例4と同様にしてメチルトリメトキシシランで表面改質されたニオブ系酸化物微粒子(A5)
メタノール分散液を得た。
About the obtained lens (A4) with a transparent coating, the characteristic similar to Example 1 was evaluated. The results are shown in Table 1.
[Example 5]
Preparation of Niobium Oxide Fine Particle (A5) Dispersion Niobium Oxidation Surface-Modified with Methyltrimethoxysilane as in Example 4 except that tetraethoxysilane in Example 4 was replaced with methyltrimethoxysilane Fine particles (A5)
A methanol dispersion was obtained.

ニオブ系酸化物微粒子(A5)メタノール分散液安定性、透明性、粒子の屈折率を評価し、結果を表1に示した。
透明被膜形成用塗布液(A5)の調製
ニオブ酸化物微粒子(A5)メタノール分散液を用いた以外は、実施例1と同様にして、透明被膜形成用塗布液(A5)を調製した。
Niobium oxide fine particles (A5) Stability, transparency, and refractive index of the methanol dispersion were evaluated, and the results are shown in Table 1.
Preparation of Transparent Film Forming Coating Liquid (A5) A transparent film forming coating liquid (A5) was prepared in the same manner as in Example 1 except that the niobium oxide fine particles (A5) methanol dispersion was used.

透明被膜付レンズ(A5)の形成
透明被膜形成用塗布液(A5)を用い、実施例1と同様にして透明被膜付レンズ(A5)を形成した。
Formation of lens (A5) with a transparent coating A lens (A5) with a transparent coating was formed in the same manner as in Example 1 using the coating solution (A5) for forming a transparent coating.

得られた透明被膜付レンズ(A5)につき、実施例1と同様の特性を評価した。結果を表1に示した。
[実施例6]
ニオブ系酸化物微粒子(A6)分散液の調製
実施例4のテトラエキトキシシランをγ−グリシドキシプロピルトリエトキシシランに代えた以外は実施例4と同様にしてγ−グリシドキシプロピルトリエトキシシランで表面改質されたニオブ系酸化物微粒子(A6) メタノール分散液を得た。
For the obtained lens with transparent coating (A5), the same characteristics as in Example 1 were evaluated. The results are shown in Table 1.
[Example 6]
Preparation of Niobium Oxide Fine Particle (A6) Dispersion γ-Glycidoxypropyltriethoxy in the same manner as in Example 4 except that tetraethoxysilane in Example 4 was replaced with γ-glycidoxypropyltriethoxysilane. Niobium oxide fine particles (A6) methanol-dispersed with silane surface modification were obtained.

ニオブ系酸化物微粒子(A6) メタノール分散液の安定性、透明性、粒子の屈折率を評価
し、結果を表1に示した。
透明被膜形成用塗布液(A6)の調製
ニオブ酸化物微粒子(A6)メタノール分散液を用いた以外は、実施例1と同様にして、透明被膜形成用塗布液(A6)を調製した。
Niobium Oxide Fine Particles (A6) Stability, transparency, and refractive index of the methanol dispersion were evaluated. The results are shown in Table 1.
Preparation of Transparent Film Forming Coating Liquid (A6) A transparent film forming coating liquid (A6) was prepared in the same manner as in Example 1 except that the niobium oxide fine particles (A6) methanol dispersion was used.

透明被膜付レンズ(A6)の形成
透明被膜形成用塗布液(A6)を用い、実施例1と同様にして透明被膜付レンズ(A6)を形成した。
Formation of lens (A6) with a transparent coating A lens (A6) with a transparent coating was formed in the same manner as in Example 1 using the coating solution (A6) for forming a transparent coating.

得られた透明被膜付レンズ(A6)につき、実施例1と同様の特性を評価した。結果を表1に示した。
[実施例7]
ニオブ系酸化物微粒子(A7)分散液の調製
五フッ化ニオブ706.91gを水に溶解し、これに濃度15重量%のアンモニア水4.69Lを40分間で添加した。これを濾過、洗浄し、2000gのニオブ酸のゲルを得た
。このゲルの固形分濃度は、Nb25換算で25.0重量%であった。
For the obtained lens (A6) with a transparent coating, the same characteristics as in Example 1 were evaluated. The results are shown in Table 1.
[Example 7]
Preparation of Niobium Oxide Fine Particle (A7) Dispersion 706.91 g of niobium pentafluoride was dissolved in water, and 4.69 L of aqueous ammonia having a concentration of 15% by weight was added thereto over 40 minutes. This was filtered and washed to obtain 2000 g of niobic acid gel. The solid content concentration of this gel was 25.0% by weight in terms of Nb 2 O 5 .

得られたニオブ酸のゲル1300gに水33540gを添加し、充分撹拌した後、濃度35重量%の過酸化水素水3000gを加え、80℃で2時間加熱溶解した。得られた溶液に水を加え、Nb25換算で濃度0.5重量%とした後、オートクレーブにて200℃で18時間水熱処理を行った。 After adding 33540 g of water to 1300 g of the resulting niobic acid gel and stirring sufficiently, 3000 g of 35% by weight hydrogen peroxide solution was added and dissolved by heating at 80 ° C. for 2 hours. Water was added to the obtained solution to adjust the concentration to 0.5% by weight in terms of Nb 2 O 5 , and then hydrothermal treatment was performed at 200 ° C. for 18 hours in an autoclave.

ついで、これを濃縮し、Nb25換算で濃度10重量%のニオブ系酸化物微粒子(A7)水
分散液3500gを得た。
ついで、ニオブ系酸化物微粒子(A7)水分散液の一部について、分散媒の水をメタノールで置換するとともに濃縮して、固形分濃度20重量%のニオブ系酸化物微粒子(A7)メタノール分散液を得た。
Next, this was concentrated to obtain 3500 g of an aqueous dispersion of niobium oxide fine particles (A7) having a concentration of 10% by weight in terms of Nb 2 O 5 .
Next, a part of the aqueous dispersion of niobium-based oxide fine particles (A7) is substituted with methanol for the dispersion medium and concentrated to give a niobium-based oxide fine particles (A7) methanol dispersion having a solid concentration of 20% by weight. Got.

ニオブ系酸化物微粒子(A7)について平均粒子径、粒子径の均一性、粒子中の酸根を測定し、結果を表1に示した。また、分散液について安定性、透明性、粒子の屈折率を評価し、結果を表1に示した。   The niobium oxide fine particles (A7) were measured for average particle size, uniformity of particle size, and acid radicals in the particles. The results are shown in Table 1. In addition, the stability, transparency, and refractive index of the particles were evaluated for the dispersion, and the results are shown in Table 1.

透明被膜形成用塗布液(A7)の調製
ニオブ酸化物微粒子(A7)メタノール分散液を用いた以外は、実施例1と同様にして、透明被膜形成用塗布液(A7)を調製した。
Preparation of Transparent Film Forming Coating Liquid (A7) A transparent film forming coating liquid (A7) was prepared in the same manner as in Example 1 except that the niobium oxide fine particles (A7) methanol dispersion was used.

透明被膜付レンズ(A7)の形成
透明被膜形成用塗布液(A7)を用い、実施例1と同様にして透明被膜付レンズ(A7)を形成した。
Formation of lens (A7) with a transparent film A lens (A7) with a transparent film was formed in the same manner as in Example 1 using the coating liquid (A7) for forming a transparent film.

得られた透明被膜付レンズ(A7)につき、実施例1と同様の特性を評価した。結果を表1に示した。
[実施例8]
ニオブ系酸化物微粒子(A8)分散液の調製
実施例7で得たメタノール分散ニオブ酸化物微粒子(A7)分散液を用いた以外は実施例4と同様にしてテトラエトキシシランで表面改質されたニオブ系酸化物微粒子(A8) メタノ
ール分散液を得た。
The same characteristics as in Example 1 were evaluated for the obtained lens with transparent coating (A7). The results are shown in Table 1.
[Example 8]
Preparation of Niobium Oxide Fine Particle (A8) Dispersion The surface was modified with tetraethoxysilane in the same manner as in Example 4 except that the methanol-dispersed niobium oxide fine particle (A7) dispersion obtained in Example 7 was used. Niobium oxide fine particles (A8) A methanol dispersion was obtained.

ニオブ系酸化物微粒子(A8) メタノール分散液について安定性、透明性、粒子の屈折率
を評価し、結果を表1に示した。
透明被膜形成用塗布液(A8)の調製
ニオブ酸化物微粒子(A8)メタノール分散液を用いた以外は、実施例1と同様にして、透明被膜形成用塗布液(A8)を調製した。
Niobium Oxide Fine Particles (A8) Stability, transparency, and refractive index of the particles were evaluated for the methanol dispersion, and the results are shown in Table 1.
Preparation of Transparent Film Forming Coating Liquid (A8) A transparent film forming coating liquid (A8) was prepared in the same manner as in Example 1 except that the niobium oxide fine particles (A8) methanol dispersion was used.

透明被膜付レンズ(A8)の形成
透明被膜形成用塗布液(A8)を用い、実施例1と同様にして透明被膜付レンズ(A8)を形成した。
Formation of lens (A8) with a transparent film A lens (A8) with a transparent film was formed in the same manner as in Example 1 using the coating liquid (A8) for forming a transparent film.

得られた透明被膜付レンズ(A8)につき、実施例1と同様の特性を評価した。結果を表1に示した。
[実施例9]
ニオブ系酸化物微粒子(A9)分散液の調製
五塩化ニオブを水にて加水分解し、濾過洗浄して、2780gのニオブ酸のゲルを得た。このゲルの固形分濃度は、Nb25換算で22.7重量%であった。このニオブ酸のゲルをNb25換算で500gとなるように計り取り、10Lのビーカーに入れ、更に濃度35重量%の過酸化水素水1800gを入れ、撹拌しながら加熱し、70℃で2時間溶解した。ついで、これに水2000gを加えて70℃で1時間加熱し再び水を加えNb25換算
濃度で1重量%の溶液とし、これをオートクレーブに入れ、220℃で15時間水熱処理を行った。
The same characteristics as in Example 1 were evaluated for the obtained lens with transparent coating (A8). The results are shown in Table 1.
[Example 9]
Preparation of Niobium Oxide Fine Particle (A9) Dispersion Niobium pentachloride was hydrolyzed with water, filtered and washed to obtain 2780 g of a niobic acid gel. The solid content concentration of this gel was 22.7% by weight in terms of Nb 2 O 5 . This niobic acid gel is weighed to 500 g in terms of Nb 2 O 5 , placed in a 10 L beaker, further charged with 1800 g of 35% by weight hydrogen peroxide, heated with stirring, and heated at 70 ° C. for 2 Dissolved for hours. Next, 2000 g of water was added thereto, heated at 70 ° C. for 1 hour, water was added again to obtain a 1% by weight solution in terms of Nb 2 O 5 concentration, and this was placed in an autoclave and subjected to hydrothermal treatment at 220 ° C. for 15 hours. .

ついで、これを濃縮し、Nb25換算で濃度10重量%のニオブ系酸化物微粒子(A9)水
分散液500gを得た。
ついで、ニオブ系酸化物微粒子(A9)水分散液の一部について、分散媒の水をメタノールで置換するとともに濃縮して、固形分濃度20重量%のニオブ系酸化物微粒子(A9)メタノール分散液を得た。
Next, this was concentrated to obtain 500 g of an aqueous dispersion of niobium oxide fine particles (A9) having a concentration of 10% by weight in terms of Nb 2 O 5 .
Next, a part of the aqueous dispersion of niobium oxide fine particles (A9) is substituted with methanol for the water in the dispersion medium and concentrated to give a niobium oxide fine particles (A9) methanol dispersion with a solid concentration of 20% by weight. Got.

ニオブ系酸化物微粒子(A9)について平均粒子径、粒子径の均一性、粒子中の酸根を測定し、結果を表1に示した。また、各分散液について安定性、透明性、粒子の屈折率を評価し、結果を表1に示した。   The niobium oxide fine particles (A9) were measured for average particle size, uniformity of particle size, and acid radicals in the particles. The results are shown in Table 1. Further, the stability, transparency, and refractive index of the particles were evaluated for each dispersion, and the results are shown in Table 1.

透明被膜形成用塗布液(A9)の調製
ニオブ酸化物微粒子(A9)メタノール分散液を用いた以外は、実施例1と同様にして、透明被膜形成用塗布液(A9)を調製した。
Preparation of Transparent Film Forming Coating Liquid (A9) A transparent film forming coating liquid (A9) was prepared in the same manner as in Example 1 except that the niobium oxide fine particles (A9) methanol dispersion was used.

透明被膜付レンズ(A9)の形成
透明被膜形成用塗布液(A9)を用い、実施例1と同様にして透明被膜付レンズ(A9)を形成した。
Formation of lens with transparent coating (A9) A transparent coating-coated lens (A9) was formed in the same manner as in Example 1 using the coating solution for forming a transparent coating (A9).

得られた透明被膜付レンズ(A9)につき、実施例1と同様の特性を評価した。結果を表1に示した。
[実施例10]
ニオブ系酸化物微粒子(A10)分散液の調製
五塩化ニオブを水にて加水分解し、濾過洗浄して、2780gのニオブ酸のゲルを得た。
このゲルの固形分濃度は、Nb25換算で22.7重量%であった。このニオブ酸のゲルをNb25換算で500gとなるように計り取り、水22797gの入った50L容器に入れ、更に濃度35重量%の過酸化水素水5714gを入れ、撹拌しながら加熱し、70℃で2時間溶解した。ついで、これに水19286gを加えNb25換算濃度で1重量%の溶
液とした。ついで、これにコア粒子として平均粒子径7nmでありSiO濃度が15重量%のシリカゾル333gと水4662gとを混合し、オートクレーブに入れ、220℃で15時間水熱処理を行った。
About the obtained lens (A9) with a transparent coating, the characteristic similar to Example 1 was evaluated. The results are shown in Table 1.
[Example 10]
Preparation of Niobium Oxide Fine Particle (A10) Dispersion Niobium pentachloride was hydrolyzed with water, filtered and washed to obtain 2780 g of a niobic acid gel.
The solid content concentration of this gel was 22.7% by weight in terms of Nb 2 O 5 . This niobic acid gel is weighed to 500 g in terms of Nb 2 O 5 , placed in a 50 L container containing 22797 g of water, further charged with 5714 g of 35% by weight hydrogen peroxide, and heated with stirring. It melt | dissolved at 70 degreeC for 2 hours. Subsequently, 19286 g of water was added thereto to make a 1% by weight solution in terms of Nb 2 O 5 concentration. Subsequently, 333 g of silica sol having an average particle diameter of 7 nm as core particles and a SiO 2 concentration of 15% by weight and 4662 g of water were mixed, placed in an autoclave, and hydrothermally treated at 220 ° C. for 15 hours.

ついで、これを濃縮し、(Nb25+SiO)換算で濃度10重量%のニオブ系酸化物微
粒子(A10)水分散液5500gを得た。
ついで、ニオブ系酸化物微粒子(A10)水分散液の一部について、分散媒の水をメタノー
ルで置換するとともに濃縮して、固形分濃度20重量%の複合酸化物微粒子(A10)メタノ
ール分散液を得た。
Subsequently, this was concentrated to obtain 5500 g of a niobium oxide fine particle (A10) aqueous dispersion having a concentration of 10% by weight in terms of (Nb 2 O 5 + SiO 2 ).
Next, a part of the aqueous dispersion of niobium-based oxide fine particles (A10) is replaced with methanol as the dispersion medium and concentrated to obtain a composite oxide fine particle (A10) methanol dispersion with a solid content concentration of 20% by weight. Obtained.

複合酸化物微粒子(A10)について平均粒子径、粒子径の均一性、粒子中の酸根を測定し
、結果を表1に示した。また、分散液について安定性、透明性、粒子の屈折率を評価し、結果を表1に示した。
With respect to the composite oxide fine particles (A10), the average particle diameter, the uniformity of the particle diameter, and the acid radical in the particles were measured, and the results are shown in Table 1. In addition, the stability, transparency, and refractive index of the particles were evaluated for the dispersion, and the results are shown in Table 1.

透明被膜形成用塗布液(A10)の調製
ニオブ酸化物微粒子(A10)メタノール分散液を用いた以外は、実施例1と同様にして、
透明被膜形成用塗布液(A10)を調製した。
Preparation of coating liquid for forming transparent film (A10) Niobium oxide fine particles (A10) In the same manner as in Example 1 except that a methanol dispersion was used.
A coating solution for forming a transparent film (A10) was prepared.

透明被膜付レンズ(A10)の形成
透明被膜形成用塗布液(A10)を用い、実施例1と同様にして透明被膜付レンズ(A10)を形成した。
Formation of lens with transparent coating (A10) A transparent coating-coated lens (A10) was formed in the same manner as in Example 1 using the coating solution for forming a transparent coating (A10).

得られた透明被膜付レンズ(A10)につき、実施例1と同様の特性を評価した。結果を表
1に示した。
[実施例11]
ニオブ系酸化物微粒子(A11)分散液の調製
五塩化ニオブと塩化第二鉄を水にて加水分解し、濾過洗浄して、2780gのニオブ酸と鉄の水酸化物の混合ゲルを得た。このゲルの固形分濃度は、(Nb25+Fe23)換算で
23.5重量%であった。このニオブ酸と鉄の水酸化物の混合ゲルを(Nb25+Fe23)換算で500gとなるように計り取り、水22872gの入った50L容器に入れ、更に濃
度35重量%の過酸化水素水5714gを入れ、撹拌しながら加熱し、70℃で2時間溶解した後、これに水19286gを加え(Nb25+Fe23)換算濃度で1重量%の溶液と
した。
For the obtained lens with transparent coating (A10), the same characteristics as in Example 1 were evaluated. The results are shown in Table 1.
[Example 11]
Preparation of Niobium Oxide Fine Particle (A11) Dispersion Niobium pentachloride and ferric chloride were hydrolyzed with water, washed by filtration, and 2780 g of a mixed gel of niobic acid and iron hydroxide was obtained. The solid content concentration of this gel was 23.5% by weight in terms of (Nb 2 O 5 + Fe 2 O 3 ). This mixed gel of niobic acid and iron hydroxide was weighed so as to be 500 g in terms of (Nb 2 O 5 + Fe 2 O 3 ), put into a 50 L container containing 22872 g of water, and an excess of 35% by weight concentration. 5714 g of hydrogen oxide water was added, heated with stirring, dissolved at 70 ° C. for 2 hours, and then 19286 g of water was added thereto to give a 1% by weight solution in terms of (Nb 2 O 5 + Fe 2 O 3 ).

ついで、これに、コア粒子として平均粒子径7nmでありSiO濃度が15重量%のシリカゾル333gと水4662gとを混合し、これをオートクレーブに入れ、220℃で15時間水熱処理を行った。 Subsequently, 333 g of silica sol having an average particle diameter of 7 nm as core particles and a SiO 2 concentration of 15% by weight and 4662 g of water were mixed, and this was placed in an autoclave and hydrothermally treated at 220 ° C. for 15 hours.

ついで、これを濃縮し、(Nb25+Fe23+SiO)換算で濃度10重量%のニオブ系
酸化物微粒子(A11)水分散液5238gを得た。
ついで、ニオブ系酸化物微粒子(A11)水分散液の一部について、分散媒の水をメタノー
ルで置換するとともに濃縮して、固形分濃度20重量%のニオブ系酸化物微粒子(A11)メ
タノール分散液を得た。
Next, this was concentrated to obtain 5238 g of an aqueous dispersion of niobium oxide fine particles (A11) having a concentration of 10% by weight in terms of (Nb 2 O 5 + Fe 2 O 3 + SiO 2 ).
Next, a part of the aqueous dispersion of niobium-based oxide fine particles (A11) is substituted with methanol as the dispersion medium and concentrated to give a niobium-based oxide fine particles (A11) methanol dispersion having a solid concentration of 20% by weight. Got.

ニオブ系酸化物微粒子(A11)について平均粒子径、粒子径の均一性、粒子中の酸根を測
定し、結果を表1に示した。また、分散液について安定性、透明性、粒子の屈折率を評価し、結果を表1に示した。
The average particle diameter, the uniformity of the particle diameter, and the acid radical in the particles were measured for the niobium oxide fine particles (A11), and the results are shown in Table 1. In addition, the stability, transparency, and refractive index of the particles were evaluated for the dispersion, and the results are shown in Table 1.

透明被膜形成用塗布液(A11)の調製
ニオブ酸化物微粒子(A11)メタノール分散液を用いた以外は、実施例1と同様にして、
透明被膜形成用塗布液(A11)を調製した。
Preparation of Transparent Film Forming Coating Solution (A11) Niobium Oxide Fine Particles (A11) Except for using methanol dispersion,
A coating solution for forming a transparent film (A11) was prepared.

透明被膜付レンズ(A11)の形成
透明被膜形成用塗布液(A11)を用い、実施例1と同様にして透明被膜付レンズ(A11)を形成した。
Formation of lens with transparent film (A11) A transparent film-coated lens (A11) was formed in the same manner as in Example 1 using the coating liquid for forming a transparent film (A11).

得られた透明被膜付レンズ(A11)につき、実施例1と同様の特性を評価した。結果を表
1に示した。
[実施例12]
ニオブ系酸化物微粒子(A12)分散液の調製
コア粒子の調製
実施例3と同様にして、コア粒子用のニオブ系酸化物微粒子(A3)水分散液を得た。ニオブ系酸化物微粒子の平均粒径は20nmであった。
ジルコニウム化合物溶解液の調製
オキシ塩化ジルコニウム171gを水128gに加えたZrO濃度2重量%の水溶液に15%アンモニア水を添加しpH8.5のスラリーを得た。このスラリーを濾過して洗浄し、ZrO2として10重量%のケーキを得た。このケーキ60gに水3.08kgを加え
、さらにKOH水溶液を加えてアルカリ性にしたのち、これに過酸化水素120gを加えて加熱し、ZrO2として2重量%のジルコニウムの過酸化水素溶解水溶液299gを調製
した。
ケイ酸液の調製
市販の水ガラスを水で希釈したのち、陽イオン交換樹脂で脱アルカリし、SiO濃度2重量%のケイ酸液926gを調製した。
About the obtained lens (A11) with a transparent coating, the characteristic similar to Example 1 was evaluated. The results are shown in Table 1.
[Example 12]
Preparation of niobium oxide fine particle (A12) dispersion
Preparation of core particles In the same manner as in Example 3, niobium-based oxide fine particles (A3) in water dispersion for core particles were obtained. The average particle diameter of the niobium-based oxide fine particles was 20 nm.
Preparation of Zirconium Compound Solution A 15% aqueous ammonia solution was added to an aqueous solution containing 2% by weight of ZrO 2 with 171 g of zirconium oxychloride added to 128 g of water to obtain a slurry having a pH of 8.5. The slurry was filtered and washed to obtain a 10% by weight cake as ZrO 2 . After adding 3.08 kg of water to 60 g of this cake and adding KOH aqueous solution to make it alkaline, 120 g of hydrogen peroxide was added thereto and heated to give 299 g of 2 wt% zirconium hydrogen peroxide-dissolved aqueous solution as ZrO 2. Prepared.
Preparation of Silicic Acid Solution A commercially available water glass was diluted with water and then dealkalized with a cation exchange resin to prepare 926 g of a silicic acid solution having a SiO 2 concentration of 2% by weight.

上記で調製したコア粒子用のニオブ系酸化物微粒子(A3)分散液3500gに水14kgを加えて固形分濃度2重量%にしたのち90℃に加熱し、ジルコニウムの過酸化水素溶解水溶液299gとケイ酸液926gを混合した。ついで、この混合液をオートクレーブ中で200℃で18時間水熱処理を行った後、濃縮して固形分濃度10重量%の淡乳白色をした透明な酸化ニオブ粒子を酸化ケイ素、酸化ジルコニウムからなる複合酸化物で被覆したニオブ系酸化物微粒子(A12)水分散液を得た。   14 kg of water was added to 3500 g of the niobium oxide fine particle (A3) dispersion for core particles prepared above to obtain a solid concentration of 2% by weight, and then heated to 90 ° C., and 299 g of a hydrogen peroxide-dissolved aqueous solution of zirconium and silica. 926 g of acid solution was mixed. Next, this mixed solution was hydrothermally treated at 200 ° C. for 18 hours in an autoclave, and then concentrated to convert the transparent niobium oxide particles having a solid content concentration of 10% by weight into light milky white composite oxide composed of silicon oxide and zirconium oxide. An aqueous dispersion of niobium oxide fine particles (A12) coated with a product was obtained.

ついで、ニオブ系酸化物微粒子(A12)水分散液の一部について、分散媒の水をメタノー
ルで置換するとともに濃縮して、固形分濃度20重量%のニオブ系酸化物微粒子(A12)メ
タノール分散液を得た。
Next, a part of the aqueous dispersion of niobium-based oxide fine particles (A12) is substituted with methanol as the dispersion medium and concentrated to give a niobium-based oxide fine particles (A12) methanol dispersion having a solid concentration of 20% by weight. Got.

ニオブ系酸化物微粒子(A12)について平均粒子径、粒子径の均一性、粒子中の酸根を測
定し、結果を表1に示した。また、分散液について安定性、透明性、粒子の屈折率を評価し、結果を表1に示した。
The niobium-based oxide fine particles (A12) were measured for average particle size, uniformity of particle size, and acid radicals in the particles. The results are shown in Table 1. Further, the stability, transparency, and refractive index of the particles were evaluated for the dispersion, and the results are shown in Table 1.

透明被膜形成用塗布液(A12)の調製
ニオブ酸化物微粒子(A12)メタノール分散液を用いた以外は、実施例1と同様にして、
透明被膜形成用塗布液(A12)を調製した。
Preparation of coating liquid for forming transparent film (A12) Niobium oxide fine particles (A12) In the same manner as in Example 1 except that a methanol dispersion was used.
A coating solution for forming a transparent film (A12) was prepared.

透明被膜付レンズ(A12)の形成
透明被膜形成用塗布液(A12)を用い、実施例1と同様にして透明被膜付レンズ(A12)を形成した。
Formation of lens (A12) with a transparent coating A lens (A12) with a transparent coating was formed in the same manner as in Example 1 using the coating solution (A12) for forming a transparent coating.

得られた透明被膜付レンズ(A12)につき、実施例1と同様の特性を評価した。結果を表
1に示した。
[実施例13]
ニオブ系酸化物微粒子(A13)分散液の調製
コア粒子の調製
四塩化チタンを水にて加水分解し、濾過洗浄して、2780gのチタン酸のゲルを得た。このゲルの固形分濃度は、TiO換算で9.4重量%であった。このチタン酸のゲルをTiO2換算で500gとなるように計り取り、水22872gの入った50L容器に入れ
、更に濃度35重量%の過酸化水素水5714gを入れ、撹拌しながら加熱し、90℃で2時間溶解した。ついで、これに水19286gを加えTiO換算濃度で0.5重量%の
溶液とした。これをオートクレーブに入れ、150℃で15時間水熱処理を行った。ついで、これを濃縮し、TiO換算で濃度1.5重量%、平均粒径12nmの酸化チタン微粒子分散液5238gを得た。
The same characteristics as in Example 1 were evaluated for the obtained lens with transparent coating (A12). The results are shown in Table 1.
[Example 13]
Preparation of niobium oxide fine particle (A13) dispersion
Preparation of core particles Titanium tetrachloride was hydrolyzed with water, filtered and washed to obtain 2780 g of titanic acid gel. The solid content concentration of this gel was 9.4% by weight in terms of TiO 2 . This titanic acid gel is weighed to 500 g in terms of TiO 2, placed in a 50 L container containing 22882 g of water, and further 5714 g of hydrogen peroxide solution having a concentration of 35% by weight, and heated with stirring at 90 ° C. Dissolved for 2 hours. Subsequently, 19286 g of water was added thereto to obtain a 0.5% by weight solution in terms of TiO 2 concentration. This was put into an autoclave and hydrothermally treated at 150 ° C. for 15 hours. Subsequently, this was concentrated to obtain 5238 g of a titanium oxide fine particle dispersion having a concentration of 1.5% by weight in terms of TiO 2 and an average particle diameter of 12 nm.

ニオブ化合物溶解液の調製
五塩化ニオブを水にて加水分解し、濾過洗浄して、2780gのニオブ酸のゲルを得た。このゲルの固形分濃度は、Nb25換算で22.7重量%であった。このニオブ酸のゲルをNb25換算で500gとなるように計り取り、水22797gの入った50L容器に入れ、更に濃度35重量%の過酸化水素水5714gを入れ、撹拌しながら加熱し、70℃で2時間溶解した。ついで、これに水19286gを加えNb25換算濃度で1重量%の
ニオブの過酸化水素溶解水溶液とした。
ジルコニウム化合物溶解液の調製
オキシ塩化ジルコニウム1710gを水1280gに加えたZrO濃度2重量%の水溶液に15%アンモニア水を添加しpH8.5のスラリーを得た。このスラリーを濾過して洗浄し、ZrOとして10重量%のケーキを得た。このケーキ600gに水30.8kgを加え、さらにKOH水溶液を加えてアルカリ性にしたのち、これに過酸化水素1200gを加えて加熱し、ZrOとして2重量%のジルコニウムの過酸化水素溶解水溶液2990gを調製した。
Preparation of niobium compound solution Niobium pentachloride was hydrolyzed with water, filtered and washed to obtain 2780 g of a gel of niobic acid. The solid content concentration of this gel was 22.7% by weight in terms of Nb 2 O 5 . This niobic acid gel is weighed to 500 g in terms of Nb 2 O 5 , placed in a 50 L container containing 22797 g of water, further charged with 5714 g of 35% by weight hydrogen peroxide, and heated with stirring. It melt | dissolved at 70 degreeC for 2 hours. Next, 19286 g of water was added thereto to obtain a 1% by weight niobium hydrogen peroxide-dissolved aqueous solution in terms of Nb 2 O 5 concentration.
Preparation of Zirconium Compound Solution A 15% aqueous ammonia solution was added to an aqueous solution having a ZrO 2 concentration of 2% by weight with 1710 g of zirconium oxychloride added to 1280 g of water to obtain a slurry having a pH of 8.5. The slurry was washed and filtered to give 10% by weight of the cake as ZrO 2. After adding 30.8 kg of water to 600 g of this cake and adding KOH aqueous solution to make it alkaline, 1200 g of hydrogen peroxide was added and heated, and 2990 g of hydrogen peroxide-dissolved aqueous solution of 2 wt% zirconium as ZrO 2 was added. Prepared.

上記で調製したコア粒子用の酸化チタン微粒子分散液5238gを90℃に加熱し、ニオブの過酸化水素溶解水溶液とジルコニウムの過酸化水素溶解水溶液2990gを混合し、ついで、この混合液をオートクレーブ中で180℃で18時間水熱処理を行った後、濃縮して固形分濃度10重量%の淡乳白色をした透明な酸化チタン微粒子をニオブ酸化物と酸化ジルコニウムとからなる複合酸化物で被覆したニオブ系酸化物微粒子(A13)水分散液
を得た。
5238 g of the titanium oxide fine particle dispersion for core particles prepared above is heated to 90 ° C. and mixed with a hydrogen peroxide-dissolved aqueous solution of niobium and 2990 g of a hydrogen peroxide-dissolved aqueous solution of zirconium, and this mixture is then placed in an autoclave. After hydrothermal treatment at 180 ° C. for 18 hours, niobium-based oxidation in which transparent titanium oxide fine particles with a concentration of 10% by weight and solid milk concentration are coated with a composite oxide composed of niobium oxide and zirconium oxide. Fine particle (A13) aqueous dispersion was obtained.

ついで、ニオブ系酸化物微粒子(A13)水分散液の一部について、分散媒の水をメタノー
ルで置換するとともに濃縮して、固形分濃度20重量%のニオブ系酸化物微粒子(A13)メ
タノール分散液を得た。
Next, a part of the aqueous dispersion of niobium-based oxide fine particles (A13) is substituted with methanol as the dispersion medium and concentrated to give a niobium-based oxide fine particles (A13) methanol dispersion having a solid concentration of 20% by weight. Got.

ニオブ系酸化物微粒子(A13)について平均粒子径、粒子径の均一性、粒子中の酸根を測
定し、結果を表1に示した。また、分散液について安定性、透明性、粒子の屈折率を評価し、結果を表1に示した。
The niobium oxide fine particles (A13) were measured for average particle size, uniformity of particle size, and acid radicals in the particles. The results are shown in Table 1. Further, the stability, transparency, and refractive index of the particles were evaluated for the dispersion, and the results are shown in Table 1.

透明被膜形成用塗布液(A13)の調製
ニオブ酸化物微粒子(A13)メタノール分散液を用いた以外は、実施例1と同様にして、
透明被膜形成用塗布液(A13)を調製した。
Preparation of coating liquid for forming transparent film (A13) Niobium oxide fine particles (A13) In the same manner as in Example 1 except that the methanol dispersion was used.
A coating solution for forming a transparent film (A13) was prepared.

透明被膜付レンズ(A13)の形成
透明被膜形成用塗布液(A13)を用い、実施例1と同様にして透明被膜付レンズ(A13)を形成した。
Formation of lens with transparent coating (A13) A lens with transparent coating (A13) was formed in the same manner as in Example 1 using the coating solution for transparent coating formation (A13).

得られた透明被膜付レンズ(A13)につき、実施例1と同様の特性を評価した。結果を表
1に示した。
[実施例14]
ニオブ系酸化物微粒子(A14)分散液の調製
濃度35.3重量%のKNbO3溶液1917gと水23083gを混合し、濃度2.71重量%のKNbO3溶液とし、これに1mol/Lの酢酸を添加し、中和した。この時のpHは5.5であった。これを濾過し、蒸留水で洗浄してニオブ酸のゲル1990gを得た。こ
のゲルの固形分濃度は、Nb25換算で24.01重量%であった。
For the obtained lens with transparent coating (A13), the same characteristics as in Example 1 were evaluated. The results are shown in Table 1.
[Example 14]
Nb based oxide particles (A14) were mixed to prepare a concentration 35.3% by weight of the KNbO 3 solution 1917g of water 23083g of the dispersion, the concentration of 2.71 wt% of KNbO 3 solution, to which the 1 mol / L acetic acid Added and neutralized. The pH at this time was 5.5. This was filtered and washed with distilled water to obtain 1990 g of niobic acid gel. The solid content concentration of this gel was 24.01% by weight in terms of Nb 2 O 5 .

種粒子分散液の調製
ニオブ酸のゲルの一部498gに水を加えてNb25換算で濃度2重量%のニオブ酸の
ゲル分散液とし、これに超音波20分間を照射してニオブ酸の種粒子分散液5978gを調製した。種粒子の平均粒子径は約1nmであった。
Preparation of seed particle dispersion Water was added to a portion of 498 g of niobic acid gel to give a niobic acid gel dispersion having a concentration of 2% by weight in terms of Nb 2 O 5 , and this was irradiated with ultrasonic waves for 20 minutes. 5978 g of a seed particle dispersion was prepared. The average particle size of the seed particles was about 1 nm.

残りのニオブ酸のゲル1492gに水35823gを添加し、充分撹拌した後、濃度35重量%の過酸化水素水6000gを加え、80℃で2時間加熱溶解した。得られた溶液に水を加え、Nb25換算で濃度0.5重量%とした後、これに種粒子分散液5978gを加え、オートクレーブにて180℃で18時間水熱処理を行った。 35823 g of water was added to 1492 g of the remaining niobic acid gel, and after sufficient stirring, 6000 g of 35% by weight hydrogen peroxide water was added and dissolved by heating at 80 ° C. for 2 hours. Water was added to the resulting solution to adjust the concentration to 0.5% by weight in terms of Nb 2 O 5 , 5978 g of seed particle dispersion was added thereto, and hydrothermal treatment was performed at 180 ° C. for 18 hours in an autoclave.

ついで、これを濃縮し、Nb25換算で濃度10重量%のニオブ系酸化物微粒子(A14)水分散液3500gを得た。
ついで、ニオブ系酸化物微粒子(A14)水分散液の一部について、分散媒の水をメタノー
ルで置換するとともに濃縮して、固形分濃度20重量%のニオブ系酸化物微粒子(A14)メ
タノール分散液を得た。
Subsequently, this was concentrated to obtain 3500 g of an aqueous dispersion of niobium oxide fine particles (A14) having a concentration of 10% by weight in terms of Nb 2 O 5 .
Next, a part of the aqueous dispersion of niobium-based oxide fine particles (A14) is substituted with methanol for the water in the dispersion medium and concentrated to give a niobium-based oxide fine particles (A14) methanol dispersion having a solid concentration of 20% by weight. Got.

ニオブ系酸化物微粒子(A14)について平均粒子径、粒子径の均一性、粒子中の酸根を測
定し、結果を表1に示した。また、各分散液について安定性、透明性、粒子の屈折率を評価し、結果を表1に示した。
The niobium oxide fine particles (A14) were measured for average particle size, uniformity of particle size, and acid radicals in the particles. The results are shown in Table 1. Further, the stability, transparency, and refractive index of the particles were evaluated for each dispersion, and the results are shown in Table 1.

透明被膜形成用塗布液(A14)の調製
ニオブ酸化物微粒子(A14)メタノール分散液を用いた以外は、実施例1と同様にして、
透明被膜形成用塗布液(A14)を調製した。
Preparation of Transparent Film Forming Coating Solution (A14) Niobium Oxide Fine Particles (A14) Except for using methanol dispersion,
A coating solution for forming a transparent film (A14) was prepared.

透明被膜付レンズ(A14)の形成
透明被膜形成用塗布液(A14)を用い、実施例1と同様にして透明被膜付レンズ(A14)を形成した。
Formation of lens with transparent film (A14) A lens with transparent film (A14) was formed in the same manner as in Example 1 using the coating liquid for forming a transparent film (A14).

得られた透明被膜付レンズ(A14)につき、実施例1と同様の特性を評価した。結果を表
1に示した。
[比較例1]
酸化物微粒子(R1)分散液の調製
酸化チタン含有核粒子分散液の調製
TiOに換算した濃度が0.4重量%の硫酸チタン水溶液25kgを攪拌しながら、これに濃度15重量%のアンモニア水を徐々に添加して加水分解し、pH8.5の白色スラリー液を得た。このスラリーを濾過した後洗浄し、固形分濃度が9重量%の含水チタン酸ゲルのケーキ11.11kgを得た。
The same characteristics as in Example 1 were evaluated for the obtained lens with transparent coating (A14). The results are shown in Table 1.
[Comparative Example 1]
Preparation of oxide fine particle (R1) dispersion
Preparation of titanium oxide-containing core particle dispersion
While stirring 25 kg of titanium sulfate aqueous solution having a concentration of 0.4% by weight converted to TiO 2 , ammonia water having a concentration of 15% by weight was gradually added thereto for hydrolysis to obtain a white slurry liquid having a pH of 8.5. It was. The slurry was filtered and then washed to obtain 11.11 kg of a hydrous titanate gel cake having a solid content concentration of 9% by weight.

このケーキ11.11kgに、濃度33重量%の過酸化水素水12.12kgと水26.8kgとを加えた後、80℃で5時間加熱し、TiOとして2.0重量%の過酸化チタン酸水溶液は、黄褐色透明でpHは8.1であった。次に、平均粒子径が7nmでありSiO濃度が15重量%のシリカゾル666.6gと、上記のチタン酸水溶液50.03kgと、純水49.34kgとを混合し、オートクレーブで200℃、96時間加熱した。加熱後得られたコロイド溶液を濃縮し、固形分濃度10重量%の酸化チタン含有核粒子分散液を11.0kg得た。
ジルコニウムの過酸化水素溶解液
オキシ塩化ジルコニウム526gを水947gに溶解したZrO濃度2重量%のオキシ塩化ジルコニウム水溶液に濃度15%のアンモニア水を添加して加水分解し、pH8.5のスラリーを得た。このスラリーを濾過して洗浄し、ZrOとして濃度が2重量%のジル
コニウムの過酸化水素溶解液610gを調製した。
珪酸液の調製
市販の水ガラスを水で希釈したのち、陽イオン交換樹脂で脱アルカリし、SiO濃度2重量%の珪酸液1890gを調製した。
After adding 12.12 kg of hydrogen peroxide water having a concentration of 33% by weight and 26.8 kg of water to 11.11 kg of the cake, the cake was heated at 80 ° C. for 5 hours to obtain 2.0% by weight of titanium peroxide as TiO 2. The acid aqueous solution was transparent yellowish brown and had a pH of 8.1. Next, 666.6 g of silica sol having an average particle diameter of 7 nm and a SiO 2 concentration of 15% by weight, 50.03 kg of the above titanic acid aqueous solution, and 49.34 kg of pure water were mixed, and the mixture was autoclaved at 200 ° C., 96 ° C. Heated for hours. The colloidal solution obtained after heating was concentrated to obtain 11.0 kg of a titanium oxide-containing core particle dispersion having a solid content of 10% by weight.
Zirconium peroxide solution 526 g of zirconium oxychloride dissolved in 947 g of water was hydrolyzed by adding 15% ammonia water to an aqueous solution of zirconium oxychloride having a concentration of 2% by weight of ZrO 2 to obtain a slurry of pH 8.5. It was. This slurry was filtered and washed to prepare 610 g of a hydrogen peroxide solution of zirconium having a concentration of 2% by weight as ZrO 2 .
Preparation of Silicic Acid Solution A commercially available water glass was diluted with water and then dealkalized with a cation exchange resin to prepare 1890 g of a silicic acid solution having a SiO 2 concentration of 2% by weight.

上記で調製した酸化チタン含有核粒子分散ゾル7.14kgに水28.56kgを加えて固形分濃度2重量%にしたのち90℃に加熱し、これにジルコニウムの過酸化水素溶解液610gと珪酸液1890gを混合した。次いでこの混合液をオートクレーブ中200℃で18時間加熱処理を行った後、限外濾過膜法で濃縮し、固形分濃度10重量%の淡乳白色をした透明な、酸化チタン含有核粒子に酸化ケイ素と酸化ジルコニウムからなる被覆層を形成した酸化チタン、シリカおよび酸化ジルコニウムからなる酸化物微粒子(R1)水分散液を得た。   28.56 kg of water was added to 7.14 kg of the titanium oxide-containing core particle-dispersed sol prepared above to obtain a solid concentration of 2% by weight, and then heated to 90 ° C., followed by 610 g of zirconium hydrogen peroxide solution and silicic acid solution. 1890 g was mixed. The mixture was then heat-treated at 200 ° C. for 18 hours in an autoclave, and then concentrated by an ultrafiltration membrane method, and transparent titanium oxide-containing core particles having a solid milk concentration of 10% by weight were formed into silicon oxide. An oxide fine particle (R1) aqueous dispersion composed of titanium oxide, silica and zirconium oxide having a coating layer composed of and zirconium oxide was obtained.

ついで、酸化物微粒子(R1)水分散液の一分について分散媒の水をメタノールに置換し、固形分濃度が20重量%になるまで濃縮して酸化物微粒子(R1)メタノール分散液を調製した。   Next, water in the dispersion medium was replaced with methanol for one minute of the oxide fine particle (R1) aqueous dispersion, and concentrated to a solid content concentration of 20% by weight to prepare an oxide fine particle (R1) methanol dispersion. .

酸化物微粒子(R1)について平均粒子径、粒子径の均一性、粒子中の酸根を測定し、結果を表1に示した。また、分散液について安定性、透明性、粒子の屈折率を評価し、結果を表1に示した。   For the oxide fine particles (R1), the average particle size, the uniformity of the particle size, and the acid radicals in the particles were measured, and the results are shown in Table 1. In addition, the stability, transparency, and refractive index of the particles were evaluated for the dispersion, and the results are shown in Table 1.

透明被膜形成用塗布液(R1)の調製
酸化物微粒子(R1)メタノール分散液を用いた以外は、実施例1と同様にして、透明被膜形成用塗布液(R1)を調製した。
Preparation of coating liquid for transparent film formation (R1) A coating liquid for transparent film formation (R1) was prepared in the same manner as in Example 1 except that the oxide fine particle (R1) methanol dispersion was used.

透明被膜付レンズ(R1)の形成
透明被膜形成用塗布液(R1)を用い、実施例1と同様にして透明被膜付レンズ(R1)を形成した。
Formation of lens (R1) with a transparent film A lens (R1) with a transparent film was formed in the same manner as in Example 1 using the coating liquid (R1) for forming a transparent film.

得られた透明被膜付レンズ(R1)につき、実施例1と同様の特性を評価した。結果を表1に示した。
[比較例2]
酸化物微粒子(R2)分散液の調製
比較例1と同様にして固形分濃度10重量%の酸化チタン含有核粒子分散液を調製した。ついで、酸化チタン含有核粒子分散液の一分について分散媒の水をメタノールに置換し、固形分濃度が20重量%になるまで濃縮して酸化物微粒子(R2)メタノール分散液を調製した。
About the obtained lens (R1) with a transparent coating, the characteristic similar to Example 1 was evaluated. The results are shown in Table 1.
[Comparative Example 2]
Preparation of oxide fine particle (R2) dispersion A titanium oxide-containing core particle dispersion having a solid concentration of 10% by weight was prepared in the same manner as in Comparative Example 1. Next, water for the dispersion medium was replaced with methanol for one minute of the titanium oxide-containing core particle dispersion, and concentrated to a solid content concentration of 20% by weight to prepare an oxide fine particle (R2) methanol dispersion.

酸化物微粒子(R2)について平均粒子径、粒子径の均一性、粒子中の酸根を測定し、結果を表1に示した。また、分散液について安定性、透明性、粒子の屈折率を評価し、結果を表1に示した。   For the oxide fine particles (R2), the average particle size, the uniformity of the particle size, and the acid radicals in the particles were measured, and the results are shown in Table 1. In addition, the stability, transparency, and refractive index of the particles were evaluated for the dispersion, and the results are shown in Table 1.

透明被膜形成用塗布液(R2)の調製
酸化物微粒子(R2)メタノール分散液を用いた以外は、実施例1と同様にして、透明被膜形成用塗布液(R2)を調製した。
Preparation of coating liquid for forming transparent film (R2) A coating liquid for forming a transparent film (R2) was prepared in the same manner as in Example 1 except that the oxide fine particle (R2) methanol dispersion was used.

透明被膜付レンズ(R2)の形成
透明被膜形成用塗布液(R2)を用い、実施例1と同様にして透明被膜付レンズ(R2)を形成した。
Formation of lens (R2) with a transparent film A lens (R2) with a transparent film was formed in the same manner as in Example 1 using the coating liquid (R2) for forming a transparent film.

得られた透明被膜付レンズ(R2)につき、実施例1と同様の特性を評価した。結果を表1に示した。
[比較例3]
酸化物微粒子(R3)分散液の調製
比較例1と同様にして得た酸化物微粒子(R1)メタノール分散液1000gと純水1000gを反応容器にとり、63℃に加熱した後、撹拌しながらγ−グリシドキシプロピルトリエトキシシランとメタノール(重量比153/1000)の混合液2リットルを除々に添加した。添加終了後、さらに溶液の温度を63℃に維持して熟成し、ついでメタノールで溶媒置換するとともに濃縮し、固形分濃度30.5重量%のγ−グリシドキシプロピル
トリエトキシシランで表面改質された酸化物微粒子(R3)メタノール分散液を得た。
About the obtained lens (R2) with a transparent coating, the same characteristic as Example 1 was evaluated. The results are shown in Table 1.
[Comparative Example 3]
Preparation of oxide fine particle (R3) dispersion 1000 g of oxide fine particle (R1) methanol dispersion obtained in the same manner as in Comparative Example 1 and 1000 g of pure water were placed in a reaction vessel and heated to 63 ° C. 2 liters of a mixture of glycidoxypropyltriethoxysilane and methanol (weight ratio 153/1000) was gradually added. After completion of the addition, the solution was further aged by maintaining the temperature at 63 ° C., then solvent-replaced with methanol and concentrated, and surface modification with γ-glycidoxypropyltriethoxysilane having a solid content concentration of 30.5% by weight. An oxide fine particle (R3) methanol dispersion was obtained.

酸化物微粒子(R3)メタノール分散液安定性、透明性、粒子の屈折率を評価し、結果を表1に示した。
透明被膜形成用塗布液(R3)の調製
酸化物微粒子(R3)メタノール分散液を用いた以外は、実施例1と同様にして、透明被膜形成用塗布液(R3)を調製した。
The stability of the oxide microparticle (R3) methanol dispersion, transparency, and refractive index of the particles were evaluated, and the results are shown in Table 1.
Preparation of Transparent Coating Forming Coating Solution (R3) A transparent coating forming coating solution (R3) was prepared in the same manner as in Example 1 except that the oxide fine particle (R3) methanol dispersion was used.

透明被膜付レンズ(R3)の形成
透明被膜形成用塗布液(R3)を用い、実施例1と同様にして透明被膜付レンズ(R3)を形成した。
Formation of lens (R3) with a transparent film A lens (R3) with a transparent film was formed in the same manner as in Example 1 using the coating liquid (R3) for forming a transparent film.

得られた透明被膜付レンズ(R3)につき、実施例1と同様の特性を評価した。結果を表1に示した。
[比較例4]
酸化物微粒子(R4)分散液の調製
比較例2と同様にして得た酸化物微粒子(R2)メタノール分散液1000gと純水1000gを反応容器にとり、63℃に加熱した後、撹拌しながらγ−グリシドキシプロピルトリエトキシシランとメタノール(重量比153/1000)の混合液2リットルを除々に添加した。添加終了後、さらに溶液の温度を63℃に維持して熟成し、ついでメタノールで溶媒置換するとともに濃縮し、固形分濃度30.5重量%のγ−グリシドキシプロピル
トリエトキシシランで表面改質された酸化物微粒子(R4)メタノール分散液を得た。
About the obtained lens (R3) with a transparent film, the same characteristics as Example 1 were evaluated. The results are shown in Table 1.
[Comparative Example 4]
Preparation of Oxide Fine Particle (R4) Dispersion 1000 g of Oxide Fine Particle (R2) Methanol Dispersion obtained in the same manner as Comparative Example 2 and 1000 g of pure water were placed in a reaction vessel and heated to 63 ° C. 2 liters of a mixture of glycidoxypropyltriethoxysilane and methanol (weight ratio 153/1000) was gradually added. After completion of the addition, the solution was further aged by maintaining the temperature at 63 ° C., then solvent-replaced with methanol and concentrated, and surface modification with γ-glycidoxypropyltriethoxysilane having a solid content concentration of 30.5% by weight. An oxide fine particle (R4) methanol dispersion was obtained.

酸化物微粒子(R4)メタノール分散液安定性、透明性、粒子の屈折率を評価し、結果を表1に示した。
透明被膜形成用塗布液(R4)の調製
酸化物微粒子(R4)メタノール分散液を用いた以外は、実施例1と同様にして、透明被膜形成用塗布液(R4)を調製した。
The stability of the oxide microparticle (R4) methanol dispersion, transparency, and refractive index of the particles were evaluated, and the results are shown in Table 1.
Preparation of coating liquid for forming transparent film (R4) A coating liquid for forming a transparent film (R4) was prepared in the same manner as in Example 1 except that the oxide fine particle (R4) methanol dispersion was used.

透明被膜付レンズ(R4)の形成
透明被膜形成用塗布液(R4)を用い、実施例1と同様にして透明被膜付レンズ(R4)を形成した。
Formation of lens (R4) with a transparent coating A lens (R4) with a transparent coating was formed in the same manner as in Example 1 using the coating solution (R4) for forming a transparent coating.

得られた透明被膜付レンズ(R4)につき、実施例1と同様の特性を評価した。結果を表1に示した。   The same characteristics as in Example 1 were evaluated for the obtained lens (R4) with a transparent coating. The results are shown in Table 1.

Figure 0005432430
Figure 0005432430

Claims (4)

ニオブ系酸化物微粒子とマトリックス形成成分とを含有し、
前記ニオブ系酸化物微粒子が、核粒子をシェルで被覆したコア-シェル構造を有し、
(i)核粒子(コア)がニオブ酸化物微粒子であり、
シェルが、Nb、Fe、Si、Ti、Zrの酸化物から選ばれる1種以上の酸化物からなるものであるか、
あるいは、
(ii)核粒子(コア)がSi、Zr、Tiから選ばれる1種以上の酸化物微粒子のいずれかであり、
シェルが、Nb酸化物、または、Nb酸化物とFe、Si、Zr、Tiの酸化物から選ばれる1種以上の酸化物からなるものであり、
前記マトリックス形成成分が加水分解性有機ケイ素化合物および/または加水分解性有機ケイ素化合物の加水分解物であることを特徴とする光学レンズ用の透明被膜形成用塗布液。
Containing niobium-based oxide fine particles and a matrix-forming component,
The niobium-based oxide fine particles have a core-shell structure in which core particles are covered with a shell,
(i) the core particle (core) is niobium oxide fine particles,
Whether the shell is made of one or more oxides selected from oxides of Nb, Fe, Si, Ti, Zr,
Or
(ii) The core particle (core) is one or more kinds of oxide fine particles selected from Si, Zr, and Ti,
The shell is made of Nb oxide or one or more oxides selected from Nb oxide and an oxide of Fe, Si, Zr, Ti,
A coating liquid for forming a transparent film for an optical lens, wherein the matrix-forming component is a hydrolyzable organosilicon compound and / or a hydrolyzate of a hydrolyzable organosilicon compound.
前記ニオブ系酸化物微粒子の平均粒子径が2〜60nmの範囲にあることを特徴とする請求項1に記載の光学レンズ用の透明被膜形成用塗布液。 2. The coating liquid for forming a transparent film for an optical lens according to claim 1, wherein the niobium-based oxide fine particles have an average particle diameter in the range of 2 to 60 nm. 前記ニオブ系酸化物微粒子が、その表面を有機ケイ素化合物またはアミン系化合物で処理されていることを特徴とする請求項1または2に記載の光学レンズ用の透明被膜形成用塗布液。 3. The coating solution for forming a transparent film for an optical lens according to claim 1, wherein the niobium-based oxide fine particles have a surface treated with an organosilicon compound or an amine-based compound. 基材表面に請求項1〜3のいずれかに記載の光学レンズ用の透明被膜塗布液を用いて形成された透明被膜を有することを特徴とする透明被膜付基材。 A substrate with a transparent coating, comprising a transparent coating formed using the transparent coating solution for an optical lens according to any one of claims 1 to 3 on the surface of the substrate.
JP2006301738A 2006-11-07 2006-11-07 Coating liquid for forming transparent film and substrate with transparent film Active JP5432430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301738A JP5432430B2 (en) 2006-11-07 2006-11-07 Coating liquid for forming transparent film and substrate with transparent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301738A JP5432430B2 (en) 2006-11-07 2006-11-07 Coating liquid for forming transparent film and substrate with transparent film

Publications (2)

Publication Number Publication Date
JP2008115323A JP2008115323A (en) 2008-05-22
JP5432430B2 true JP5432430B2 (en) 2014-03-05

Family

ID=39501535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301738A Active JP5432430B2 (en) 2006-11-07 2006-11-07 Coating liquid for forming transparent film and substrate with transparent film

Country Status (1)

Country Link
JP (1) JP5432430B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5441264B2 (en) * 2009-03-12 2014-03-12 多木化学株式会社 Ammonium niobate sol, process for producing the same, coating liquid for thin film formation, and thin film supporting substrate
WO2013187450A1 (en) * 2012-06-14 2013-12-19 日産化学工業株式会社 Coating fluid for metal oxide coating film and metal oxide coating film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203142B2 (en) * 1994-04-21 2001-08-27 セイコーエプソン株式会社 Coating solution for forming film and lens made of synthetic resin
KR100318109B1 (en) * 1996-10-08 2002-06-24 쓰끼하시 다미까따 Photocatalyst Coating Composition and Photocatalyst Support Structure
JP2000007943A (en) * 1998-06-25 2000-01-11 Tsuchiya Co Ltd Solution for forming tungsten oxide membrane
JP4396811B2 (en) * 2003-03-25 2010-01-13 Tdk株式会社 Method for producing composite particles, method for producing spherical composite particles
JPWO2004113963A1 (en) * 2003-06-17 2006-08-03 コニカミノルタオプト株式会社 Optical element
JP3952197B2 (en) * 2003-07-17 2007-08-01 日本ペイント株式会社 Metal surface treatment method and galvanized steel sheet
JP2006192716A (en) * 2005-01-13 2006-07-27 Nippon Steel Corp Surface-treated metal, its manufacturing method and surface treatment liquid
JP4589155B2 (en) * 2005-03-14 2010-12-01 伊藤光学工業株式会社 Hard coat composition
WO2006121102A1 (en) * 2005-05-13 2006-11-16 Sanyo Electric Co., Ltd. Multilayer optical device

Also Published As

Publication number Publication date
JP2008115323A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP5127458B2 (en) Hard coat layer forming composition and optical lens
US7575731B2 (en) Fine particles of tin-modified rutile-type titanium dioxide and method of making thereof
KR101437200B1 (en) Surface-coated titanium dioxide, process for producing the same, and coating compositions containing the same
JP5896178B2 (en) Silicon dioxide-stannic oxide composite oxide-coated titanium oxide-containing metal oxide particles
JP5168469B2 (en) Zirconium oxide-tin oxide composite sol, coating composition, and optical member
JP3969968B2 (en) Antimony oxide-coated titanium oxide-containing composite oxide particles, the particle-dispersed sol, the fine particle-containing coating solution for forming a transparent coating, and a substrate with a transparent coating.
JP5126779B2 (en) Method for producing a coating solution for synthetic resin lens film formation
JP3881051B2 (en) Coating liquid for forming transparent film and substrate with film
JP7284462B2 (en) Coating composition containing silane compound containing nitrogen-containing ring
JP4288432B2 (en) Coating composition and optical member
JP2014038293A (en) Dispersion liquid of titanium oxide-based fine particles, coating composition including particles and base material with transparent film
WO2004050560A1 (en) Modified stannic oxide sol, stannic oxide-zirconium oxide composite sol, coating composition and optical member
JP5432430B2 (en) Coating liquid for forming transparent film and substrate with transparent film
JP5116285B2 (en) Base material with transparent coating
WO2019117086A1 (en) Inorganic oxide particles coated with silane compound having nitrogen-containing ring, and coating composition
JP6232310B2 (en) Coating composition, coating film and optical article with coating film
CN117651745A (en) Coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5432430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250