JP5422746B2 - Solar thermal gas turbine plant - Google Patents

Solar thermal gas turbine plant Download PDF

Info

Publication number
JP5422746B2
JP5422746B2 JP2012536083A JP2012536083A JP5422746B2 JP 5422746 B2 JP5422746 B2 JP 5422746B2 JP 2012536083 A JP2012536083 A JP 2012536083A JP 2012536083 A JP2012536083 A JP 2012536083A JP 5422746 B2 JP5422746 B2 JP 5422746B2
Authority
JP
Japan
Prior art keywords
flow rate
gas turbine
hot water
sensor
turbine plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012536083A
Other languages
Japanese (ja)
Other versions
JPWO2012042638A1 (en
Inventor
幸徳 片桐
一仁 小山
重雄 幡宮
文夫 高橋
尚之 永渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2012042638A1 publication Critical patent/JPWO2012042638A1/en
Application granted granted Critical
Publication of JP5422746B2 publication Critical patent/JP5422746B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/047Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas having at least one combustion gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/064Devices for producing mechanical power from solar energy with solar energy concentrating means having a gas turbine cycle, i.e. compressor and gas turbine combination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

本発明は、太陽光から熱エネルギを得る太陽光集熱器を備えた太陽熱利用ガスタービンプラントに関する。   The present invention relates to a solar heat utilizing gas turbine plant including a solar heat collector that obtains thermal energy from sunlight.

産業用電力を支える発電プラントのひとつに、天然ガスや石油、炭層ガスといった化石資源を燃料とするガスタービン発電プラント(以下ガスタービンプラントという)がある。ガスタービンプラントにおいては、夏季など大気温度が上昇する時期あるいは低緯度地域など年間を通じて大気温度が高い地域で運用する場合、大気温度が低い時期に運用する場合等と比べて圧縮機の空気吸気量が相対的に減少し、発電出力が低下することが知られている。   One of the power plants that support industrial power is a gas turbine power plant (hereinafter referred to as a gas turbine plant) that uses fossil resources such as natural gas, oil, and coal seam gas as fuel. In a gas turbine plant, when operating in areas where the atmospheric temperature is high, such as in summer, or when the atmospheric temperature is high throughout the year, such as in low latitude areas, the amount of air intake from the compressor is higher than when operating in a period when the atmospheric temperature is low. It is known that the power generation output decreases due to a relative decrease.

ガスタービンプラントにおける発電出力の向上と熱効率の向上の双方を実現するために、圧縮機の上流に噴霧装置を設け、この噴霧装置によって、圧縮機入口に供給される吸気に液滴を噴霧し、圧縮機に入る吸気の温度を低下させると共に、液滴を圧縮機内流下中に気化させるガスタービンプラントが開示されている(例えば、特許文献1参照)。   In order to realize both improvement in power generation output and thermal efficiency in the gas turbine plant, a spray device is provided upstream of the compressor, and by this spray device, droplets are sprayed on the intake air supplied to the compressor inlet, A gas turbine plant that lowers the temperature of intake air entering a compressor and vaporizes droplets while flowing in the compressor is disclosed (for example, see Patent Document 1).

特開平9-236024号公報JP-A-9-236024

上述したガスタービンプラントであれば、大気温度が高い時期に運用する場合であっても、発電機出力を維持しつつ効率運転が可能である。
しかしながら、上述したガスタービンプラントは圧縮機入口に供給される吸気に液滴を噴霧するものであるため、例えば、大気温度が高い場合には、噴霧装置からの液滴の噴霧量は増大し、圧縮機の内部で蒸発しきれずドレン化する虞が生じる。また、大気温度が低い場合には、一般のガスタービンプラントより、圧縮機入口部で空気中の湿分が氷結するアイシングが生じやすくなるという現象が生じる。これらの現象によって、圧縮機の内部の翼は損傷を生じるという問題があった。
With the gas turbine plant described above, efficient operation is possible while maintaining the generator output even when operating at a time when the atmospheric temperature is high.
However, since the gas turbine plant described above sprays droplets on the intake air supplied to the compressor inlet, for example, when the atmospheric temperature is high, the spray amount of droplets from the spray device increases, There is a risk of drainage without being able to evaporate inside the compressor. In addition, when the atmospheric temperature is low, a phenomenon occurs in which icing in which moisture in the air freezes is more likely to occur at the compressor inlet than a general gas turbine plant. Due to these phenomena, the blades inside the compressor are damaged.

本発明は上述の事柄に基づいてなされたもので、その目的は、運用する環境の大気温度が変動する場合においても、圧縮機の安全性を維持しつつ高効率運転を可能とする太陽熱利用ガスタービンプラントを提供するものである。   The present invention has been made on the basis of the above-mentioned matters, and the purpose thereof is a solar heat utilization gas that enables high-efficiency operation while maintaining the safety of the compressor even when the ambient air temperature of the operating environment fluctuates. A turbine plant is provided.

上記の目的を達成するために、第1の発明は、燃焼用空気を加圧する圧縮機と、前記燃焼用空気及びガスタービン燃料を混合・燃焼して高温の燃焼ガスを発生する燃焼器と、前記燃焼ガスを用いて前記圧縮機を駆動するタービンとを備えた太陽熱利用ガスタービンプラントであって、補給水を蓄える補給水タンクと、前記補給水タンクの前記補給水水を加圧・送水する補給水ポンプと、前記補給水ポンプからの前記補給水を太陽の熱エネルギによって温水とする集熱器と、前記集熱器で得られた温水を前記圧縮機入口から前記燃焼用空気に噴霧する吸気噴霧装置と、前記温水の一部を前記ガスタービン燃料で冷却して循環水とする熱交換器と、前記循環水を前記補給水タンクへと循環するための配管と、前記集熱器出口に設けられ、前記温水の温度を計測する温度センサ及び前記温水の圧力を計測する圧力センサと、前記吸気噴霧装置の入口に設けられ、前記温水の流量を計測する流量センサと、前記補給水ポンプ出口の補給水流量を制御する補給水流量調整弁と、前記温度センサ及び前記圧力センサの各計測値を取り込み、前記補給水流量調整弁を制御する制御手段とを備えたものとする。 In order to achieve the above object, a first invention includes a compressor that pressurizes combustion air, a combustor that mixes and burns the combustion air and gas turbine fuel to generate high-temperature combustion gas, A solar-powered gas turbine plant including a turbine that drives the compressor using the combustion gas, and supplies and supplies the makeup water tank for storing makeup water and the makeup water in the makeup water tank. A make-up water pump, a heat collector that uses hot water as the make-up water from the make-up water pump, and hot water obtained by the heat collector is sprayed onto the combustion air from the compressor inlet An intake spray device, a heat exchanger that cools part of the hot water with the gas turbine fuel to form circulating water, a pipe for circulating the circulating water to the make-up water tank, and the collector outlet Provided in the hot water A temperature sensor that measures the temperature, a pressure sensor that measures the pressure of the hot water, a flow sensor that is provided at the inlet of the intake spray device and measures the flow rate of the hot water, and a makeup water flow rate at the outlet of the makeup water pump And a control unit that takes in measured values of the temperature sensor and the pressure sensor and controls the makeup water flow rate adjustment valve .

また、第2の発明は、第1の発明において、前記吸気噴霧装置入口の温水流量を制御する温水流量調整弁と、前記流量センサの流量計測値を取り込み、前記温水流量調整弁を制御する制御手段とを更に備えたことを特徴とする Moreover, 2nd invention is control which takes in the flow rate measurement value of the warm water flow rate adjustment valve which controls the warm water flow rate of the said intake spraying device inlet_port | entrance, and the said flow sensor, and controls the said warm water flow rate adjustment valve in 1st invention. And means .

更に、第3の発明は、第2の発明において、前記熱交換器出口の循環水流量を制御する循環水流量調整弁と、前記圧力センサの圧力計測値を取り込み、前記循環水流量調整弁を制御する制御手段とを更に備えたことを特徴とする。 Furthermore , a third invention is the second invention, wherein the circulating water flow rate adjustment valve that controls the circulating water flow rate at the outlet of the heat exchanger and the pressure measurement value of the pressure sensor are taken in, and the circulating water flow rate adjustment valve is And a control means for controlling .

更に、第4の発明は、第3の発明において、前記圧縮機の入口に設けられ、吸気噴霧後の空気温度を計測する温度センサと、前記圧縮機の入口に設けられ、吸気噴霧後の空気湿度を計測する湿度センサと、前記温度センサと前記湿度センサの各計測値を取り込み、前記吸気噴霧装置入口の温水流量の制御目標値を決定する負荷制御手段とを更に備えたことを特徴とする。   Furthermore, a fourth invention is the third invention according to the third invention, provided at the inlet of the compressor, a temperature sensor for measuring the air temperature after the intake spray, and the air after the intake spray provided at the inlet of the compressor. A humidity sensor that measures humidity, and a load control unit that takes in the measured values of the temperature sensor and the humidity sensor and determines a control target value of the hot water flow rate at the inlet of the intake spray device. .

また、第5の発明は、燃焼用空気を加圧する圧縮機と、前記燃焼用空気及びガスタービン燃料を混合・燃焼して高温の燃焼ガスを発生する燃焼器と、前記燃焼ガスを用いて前記圧縮機を駆動するタービンと、前記タービンの排ガスの熱エネルギから蒸気を得る排熱回収ボイラと、前記排熱回収ボイラで得られた蒸気を用いて駆動する蒸気タービンと、タービン及び蒸気タービンの駆動力で電力を発生する発電機とを備えた太陽熱利用ガスタービンプラントであって、補給水を蓄える補給水タンクと、前記補給水タンクの前記補給水水を加圧・送水する補給水ポンプと、前記補給水ポンプからの前記補給水を太陽の熱エネルギによって温水とする集熱器と、前記集熱器で得られた温水を前記圧縮機入口から前記燃焼用空気に噴霧する吸気噴霧装置と、前記温水の一部を前記排熱回収ボイラの給水で冷却して循環水とする熱交換器と、前記循環水を前記補給水タンクへと循環するための配管と、前記集熱器出口に設けられ、前記温水の温度を計測する温度センサ及び前記温水の圧力を計測する圧力センサと、前記吸気噴霧装置の入口に設けられ、前記温水の流量を計測する流量センサと、前記補給水ポンプ出口の補給水流量を制御する補給水流量調整弁と、前記温度センサ及び前記圧力センサの各計測値を取り込み、前記補給水流量調整弁を制御する制御手段とを備えたことを特徴とする。 The fifth invention is a compressor that pressurizes combustion air, a combustor that mixes and burns the combustion air and gas turbine fuel to generate high-temperature combustion gas, and the combustion gas is used to Turbine that drives the compressor, an exhaust heat recovery boiler that obtains steam from the thermal energy of the exhaust gas of the turbine, a steam turbine that is driven using the steam obtained by the exhaust heat recovery boiler, and driving of the turbine and the steam turbine a solar gas turbine plant equipped with a generator for generating electric power by force, and makeup water tank Ru stored makeup water, with the makeup water pump make-up water water under pressure and water supply of the makeup water tank a heat collector to warm the makeup water from the makeup water pump by the thermal energy of the sun, the intake spray instrumentation for spraying hot water obtained by the heat collector from the compressor inlet to said combustion air When the heat exchanger to the circulating water to cool a portion of the hot water in the water supply of the exhaust heat recovery boiler, a pipe for circulating the circulating water to the makeup water tank, the heat collector outlet A temperature sensor for measuring the temperature of the warm water, a pressure sensor for measuring the pressure of the warm water, a flow rate sensor for measuring the flow rate of the warm water provided at the inlet of the intake spray device, and the makeup water pump A makeup water flow rate adjusting valve for controlling the makeup water flow rate at the outlet, and a control means for taking in the measured values of the temperature sensor and the pressure sensor and controlling the makeup water flow rate regulating valve are provided.

更に、第6の発明は、第5の発明において、前記吸気噴霧装置入口の温水流量を制御する温水流量調整弁と、前記流量センサの流量計測値を取り込み、前記温水流量調整弁を制御する制御手段とを更に備えたことを特徴とする。 Furthermore, a sixth aspect of the present invention is the fifth aspect of the present invention, wherein in the fifth aspect, the hot water flow rate adjustment valve that controls the hot water flow rate at the inlet of the intake spray device, and the control that takes in the flow rate measurement value of the flow rate sensor and controls the hot water flow rate adjustment valve And means .

また、第7の発明は、第6の発明において、前記熱交換器出口の循環水流量を制御する循環水流量調整弁と、前記圧力センサの圧力計測値を取り込み、前記循環水流量調整弁を制御する制御手段とを更に備えたことを特徴とする。
The seventh invention is the sixth invention, wherein the circulating water flow rate adjustment valve that controls the circulating water flow rate at the outlet of the heat exchanger and the pressure measurement value of the pressure sensor are fetched, and the circulating water flow rate adjustment valve is And a control means for controlling .

更に、第8の発明は、第7の発明において、前記圧縮機の入口に設けられ、吸気噴霧後の空気温度を計測する温度センサと、前記圧縮機の入口に設けられ、吸気噴霧後の空気湿度を計測する湿度センサと、前記温度センサと前記湿度センサの各計測値を取り込み、前記吸気噴霧装置入口の温水流量の制御目標値を決定する負荷制御手段とを更に備えたことを特徴とする。   Further, according to an eighth aspect, in the seventh aspect, a temperature sensor that is provided at an inlet of the compressor and measures an air temperature after intake spraying, and an air that is provided at an inlet of the compressor and that is provided after intake spraying. A humidity sensor that measures humidity, and a load control unit that takes in the measured values of the temperature sensor and the humidity sensor and determines a control target value of the hot water flow rate at the inlet of the intake spray device. .

本発明によれば、運用する環境の大気温度が変動する場合においても、太陽光から熱エネルギを得る集熱器で得られた高圧の温水を圧縮機入口に噴霧し、空気中及び圧縮機内部で減圧沸騰させるので、圧縮機の安全性を維持しつつ高効率運転を可能とする太陽熱利用ガスタービンプラントを提供することができる。   According to the present invention, even when the atmospheric temperature of the operating environment fluctuates, high-pressure hot water obtained by a heat collector that obtains thermal energy from sunlight is sprayed on the compressor inlet, and in the air and inside the compressor Therefore, it is possible to provide a solar gas utilization gas turbine plant that enables high-efficiency operation while maintaining the safety of the compressor.

本発明の太陽熱利用ガスタービンプラントの第1の実施の形態を示すシステム構成図である。It is a system configuration figure showing a 1st embodiment of a solar heat utilization gas turbine plant of the present invention. 本発明の太陽熱利用ガスタービンプラントの第1の実施の形態における燃料流量と発電出力との関係を示す特性図である。It is a characteristic view which shows the relationship between the fuel flow volume and power generation output in 1st Embodiment of the solar thermal utilization gas turbine plant of this invention. 本発明の太陽熱利用ガスタービンプラントの第2の実施の形態を示すシステム構成図である。It is a system configuration figure showing a 2nd embodiment of a solar heat utilization gas turbine plant of the present invention.

<第1の実施の形態>
以下、本発明の太陽熱利用ガスタービンプラントの第1の実施の形態を図面を用いて説明する。図1は本発明の太陽熱利用ガスタービンプラントの第1の実施の形態を示すシステム構成図である。
図1は後述する集熱器、吸気噴霧装置及び熱交換器を有するガスタービンプラントのシステムフローを示している。
<First Embodiment>
Hereinafter, a first embodiment of a solar heat utilization gas turbine plant of the present invention will be described with reference to the drawings. FIG. 1 is a system configuration diagram showing a first embodiment of a solar heat utilization gas turbine plant of the present invention.
FIG. 1 shows a system flow of a gas turbine plant having a heat collector, an intake spray device, and a heat exchanger, which will be described later.

図1において、ガスタービンは、圧縮機1、燃焼器2、タービン3、駆動軸4、及び発電機5から構成されている。圧縮機1は空気を吸気・加圧し、燃焼用空気として燃焼器2に供給する。燃焼器2は、燃料調節弁6を介して供給される燃料を前記燃焼用空気と混合・燃焼させ、高温の燃焼ガスを発生する。前記燃焼ガスはタービン3を駆動し、駆動軸4を通して圧縮機1及び発電機5を駆動する。なお、発電機5の発電出力及び駆動軸4の回転数は、燃料流量調整弁6の開度(燃料流量)を調整することにより制御している。   In FIG. 1, the gas turbine includes a compressor 1, a combustor 2, a turbine 3, a drive shaft 4, and a generator 5. The compressor 1 sucks and pressurizes air and supplies it to the combustor 2 as combustion air. The combustor 2 mixes and burns the fuel supplied via the fuel control valve 6 with the combustion air, and generates high-temperature combustion gas. The combustion gas drives the turbine 3 and drives the compressor 1 and the generator 5 through the drive shaft 4. The power generation output of the generator 5 and the rotational speed of the drive shaft 4 are controlled by adjusting the opening degree (fuel flow rate) of the fuel flow rate adjustment valve 6.

以上に述べた構成のガスタービンに対し、本発明の太陽熱利用ガスタービンプラントは、圧縮機1の吸気側に吸気噴霧装置18を備えている。吸気噴霧装置18は、内部に設置した高圧ノズル18Aから、加圧した温水を吸気ダクト及び圧縮機1に向けて噴霧する。   In contrast to the gas turbine having the above-described configuration, the solar heat utilization gas turbine plant of the present invention includes an intake spray device 18 on the intake side of the compressor 1. The intake spray device 18 sprays pressurized hot water toward the intake duct and the compressor 1 from a high-pressure nozzle 18A installed inside.

高圧ノズル18Aによって微粒化した温水は、吸気ダクト中及び圧縮機1内部で減圧沸騰し吸気空気を冷却する。吸気空気の冷却による空気密度の増大により、圧縮機1を通過する空気の質量流量が増大する。また、吸気空気に含まれる湿分の圧縮機1内部の蒸発により、圧縮機1を通過する空気の温度が低下する。この結果、圧縮機1の動力が低下するので、太陽熱利用ガスタービンプラントの発電効率が向上する。   The hot water atomized by the high pressure nozzle 18A boils under reduced pressure in the intake duct and inside the compressor 1 to cool the intake air. Due to the increase in the air density due to the cooling of the intake air, the mass flow rate of the air passing through the compressor 1 increases. Moreover, the temperature of the air which passes the compressor 1 falls by the evaporation inside the compressor 1 of the moisture contained in intake air. As a result, since the power of the compressor 1 is reduced, the power generation efficiency of the solar heat utilization gas turbine plant is improved.

本発明の太陽熱利用ガスタービンプラントの第1の実施の形態において、吸気噴霧装置18から噴霧する高圧の温水は、集熱器11より後述する温水流量調整弁16を介して供給する。この集熱器11は太陽光に含まれる赤外線を熱源として供給される冷水を加熱する。なお、集熱器には平板型集熱器、真空管型集熱器、集光型集熱器などの方式が提案されているが、本実施の形態においてはどの方式を用いても良い。   In the first embodiment of the solar heat utilization gas turbine plant of the present invention, high-pressure hot water sprayed from the intake spray device 18 is supplied from the heat collector 11 via a hot water flow rate adjustment valve 16 described later. The heat collector 11 heats cold water supplied using infrared rays contained in sunlight as a heat source. In addition, although the system of a flat plate type collector, a vacuum tube type collector, a condensing type collector etc. is proposed as a collector, in this embodiment, any method may be used.

集熱器11に供給される冷水は、補給水タンク7から補給水流量調整弁10を介して補給水ポンプ8により圧送されている。補給水ポンプ8は、吸気噴霧装置18の高圧ノズル18Aに水圧を与えるものであって、高圧ノズル18Aに充分な水圧を与えることにより、高圧ノズル18Aから噴霧した温水の微粒化が促進され、圧縮機1動力の低下に寄与する。   The cold water supplied to the heat collector 11 is pumped from the makeup water tank 7 by the makeup water pump 8 through the makeup water flow rate adjustment valve 10. The makeup water pump 8 applies water pressure to the high pressure nozzle 18A of the intake spray device 18, and by applying sufficient water pressure to the high pressure nozzle 18A, atomization of hot water sprayed from the high pressure nozzle 18A is promoted and compressed. It contributes to the reduction of machine 1 power.

また、補給水ポンプ8の出口は補給水流量調整弁10の入口と冷水配管で接続されている。この冷水配管は略中央部には分岐部が設けられ、この分岐部には補給水タンク7へ冷水を還流するミニマムフローバルブ9が設けられた冷水還流配管が接続されている。この結果、補給水ポンプ8が保護される。   Further, the outlet of the makeup water pump 8 is connected to the inlet of the makeup water flow rate adjustment valve 10 by a cold water pipe. This cold water pipe is provided with a branch portion at a substantially central portion, and a cold water return pipe provided with a minimum flow valve 9 for returning the cold water to the makeup water tank 7 is connected to the branch portion. As a result, the makeup water pump 8 is protected.

また、集熱器11の出口は温水流量調整弁16の入口と温水配管で接続されている。この温水配管は略中央部には分岐部が設けられ、この分岐部には集熱器11で得られた温水の一部を補給水タンク7へと還流するための温水還流配管が接続されている。この温水還流配管には、温水を冷却するための熱交換器19と循環水流量調整弁20とが設けられている。熱交換器19の冷却媒体としては、ガスタービンの燃料が用いられ、熱交換器19で冷却された温水は、補給水として再利用するために補給水タンク7へ還流される。   The outlet of the heat collector 11 is connected to the inlet of the hot water flow rate adjustment valve 16 by hot water piping. This hot water pipe is provided with a branch portion at a substantially central portion, and a hot water reflux pipe for returning a part of the hot water obtained by the heat collector 11 to the makeup water tank 7 is connected to the branch portion. Yes. The warm water reflux pipe is provided with a heat exchanger 19 and a circulating water flow rate adjustment valve 20 for cooling the warm water. A gas turbine fuel is used as a cooling medium for the heat exchanger 19, and the hot water cooled by the heat exchanger 19 is returned to the makeup water tank 7 for reuse as makeup water.

さらに、本発明の太陽熱利用ガスタービンプラントの第1の実施の形態においては、温水の温度・流量・圧力、並びに圧縮機1入口における吸気噴霧後の空気温度及び湿度を計測し、プラントを安全かつ効率よく運用するための制御手段として、温度制御手段14、流量制御手段17、圧力制御手段21、負荷制御手段28を備えている。温水の温度及び圧力は、温水配管の分岐部上流側に設けられた温度センサ12及び圧力センサ13により検出され、温水の流量は、温水配管の分岐部下流側に設けられた流量センサ15により検出されている。また、圧縮機1入口における吸気噴霧後の空気温度及び湿度は、圧縮機1の吸気ダクト内に設けられた温度センサ26及び湿度センサ27により検出されている。   Furthermore, in the first embodiment of the solar heat utilization gas turbine plant of the present invention, the temperature, flow rate and pressure of hot water and the air temperature and humidity after intake air spraying at the inlet of the compressor 1 are measured, and the plant is safely and As a control means for operating efficiently, a temperature control means 14, a flow rate control means 17, a pressure control means 21, and a load control means 28 are provided. The temperature and pressure of the hot water are detected by a temperature sensor 12 and a pressure sensor 13 provided on the upstream side of the branch part of the hot water pipe, and the flow rate of the hot water is detected by a flow sensor 15 provided on the downstream side of the branch part of the hot water pipe. Has been. Further, the air temperature and humidity after intake air spraying at the inlet of the compressor 1 are detected by a temperature sensor 26 and a humidity sensor 27 provided in the intake duct of the compressor 1.

温度制御手段14は、集熱器11出口における温水の温度及び圧力を温度センサ12及び圧力センサ13により計測し、温度センサ12の計測値が設定温度に追従するよう集熱器11入口に備えた補給水流量調整弁10を制御するものである。本制御は、吸気噴霧装置18に供給する温水の温度管理と、集熱器11本体の保護を目的とする。   The temperature control means 14 measures the temperature and pressure of the hot water at the outlet of the heat collector 11 with the temperature sensor 12 and the pressure sensor 13, and is provided at the inlet of the heat collector 11 so that the measured value of the temperature sensor 12 follows the set temperature. The makeup water flow rate adjustment valve 10 is controlled. The purpose of this control is to control the temperature of the hot water supplied to the intake spray device 18 and to protect the main body of the heat collector 11.

例えば、快晴時あるいは正午など太陽光から熱エネルギが充分に回収されている場合、または集熱器11入口において充分に補給水が加温されている場合には、集熱器11出口における温水の温度があらかじめ規定した設計温度を上回ると予想される。そこで、本制御では、温水温度が設計温度を上回った場合に補給水流量調節弁10を開動作させ、集熱器11への供給水量を増やす。これにより集熱器11における熱回収量を高め、集熱器11出口における温水温度を下げて集熱器11を保護する。   For example, when the heat energy is sufficiently recovered from sunlight, such as at fine weather or noon, or when the makeup water is sufficiently heated at the inlet of the heat collector 11, the hot water at the outlet of the heat collector 11 is The temperature is expected to exceed the predefined design temperature. Therefore, in this control, when the hot water temperature exceeds the design temperature, the makeup water flow rate adjustment valve 10 is opened to increase the amount of water supplied to the heat collector 11. Thereby, the heat recovery amount in the heat collector 11 is increased, and the hot water temperature at the outlet of the heat collector 11 is lowered to protect the heat collector 11.

また、曇天など太陽光から熱エネルギが充分に回収されない場合には、集熱器11出口における温水の温度が規定した設計温度を下回ると予想される。この場合、補給水流量調整弁10を閉動作させ、集熱器11への供給水量を減らし温水が集熱器11内を通過する時間を増やす。これにより集熱器11における温水温度を高め、吸気噴霧装置18に供給する温水の温度低下を防止する。   Further, when heat energy is not sufficiently recovered from sunlight such as cloudy weather, the temperature of the hot water at the outlet of the heat collector 11 is expected to be lower than the specified design temperature. In this case, the makeup water flow rate adjustment valve 10 is closed, the amount of water supplied to the heat collector 11 is reduced, and the time for warm water to pass through the heat collector 11 is increased. Thereby, the temperature of the hot water in the heat collector 11 is increased, and the temperature of the hot water supplied to the intake spray device 18 is prevented from lowering.

次に、流量制御手段17は、圧縮機1入口へと噴霧する温水の流量を流量センサ15により計測し、流量センサ15の計測値が設定流量に追従するよう温水流量調整弁16を制御するものである。本制御は、圧縮機1駆動力の直接的な低減を目的とする。圧縮機1の駆動力を低減することにより、タービン3及び発電機の出力を相対的に増大させることができ、高効率運転を可能とすることができる。   Next, the flow rate control means 17 measures the flow rate of warm water sprayed to the inlet of the compressor 1 by the flow rate sensor 15 and controls the warm water flow rate adjustment valve 16 so that the measured value of the flow rate sensor 15 follows the set flow rate. It is. The purpose of this control is to reduce the driving force of the compressor 1 directly. By reducing the driving force of the compressor 1, the output of the turbine 3 and the generator can be relatively increased, and high-efficiency operation can be achieved.

また、圧力制御手段21は、集熱器11出口における温水の圧力を圧力センサ13により計測し、圧力センサ13の計測値が設定圧力に追従するよう熱交換器19出口に備えた循環水流量調整弁20を制御するものである。本制御は、集熱器11で得られた温水のうち、吸気噴霧装置18で使用しない温水を補給水タンク7へと循環するとともに、吸気噴霧装置18入口における温水の圧力を設定圧力に保つことを目的とする。   The pressure control means 21 measures the pressure of the hot water at the outlet of the heat collector 11 by the pressure sensor 13 and adjusts the circulating water flow rate provided at the outlet of the heat exchanger 19 so that the measured value of the pressure sensor 13 follows the set pressure. The valve 20 is controlled. In this control, among the hot water obtained by the heat collector 11, hot water that is not used by the intake spray device 18 is circulated to the makeup water tank 7 and the pressure of the hot water at the inlet of the intake spray device 18 is maintained at the set pressure. With the goal.

更に、負荷制御手段28は、圧縮機1入口における吸気噴霧後の空気温度及び湿度を温度センサ26及び湿度センサ27により計測し、温度センサ26及び湿度センサ27の計測値が設定温度及び設定湿度に追従するよう負荷制御手段28において、前記流量制御手段17の設定流量を決定するものである。吸気噴霧装置18へと供給する温水の流量は、天候・時間・発電負荷要求などによって時々刻々と変化する。そのため、温水の温度・流量・圧力及び圧縮機1入口の温度・湿度を適切に制御することにより、太陽熱利用ガスタービンプラントを常に高い効率かつ安全に運転することが可能となる。   Further, the load control means 28 measures the air temperature and humidity after the intake air spray at the inlet of the compressor 1 with the temperature sensor 26 and the humidity sensor 27, and the measured values of the temperature sensor 26 and the humidity sensor 27 become the set temperature and the set humidity. In the load control means 28, the set flow rate of the flow rate control means 17 is determined so as to follow. The flow rate of the hot water supplied to the intake spray device 18 changes from moment to moment depending on the weather, time, power generation load requirements, and the like. Therefore, by appropriately controlling the temperature / flow rate / pressure of the hot water and the temperature / humidity of the inlet of the compressor 1, it is possible to always operate the solar heat utilization gas turbine plant with high efficiency and safety.

次に、本発明の太陽熱利用ガスタービンプラントの第1の実施の形態における運転・制御方式について図2を用いて説明する。図2は本発明の太陽熱利用ガスタービンプラントの第1の実施の形態における燃料流量と発電出力との関係を示す特性図である。   Next, the operation / control system in the first embodiment of the solar heat utilization gas turbine plant of the present invention will be described with reference to FIG. FIG. 2 is a characteristic diagram showing the relationship between the fuel flow rate and the power generation output in the first embodiment of the solar heat utilization gas turbine plant of the present invention.

図2において、縦軸は発電出力Pw、横軸は燃料流量Gfuelを示し、横軸においてG0は、負荷運転時におけるガスタービンの最小燃料流量を示している。最小燃料流量G0は、ガスタービンの起動を完了し、発電機5を電力系統に接続する際の燃料流量に相当する。Gmaxは、最大燃料流量を、Pwmaxは燃料流量最大及び吸気噴霧最大時における理論上の最高発電出力をそれぞれ示している。   In FIG. 2, the vertical axis indicates the power generation output Pw, the horizontal axis indicates the fuel flow rate Gfuel, and the horizontal axis indicates G0 the minimum fuel flow rate of the gas turbine during load operation. The minimum fuel flow rate G0 corresponds to the fuel flow rate when the start of the gas turbine is completed and the generator 5 is connected to the power system. Gmax represents the maximum fuel flow rate, and Pwmax represents the theoretical maximum power generation output at the maximum fuel flow rate and the maximum intake spray.

図2において、線分Pdryは、吸気噴霧装置18から噴霧する高圧の温水の流量を0とした場合(無加湿時)における発電出力と燃料流量との関係を、線分Pwetは、吸気噴霧装置18から高圧の温水を最大流量で噴霧した場合における発電出力と燃料流量との関係をそれぞれ示している。   In FIG. 2, a line segment Pdry represents the relationship between the power generation output and the fuel flow rate when the flow rate of high-pressure hot water sprayed from the intake spray device 18 is 0 (no humidification), and the line segment Pwe represents the intake air spray device. 18 shows the relationship between the power generation output and the fuel flow rate when spraying high-pressure hot water from 18 at the maximum flow rate.

図中ΔPwacmaxは、圧縮機1動力を最も低くしてプラント効率を最大とした場合の負荷増加分を示す。空気が含み得る湿分は、大気温度及び大気湿度によって変動することから、吸気噴霧装置18出口における空気の温度・湿度を一定に制御することが望ましい。本発明の太陽熱利用ガスタービンプラントの第1の実施の形態においては、空気が含み得る最大の湿分量を圧縮機1入口における温度・湿度を用いて一定制御することにより、ΔPwacmaxを最大として常に発電出力を最大とした効率運転が可能となる。   In the figure, ΔPwacmax indicates an increase in load when the power of the compressor 1 is the lowest and the plant efficiency is maximized. Since moisture that air can contain varies depending on atmospheric temperature and atmospheric humidity, it is desirable to control the temperature and humidity of the air at the outlet of the intake spray device 18 to be constant. In the first embodiment of the solar gas utilization gas turbine plant of the present invention, the maximum amount of moisture that can be contained in air is constantly controlled by using the temperature and humidity at the inlet of the compressor 1, so that power generation is always performed with ΔPwacmax as the maximum. Efficient operation with maximum output is possible.

なお、夜間や冬季など集熱器11より充分な温度の温水が得られない場合には、温度制御手段14において補給水流量調整弁10を閉動作とすることから、吸気噴霧装置18への温水流量もまた停止する。   When hot water having a sufficient temperature cannot be obtained from the heat collector 11 such as at night or in winter, the temperature control means 14 closes the makeup water flow rate adjustment valve 10, so that hot water to the intake spray device 18 is closed. The flow rate also stops.

上述した本発明の太陽熱利用ガスタービンプラントの第1の実施の形態によれば、運用する環境の大気温度が変動する場合においても、太陽光から熱エネルギを得る集熱器11で得られた高圧の温水を圧縮機1入口に噴霧し、空気中及び圧縮機1内部で減圧沸騰させるので、圧縮機1の安全性を維持しつつ高効率運転を可能とするガスタービンプラントを提供することができる。   According to the first embodiment of the solar heat utilization gas turbine plant of the present invention described above, the high pressure obtained by the heat collector 11 that obtains thermal energy from sunlight even when the atmospheric temperature of the operating environment fluctuates. Is sprayed at the inlet of the compressor 1 and boiled under reduced pressure in the air and inside the compressor 1. Therefore, it is possible to provide a gas turbine plant that enables high-efficiency operation while maintaining the safety of the compressor 1. .

また、上述した本発明の太陽熱利用ガスタービンプラントの第1の実施の形態によれば、吸気空気の冷却・質量流量増大によるガスタービン出力増大の効果を得られると共に、圧縮機1入口に噴霧する温水の温度、圧力等が制御されるので、噴霧した液滴の圧縮機1内のドレン化や、圧縮機1入口での氷結を防止することができる。この結果、圧縮機1の安全性を維持しつつ高効率運転を可能とする太陽熱利用ガスタービンプラントを提供することができる。   Further, according to the first embodiment of the solar heat utilization gas turbine plant of the present invention described above, an effect of increasing the gas turbine output by cooling the intake air and increasing the mass flow rate can be obtained and sprayed to the inlet of the compressor 1. Since the temperature, pressure, and the like of the hot water are controlled, it is possible to prevent the sprayed droplets from being drained in the compressor 1 and freezing at the compressor 1 inlet. As a result, it is possible to provide a solar heat utilization gas turbine plant that enables high-efficiency operation while maintaining the safety of the compressor 1.

また、上述した本発明の太陽熱利用ガスタービンプラントの第1の実施の形態によれば、何らかの原因によって圧縮機1入口への噴霧量を停止した場合であっても、集熱器11で得られた温水を熱交換器19で冷却し補給水タンク7へと循環するので、集熱器11における温水の過度な温度・圧力上昇を防ぎ、集熱器11を安全に運転することが可能となる。この結果、高い安全性を備えた太陽熱利用ガスタービンプラントを提供することができる。   Moreover, according to 1st Embodiment of the solar-heat utilization gas turbine plant of this invention mentioned above, even if it is a case where the spray amount to the compressor 1 inlet_port | entrance is stopped for some reason, it is obtained with the heat collector 11. Since the warm water is cooled by the heat exchanger 19 and circulated to the replenishment water tank 7, an excessive temperature / pressure rise of the warm water in the heat collector 11 can be prevented, and the heat collector 11 can be operated safely. . As a result, a solar heat utilization gas turbine plant having high safety can be provided.

また、上述した本発明の太陽熱利用ガスタービンプラントの第1の実施の形態によれば、温水の余剰熱を冷却塔等の冷却設備を用いることなく冷却することが可能であり、プラントの設置面積、設備コストを抑えた経済的な太陽熱利用ガスタービンプラントを提供することが可能となる。   Moreover, according to 1st Embodiment of the solar thermal utilization gas turbine plant of this invention mentioned above, it is possible to cool the surplus heat of warm water, without using cooling facilities, such as a cooling tower, and the installation area of a plant Thus, it is possible to provide an economical solar heat utilization gas turbine plant with reduced facility costs.

更に、上述した本発明の太陽熱利用ガスタービンプラントの第1の実施の形態によれば、温水の余剰熱の一部を燃料予熱に用いることにより、燃料の消費量を削減してさらなる発電効率向上に貢献することが可能となる。   Furthermore, according to the first embodiment of the solar gas utilization gas turbine plant of the present invention described above, a part of the surplus heat of the hot water is used for fuel preheating, thereby reducing fuel consumption and further improving power generation efficiency. It becomes possible to contribute to.

なお、本実施の形態において、負荷制御手段を設けているが、負荷制御手段は必要に応じて省略することができる。   In the present embodiment, the load control means is provided, but the load control means can be omitted if necessary.

また、本発明の太陽熱利用ガスタービンプラントの第1の実施の形態は、既存のガスタービン設備に補給水タンク7、補給水ポンプ8、集熱器11、吸気噴霧装置18、熱交換器19等の設備を追設することで実現することが可能になり、例えば、乾燥高温の地域等において、圧縮機の安全性を維持しつつ高効率運転を可能とするガスタービンプラントを提供することができる。   Moreover, the first embodiment of the solar heat utilization gas turbine plant of the present invention is the same as the existing gas turbine equipment in the makeup water tank 7, the makeup water pump 8, the heat collector 11, the intake spray device 18, the heat exchanger 19, etc. It is possible to provide a gas turbine plant that enables high-efficiency operation while maintaining the safety of the compressor, for example, in a dry high temperature area. .

<第2の実施の形態>
以下、本発明の太陽熱利用ガスタービンプラントの第2の実施の形態を図面を用いて説明する。図3は本発明の太陽熱利用ガスタービンプラントの第2の実施の形態を示すシステム構成図である。図3において、図1及び図2に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
図3は集熱器、吸気噴霧装置及び熱交換器を有するガスタービンプラントをコンバインドサイクルに適用した際のシステムフローを示している。
<Second Embodiment>
Hereinafter, a second embodiment of the solar heat utilization gas turbine plant of the present invention will be described with reference to the drawings. FIG. 3 is a system configuration diagram showing a second embodiment of the solar heat utilization gas turbine plant of the present invention. In FIG. 3, the same reference numerals as those shown in FIGS. 1 and 2 are the same parts, and detailed description thereof is omitted.
FIG. 3 shows a system flow when a gas turbine plant having a heat collector, an intake spray device and a heat exchanger is applied to a combined cycle.

図3において、ガスタービンは、第1の実施の形態と同様に、圧縮機1、燃焼器2、タービン3、駆動軸4、発電機5等から構成されている。コンバインドサイクルの構成では、燃焼器2で得られた燃焼ガスでタービン3を駆動する一方、タービン3の排ガスを排熱回収ボイラ22に導き、排熱回収ボイラ22で得られた蒸気を用いて蒸気タービン23を駆動する。タービン3と蒸気タービン23とは同一の駆動軸に接続されており、二つのタービンを用いて圧縮機1及び発電機5を駆動する構成になっている。   In FIG. 3, the gas turbine is comprised from the compressor 1, the combustor 2, the turbine 3, the drive shaft 4, the generator 5, etc. similarly to 1st Embodiment. In the combined cycle configuration, the turbine 3 is driven by the combustion gas obtained by the combustor 2, while the exhaust gas from the turbine 3 is guided to the exhaust heat recovery boiler 22, and steam is obtained using the steam obtained by the exhaust heat recovery boiler 22. The turbine 23 is driven. The turbine 3 and the steam turbine 23 are connected to the same drive shaft, and the compressor 1 and the generator 5 are driven using two turbines.

このような構成のコンバインドサイクルに対し、本発明の太陽熱利用ガスタービンプラントの第2の実施の形態は、大略第1の実施の形態と同じであるが、以下の構成が異なる。   With respect to the combined cycle having such a configuration, the second embodiment of the solar heat utilization gas turbine plant of the present invention is substantially the same as the first embodiment, but the following configuration is different.

本発明の太陽熱利用ガスタービンプラントの第1の実施の形態においては、集熱器11で得られた温水の一部を補給水タンク7へと還流するためにこの還流温水を冷却する熱交換器19が設けられていて、熱交換器19の冷却媒体としては、ガスタービンの燃料が用いられている。これに対し、第2の実施の形態においては、熱交換器19の冷却媒体として排熱回収ボイラ22への給水を用いられている点が異なる。   In the first embodiment of the solar heat utilization gas turbine plant of the present invention, a heat exchanger that cools the recirculated hot water in order to recirculate a part of the hot water obtained by the heat collector 11 to the make-up water tank 7. 19 is provided, and a gas turbine fuel is used as a cooling medium of the heat exchanger 19. On the other hand, the second embodiment is different in that water supply to the exhaust heat recovery boiler 22 is used as a cooling medium for the heat exchanger 19.

排熱回収ボイラ22で用いられる給水とは、蒸気タービン23で仕事を終えた蒸気を復水器24で復水化させたものであって、その復水化された給水は、配管を介して給水ポンプ25で熱交換器19へ加圧送水される。   The feed water used in the exhaust heat recovery boiler 22 is obtained by condensing the steam that has finished work in the steam turbine 23 in the condenser 24, and the condensed feed water is supplied via a pipe. Pressurized water is supplied to the heat exchanger 19 by the water supply pump 25.

上述した本発明の太陽熱利用ガスタービンプラントの第2の実施の形態によれば、上述した第1の実施の形態と同様な効果を得ることができる。また、集熱器11で得られた熱エネルギのうち、ガスタービンで未利用となったエネルギを排熱回収ボイラ22に投入することで、排熱回収ボイラ22−蒸気タービン23における熱効率を改善させ、コンバインドサイクルプラント全体の熱効率を向上することが可能である。   According to the second embodiment of the solar heat utilization gas turbine plant of the present invention described above, the same effects as those of the first embodiment described above can be obtained. Moreover, the thermal energy in the exhaust heat recovery boiler 22-the steam turbine 23 is improved by putting into the exhaust heat recovery boiler 22 the energy that has not been used in the gas turbine among the thermal energy obtained by the heat collector 11. It is possible to improve the thermal efficiency of the combined cycle plant as a whole.

また、乾燥地帯など外部から補給水が充分に得られない場合には、吸気噴霧装置18からの温水噴霧を停止するとともに、集熱器11で得られた熱エネルギを全量排熱回収ボイラ22で回収することにより、補給水を節約しての効率運転が可能となる。   Further, when sufficient makeup water cannot be obtained from the outside, such as in a dry zone, the hot water spray from the intake spray device 18 is stopped, and the heat energy obtained by the heat collector 11 is completely discharged by the exhaust heat recovery boiler 22. By collecting, efficient operation can be performed while saving makeup water.

1 圧縮機
2 燃焼器
3 タービン
4 駆動軸
5 発電機
6 燃料流量調整弁
7 補給水タンク
8 補給水ポンプ
9 ミニマムフローバルブ
10 補給水流量調整弁
11 集熱器
12 温度センサ
13 圧力センサ
14 温度制御手段
15 流量センサ
16 温水流量調整弁
17 流量制御手段
18 吸気噴霧装置
19 熱交換器
20 循環水流量調整弁
21 圧力制御手段
22 排熱回収ボイラ
23 蒸気タービン
24 復水器
25 給水ポンプ
26 温度センサ
27 湿度センサ
28 負荷制御手段
DESCRIPTION OF SYMBOLS 1 Compressor 2 Combustor 3 Turbine 4 Drive shaft 5 Generator 6 Fuel flow rate adjustment valve 7 Makeup water tank 8 Makeup water pump 9 Minimum flow valve 10 Makeup water flow rate adjustment valve 11 Collector 12 Temperature sensor 13 Pressure sensor 14 Temperature control Means 15 Flow rate sensor 16 Hot water flow rate adjustment valve 17 Flow rate control means 18 Intake spray device 19 Heat exchanger 20 Circulating water flow rate adjustment valve 21 Pressure control means 22 Waste heat recovery boiler 23 Steam turbine 24 Condenser 25 Water supply pump 26 Temperature sensor 27 Humidity sensor 28 Load control means

Claims (8)

燃焼用空気を加圧する圧縮機(1)と、前記燃焼用空気及びガスタービン燃料を混合・燃焼して高温の燃焼ガスを発生する燃焼器(2)と、前記燃焼ガスを用いて前記圧縮機(1)を駆動するタービン(3)とを備えた太陽熱利用ガスタービンプラントであって、
補給水を蓄える補給水タンク(7)と、前記補給水タンク(7)の前記補給水水を加圧・送水する補給水ポンプ(8)と、前記補給水ポンプ(8)からの前記補給水を太陽の熱エネルギによって温水とする集熱器(11)と、前記集熱器(11)で得られた温水を前記圧縮機(1)入口から前記燃焼用空気に噴霧する吸気噴霧装置(18)と、前記温水の一部を前記ガスタービン燃料で冷却して循環水とする熱交換器(19)と、前記循環水を前記補給水タンク(7)へと循環するための配管と、
前記集熱器(11)出口に設けられ、前記温水の温度を計測する温度センサ(12)及び前記温水の圧力を計測する圧力センサ(13)と、前記吸気噴霧装置(18)の入口に設けられ、前記温水の流量を計測する流量センサ(15)と、前記補給水ポンプ(8)出口の補給水流量を制御する補給水流量調整弁(10)と、前記温度センサ(12)及び前記圧力センサ(13)の各計測値を取り込み、前記補給水流量調整弁(10)を制御する制御手段(14)とを備えた
ことを特徴とする太陽熱利用ガスタービンプラント。
A compressor (1) for pressurizing combustion air; a combustor (2) for mixing and burning the combustion air and gas turbine fuel to generate high-temperature combustion gas; and the compressor using the combustion gas A solar-powered gas turbine plant comprising a turbine (3) for driving (1),
A makeup water tank (7) for storing makeup water, a makeup water pump (8) for pressurizing and feeding the makeup water in the makeup water tank (7), and the makeup water from the makeup water pump (8) A collector (11) that uses hot energy of the sun as hot water, and an intake spray device (18) that sprays the hot water obtained by the collector (11) onto the combustion air from the compressor (1) inlet. ), A heat exchanger (19) for cooling a part of the hot water with the gas turbine fuel to make circulating water, and a pipe for circulating the circulating water to the makeup water tank (7) ,
A temperature sensor (12) for measuring the temperature of the hot water, a pressure sensor (13) for measuring the pressure of the hot water, and an inlet of the intake spray device (18), provided at the outlet of the heat collector (11). A flow rate sensor (15) for measuring the flow rate of the warm water, a makeup water flow rate adjusting valve (10) for controlling a makeup water flow rate at the outlet of the makeup water pump (8), the temperature sensor (12) and the pressure. A solar-powered gas turbine plant comprising control means (14) for taking in the measured values of the sensor (13) and controlling the makeup water flow rate adjusting valve (10) .
請求項1に記載の太陽熱利用ガスタービンプラントにおいて、
前記吸気噴霧装置(18)入口の温水流量を制御する温水流量調整弁(16)と、前記流量センサ(15)の流量計測値を取り込み、前記温水流量調整弁(16)を制御する制御手段(17)とを更に備えた
ことを特徴とする太陽熱利用ガスタービンプラント。
In the solar heat utilization gas turbine plant according to claim 1,
A hot water flow rate adjusting valve (16) for controlling the hot water flow rate at the inlet of the intake spray device (18) and a control means for taking in the flow rate measurement value of the flow rate sensor (15) and controlling the hot water flow rate adjusting valve (16) ( 17) and a solar gas utilization gas turbine plant.
請求項2に記載の太陽熱利用ガスタービンプラントにおいて、
前記熱交換器(19)出口の循環水流量を制御する循環水流量調整弁(20)と、前記圧力センサ(13)の圧力計測値を取り込み、前記循環水流量調整弁(20)を制御する制御手段(21)とを更に備えた
ことを特徴とする太陽熱利用ガスタービンプラント。
In the solar gas utilization gas turbine plant according to claim 2,
The circulating water flow rate adjusting valve (20) for controlling the circulating water flow rate at the outlet of the heat exchanger (19) and the pressure measurement value of the pressure sensor (13) are taken in to control the circulating water flow rate adjusting valve (20). A solar gas utilization gas turbine plant , further comprising a control means (21) .
請求項3に記載の太陽熱利用ガスタービンプラントにおいて、
前記圧縮機(1)の入口に設けられ、吸気噴霧後の空気温度を計測する温度センサ(26)と、前記圧縮機(1)の入口に設けられ、吸気噴霧後の空気湿度を計測する湿度センサ(27)と、前記温度センサ(26)と前記湿度センサ(27)の各計測値を取り込み、前記吸気噴霧装置(18)入口の温水流量の制御目標値を決定する負荷制御手段(28)とを更に備えた
ことを特徴とする太陽熱利用ガスタービンプラント。
In the solar gas utilization gas turbine plant according to claim 3,
A temperature sensor (26) provided at the inlet of the compressor (1) for measuring the air temperature after the intake spray, and a humidity provided at the inlet of the compressor (1) for measuring the air humidity after the intake spray. Load control means (28) for taking in the measured values of the sensor (27), the temperature sensor (26) and the humidity sensor (27) and determining a control target value of the hot water flow rate at the inlet of the intake spray device (18) And further comprising a solar gas utilization gas turbine plant.
燃焼用空気を加圧する圧縮機(1)と、前記燃焼用空気及びガスタービン燃料を混合・燃焼して高温の燃焼ガスを発生する燃焼器(2)と、前記燃焼ガスを用いて前記圧縮機(1)を駆動するタービン(3)と、前記タービン(3)の排ガスの熱エネルギから蒸気を得る排熱回収ボイラ(22)と、前記排熱回収ボイラ(22)で得られた蒸気を用いて駆動する蒸気タービン(23)と、タービン(3)及び蒸気タービン(23)の駆動力で電力を発生する発電機(5)とを備えた太陽熱利用ガスタービンプラントであって、
補給水を蓄える補給水タンク(7)と、前記補給水タンク(7)の前記補給水水を加圧・送水する補給水ポンプ(8)と、前記補給水ポンプ(8)からの前記補給水を太陽の熱エネルギによって温水とする集熱器(11)と、前記集熱器(11)で得られた温水を前記圧縮機(1)入口から前記燃焼用空気に噴霧する吸気噴霧装置(18)と、前記温水の一部を前記排熱回収ボイラ(22)の給水で冷却して循環水とする熱交換器(19)と、前記循環水を前記補給水タンク(7)へと循環するための配管と、
前記集熱器(11)出口に設けられ、前記温水の温度を計測する温度センサ(12)及び前記温水の圧力を計測する圧力センサ(13)と、前記吸気噴霧装置(18)の入口に設けられ、前記温水の流量を計測する流量センサ(15)と、前記補給水ポンプ(8)出口の補給水流量を制御する補給水流量調整弁(10)と、前記温度センサ(12)及び前記圧力センサ(13)の各計測値を取り込み、前記補給水流量調整弁(10)を制御する制御手段(14)とを備えた
ことを特徴とする太陽熱利用ガスタービンプラント。
A compressor (1) for pressurizing combustion air; a combustor (2) for mixing and burning the combustion air and gas turbine fuel to generate high-temperature combustion gas; and the compressor using the combustion gas The turbine (3) that drives (1), the exhaust heat recovery boiler (22) that obtains steam from the thermal energy of the exhaust gas of the turbine (3), and the steam obtained by the exhaust heat recovery boiler (22) are used. A solar turbine utilizing a gas turbine plant comprising: a steam turbine (23) that is driven by a power generator; and a generator (5) that generates electric power by the driving force of the turbine (3) and the steam turbine (23),
A makeup water tank (7) for storing makeup water, a makeup water pump (8) for pressurizing and feeding the makeup water in the makeup water tank (7), and the makeup water from the makeup water pump (8) A collector (11) that uses hot energy of the sun as hot water, and an intake spray device (18) that sprays the hot water obtained by the collector (11) onto the combustion air from the compressor (1) inlet. ), A heat exchanger (19) that cools a part of the hot water with the feed water of the exhaust heat recovery boiler (22) to make circulating water, and circulates the circulating water to the makeup water tank (7). Piping for,
A temperature sensor (12) for measuring the temperature of the hot water, a pressure sensor (13) for measuring the pressure of the hot water, and an inlet of the intake spray device (18), provided at the outlet of the heat collector (11). A flow rate sensor (15) for measuring the flow rate of the warm water, a makeup water flow rate adjusting valve (10) for controlling a makeup water flow rate at the outlet of the makeup water pump (8), the temperature sensor (12) and the pressure. A solar-powered gas turbine plant comprising control means (14) for taking in the measured values of the sensor (13) and controlling the makeup water flow rate adjusting valve (10) .
請求項5に記載の太陽熱利用ガスタービンプラントにおいて、
前記吸気噴霧装置(18)入口の温水流量を制御する温水流量調整弁(16)と、前記流量センサ(15)の流量計測値を取り込み、前記温水流量調整弁(16)を制御する制御手段(17)とを更に備えた
ことを特徴とする太陽熱利用ガスタービンプラント。
In the solar gas utilization gas turbine plant according to claim 5,
A hot water flow rate adjusting valve (16) for controlling the hot water flow rate at the inlet of the intake spray device (18) and a control means for taking in the flow rate measurement value of the flow rate sensor (15) and controlling the hot water flow rate adjusting valve (16) ( 17) and a solar gas utilization gas turbine plant.
請求項6に記載の太陽熱利用ガスタービンプラントにおいて、
前記熱交換器(19)出口の循環水流量を制御する循環水流量調整弁(20)と、前記圧力センサ(13)の圧力計測値を取り込み、前記循環水流量調整弁(20)を制御する制御手段(21)とを更に備えた
ことを特徴とする太陽熱利用ガスタービンプラント。
In the solar gas utilization gas turbine plant according to claim 6,
The circulating water flow rate adjusting valve (20) for controlling the circulating water flow rate at the outlet of the heat exchanger (19) and the pressure measurement value of the pressure sensor (13) are taken in to control the circulating water flow rate adjusting valve (20). A solar gas utilization gas turbine plant , further comprising a control means (21) .
請求項7に記載の太陽熱利用ガスタービンプラントにおいて、
前記圧縮機(1)の入口に設けられ、吸気噴霧後の空気温度を計測する温度センサ(26)と、前記圧縮機(1)の入口に設けられ、吸気噴霧後の空気湿度を計測する湿度センサ(27)と、前記温度センサ(26)と前記湿度センサ(27)の各計測値を取り込み、前記吸気噴霧装置(18)入口の温水流量の制御目標値を決定する負荷制御手段(28)とを更に備えた
ことを特徴とする太陽熱利用ガスタービンプラント。
In the solar gas utilization gas turbine plant according to claim 7,
A temperature sensor (26) provided at the inlet of the compressor (1) for measuring the air temperature after the intake spray, and a humidity provided at the inlet of the compressor (1) for measuring the air humidity after the intake spray. Load control means (28) for taking in the measured values of the sensor (27), the temperature sensor (26) and the humidity sensor (27) and determining a control target value of the hot water flow rate at the inlet of the intake spray device (18) And further comprising a solar gas utilization gas turbine plant.
JP2012536083A 2010-09-30 2010-09-30 Solar thermal gas turbine plant Active JP5422746B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/067095 WO2012042638A1 (en) 2010-09-30 2010-09-30 Solar heat utilization gas turbine plant

Publications (2)

Publication Number Publication Date
JPWO2012042638A1 JPWO2012042638A1 (en) 2014-02-03
JP5422746B2 true JP5422746B2 (en) 2014-02-19

Family

ID=45892142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012536083A Active JP5422746B2 (en) 2010-09-30 2010-09-30 Solar thermal gas turbine plant

Country Status (2)

Country Link
JP (1) JP5422746B2 (en)
WO (1) WO2012042638A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042655A1 (en) 2010-09-30 2012-04-05 株式会社日立製作所 Gas turbine system, control device for gas turbine system, and control method for gas turbine system
JP6157236B2 (en) * 2013-06-25 2017-07-05 三菱日立パワーシステムズ株式会社 Hot water spray device
CN103362577B (en) * 2013-08-02 2015-05-20 华北电力大学(保定) Powering system combining photovoltaic photo-thermal heat collector and fuel gas-steam combined circulation unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125325A (en) * 1979-03-23 1980-09-27 Hitachi Ltd Fuel oil heating system for gas turbine
WO1998048159A1 (en) * 1997-04-22 1998-10-29 Hitachi, Ltd. Gas turbine equipment
JP2000345857A (en) * 1999-06-04 2000-12-12 Heishoku Boku Re-powering system utilizing low-temperature steam
JP2001214757A (en) * 2000-01-27 2001-08-10 Hitachi Ltd Gas turbine facility
JP2006177161A (en) * 2004-12-20 2006-07-06 Jipangu Energy:Kk Power generation method and power generation system using biogas and zet gas
JP2009019526A (en) * 2007-07-10 2009-01-29 Hitachi Ltd Gas turbine intake device
JP2009174542A (en) * 2009-05-11 2009-08-06 Hitachi Ltd Highly humid gas turbine plant
JP2010144725A (en) * 2008-12-22 2010-07-01 General Electric Co <Ge> System and method for heating fuel using solar heating system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125325A (en) * 1979-03-23 1980-09-27 Hitachi Ltd Fuel oil heating system for gas turbine
WO1998048159A1 (en) * 1997-04-22 1998-10-29 Hitachi, Ltd. Gas turbine equipment
JP2000345857A (en) * 1999-06-04 2000-12-12 Heishoku Boku Re-powering system utilizing low-temperature steam
JP2001214757A (en) * 2000-01-27 2001-08-10 Hitachi Ltd Gas turbine facility
JP2006177161A (en) * 2004-12-20 2006-07-06 Jipangu Energy:Kk Power generation method and power generation system using biogas and zet gas
JP2009019526A (en) * 2007-07-10 2009-01-29 Hitachi Ltd Gas turbine intake device
JP2010144725A (en) * 2008-12-22 2010-07-01 General Electric Co <Ge> System and method for heating fuel using solar heating system
JP2009174542A (en) * 2009-05-11 2009-08-06 Hitachi Ltd Highly humid gas turbine plant

Also Published As

Publication number Publication date
WO2012042638A1 (en) 2012-04-05
JPWO2012042638A1 (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5399565B2 (en) Combined cycle power plant using solar heat
CN101725412B (en) For changing the system and method for the efficiency of gas turbine
JP6038448B2 (en) Solar thermal combined power generation system and solar thermal combined power generation method
CN103912464B (en) The combined generating system that solar energy optical-thermal is integrated with BIGCC
WO2013124899A1 (en) Solar heat assisted gas turbine system
EP2626535A2 (en) System and method for gas turbine inlet air heating
JPH07166888A (en) Method and equipment for increasing power generated from gas turbine
US8584465B2 (en) Method for increasing the efficiency of a power plant which is equipped with a gas turbine, and power plant for carrying out the method
JP5427953B2 (en) Solar-powered gas turbine system
JP5422746B2 (en) Solar thermal gas turbine plant
CN103233821B (en) A kind of air temperature regulating system
JP5422747B2 (en) Solar-powered combined cycle plant
US20130199196A1 (en) System and method for gas turbine part load efficiency improvement
JP2003161164A (en) Combined-cycle power generation plant
JP5422057B2 (en) Gas turbine system and control method thereof
JP3961653B2 (en) Power plant
CN106337789B (en) A kind of collection light amplification solar light-heat power-generation system and electricity-generating method
JP5745647B2 (en) Solar thermal combined cycle power plant
CN105484816A (en) Fuel gas and steam combination system and running control method thereof
CN103620188B (en) The method in power plant and operation power plant
CN106460664B (en) Gas turbine efficiency and turndown speed improvements using supplemental air systems
CN102213118B (en) Steam-turbine unit
KR102620928B1 (en) Heating and cooling carbonic acid fertilization system applied to smart greenhouse
SU1671911A1 (en) Agricultural complex utilizing heat from an electric power station
Vogel et al. Study on integration potential of gas turbines and gas engines into parabolic trough power plants

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5422746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250