JP5417813B2 - Fuel cell stack - Google Patents

Fuel cell stack Download PDF

Info

Publication number
JP5417813B2
JP5417813B2 JP2008298006A JP2008298006A JP5417813B2 JP 5417813 B2 JP5417813 B2 JP 5417813B2 JP 2008298006 A JP2008298006 A JP 2008298006A JP 2008298006 A JP2008298006 A JP 2008298006A JP 5417813 B2 JP5417813 B2 JP 5417813B2
Authority
JP
Japan
Prior art keywords
plate
longitudinal direction
fastening
fastening plate
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008298006A
Other languages
Japanese (ja)
Other versions
JP2010123492A (en
Inventor
桂太 入月
圭司 岡田
英詞 小出
敬士 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008298006A priority Critical patent/JP5417813B2/en
Publication of JP2010123492A publication Critical patent/JP2010123492A/en
Application granted granted Critical
Publication of JP5417813B2 publication Critical patent/JP5417813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池に関し、特に、単位セルを複数積層した燃料電池スタックの締結構造に関する。   The present invention relates to a fuel cell, and more particularly to a fastening structure of a fuel cell stack in which a plurality of unit cells are stacked.

車両の動力源として用いられる燃料電池スタックは、一般に、膜電極接合体(MEA)をセパレータで挟んだ単位セルを複数積層し、これを締結することによって構成されている。このような構成の燃料電池セルスタックにおいては、積層されたセルの隙間から反応ガスや水が漏洩することを防止するために、走行中の振動等による単位セルの変位を防止する必要がある。   A fuel cell stack used as a power source for a vehicle is generally configured by stacking a plurality of unit cells each having a membrane electrode assembly (MEA) sandwiched between separators and fastening the unit cells. In the fuel cell stack having such a configuration, it is necessary to prevent displacement of the unit cell due to vibration during traveling in order to prevent the reaction gas and water from leaking from the gaps between the stacked cells.

特許文献1には、積層されたセルの積層方向両端に設けたエンドプレートを締結する1対の締結部材を設け、各締結部材の中央部に、セル方向に膨出し下面がセルの側面と接する膨出部を設ける構成が開示されている。この構成では、対向する膨出部の下面でセルを挟み込むことによってセルの変位を抑制している。
特開2007−194123号公報
In Patent Document 1, a pair of fastening members that fasten end plates provided at both ends in the stacking direction of the stacked cells are provided, and the bottom surface bulges in the cell direction at the center of each fastening member and contacts the side surface of the cell. The structure which provides a bulging part is disclosed. In this configuration, the displacement of the cell is suppressed by sandwiching the cell between the lower surfaces of the opposed bulging portions.
JP 2007-194123 A

しかしながら、特許文献1に開示された構成は、膨出部の下面とセル部の側面、つまり、平面で積層体の側面を挟み込む構成であるので、各部品の寸法バラツキや組み付け時に生じるずれの大きさによっては、一部のセルが膨出部に挟み込まれず、走行中の振動等により変位してしまうおそれがある。   However, since the configuration disclosed in Patent Document 1 is a configuration in which the bottom surface of the bulging portion and the side surface of the cell portion, that is, the side surface of the laminated body is sandwiched between the planes, the dimensional variation of each component and the large deviation caused during assembly Depending on the situation, some of the cells may not be sandwiched between the bulging portions and may be displaced by vibrations during traveling.

そこで、本発明では、セルの変位を抑制することを目的とする。   Therefore, an object of the present invention is to suppress cell displacement.

本発明の燃料電池スタックは、膜電極接合体及びセパレータからなる矩形の単位セルの長辺が延びる方向を長手方向、短辺が延びる方向を短手方向、厚さ方向を積層方向としたときに、単位セルを積層方向に複数積層してなる積層体と、積層体の短手方向両側に配置された一対の締結板と、積層体の長手方向両側に配置された一対の補強板と積層体の積層方向両端に配置され、締結板とは互いに独立した一対のエンドプレートとを備える。そして、補強板は締結板及びエンドプレートに直交する背壁と短手方向両端部から長手方向積層体側に延びる側壁とを有する。さらに、締結板及び補強板をエンドプレートに締結した状態で、補強板は弾性力を発生し、弾性力により側壁が締結板の長手方向両端部付近を短手方向積層体側へ押圧することで、締結板が積層体を短手方向へ押圧し、積層体の変位を抑制する。 In the fuel cell stack of the present invention, when the long side of the rectangular unit cell composed of the membrane electrode assembly and the separator extends in the long direction, the short side extends in the short direction, and the thickness direction is the stacking direction. A laminated body formed by laminating a plurality of unit cells in the laminating direction, a pair of fastening plates arranged on both sides in the short side direction of the laminated body, and a pair of reinforcing plates and laminated bodies arranged on both sides in the longitudinal direction of the laminated body And a pair of end plates that are independent from each other and are disposed at both ends in the stacking direction. The reinforcing plate has a back wall orthogonal to the fastening plate and the end plate, and side walls extending from both ends in the short direction toward the longitudinal laminate. Furthermore, in a state where the fastening plate and the reinforcing plate are fastened to the end plate, the reinforcing plate generates an elastic force, and the side wall presses the vicinity of both ends in the longitudinal direction of the fastening plate to the lateral direction laminate by the elastic force, fastening plate presses the stacked body to the lateral direction, to suppress the displacement of the stack.

本発明によれば、補強板に押圧されることによって、締結板が積層体の積層方向に延びる4辺に押し付けられるので、積層体の変位を抑制することができる。   According to the present invention, since the fastening plate is pressed against the four sides extending in the stacking direction of the laminate by being pressed by the reinforcing plate, the displacement of the laminate can be suppressed.

以下本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本実施形態を適用する燃料電池スタックの部品構成図、図2は同じく組み立て後の状態を示す図である。なお、本実施形態の燃料電池スタックは、例えば車両に搭載される固体高分子電解質型燃料電池である。   FIG. 1 is a component configuration diagram of a fuel cell stack to which the present embodiment is applied, and FIG. 2 is a diagram showing a state after assembly. Note that the fuel cell stack of the present embodiment is a solid polymer electrolyte fuel cell mounted on a vehicle, for example.

セル部30は、膜電極接合体(MEA)2と、これを両側から挟むように配置したセパレータ3とからなる単位セル20を、直列に所定枚数だけ積層したものである。以下の説明において、単位セル20の厚さ方向を積層方向、長辺方向を長手方向、短辺方向を短手方向という。   The cell unit 30 is formed by laminating a predetermined number of unit cells 20 each including a membrane electrode assembly (MEA) 2 and a separator 3 disposed so as to sandwich the membrane electrode assembly 2 from both sides. In the following description, the thickness direction of the unit cell 20 is referred to as a stacking direction, the long side direction is referred to as a long side direction, and the short side direction is referred to as a short side direction.

セル部30の積層方向の両端には、対の集電板4とスペーサ6を配置し、さらにこれらの両端に金属または樹脂で形成したエンドプレート5を配置する。また、セル部30を短手方向の両側から挟むように締結板7を、長手方向の両側から挟むように補強板8を配置する。   A pair of current collector plates 4 and spacers 6 are disposed at both ends of the cell unit 30 in the stacking direction, and end plates 5 formed of metal or resin are disposed at both ends thereof. Further, the fastening plate 7 is disposed so as to sandwich the cell portion 30 from both sides in the short direction, and the reinforcing plate 8 is disposed so as to sandwich the cell portion 30 from both sides in the longitudinal direction.

そして、エンドプレート5、締結板7及び補強板8を、互いにボルト9等により締結することにより、図2に示すような燃料電池スタック1を構成する。なお、ボルト9の本数及びボルト穴位置は、あくまでも一例である。   Then, the end plate 5, the fastening plate 7, and the reinforcing plate 8 are fastened to each other with bolts 9 or the like, thereby forming a fuel cell stack 1 as shown in FIG. The number of bolts 9 and the bolt hole position are merely examples.

図3は、燃料電池スタック1を積層方向から見た断面図である。なお、説明のために、エンドプレート5の長手方向両端部付近を投影している。   FIG. 3 is a cross-sectional view of the fuel cell stack 1 as viewed from the stacking direction. For the sake of explanation, the vicinity of both ends in the longitudinal direction of the end plate 5 is projected.

エンドプレート5及び締結板7は、長手方向の長さがセル部30よりも長く、両端付近はエンドプレート5から長手方向にはみ出している。また、エンドプレート5の短手方向長さは、セル部30の短手方向長さ(セル部幅)と略等しい。   The end plate 5 and the fastening plate 7 are longer in the longitudinal direction than the cell portion 30, and the vicinity of both ends protrudes from the end plate 5 in the longitudinal direction. Further, the length in the short direction of the end plate 5 is substantially equal to the length in the short direction of the cell portion 30 (cell portion width).

補強板8は、背壁8aと側壁8bからなる、セル部30側に口を開いたコの字断面形状を有している。一対の側壁8の間隔(内幅)は、セル部幅と略等しい。そして、側壁8bは、後述するように組み付けたときに、先端部がセル部30にかかるような長さとする。   The reinforcing plate 8 has a U-shaped cross-sectional shape including a back wall 8a and a side wall 8b and having an opening on the cell part 30 side. The distance (inner width) between the pair of side walls 8 is substantially equal to the cell part width. The side wall 8b has such a length that the front end part is applied to the cell part 30 when assembled as will be described later.

上記の締結板7及び補強板8を、図3に示すように、締結板7がセル部30及びエンドプレート5の上下面と接するように、かつ側壁8bが締結板7を両側から挟み込むように配置する。   As shown in FIG. 3, the fastening plate 7 and the reinforcing plate 8 are arranged so that the fastening plate 7 is in contact with the cell portion 30 and the upper and lower surfaces of the end plate 5, and the side walls 8b sandwich the fastening plate 7 from both sides. Deploy.

ここで、背壁8aと側壁8bがなす角が鋭角となるように補強板8を形成しておき、側壁8bを外側に撓ませるようにして組み付ける。これにより、組みつけた状態で締結板7に対して補強板8の弾性力による押し付け荷重が発生し、締結板7がセル部30に押し付けられることになる。   Here, the reinforcing plate 8 is formed so that the angle formed by the back wall 8a and the side wall 8b is an acute angle, and the side wall 8b is bent outward and assembled. As a result, a pressing load due to the elastic force of the reinforcing plate 8 is generated against the fastening plate 7 in the assembled state, and the fastening plate 7 is pressed against the cell portion 30.

また、各部品間の隙間に樹脂材などを充填硬化させることにより、セル部30と締結板7、締結板7と補強板8の側壁8b、の各隙間がゼロになるように各部品を組み付けてもよい。   Also, by filling and hardening the resin material or the like in the gaps between the parts, the parts are assembled so that the gaps between the cell portion 30 and the fastening plate 7 and between the fastening plate 7 and the side wall 8b of the reinforcing plate 8 become zero. May be.

上記のような構成にすれば、エンドプレート5、締結板7、及び補強板8で燃料電池スタック1全体がボックス構造となり、燃料電池スタック1全体の捩じれ、倒れ変形に対する剛性が向上する。さらに、エンドプレート5の全周で締結荷重を受ける構造になるため、エンドプレート5の変形を抑制することができ、各単位セル20に掛かる面圧を均等に近づけることができる。   With the configuration as described above, the entire fuel cell stack 1 has a box structure with the end plate 5, the fastening plate 7, and the reinforcing plate 8, and the rigidity of the entire fuel cell stack 1 against twisting and falling deformation is improved. Furthermore, since it becomes a structure which receives a fastening load in the perimeter of the end plate 5, the deformation | transformation of the end plate 5 can be suppressed and the surface pressure concerning each unit cell 20 can be closely approached.

また、各部品には寸法公差や組み付け公差があるため、各部品間にはわずかな隙間が存在する。そして、上述したような、押し付け荷重が発生する、またはクリアランスがゼロになるような組み付けをしない場合には、このような隙間によるガタを締結板7で抑えることができないので、セル部30が変位してしまう。   Further, since each part has a dimensional tolerance and an assembly tolerance, there is a slight gap between the parts. If the assembly is not performed such that the pressing load is generated or the clearance becomes zero as described above, the backlash due to such a gap cannot be suppressed by the fastening plate 7, and the cell portion 30 is displaced. Resulting in.

なお、特許文献1(特開2007−194123号公報)には、締結板の中央部に凹状の膨出部を設け、膨出部の底面がセル部に接する構成が開示されているが、この構成では、締結荷重を受けた際に曲げモーメントが増大して、応力、変形量が増大してしまうという問題がある。また、同公報に開示されている膨出部を有さない締結板では、締結荷重を受けた際の変形等は回避できるが、上述した公差による隙間を埋める手段がないため、セル部30の変位を防止することができない。   Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-194123) discloses a configuration in which a concave bulge is provided in the center of the fastening plate and the bottom of the bulge is in contact with the cell. In the configuration, there is a problem that the bending moment increases when receiving a fastening load, and the stress and the deformation amount increase. Further, in the fastening plate having no bulging portion disclosed in the publication, deformation or the like when receiving a fastening load can be avoided, but there is no means for filling the gap due to the above-described tolerance. Displacement cannot be prevented.

これに対して、本実施形態では、上述した公差による隙間があっても、発電中の膜の膨潤・収縮、熱や内部ガス圧の変動、車両走行振動等で発生するスタック全体の捩じれ、倒れを防止できる。   On the other hand, in this embodiment, even if there is a gap due to the above-described tolerance, the entire stack is twisted or collapsed due to swelling / shrinkage of the film during power generation, fluctuations in heat and internal gas pressure, vehicle running vibration, etc. Can be prevented.

以上により本実施形態によれば、次のような効果が得られる。   As described above, according to the present embodiment, the following effects can be obtained.

締結板7及び補強板8をエンドプレート5に締結した状態で、側壁部8bが締結板8aの長手方向両端部付近を短手方向積層体側へ押圧するので、補強板に押圧されることによって締結板が積層体の積層方向に延びる4辺に押し付けられ、積層体の変位を抑制することができる。   In a state where the fastening plate 7 and the reinforcing plate 8 are fastened to the end plate 5, the side wall portion 8b presses the vicinity of both end portions in the longitudinal direction of the fastening plate 8a toward the lateral direction laminate, so that it is fastened by being pressed by the reinforcing plate. The plate is pressed against the four sides extending in the stacking direction of the stacked body, and the displacement of the stacked body can be suppressed.

第2実施形態について説明する。   A second embodiment will be described.

図4は、第2実施形態の燃料電池スタック1について、図3と同様に積層方向から見た断面図である。   FIG. 4 is a cross-sectional view of the fuel cell stack 1 according to the second embodiment as seen from the stacking direction as in FIG.

本実施形態は、基本的に第1実施形態と同様であるが、エンドプレート5の形状及び締結板7と補強板8との組み付け部の構造が異なる。   The present embodiment is basically the same as the first embodiment, but the shape of the end plate 5 and the structure of the assembly portion between the fastening plate 7 and the reinforcing plate 8 are different.

側壁8bの長さは、組みつけた際にセル部30にかからないよう設定する。また、補強板8の内幅は、セル部幅と2枚分の締結板7の厚さとの合計よりも小さく設定する。   The length of the side wall 8b is set so as not to cover the cell part 30 when assembled. Further, the inner width of the reinforcing plate 8 is set smaller than the sum of the cell portion width and the thickness of the two fastening plates 7.

そして、締結板7を撓ませた状態で補強板8を組み付ける。組みつけた状態では、背壁8aとエンドプレート5の長手方向端部とが当接するものとする。エンドプレート5の短手方向の寸法は、撓むことによって狭まった締結板7の長手方向先端部の間隔(端部幅)と同等またはそれ以下とする。   Then, the reinforcing plate 8 is assembled with the fastening plate 7 being bent. In the assembled state, the back wall 8a and the end portion of the end plate 5 in the longitudinal direction are in contact with each other. The dimension of the end plate 5 in the short direction is equal to or less than the interval (end width) of the front end in the longitudinal direction of the fastening plate 7 narrowed by bending.

このような構成にすると、補強板8を組み付けることにより締結板7には押し付け荷重がかかることとなり、締結板7がセル部30に押し付けられる。   With such a configuration, a pressing load is applied to the fastening plate 7 by assembling the reinforcing plate 8, and the fastening plate 7 is pressed against the cell portion 30.

このため、第1実施形態と同様に、寸法公差等による隙間があっても、発電中の膜の膨潤・収縮、熱や内部ガス圧の変動、車両走行振動等で発生するスタック全体の捩じれ、倒れを防止できる。   For this reason, as in the first embodiment, even if there is a gap due to dimensional tolerance etc., the entire stack is twisted and contracted due to swelling and shrinkage of the film during power generation, fluctuations in heat and internal gas pressure, vehicle running vibration, etc. Can prevent falling.

また、組みつけた状態で補強板8の断面は、背壁8aと側壁8bのなす角が略90度の単純なコの字状になるので、締結荷重や、スタックからの曲げ荷重が作用した場合にも、応力の増大や変形が発生しにくい。   In addition, the cross section of the reinforcing plate 8 in the assembled state is a simple U-shape in which the angle formed by the back wall 8a and the side wall 8b is approximately 90 degrees, so that a fastening load or a bending load from the stack is applied. Even in this case, it is difficult for stress to increase and deformation.

さらに、締結板7の端部を内側に撓ませて組み付けるので、第1実施形態と比べて、組み付けが容易になる。   Furthermore, since the end portion of the fastening plate 7 is bent and assembled, it is easy to assemble compared to the first embodiment.

以上により本実施形態では、第1実施形態と同様の効果に加え、さらに次のような効果が得られる。   As described above, in the present embodiment, in addition to the same effects as in the first embodiment, the following effects can be obtained.

締結板7の長手方向両端部がセル部30の長手方向両端部よりも外側に位置し、側壁部8bの長手方向端部がセル部30の長手方向両端部よりも外側に位置するので、補強板8の断面は、背壁8aと側壁8bのなす角が略90度の単純なコの字状になる。これにより、締結荷重やスタックからの曲げ荷重が作用した場合にも、応力の増大や変形が発生しにくくなる。   Since both longitudinal ends of the fastening plate 7 are located outside the longitudinal ends of the cell part 30 and the longitudinal ends of the side walls 8b are located outside the longitudinal ends of the cell part 30, reinforcement is performed. The cross section of the plate 8 has a simple U-shape in which the angle formed by the back wall 8a and the side wall 8b is approximately 90 degrees. As a result, even when a fastening load or a bending load from the stack is applied, an increase in stress and deformation hardly occur.

第3実施形態について説明する。   A third embodiment will be described.

図5は、第3実施形態の燃料電池スタック1について、図3と同様に積層方向から見た断面図である。   FIG. 5 is a cross-sectional view of the fuel cell stack 1 according to the third embodiment as seen from the stacking direction as in FIG.

本実施形態は、基本的に第1実施形態と同様であるが、エンドプレート5の形状及び締結板7と補強板8との組み付け部の構造が異なる。   The present embodiment is basically the same as the first embodiment, but the shape of the end plate 5 and the structure of the assembly portion between the fastening plate 7 and the reinforcing plate 8 are different.

側壁8bの長さは、組みつけた際にセル部30にかかるよう設定する。また、補強板8の内幅は、セル部幅と略同等に設定する。   The length of the side wall 8b is set so as to be applied to the cell part 30 when assembled. Further, the inner width of the reinforcing plate 8 is set substantially equal to the cell portion width.

締結板7は、長手方向の端部近傍にリブ40を有する。このリブ40は、積層方向に平行で、締結板7の長手方向端部付近が、先端に近づくほど短手方向外側に向けて開くように形成する。   The fastening plate 7 has a rib 40 in the vicinity of the end in the longitudinal direction. The rib 40 is formed so as to be parallel to the laminating direction and open toward the outer side in the short direction as the vicinity of the longitudinal end of the fastening plate 7 approaches the tip.

そして、締結板7を撓ませた状態で補強板8を組み付ける。組みつけた状態では、背壁8aとエンドプレート5の長手方向端部とが当接するものとする。エンドプレート5の短手方向の寸法(端部幅)は、撓むことによって狭まった締結板7の端部幅と同等またはそれ以下とする。また、締結板7の長手方向の先端部分は、背壁8aと側壁8bで形成する角部付近と当接するものとする。   Then, the reinforcing plate 8 is assembled with the fastening plate 7 being bent. In the assembled state, the back wall 8a and the end portion of the end plate 5 in the longitudinal direction are in contact with each other. The dimension (end width) in the short direction of the end plate 5 is equal to or less than the end width of the fastening plate 7 narrowed by bending. Moreover, the front-end | tip part of the longitudinal direction of the fastening plate 7 shall contact | abut the corner | angular part vicinity formed with the back wall 8a and the side wall 8b.

このような構成にすると、補強板8は角部に近い位置で締結板7からの反力を受けることになるので、側壁8bが撓みにくくなる。このため、締結荷重やスタックからの曲げ荷重を受けても、応力の増大や変形が発生しにくくなる。一方、締結板7は長手方向の先端部に曲げ荷重が入力されることになるので、曲げモーメントが大きくなり、撓みやすくなる。   With such a configuration, the reinforcing plate 8 receives the reaction force from the fastening plate 7 at a position close to the corner portion, so that the side wall 8b is hardly bent. For this reason, even if it receives a fastening load or a bending load from the stack, an increase in stress and deformation are less likely to occur. On the other hand, since the bending load is input to the distal end portion in the longitudinal direction, the fastening plate 7 has a large bending moment and is easily bent.

また、リブ40を設けることにより、補強板8の内幅をセル部幅と同等にしても十分な押し付け荷重を発生させることができるので、結果として、組み付けた状態での締結板7の短手方向内側への撓み量が第2実施形態に比べて小さくなる。   Further, by providing the rib 40, a sufficient pressing load can be generated even if the inner width of the reinforcing plate 8 is equal to the cell portion width, and as a result, the fastening plate 7 is short in the assembled state. The amount of bending inward in the direction is smaller than that in the second embodiment.

このため、第2実施形態に比べて、エンドプレート5の端部幅を大きくすることができる。エンドプレート5の長手方向端部は締結荷重を受けるので、端部幅が小さくなると、締結荷重による撓みや応力が大きくなる。しかし、本実施形態によれば、端部幅をセル部幅に近づけることができるので、上記撓みや応力の増大を抑制することができる。   For this reason, compared with 2nd Embodiment, the edge part width | variety of the end plate 5 can be enlarged. Since the end portion in the longitudinal direction of the end plate 5 receives a fastening load, when the end width becomes small, the deflection and stress due to the fastening load increase. However, according to the present embodiment, the end portion width can be made close to the cell portion width, so that the above-described deflection and increase in stress can be suppressed.

さらに、リブ40は積層方向と平行なので、締結荷重による引っ張り力が入力されても、リブ40に応力が集中したり、大きく変形したりすることはない。   Furthermore, since the rib 40 is parallel to the stacking direction, stress is not concentrated on the rib 40 or greatly deformed even if a tensile force due to the fastening load is input.

以上により本実施形態では、第2実施形態と同様の効果に加えて、さらに次のような効果が得られる。   As described above, in the present embodiment, in addition to the same effects as those of the second embodiment, the following effects can be obtained.

締結板8は、長手方向両端部が短手方向外側に向けて屈曲しているリブ40を備えるので、補強板8の内幅をセル部幅と同等にしても十分な押し付け荷重を発生させることができる。結果として、組み付けた状態での締結板7の短手方向内側への撓み量が第2実施形態に比べて小さくすることができる。   Since the fastening plate 8 includes ribs 40 whose both ends in the longitudinal direction are bent outward in the short direction, a sufficient pressing load can be generated even if the inner width of the reinforcing plate 8 is equal to the width of the cell portion. Can do. As a result, the amount of bending of the fastening plate 7 in the short-side direction in the assembled state can be reduced as compared with the second embodiment.

なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

燃料電池スタックの部品構成図である。It is a component block diagram of a fuel cell stack. 燃料電池スタックの組み立て状態を示す図である。It is a figure which shows the assembly state of a fuel cell stack. 第1実施形態の燃料電池スタックの断面図である。It is sectional drawing of the fuel cell stack of 1st Embodiment. 第2実施形態の燃料電池スタックの断面図である。It is sectional drawing of the fuel cell stack of 2nd Embodiment. 第3実施形態の燃料電池スタックの断面図である。It is sectional drawing of the fuel cell stack of 3rd Embodiment.

符号の説明Explanation of symbols

1 燃料電池スタック
2 膜電極接合体(MEA)
3 セパレータ
4 集電板
5 エンドプレート
6 スペーサ
7 締結板
8 補強板
9 ボルト
20 単位セル
30 セル部
40 リブ
1 Fuel cell stack 2 Membrane electrode assembly (MEA)
3 Separator 4 Current collector plate 5 End plate 6 Spacer 7 Fastening plate 8 Reinforcement plate 9 Bolt 20 Unit cell 30 Cell part 40 Rib

Claims (3)

膜電極接合体及びセパレータからなる矩形の単位セルの長辺が延びる方向を長手方向、短辺が延びる方向を短手方向、厚さ方向を積層方向としたときに、
前記単位セルを積層方向に複数積層してなる積層体と、
前記積層体の短手方向両側に配置された一対の締結板と、
前記積層体の長手方向両側に配置された一対の補強板と、
前記積層体の積層方向両端に配置され、前記締結板とは互いに独立した一対のエンドプレートと、
を備え、
前記補強板は、前記締結板及び前記エンドプレートに直交する背壁と、この背壁の短手方向両端部から長手方向積層体側に延びる側壁とを有し、
前記締結板及び前記補強板を前記エンドプレートに締結した状態で、前記補強板は弾性力を発生し、前記弾性力により前記側壁が前記締結板の長手方向両端部付近を短手方向積層体側へ押圧することで、前記締結板が前記積層体を短手方向へ押圧し、前記積層体の変位を抑制することを特徴とする燃料電池スタック。
When the direction in which the long side of the rectangular unit cell composed of the membrane electrode assembly and the separator extends is the longitudinal direction, the direction in which the short side extends is the short direction, and the thickness direction is the stacking direction,
A laminated body formed by laminating a plurality of the unit cells in the laminating direction;
A pair of fastening plates disposed on both sides in the short direction of the laminate;
A pair of reinforcing plates disposed on both sides in the longitudinal direction of the laminate;
A pair of end plates that are arranged at both ends in the stacking direction of the stacked body and independent of the fastening plate,
With
The reinforcing plate has a back wall orthogonal to the fastening plate and the end plate, and side walls extending from both lateral ends of the back wall to the longitudinal laminate side,
In a state where the fastening plate and the reinforcing plate are fastened to the end plate, the reinforcing plate generates an elastic force, and due to the elastic force, the side wall is near the both ends in the longitudinal direction of the fastening plate toward the short side laminate. By pressing, the fastening plate presses the stacked body in the lateral direction to suppress displacement of the stacked body.
前記締結板の長手方向両端部が前記積層体の長手方向両端部よりも長手方向外側に位置し、前記側壁の長手方向端部が前記積層体の長手方向両端部よりも長手方向外側に位置することを特徴とする請求項1に記載の燃料電池スタック。   Both ends in the longitudinal direction of the fastening plate are located on the outside in the longitudinal direction with respect to both ends in the longitudinal direction of the laminate, and the ends in the longitudinal direction of the side walls are located on the outside in the longitudinal direction with respect to both ends in the longitudinal direction of the laminate. The fuel cell stack according to claim 1. 前記締結板は、長手方向両端部が短手方向外側に向けて屈曲していることを特徴とする請求項1または2に記載の燃料電池スタック。   3. The fuel cell stack according to claim 1, wherein both ends of the fastening plate are bent toward the outer side in the lateral direction.
JP2008298006A 2008-11-21 2008-11-21 Fuel cell stack Active JP5417813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298006A JP5417813B2 (en) 2008-11-21 2008-11-21 Fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298006A JP5417813B2 (en) 2008-11-21 2008-11-21 Fuel cell stack

Publications (2)

Publication Number Publication Date
JP2010123492A JP2010123492A (en) 2010-06-03
JP5417813B2 true JP5417813B2 (en) 2014-02-19

Family

ID=42324645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298006A Active JP5417813B2 (en) 2008-11-21 2008-11-21 Fuel cell stack

Country Status (1)

Country Link
JP (1) JP5417813B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5645073B2 (en) * 2010-12-21 2014-12-24 日産自動車株式会社 Fuel cell stack
CA2822785C (en) * 2010-12-21 2015-01-13 Nissan Motor Co., Ltd. Fuel cell stack
JP5691646B2 (en) * 2011-03-01 2015-04-01 日産自動車株式会社 Fuel cell stack
JP6164524B2 (en) * 2013-07-10 2017-07-19 日産自動車株式会社 Fuel cell stack structure
JP6104864B2 (en) * 2014-09-02 2017-03-29 本田技研工業株式会社 Fuel cell stack and fuel cell vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992324A (en) * 1995-07-20 1997-04-04 Toyota Motor Corp Cell module and fuel cell
JP2005044688A (en) * 2003-07-24 2005-02-17 Honda Motor Co Ltd Fuel cell stack
JP4427419B2 (en) * 2004-09-06 2010-03-10 本田技研工業株式会社 Fuel cell stack
JP5231083B2 (en) * 2007-06-11 2013-07-10 本田技研工業株式会社 Fuel cell stack

Also Published As

Publication number Publication date
JP2010123492A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
EP2658023B1 (en) Fuel cell stack
JP4762366B2 (en) Fuel cell stack and method of fastening fuel cell stack
JP5445986B2 (en) Fuel cell
JP5417813B2 (en) Fuel cell stack
JP6112373B2 (en) Insulation structure, fuel cell and fuel cell stack
US8697312B2 (en) Cell stack of fuel cell and method of fastening cell stack of fuel cell
KR101816355B1 (en) Device for preventing deformation of fuel cell stack module
JP4645092B2 (en) Fuel cell device
JP5473558B2 (en) Battery module
JP5786419B2 (en) Fuel cell
JP2009252614A (en) Fuel cell
JP5278158B2 (en) Vehicle fuel cell
US10741816B2 (en) Battery module
JP7327367B2 (en) fuel cell unit
JP2007184200A (en) Fuel cell stack
JP5907053B2 (en) Fuel cell
JP5740214B2 (en) Fuel cell
JP5645073B2 (en) Fuel cell stack
JP7147792B2 (en) fuel cell module
JP7376539B2 (en) battery
JP2019186052A (en) Fuel cell separator
JP5493503B2 (en) Fuel cell stack
JP2024025287A (en) battery pack
JP2023152550A (en) Cushioning material for battery
JP2024010720A (en) battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R150 Certificate of patent or registration of utility model

Ref document number: 5417813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150