JP5417783B2 - Manufacturing method of fiber structure - Google Patents

Manufacturing method of fiber structure Download PDF

Info

Publication number
JP5417783B2
JP5417783B2 JP2008243855A JP2008243855A JP5417783B2 JP 5417783 B2 JP5417783 B2 JP 5417783B2 JP 2008243855 A JP2008243855 A JP 2008243855A JP 2008243855 A JP2008243855 A JP 2008243855A JP 5417783 B2 JP5417783 B2 JP 5417783B2
Authority
JP
Japan
Prior art keywords
fiber
electret
short
fibers
fiber structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008243855A
Other languages
Japanese (ja)
Other versions
JP2010077545A (en
JP2010077545A5 (en
Inventor
良一 富樫
祐一郎 林
直貴 山賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008243855A priority Critical patent/JP5417783B2/en
Publication of JP2010077545A publication Critical patent/JP2010077545A/en
Publication of JP2010077545A5 publication Critical patent/JP2010077545A5/ja
Application granted granted Critical
Publication of JP5417783B2 publication Critical patent/JP5417783B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtering Materials (AREA)
  • Electrostatic Separation (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、エアフィルターに使用可能なエレクトレット繊維構造体に関する。   The present invention relates to an electret fiber structure that can be used in an air filter.

エアフィルターの濾材として好適な捲縮のある短繊維からなる不織布を生産方法には、カードという機械で捲縮短繊維を引き揃えてウエッブを作成するカード法や、捲縮短繊維を水に分散して抄紙する抄紙法がある。   The method for producing a nonwoven fabric composed of crimped short fibers suitable as a filter medium for an air filter includes a card method in which crimped short fibers are aligned by a machine called a card, or a method in which crimped short fibers are dispersed in water. There is a papermaking method to make paper.

たとえば、カード法での不織布化をもう少し詳しく説明すると、原糸生産工程とウエッブ化工程での工程通過性付与のため、短繊維には油剤が付与され、そのため不織布においても短繊維表面に油剤が付着している状態となっている。特に、圧縮されて納入されてきた短繊維集合体を解綿機やカードと言う機械にかけて繊維を解して1本1本繊維を引き揃えたウエッブを作成する工程では、捲縮によって繊維間を絡ませてウエッブの形態保持性を保っているものの、静電気が発生すると繊維が解れず目付均一性に優れたウエッブを得ることが出来ないため、帯電防止機能を持った油剤を付着させる。また、捲縮短繊維を生産する工程に遡ると、捲縮加工は、紡糸した数十万dtexの長繊維の束(トウ)を、スタファーボックスに押し込んで行う。スタファーボックスでは、トウを一対の回転する金属ロールで把持し前方向が開放され、上下左右が金属板で仕切られた狭い容積空間に押し込み、トウに背圧を掛けると、トウはジグザグ(捲縮)に折れ曲がった状態で狭い空間を埋め尽くす。この状態で加熱後冷却して取り出すと捲縮が付与されたトウを取り出すことが出来、その後、短い繊維長にカットすることで短繊維を得ることができる。この時にも金属板との摩擦抵抗制御や発生した静電気によるロールへのトウ巻き付きを防ぐために油剤の付与が行われる。このように捲縮加工糸を生産する工程、ウエッブ化する工程での工程通過性付与のため油剤が使用されている。また抄紙法でも水への分散性を良くするため油剤が付着した繊維が用いられている。   For example, to explain the non-woven fabric by the card method in more detail, in order to provide process passability in the raw yarn production process and the web forming process, an oil agent is applied to the short fiber, and therefore the oil agent is also applied to the surface of the short fiber in the non-woven fabric. It is in an attached state. In particular, in the process of producing a web in which the short fiber aggregates that have been compressed and delivered are passed through a machine such as a cotton removal machine or a card and the fibers are aligned one by one, the fibers are separated by crimping. Although the web retains its shape retaining property by entanglement, when static electricity is generated, the fiber is not released and a web having excellent basis weight uniformity cannot be obtained. Therefore, an oil agent having an antistatic function is attached. Further, going back to the process of producing crimped short fibers, crimping is performed by pushing a bundle (tow) of spun hundreds of thousands dtex of long fibers into a stuffer box. In the stuffer box, the tow is gripped by a pair of rotating metal rolls, the front direction is opened, the top, bottom, left and right are pushed into a narrow volume space partitioned by a metal plate, and back pressure is applied to the tow. It fills a narrow space in a folded state. When heated and cooled in this state, the tow with crimps can be taken out, and then the short fibers can be obtained by cutting into short fiber lengths. Also at this time, an oil agent is applied to prevent frictional resistance control with the metal plate and tow winding around the roll due to the generated static electricity. Thus, the oil agent is used for providing process passability in the process of producing the crimped yarn and the process of forming the web. Also in the paper making method, fibers to which an oil agent is attached are used in order to improve the dispersibility in water.

一方、不織布には、集塵性能を高めるために、エレクトレット加工を施すことが好ましい。しかしながら、上記のようにして生産された不織布には油剤が付着している。油剤は一般的に繊維表面の電気抵抗値を下げる効果があり、かかる油剤が付着した不織布シートにコロナ放電加工を行ってエレクトレット加工を施しても、電荷が消失して高いエレクトレット性が得られない。   On the other hand, the non-woven fabric is preferably subjected to electret processing in order to improve dust collection performance. However, the oil agent has adhered to the nonwoven fabric produced as mentioned above. Oils generally have the effect of lowering the electrical resistance value on the fiber surface, and even if corona discharge machining is performed on the nonwoven fabric sheet to which such oils adhere, electret machining is applied and high electret properties cannot be obtained. .

この対策として、不織布を洗浄して油剤を除去した後に、当該不織布にエレクトレット加工を行ったり、表面電気抵抗値を下げない油剤を付着させた繊維をエレクトレット加工することが特許文献1〜3に示されている。しかし油剤を除去する方法は生産コスト高であり、表面電気抵抗値を下げない油剤を付着させる方法は高いエレクトレット効果が得られない。
特開2002−339256号公報 特開2007−146357号公報 特開2006−328586号公報
As countermeasures, Patent Documents 1 to 3 show that after washing the nonwoven fabric and removing the oil agent, electret processing is performed on the nonwoven fabric, or electret processing is performed on a fiber to which an oil agent that does not lower the surface electrical resistance value is adhered. Has been. However, the method of removing the oil agent is high in production cost, and the method of attaching the oil agent that does not lower the surface electrical resistance value cannot obtain a high electret effect.
JP 2002-339256 A JP 2007-146357 A JP 2006-328586 A

本発明の目的は、集塵性能の高いエレクトレット繊維構造体を得ることを目的とする。   An object of the present invention is to obtain an electret fiber structure having high dust collection performance.

(1)油剤が付着した短繊維(A)と油剤が付着していないエレクトレット短繊維(B)とで構成された不織布を含むエレクトレット繊維構造体。
(2)前記短繊維(A)が熱接着性である、前記(1)に記載のエレクトレット繊維構造体。
(3)前記不織布が少なくとも2層積層されてなり、該少なくとも2層の不織布は、互いに、前記短繊維(A)と前記エレクトレット短繊維(B)の配合比率が異なる、前記(1)または(2)に記載のエレクトレット繊維構造体。
(4)前記短繊維(A)の繊度が6dtex以上30dtex以下、短繊維(B)の繊度が0.1〜7dtexである前記(1)〜(3)いずれかに記載のエレクトレット繊維構造体。
(5)前記短繊維(A)および短繊維(B)が捲縮していることを特徴とする前記(1)〜(4)いずれかに記載の繊維構造体。
(6)エレクトレット繊維構造体における短繊維(B)の配合比率が60%以下であることを特徴とする前記(1)〜(5)いずれかに記載の繊維構造体。
(7)少なくとも短繊維(B)となる繊維の原綿Bを短繊維(A)となる繊維の原綿Aで挟む形で積層し、開綿機に供給しウェブを製造する工程、得られたウェブの繊維間接着を行う工程、および繊維間接着されたウェブをエレクトレット加工する工程を有することを特徴とする前記(1)〜(6)いずれかの繊維構造体の製造方法。
(8)前記(1)〜(6)のいずれかに記載のエレクトレット繊維構造体、または前記(7)記載の方法で得られた繊維構造体を備えてなるエアフィルター。

(1) An electret fiber structure including a nonwoven fabric composed of short fibers (A) to which an oil agent is adhered and electret short fibers (B) to which no oil agent is adhered.
(2) The electret fiber structure according to (1), wherein the short fibers (A) are thermally adhesive.
(3) At least two layers of the nonwoven fabric are laminated, and the nonwoven fabric of the at least two layers is different from each other in the blending ratio of the short fibers (A) and the electret short fibers (B). The electret fiber structure according to 2).
(4) The electret fiber structure according to any one of (1) to (3), wherein the fineness of the short fibers (A) is 6 dtex or more and 30 dtex or less, and the fineness of the short fibers (B) is 0.1 to 7 dtex.
(5) The fiber structure according to any one of (1) to (4), wherein the short fibers (A) and the short fibers (B) are crimped.
(6) The fiber structure according to any one of (1) to (5), wherein the blending ratio of the short fibers (B) in the electret fiber structure is 60% or less.
(7) A process of laminating raw cotton B, which is at least a short fiber (B), with a raw cotton A, which is a short fiber (A), and supplying it to a cotton opening machine to produce a web, the web obtained The method for producing a fiber structure according to any one of (1) to (6), further comprising: a step of performing inter-fiber bonding, and a step of electret-processing the inter-fiber bonded web.
(8) An air filter comprising the electret fiber structure according to any one of (1) to ( 6) or the fiber structure obtained by the method according to (7) .

本発明によれば、油剤が付着した短繊維(A)と油剤が付着していないエレクトレット短繊維(B)とで構成された不織布のため、エレクトレット加工に際し油剤を除去するなどの特別な前処理を行うことなく十分なエレクトレット加工を行うことが可能なため、低コストで高性能なエレクトレット繊維構造体を得る事が出来る。   According to the present invention, since the nonwoven fabric is composed of short fibers (A) to which an oil agent is adhered and electret short fibers (B) to which no oil agent is adhered, a special pretreatment such as removing the oil agent during electret processing Since it is possible to perform sufficient electret processing without performing high-performance electret fiber structures at low cost.

本発明のエレクトレット繊維構造体は、主に、油剤が付着した、例えば熱接着性の短繊維(以後短繊維(A)と称する)と、油剤が付着していないエレクトレット短繊維(以後短繊維(B)と称する)とで構成された不織布を含むものである。尚、本発明において、短繊維とは繊維長が5〜60mmのもので、カード法やエアレード、湿式法でウエッブ製造が可能な短い繊維を言う。   The electret fiber structure of the present invention mainly includes, for example, heat-adhesive short fibers (hereinafter referred to as short fibers (A)) to which an oil agent is adhered, and electret short fibers (hereinafter referred to as short fibers (hereinafter referred to as short fibers)) to which no oil agent is adhered. B))) and the non-woven fabric constituted. In the present invention, the short fiber means a short fiber having a fiber length of 5 to 60 mm and capable of web production by a card method, air raid or wet method.

エレクトレット繊維構造体の構造は、短繊維(A)と短繊維(B)とがランダムに混合された不織布を1層だけ備えたもの(1層型)と、短繊維(A)と短繊維(B)とがランダムに混合された不織布を少なくとも2層重ねた積層型がある。積層型においては、各不織布における短繊維(A)と短繊維(B)の配合比率が同じでもよいが、各配合比率や繊維の太さが異なると捕集効率やダスト保持特性を各層で変更できるため捕集効率が高くても長寿命な濾材とすることが出来るので好適である。   The structure of the electret fiber structure includes only one layer of a nonwoven fabric in which short fibers (A) and short fibers (B) are randomly mixed (one-layer type), short fibers (A) and short fibers ( There is a laminated type in which at least two layers of non-woven fabrics mixed with B) are randomly stacked. In the laminated type, the mixing ratio of the short fiber (A) and the short fiber (B) in each nonwoven fabric may be the same, but if each mixing ratio and fiber thickness are different, the collection efficiency and dust retention characteristics are changed in each layer. Therefore, even if the collection efficiency is high, it can be used as a long-life filter medium, which is preferable.

そして、1層型、積層型いずれの場合も、短繊維(A)と短繊維(B)の出発物質として後述の繊維を混在させたウエッブを加熱下で押し潰すなどして繊維間接着を行い所定厚みに仕上げた後、エレクトレット加工を行うことで、少なくとも油剤が付着していない繊維がエレクトレット化され(短繊維(B))、ダスト保持特性に優れたエレクトレット繊維構造体とすることができる。このとき、繊維間接着を行うことで、プリーツ加工に適した剛性(例えば250mg以上)を持ったエレクトレット繊維構造体にすることができる。   In both the single layer type and the laminated type, the interfiber bonding is performed by crushing a web in which fibers described later are mixed as a starting material of the short fiber (A) and the short fiber (B) under heating. After finishing to a predetermined thickness, by performing electret processing, at least fibers to which no oil agent is adhered are electretized (short fibers (B)), and an electret fiber structure having excellent dust retention characteristics can be obtained. At this time, by performing interfiber bonding, an electret fiber structure having rigidity suitable for pleating (for example, 250 mg or more) can be obtained.

次に各不織布の短繊維(A)と短繊維(B)の出発物質として使用される繊維について説明する。   Next, fibers used as starting materials for the short fibers (A) and the short fibers (B) of each nonwoven fabric will be described.

油剤が付着している短繊維(A)は、ウエッブ作製時に油剤が付着していない短繊維(B)やウエッブ製造機械との摩擦で発生した静電気を除去するためのものである。このとき、短繊維(A)に熱接着性の短繊維を用いる場合、エレクトレット繊維構造体にプリーツ加工が可能な剛性を容易に付与することができる。そのため、短繊維(A)としては、例えば、繊度が6dtex以上の太く剛性の有る繊維が適し、素材はポリオレフィン系やポリエステル系のもので特に芯鞘構造の繊維等が好ましい。   The short fiber (A) to which the oil agent is attached is for removing static electricity generated by friction with the short fiber (B) to which the oil agent is not attached or a web manufacturing machine during web production. At this time, when a heat-adhesive short fiber is used for the short fiber (A), the electret fiber structure can be easily given rigidity capable of pleating. Therefore, as the short fiber (A), for example, a thick and rigid fiber having a fineness of 6 dtex or more is suitable, and the material is a polyolefin-based or polyester-based fiber, and a core-sheath structure fiber is particularly preferable.

繊維自体の剛性を付与することでエレクトレット繊維構造体の剛性を高めるには、硬いポリエステル系繊維が特に好適である。短繊維(A)がポリエステル系繊維であれば、短繊維(B)がポリプロピレン系繊維であっても短繊維(A)の繊維間結合で剛性を付与する事が可能であり、また短繊維(B)が短繊維(A)に絡まったルーズ状態で存在することになるため、ダスト保持量が高くなり好ましい。しかしながら、短繊維(A)と短繊維(B)の素材が、例えばポリエステルとポリプロピレンの様に異なる素材の場合には熱接着性が得られ難くいため、エレクトレット繊維構造体として剛性が高くなりにくい。そのため、短繊維(A)は、短繊維(B)と同じ素材にすることが好ましく、たとえばポリオレフィン繊維にすることが好ましい。かかる構成により、熱接着度が向上して繊維間が拘束されるため、剛性が高いエレクトレット繊維構造体が得られるので良い。また、こうした場合には繊維全てがエレクトレット加工が可能なため、高捕集性のエレクトレット繊維構造体を得ることができる。   In order to increase the rigidity of the electret fiber structure by imparting the rigidity of the fiber itself, a hard polyester fiber is particularly suitable. If the short fiber (A) is a polyester fiber, rigidity can be imparted by the interfiber bonding of the short fiber (A) even if the short fiber (B) is a polypropylene fiber. Since B) exists in a loose state in which the short fibers (A) are entangled, the dust holding amount becomes high, which is preferable. However, when the materials of the short fibers (A) and the short fibers (B) are different materials such as polyester and polypropylene, it is difficult to obtain thermal adhesiveness, so that the rigidity as an electret fiber structure is not easily increased. Therefore, the short fiber (A) is preferably made of the same material as the short fiber (B), for example, preferably a polyolefin fiber. With this configuration, the degree of thermal adhesion is improved and the fibers are constrained, so that an electret fiber structure with high rigidity can be obtained. In such a case, since all of the fibers can be electret-processed, an electret fiber structure having a high collection property can be obtained.

また、短繊維(A)として熱接着性短繊維を用いる場合、繊維の長さ方向に融点の異なる素材を接合したサイドバイサイドの繊維は、素材間に熱収縮率差異が有ると加熱した時に収縮差により捲縮が発現して幅収縮が大きく発生するため好ましくない。一方、同芯円状に融点の異なる繊維素材が配された芯鞘構造の繊維は、収縮差があっても捲縮を発現しないため幅収縮が少なく、且つ繊維表面の全面を低融点の接着成分で構成し接着による拘束点を増やすことができるため、剛性を高められるのでより好ましい。   Also, when using heat-adhesive short fibers as the short fibers (A), side-by-side fibers joined with materials having different melting points in the length direction of the fibers have a difference in shrinkage when heated if there is a difference in thermal shrinkage between the materials. This is not preferable because crimping occurs and width shrinkage is greatly generated. On the other hand, core-sheathed fibers in which fiber materials with different melting points are arranged concentrically do not develop crimps even if there is a difference in shrinkage, so there is little width shrinkage, and the entire fiber surface is bonded with a low melting point. Since it is comprised with a component and the restraint point by adhesion | attachment can be increased, since rigidity can be improved, it is more preferable.

短繊維(A)の繊度は、6dtex以上30dtex以下が好ましい。より好ましくは10dtex以上、さらに好ましくは12dtex以上20dtexである。中でも、油剤が付与された短繊維(A)として12dtex以上20dtexの太い熱接着性繊維をエレクトレット繊維構造体質量の40%以上、好ましくは60%以上用い、油剤が付与されていない短繊維(B)とともに不織布を構成し、かかる熱接着性繊維を溶融、接着させることで繊維間を接着し、エレクトレット繊維構造体の繊維密度を0.08〜0.25cm/ccとすると、プリーツ加工に適切な剛性が得られ、また空隙率も高く保持できるため、特に長寿命なエレクトレット繊維構造体を得ることができる。 The fineness of the short fibers (A) is preferably 6 dtex or more and 30 dtex or less. More preferably, it is 10 dtex or more, More preferably, it is 12 dtex or more and 20 dtex. Among them, as a short fiber (A) to which an oil agent is applied, a thick heat-adhesive fiber of 12 dtex or more and 20 dtex is used in an amount of 40% or more, preferably 60% or more of the mass of the electret fiber structure. ) Together with the non-woven fabric, melting and adhering such heat-adhesive fibers to bond the fibers, and when the fiber density of the electret fiber structure is 0.08 to 0.25 cm 3 / cc, suitable for pleating Since an excellent rigidity is obtained and the porosity can be kept high, an electret fiber structure having a particularly long life can be obtained.

一方、油剤が付着していない短繊維(B)の出発繊維としては、ポリプロピレン、エチレンとプロピレンのランダム共重合ポリマー、エチレンとプロピレン、ブテンのランダム共重合ポリマーなどからなる繊維、フッ素系繊維、ポリエステル繊維、ポリ乳酸繊維、ポリアクリル繊維等を用いることができる。中でも、特にエレクトレット性に優れたオレフィン系繊維が良く、中でもポリプロピレン、エチレンとプロピレンのランダム共重合ポリマー、エチレンとプロピレン、ブテンのランダム共重合ポリマーからなる繊維であることが好ましい。また短繊維(B)が熱接着性繊維の繊維であっても良い。   On the other hand, as the starting fiber of the short fiber (B) to which no oil agent is adhered, polypropylene, a random copolymer polymer of ethylene and propylene, a fiber composed of a random copolymer polymer of ethylene and propylene and butene, a fluorine-based fiber, and a polyester Fibers, polylactic acid fibers, polyacrylic fibers, and the like can be used. Among them, an olefin fiber excellent in electret property is particularly preferable, and a fiber made of polypropylene, a random copolymer of ethylene and propylene, or a random copolymer of ethylene, propylene, and butene is preferable. The short fiber (B) may be a fiber of a heat-bonding fiber.

短繊維(B)の繊度は、0.1〜7dtexの比較的細い繊維が大きい繊維表面積を有するためエレクトレット電荷量が多くなり、高い微細塵捕集性能が得られるので好ましい。ただ細くなり過ぎると大きなダストによる目詰まりもエレクトレット繊維構造体表面で進行するため寿命低下が避けられない。このため好適には0.5〜5dtex、最適には0.7〜4dtexの繊維である。   The fineness of the short fiber (B) is preferable because a relatively thin fiber of 0.1 to 7 dtex has a large fiber surface area, so that the electret charge amount increases and high fine dust collection performance is obtained. However, if it becomes too thin, clogging due to large dust also proceeds on the surface of the electret fiber structure, so a reduction in the life is inevitable. For this reason, the fiber is preferably 0.5 to 5 dtex, and most preferably 0.7 to 4 dtex.

短繊維(A)、(B)は、共に繊維間を絡ませてウエッブの形態を保持するために、捲縮していることが好ましい。油剤が付着した短繊維(A)は、上述したような従来の方法により捲縮繊維とすればよいが、油剤の付着していない短繊維(B)を捲縮繊維とするにあたっては、ダンボールにコルゲート加工を行うコルゲーターを用いればよい。すなわち、油剤の付着していないマルチフィラメントを準備し、平面状に広げた状態を作り、一対の加熱されたギヤ間にトウを噛み込ませる。ギヤのギザギザ形状の溝に押し込まれたトウは、冷却されてギザギザ状に賦形化した捲縮を有する。このトウを取り出し冷却した後、カットして捲縮加工された短繊維を得る。この様な機械はダンボールを山谷折りするコルゲーターとして実用化されており、捲縮数はギヤの高さで制御することができる。ギヤへの付着を防止するためギヤ表面をフッ素加工し剥離性を高めておくことが良い。   It is preferable that the short fibers (A) and (B) are both crimped so that the fibers are entangled to maintain the web form. The short fiber (A) to which the oil agent is adhered may be converted into a crimped fiber by the conventional method as described above. A corrugator that performs corrugating may be used. That is, a multifilament to which no oil agent is attached is prepared, a flattened state is created, and a tow is inserted between a pair of heated gears. The tow pushed into the jagged groove of the gear has a crimp that is cooled and shaped into a jagged shape. The tow is taken out and cooled, and then cut and crimped to obtain short fibers. Such a machine has been put into practical use as a corrugator for folding corrugated cardboard, and the number of crimps can be controlled by the height of the gear. In order to prevent adhesion to the gear, it is preferable that the gear surface is processed with fluorine to improve the peelability.

また、油剤の付着していない短繊維(B)を捲縮繊維とするもう一つの方法としては、次のようは方法を挙げることができる。すなわち、加熱乱流スチーム中に油剤の付着していないマルチフィラメントをオーバーフィード状態で供給すると、マルチフィラメントは乱流域で絡まった状態となるので、この状態で引き出し冷却することで絡まりを捲縮とすることができる。この加工の一般的製法名はタスラン加工としてカーペット用繊維の捲縮加工方法として油剤の付着した繊維で工業的に行われているものである。   Moreover, as another method of using the short fibers (B) to which the oil agent is not attached as crimped fibers, the following methods can be mentioned. In other words, if multifilaments without oil agent are supplied to the heated turbulent steam in an overfeed state, the multifilaments become entangled in the turbulent flow region. can do. The general manufacturing method name of this processing is industrially carried out with fibers to which oil agent is attached as a crimping processing method for carpet fibers as a taslan processing.

なお、2つ製造方法のうちコルゲーターを用いる方法の方がタスラン加工より捲縮度が高くなるため、ウエッブ化工程での落綿率が少なく好ましい。   Of the two production methods, the method using a corrugator has a higher degree of crimping than the taslan processing, and is therefore preferable because of a low cotton loss rate in the web forming step.

次に、短繊維(A)と短繊維(B)を混合したウエッブの作成方法について説明する。   Next, a method for creating a web in which short fibers (A) and short fibers (B) are mixed will be described.

短繊維(A)、(B)となる上記繊維は、たとえば圧縮された短繊維集合体の状態で解綿機やカードに導入し、繊維を解し、1本1本繊維を引き揃えてウエッブに形成する。このとき、短繊維(A)となる繊維には油剤が付与されているが、短繊維(B)となる繊維には、エレクトレット化を効率的に行うため、油剤が付与されていない。そのため、油剤が付着した2種類の繊維を開綿機へ供給する際に行っていたように、2種類の繊維を2層に大まかに重ねて開綿機に送り込むと、短繊維(B)になる繊維が開綿された時に大きな静電気を発生し凝集するため開綿をスムーズに行う事ができない。   The above fibers to be used as the short fibers (A) and (B) are introduced into, for example, a defatting machine or a card in a compressed short fiber aggregate state, the fibers are unraveled, and the fibers are aligned one by one. To form. At this time, although the oil agent is given to the fiber used as the short fiber (A), the oil agent is not provided to the fiber used as the short fiber (B) for efficient electretization. Therefore, when two types of fibers are roughly overlapped in two layers and fed into the opening machine, as was done when supplying the two types of fibers with oil attached to the opening machine, the short fibers (B) When the resulting fibers are opened, large static electricity is generated and agglomerates, so that the opening cannot be performed smoothly.

そこで本発明では例えば次の3つの方法で工程通過性を改善する。   Therefore, in the present invention, process passability is improved by, for example, the following three methods.

第一の方法は、短繊維(A)となる繊維の原綿(以下、原綿Aという)と短繊維(B)となる繊維の原綿(以下、原綿Bという)のベールを解き、それぞれの原綿を軽量して、計量台上に少量づつ原綿A/原綿B/原綿A/原綿B/原綿A/原綿Bのように層状に小分けして重ねた状態で開綿機に供給する。すなわち(1)原綿A/原綿B/原綿A、(2)原綿A/原綿B/原綿A/原綿B、(3)原綿A/原綿B/原綿A/原綿B/原綿A/原綿Bの態様のように少量に小分け化して、原綿Bを原綿Aで挟む形で積層し開綿機に供給する。こうすることで、静電気を発生しやすい原綿Bは静電気を発生させない原綿Aで包まれて混合した状態で開綿されるため、繊維を解す時に摩擦で発生する静電気が、油剤が付着している原綿Aに移り除去され、電位上昇を抑制しながら開綿することができる。   The first method is to unveil the raw cotton (hereinafter referred to as “raw cotton A”) and the raw fiber (hereinafter referred to as “raw cotton B”) of the fiber that becomes the short fiber (A) and the raw cotton of the fiber that becomes the short fiber (B). It is light and is supplied to the cotton spreader in a state of being divided into layers such as raw cotton A / raw cotton B / raw cotton A / raw cotton B / raw cotton A / raw cotton B in small layers on the measuring table. That is, (1) raw cotton A / raw cotton B / raw cotton A, (2) raw cotton A / raw cotton B / raw cotton A / raw cotton B, (3) raw cotton A / raw cotton B / raw cotton A / raw cotton B / raw cotton A / raw cotton B The raw cotton B is stacked in a form sandwiched between the raw cotton A and supplied to a cotton opening machine. By doing so, the raw cotton B that is likely to generate static electricity is opened in a state of being wrapped and mixed with the raw cotton A that does not generate static electricity, so that the oil agent is attached to static electricity generated by friction when the fiber is unwound. It is transferred to the raw cotton A and removed, and can be opened while suppressing an increase in potential.

第2の方法は、短繊維(A)、短繊維(B)の配合比率をエレクトレット繊維構造体の質量に対し短繊維(B)の配合率を60%以下、好ましくは55%以下、最適には50%以下にして静電気の発生を抑制する方法である。   In the second method, the mixing ratio of the short fibers (A) and the short fibers (B) is optimized so that the mixing ratio of the short fibers (B) is 60% or less, preferably 55% or less, with respect to the mass of the electret fiber structure. Is a method for suppressing the generation of static electricity to 50% or less.

さらに行う第3の方法は、開綿した綿をカードに供給する直前の綿貯蔵BOX内上部から水を霧吹きして繊維表面の水分付着率を0.2〜0.7重量%にコントロールして静電気電位の上昇を防止する方法である。   A third method is to control the moisture adhesion rate of the fiber surface to 0.2 to 0.7% by weight by spraying water from the upper part of the cotton storage BOX just before supplying the opened cotton to the card. This is a method for preventing an increase in electrostatic potential.

このようにすることで短繊維(A)、短繊維(B)が均一に混繊したウエッブを作成することが出来る。なお短繊維(A)と短繊維(B)は、2種類に限定される物ではない。短繊維(A)に繊度や素材の異なる複数の繊維を用いたり、短繊維(B)についても同様に複数の繊維が有っても良い。   By doing in this way, the web which the short fiber (A) and the short fiber (B) mixed uniformly can be created. The short fibers (A) and the short fibers (B) are not limited to two types. A plurality of fibers having different finenesses and materials may be used for the short fibers (A), or the short fibers (B) may have a plurality of fibers in the same manner.

また、上記繊維はカードを用いてウエッブ化する以外に、エアレード方式でウエッブ化することもできる。   Further, the fibers can be made into a web by an air raid method in addition to being made into a web using a card.

得られたウエッブは、その後、熱カレンダーや熱エンボスで加熱加圧して、繊維間接着を行う。また加熱エアーをウエッブ内に通過させて熱接着性繊維表面のみ溶かして接着を行うこともできる。   The obtained web is then heated and pressed with a thermal calendar or hot embossing to perform interfiber bonding. It is also possible to perform adhesion by passing heated air through the web and dissolving only the surface of the thermally adhesive fiber.

繊維間接着されたウエッブには、その後エレクトレット加工が施される。エレクトレット加工により、少なくとも油剤が付着していない繊維がエレクトレット化され(短繊維(B))、ダスト保持特性に優れたエレクトレット繊維構造体とすることができる。エレクトレット加工は、例えば特開昭61−231270号公報に見られるコロナ放電方法を用いて行えばよい。また、エレクトレット加工は、繊維間接着を行っていないウエッブに施してもよい。   The web bonded with fibers is then subjected to electret processing. By electret processing, at least the fiber to which the oil agent is not attached is electretized (short fiber (B)), and an electret fiber structure excellent in dust retention characteristics can be obtained. Electret processing may be performed using, for example, a corona discharge method disclosed in JP-A-61-231270. Moreover, you may perform an electret process to the web which has not performed the adhesion | attachment between fibers.

このように、本発明においては、短繊維(A)となる繊維には油剤が付与されているものを用い、短繊維(B)となる繊維には油剤が付与されていない繊維を用いることで、静電気を除去しながらウエッブを生産するとともに、当該ウエッブにエレクトレット加工を施すことで高いエレクトレット性を発現することができる。そして、上述したように、短繊維(B)の配合比率をエレクトレット繊維構造体の質量に対し60%以下にする場合や、開綿した綿をカードに供給する直前の綿貯蔵BOX内上部から水を霧吹きして繊維表面の水分付着率を0.2〜0.7重量%にコントロールする場合には、より確実に静電気の発生を抑制することができる。   As described above, in the present invention, the fiber to be used as the short fiber (A) is provided with an oil agent, and the fiber to be used as the short fiber (B) is a fiber that is not provided with an oil agent. In addition to producing a web while removing static electricity, high electret performance can be achieved by applying electret processing to the web. And as above-mentioned, when making the mixture ratio of a short fiber (B) 60% or less with respect to the mass of an electret fiber structure, or water from the upper part in the cotton storage BOX just before supplying opened cotton to a card | curd Is sprayed to control the moisture adhesion rate on the fiber surface to 0.2 to 0.7% by weight, the generation of static electricity can be more reliably suppressed.

なお、本発明のエレクトレット繊維構造体には、1,1,3,3,5,5−ヘキサ(アリールオキシ)シクロホスファゼンなどの環状ホスファゼン系難燃剤やヒンダードアミン難燃材を繊維に混合した難燃繊維が含まれていてもよい。かかる難燃剤の含有量としては、繊維構造体質量の0.5〜5%であることが好ましい。また難燃剤は上記短繊維(A)、(B)に含まれていても良い。   The electret fiber structure of the present invention has a flame retardant in which a cyclic phosphazene-based flame retardant such as 1,1,3,3,5,5-hexa (aryloxy) cyclophosphazene or a hindered amine flame retardant is mixed with the fiber. Fibers may be included. The content of the flame retardant is preferably 0.5 to 5% of the mass of the fiber structure. Moreover, the flame retardant may be contained in the short fibers (A) and (B).

さらに、本発明のエレクトレット繊維構造体には、抗菌、抗ウイルス、抗アレルゲン、消臭、脱臭、芳香、難燃などの性能を付与することが可能な機能薬剤や機能繊維が混合されていても良い。また別の短繊維(A)、(B)以外で構成される別の不織布が積層されていても良い。   Furthermore, the electret fiber structure of the present invention may be mixed with functional agents and functional fibers capable of imparting performance such as antibacterial, antiviral, antiallergen, deodorization, deodorization, aroma, and flame retardancy. good. Moreover, another nonwoven fabric comprised other than another short fiber (A) and (B) may be laminated | stacked.

以下、実施例を用いて本発明をより具体的に説明する。なお、本実施例における濾材の各特性の評価方法を下記する。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the evaluation method of each characteristic of the filter medium in a present Example is described below.

<厚み>
テクロック(株)製SM114を用いて測定頻度100cm当たり3箇所、合計21箇所の厚みを求めその算術平均値を利用する。
<Thickness>
Using a SM114 manufactured by Teclock Co., Ltd., the thickness is obtained at a total of 21 locations, 3 locations per 100 cm 2 of measurement frequency, and the arithmetic average value is used.

<目付>
24℃60%RHの室温に8時間以上放置して、評価試料の質量を求め、その面積から1m当たりの質量に直して、それぞれの評価試料の目付として求める。サンプルング最小面積は0.01m以上とする。また評価N数は7枚とし、算術平均値で求める。
<Unit weight>
Allowed to stand 24 ° C. 60% RH at room temperature in 8 hours or more, calculated on the weight of the evaluation sample, from the area fix the mass per 1 m 2, calculated as the basis weight of each evaluation sample. The minimum sampling area is 0.01 m 2 or more. In addition, the number of evaluation N is 7 and is obtained as an arithmetic average value.

<エレクトレット繊維構造体の大気塵の捕集効率>
JIS B9908(2001)形式3試験法に準じた試験機に評価試料をセットし、測定風速4.5m/minで求める。評価N数は2枚以上とし、算術平均値を利用する。
捕集効率(%)=(C/C)×100
=評価試料が捕集した大気塵0.3〜0.5μmの粒子数
=評価試料に供給された大気塵0.3〜0.5μmの粒子数
<圧損>
JIS B9908(2001)形式3試験法に準じた試験機に評価試料をセットして、評価試料を通過する風速を4.5m/minとして求める。評価N数は2枚以上とし、算術平均値を利用する。
<Air dust collection efficiency of electret fiber structure>
An evaluation sample is set on a testing machine conforming to JIS B9908 (2001) type 3 test method, and the measurement wind speed is 4.5 m / min. The number of evaluation N is 2 or more, and an arithmetic average value is used.
Collection efficiency (%) = (C O / C I ) × 100
C O = number of particles of air dust 0.3 to 0.5 μm collected by the evaluation sample C I = number of particles of air dust 0.3 to 0.5 μm supplied to the evaluation sample <pressure loss>
An evaluation sample is set in a testing machine according to JIS B9908 (2001) type 3 test method, and the wind speed passing through the evaluation sample is determined as 4.5 m / min. The number of evaluation N is 2 or more, and an arithmetic average value is used.

<繊維見掛け密度>
評価試料の厚みと目付から、繊維見掛け密度を下記式で求める。
繊維見掛け密度(g/cc)=目付(g/m)/厚み(cm)×10000
<難燃性>
FMVSS302法に準じて求める。なお、評価枚数は5枚とし、それらの算術平均値を求める。
<Fiber apparent density>
From the thickness and basis weight of the evaluation sample, the apparent fiber density is determined by the following formula.
Fiber apparent density (g / cc) = weight per unit area (g / m 2 ) / thickness (cm) × 10000
<Flame retardance>
Obtained according to the FMVSS 302 method. The number of evaluations is five, and the arithmetic average value is obtained.

<剛軟度>
JIS−L−1096、ガーレー法に準じて求める。なお、エレクトレット繊維構造体の縦方向と横方向それぞれについて、5枚採取し、算術平均値を求める。
<Bending softness>
Determined according to JIS-L-1096, Gurley method. In addition, five sheets are sampled for each of the longitudinal direction and the lateral direction of the electret fiber structure, and an arithmetic average value is obtained.

<フィルターユニットの粉塵保持容量>
JIS−B−9908(1991)形式2に記載されている方法で求める。評価N数は1とする。
<Dust holding capacity of filter unit>
Obtained by the method described in JIS-B-9908 (1991) Format 2. The evaluation N number is 1.

<フィルターユニットの粒子捕集率>
JIS−B−9908(1991)形式2に記載されている方法で求める。評価N数は1とする。
<Particle collection rate of filter unit>
Obtained by the method described in JIS-B-9908 (1991) Format 2. The evaluation N number is 1.

<フィルターユニットのNaCl0.03μm粒子の捕集効率>
JIS B9908(2001)形式3試験法に準じた試験機に評価試料をセットし、評価フィルターの風上側風洞に、アトマイザーを利用して発生させたNaCl0.03μm粒子(アメニシウム241を用いて粒子帯電を除電)を導入し、パーティクルカウンター(日本カノマックス(株)、CNC)を用いて評価フィルター前後の粒子数を求める。
捕集効率(%)=(C/C)×100
=評価試料が捕集したNaCl0.03μmの粒子数
=評価試料に供給されたNaCl0.03μmの粒子数
なお、フィルターユニットのサイズは、幅220×長さ200×厚み30mmとし、このフィルターユニットの中にエレクトレット繊維構造体を0.3m/個収納し、測定風量は5.2m/分、評価N数は2枚以上とし算術平均値を利用する。
<Filter unit NaCl 0.03 μm particle collection efficiency>
An evaluation sample is set in a testing machine conforming to JIS B9908 (2001) Type 3 test method, and NaCl 0.03 μm particles (amenium 241 is used to charge particles) generated on the windward side of the evaluation filter using an atomizer. The number of particles before and after the evaluation filter is determined using a particle counter (Nippon Kanomax Co., Ltd., CNC).
Collection efficiency (%) = (C O / C I ) × 100
C O = the number of NaCl 0.03 μm particles collected by the evaluation sample C I = the number of NaCl 0.03 μm particles supplied to the evaluation sample The size of the filter unit is 220 × length 200 × thickness 30 mm. An electret fiber structure is accommodated in the filter unit at 0.3 m 2 / piece, the measured air volume is 5.2 m 3 / min, the evaluation N number is 2 or more, and an arithmetic average value is used.


(実施例1)
油剤の付着していない短繊維(B)と油剤の付着した短繊維(A)の組み合わせでウエッブを作成し、エレクトレット繊維構造体を作成出来るか次の方法で試験を行った。

Example 1
A web was prepared with a combination of the short fibers (B) to which the oil agent was not attached and the short fibers (A) to which the oil agent was attached, and the following method was used to test whether an electret fiber structure could be produced.

短繊維(B)として、ダンボールコルゲーター(ギヤ高さ2mm、ピッチ3mm、加熱温度110℃、表面フッソ加工)に油剤の付いてないポリプロピレンマルチフィラメント(繊度2dtex、280フィラメント)を多糸状に並べて供給して捲縮加工を行った後、長さ24mmにカットした繊維(B―1繊維)と、ダンボールコルゲーター(ギヤ高さ3mm、ピッチ5mm、加熱温度110℃、表面フッソ加工)に油剤の付いてない芯鞘繊維マルチフィラメント(繊度6dtex、150フィラメント、鞘成分:エチレンとプロピレン、ブテンのランダム共重合ポリマー、融点130℃、芯成分:ポリプロピレン)を多糸状に並べて供給して捲縮加工を行った後、長さ38mmにカットした繊維(B―2繊維)を用意した。   As short fibers (B), cardboard corrugators (gear height 2 mm, pitch 3 mm, heating temperature 110 ° C., surface fluorine processing), polypropylene multifilaments (fineness 2 dtex, 280 filaments) without oil are arranged and supplied in a multifilament form. After crimping, the fiber cut into 24 mm length (B-1 fiber) and corrugated corrugator (gear height 3 mm, pitch 5 mm, heating temperature 110 ° C., surface fluorine processing) have no oil. After core-sheath fiber multifilament (fineness 6 dtex, 150 filament, sheath component: random copolymer of ethylene and propylene, butene, melting point 130 ° C., core component: polypropylene) is supplied in a multi-filament form and crimped A fiber (B-2 fiber) cut to a length of 38 mm was prepared.

また、短繊維(A)として、ポリエステル熱接着性捲縮短繊維(繊度16dtex、繊維長51mm、鞘成分:ポリエチレンテレフタレートーイソフタレート、融点110℃、芯成分:ポリエステル、融点265℃、油剤:リン酸エステルカリウム塩0.3%付着)を用意した(A―1繊維)。   Further, as the short fibers (A), polyester heat-adhesive crimped short fibers (fineness 16 dtex, fiber length 51 mm, sheath component: polyethylene terephthalate-isophthalate, melting point 110 ° C., core component: polyester, melting point 265 ° C., oil agent: phosphoric acid Ester potassium salt 0.3% adhesion) was prepared (A-1 fiber).

これらの繊維を2m×1m長さの軽量台上にA−1、B−1、A−1、B−2、A−1の順で20kgずつ計100kg積層し、これを開綿機に供給した。またカード機直前の開綿綿集積ボックス上部から繊維重量当たり0.5%重量の水を霧吹きして繊維に付着させカード機に通した。出てきたウエッブにはコロナ放電式の除電気を作用させ静電気の除去を行い目付均一性に優れたウエッブを採取した。   A total of 100 kg of these fibers are stacked on a 2 m × 1 m long lightweight table in the order of A-1, B-1, A-1, B-2, A-1, and supplied to the cotton opening machine. did. Further, 0.5% by weight of water per fiber weight was sprayed from the upper part of the open cotton collection box immediately before the carding machine to adhere to the fiber and passed through the carding machine. Corona discharge-type static elimination was applied to the web that came out to remove static electricity, and a web with excellent basis weight uniformity was collected.

このウエッブに熱風を通し、熱接着を行い、次いで熱カレンダーに通して厚み0.5mm、繊維見掛け密度0.2g/cc、目付100g/mの繊維構造体を得た。これに+30kvでエレクトレット加工を行い、剛軟度350mgのエレクトレット繊維構造体を得た。 Hot air was passed through this web for thermal bonding, and then passed through a thermal calendar to obtain a fiber structure having a thickness of 0.5 mm, an apparent fiber density of 0.2 g / cc, and a basis weight of 100 g / m 2 . This was subjected to electret processing at +30 kv to obtain an electret fiber structure having a bending resistance of 350 mg.

エレクトレット繊維構造体の圧損は4Pa、捕集効率50%であった。実質的にエレクトレット化されない比較例1(後述)の繊維構造体に比べ、圧損は同等であるにもかかわらず、捕集効率を格段に高めることができた。   The pressure loss of the electret fiber structure was 4 Pa, and the collection efficiency was 50%. Compared to the fiber structure of Comparative Example 1 (described later) that was not substantially electretized, the collection efficiency could be significantly increased despite the equivalent pressure loss.

この結果から、短繊維(B)小分けして短繊維(A)で包んで開綿機を通過させ、また湿気を付与した状態でカードに掛けることで油剤を保持していない短繊維を含むウエッブの作成が可能なことを確認できた。さらに繊維構造体をエレクトレット化することで油剤を保持していない短繊維(B)がエレクトレット化され捕集効率の高いエレクトレット繊維構造体が得られることが確認できた。   From this result, the short fiber (B) is subdivided and wrapped with the short fiber (A), passed through a cotton opening machine, and the web containing the short fiber that does not hold the oil by hanging on the card with moisture applied. We were able to confirm that it was possible to create. Furthermore, it has confirmed that the short fiber (B) which does not hold | maintain an oil agent is electretized by electretizing a fiber structure, and the electret fiber structure with a high collection efficiency is obtained.

(実施例2)
油剤を保持しない短繊維(B)が難燃性繊維であった場合にもエレクトレット繊維構造体が得られるかを確認するため、実施例1で用いた短繊維B−1ならびにB−2の芯部分と鞘部分に環状ホスファゼン化合物を2%混合したマルチフィラメントを添加した繊維を、実施例1と同様の方法で得て、B−3、B−4の繊維とした。
(Example 2)
In order to confirm whether the electret fiber structure can be obtained even when the short fiber (B) that does not retain the oil is a flame-retardant fiber, the cores of the short fibers B-1 and B-2 used in Example 1 The fiber which added the multifilament which mixed the cyclic phosphazene compound 2% in the part and the sheath part was obtained by the method similar to Example 1, and it was set as the fiber of B-3 and B-4.

また、短繊維(A)として、実施例1と同じA−1繊維を用意した。   Moreover, the same A-1 fiber as Example 1 was prepared as a short fiber (A).

これらの繊維を2m×1m長さの軽量台上にA−1、B−3、A−1、B−4、A−1の順で20kgずつ計100kg積層し、これを開綿機に供給した。またカード機直前の開綿綿集積ボックス上部から繊維重量当たり0.5%重量の水を霧吹きして繊維に付着させカード機に通した。出てきたウエッブには除電気を作用させ静電気の除去を行い目付均一性に優れたウエッブを採取した。   A total of 100kg of these fibers are stacked on a 2m x 1m long lightweight table in the order of A-1, B-3, A-1, B-4, A-1, and supplied to the cotton opening machine. did. Further, 0.5% by weight of water per fiber weight was sprayed from the upper part of the open cotton collection box immediately before the carding machine to adhere to the fiber and passed through the carding machine. Static electricity was removed by applying static electricity to the web that came out, and a web with excellent basis weight uniformity was collected.

このウエッブに熱風を通し、熱接着を行い、次いで熱カレンダーに通して厚み0.5mm、繊維見掛け密度0.2g/cc、目付100g/mの繊維構造体を得た。これに+30kvでコロナ放電加工を行い繊維B−3とB−4をエレクトレット加工し、剛軟度350mgのエレクトレット繊維構造体を得た。このエレクトレット繊維構造体の難燃性を求めたところFMVSS302を満足する難燃性が確認できた。 Hot air was passed through this web for thermal bonding, and then passed through a thermal calendar to obtain a fiber structure having a thickness of 0.5 mm, an apparent fiber density of 0.2 g / cc, and a basis weight of 100 g / m 2 . This was subjected to corona discharge machining at +30 kv, and the fibers B-3 and B-4 were electret processed to obtain an electret fiber structure having a bending resistance of 350 mg. When the flame retardance of this electret fiber structure was calculated | required, the flame retardance which satisfies FMVSS302 has been confirmed.

このエレクトレット繊維構造体の圧損は4Pa、捕集効率50%であった。実質的にエレクトレット化されない比較例1(後述)の繊維構造体に比べ、捕集効率が高く、難燃性を満足するエレクトレット繊維構造体であることが確認できた。この結果から、油剤を保持しない短繊維(B)として難燃性の繊維を用いてもウエッブを作成することができ、難燃性のエレクトレット繊維構造体が得られる事が確認できた。   The pressure loss of this electret fiber structure was 4 Pa, and the collection efficiency was 50%. It was confirmed that the electret fiber structure has high collection efficiency and satisfies the flame retardancy compared to the fiber structure of Comparative Example 1 (described later) that is not substantially electretized. From this result, it was confirmed that even when flame-retardant fibers were used as the short fibers (B) that do not retain the oil agent, a web could be prepared and a flame-retardant electret fiber structure was obtained.

次にこのエレクトレット繊維構造体のフィルターユニット特性を試験するため、このエレクトレット繊維構造体を0.3m/個収納したフィルターユニット(サイズ220×200×30mm、定格風量5.2m/分、)を作成し、JIS−Z−8901(1974)記載の15種ダストを負荷して、初期圧損からプラス150Pa時点での粉塵保持容量を求めたところ40g/個、粒子捕集率が95%の高性能フィルターユニットを作成できる濾材であることが確認できた。 Next, in order to test the filter unit characteristics of the electret fiber structure, a filter unit (size 220 × 200 × 30 mm, rated air volume 5.2 m 3 / min) containing 0.3 m 2 / electret fiber structure. Was prepared and loaded with 15 kinds of dust described in JIS-Z-8901 (1974), and the dust holding capacity at the time of plus 150 Pa from the initial pressure loss was determined to be 40 g / piece, and the particle collection rate was as high as 95%. It was confirmed that the filter medium can produce a performance filter unit.

(実施例3)
更に高捕集性のフィルターユニットを作成出来るか試験するため、実施例2で得られたエレクトレット繊維構造体にエレクトレット化メルトブロー不織布(繊維径4μm、目付22g/m、捕集効率50%)を積層した積層エレクトレット繊維構造体を作成し、実施例2同様のフィルターユニットを作成し、エレクトレット繊維構造体側を上流側としてダスト負荷試験をおこなった。その結果、粉塵保持容量が35g/個、粒子捕集率が99.5%の、高捕集高ダスト保持量のフィルターユニットであり、自動車キャビン用に好適なフィルターユニット並びに濾材であることが確認できた。
(Example 3)
Furthermore, in order to test whether or not a filter unit having a high collection property can be produced, an electret meltblown nonwoven fabric (fiber diameter 4 μm, basis weight 22 g / m 2 , collection efficiency 50%) was applied to the electret fiber structure obtained in Example 2. The laminated laminated electret fiber structure was created, the filter unit similar to Example 2 was created, and the dust load test was done by making the electret fiber structure side the upstream side. As a result, it is a filter unit with a high dust collection capacity with a dust holding capacity of 35 g / piece and a particle collection rate of 99.5%, and it is confirmed that it is a filter unit and filter medium suitable for automobile cabins. did it.

さらにディーゼル排ガス中の微細塵までを捕集できる能力が有るかを確認するため、粒子径0.03μmのNacl粒子に対するフィルターユニットの捕集効率を測定したところ75%で、ディーゼル排ガスのような0.3μm以下の微細塵捕集濾材としても優れた性能を有していることが確認できた。   Furthermore, in order to confirm whether there is an ability to collect even fine dust in diesel exhaust gas, the collection efficiency of the filter unit for Nacl particles having a particle diameter of 0.03 μm was measured to be 75%, which is 0% like diesel exhaust gas. It was confirmed that it has excellent performance as a fine dust collecting filter medium of 3 μm or less.

(実施例4)
油剤が付着した短繊維(A)にも、エレクトレット加工が可能なポリオレフィン系熱融着性繊維を用いることで、エレクトレット繊維構造体の構成繊維全てをエレクトレット繊維にすることが出来るかを確認するため、短繊維(A)として、油剤:分子量600のポリエチレングリコールとオレイン酸とのモノエステル0.3%が付着したオレフィン系熱接着性繊維(繊度18dtex、繊維長32mm、鞘成分:ソフトPP、融点130℃、芯成分:ポリプロピレン、融点164℃を用意した(A−2)。なお、この油剤を付着させた繊維は、表面電気抵抗が余り下がらないため、エレクトレット加工した場合、エレクトレット化が油剤の全く付着していない繊維の約半分程度進行する効果を有する。例えば捕集効率で表現すれば、目付100g/mで作成した不織布において、未エレクトレットの場合3%、油剤が全く付着していない場合60%、当該油剤が付着している場合42%程度の捕集効率となり、そこそこエレクトレット効果が得られることである。
Example 4
In order to confirm whether all the constituent fibers of the electret fiber structure can be made into electret fibers by using the polyolefin-based heat-fusible fibers that can be electret processed for the short fibers (A) to which the oil agent is adhered. As the short fiber (A), an oil agent: an olefin-based heat-adhesive fiber (fineness of 18 dtex, fiber length of 32 mm, sheath component: soft PP, melting point) with a monoester of polyethylene glycol having a molecular weight of 600 and oleic acid of 0.3% attached thereto 130 ° C., core component: polypropylene, melting point 164 ° C. (A-2) In addition, since the surface electrical resistance of the fiber to which the oil agent is adhered does not decrease so much, when electret processing is performed, the electretization of the oil agent It has the effect of progressing about half of the fibers that are not attached at all. In the nonwoven fabric created in 0 g / m 2, 3% for non electret, 60% if the oil is not at all attached, becomes a collection efficiency when about 42% of the oil is adhered, so so obtained electret effect Is to be.

また、短繊維(B)としては、実施例1で用いたB−1繊維とB−2繊維を用意した。   Moreover, as short fiber (B), the B-1 fiber and B-2 fiber which were used in Example 1 were prepared.

これらの繊維を用い、配合比率(質量比)がA−2:B−1:B−2=60:20:20となる目付100g/m、厚み0.45mm、繊維見掛け密度0.22g/ccのエレクトレット繊維構造体を実施例1記載のウエッブ作成方法で得た。 Using these fibers, the blending ratio (mass ratio) is A-2: B-1: B-2 = 60: 20: 20, basis weight 100 g / m 2 , thickness 0.45 mm, fiber apparent density 0.22 g / A cc electret fiber structure was obtained by the web preparation method described in Example 1.

短繊維(A)は、ややエレクトレット加工が出来る油剤が付着しているため、またB−1とB−2繊維には油剤が付着していないため全部の繊維がエレクトレット加工された結果、捕集効率が80%と高く、圧損5Pa、剛軟度が300mgのエレクトレット繊維構造体を得ることができた。   The short fiber (A) is collected as a result of electret processing of all the fibers because the oil agent which can be electret processed is slightly adhered, and since the oil agent is not adhered to the B-1 and B-2 fibers. An electret fiber structure having a high efficiency of 80%, a pressure loss of 5 Pa, and a bending resistance of 300 mg could be obtained.

このエレクトレット繊維構造体を用いて実施例2と同様にしてフィルターユニットを作成し、同じ条件で粉塵保持容量を求めたところ50g/個、粒子捕集率が98%の高性能フィルターユニットであることが確認できた。   Using this electret fiber structure, a filter unit was prepared in the same manner as in Example 2, and when the dust holding capacity was determined under the same conditions, it was a high performance filter unit having a particle collection rate of 50 g / piece and 98%. Was confirmed.

この結果から、短繊維(A)としてエレクトレット加工が可能な油剤が付着したオレフィン系熱融着性短繊維を用いることで繊維全部がエレクトレット化された高性能エレクトレット繊維構造体が得られ、長寿命で捕集効率の高いフィルターユニットを作成できる濾材であることが確認できた。   From this result, a high-performance electret fiber structure in which all the fibers are electretized is obtained by using an olefin-based heat-fusible short fiber to which an electret-processable oil agent is attached as the short fiber (A), and has a long service life. Thus, it was confirmed that the filter medium can produce a filter unit with high collection efficiency.

(実施例5)
短繊維(A)と短繊維(B)の配合比率が互いに異なる2層を積層することで長寿命化と捕集性能向上が可能かを確認するための試験を実施した。すなわち、配合比率を変えた以外は実施例1と同様にして下記2種の不織布を得て、積層し、厚み0.55mm、繊維見掛け密度0.18g/cc、目付100g/mのエレクトレット繊維構造体を得た。
(Example 5)
A test was conducted to confirm whether it is possible to extend the life and improve the collection performance by laminating two layers having different blending ratios of the short fiber (A) and the short fiber (B). That is, the following two types of non-woven fabrics were obtained and laminated in the same manner as in Example 1 except that the blending ratio was changed, and electret fibers having a thickness of 0.55 mm, an apparent fiber density of 0.18 g / cc, and a basis weight of 100 g / m 2 were obtained. A structure was obtained.

上流側の不織布:配合率(質量比)A−1:B−3:B−4=60:20:20、目付60g/m
下流側の不織布:配合率(質量比)A−1:B−3:B−4=40:30:30、目付40g/m
このエレクトレット繊維構造体を用い実施例2と同様にしてフィルターユニットを作成し、同じ条件で粉塵保持容量を求めたところ41g/個、粒子捕集率が99%の高性能フィルターユニットであることが確認できた。実施例3より粒子捕集率が低いものの粉塵保持容量が高く、短繊維だけの構成でも高性能フィルターユニットが作成できる事が確認できた。
Upstream non-woven fabric: blending ratio (mass ratio) A-1: B-3: B-4 = 60: 20: 20, basis weight 60 g / m 2
Non-woven fabric on the downstream side: mixing ratio (mass ratio) A-1: B-3: B-4 = 40: 30: 30, basis weight 40 g / m 2
Using this electret fiber structure, a filter unit was prepared in the same manner as in Example 2, and when the dust holding capacity was determined under the same conditions, it was 41 g / piece, and it was a high-performance filter unit with a particle collection rate of 99%. It could be confirmed. Although the particle collection rate was lower than that in Example 3, the dust retention capacity was high, and it was confirmed that a high-performance filter unit could be created even with a configuration of only short fibers.

(比較例1)
繊維に付着した油剤がエレクトレット加工に及ぼす影響を試験するため、次の試験を実施した。
(Comparative Example 1)
In order to test the effect of the oil agent adhering to the fiber on the electret processing, the following test was performed.

ダンボールコルゲーター(ギヤ高さ2mm、ピッチ3mm、加熱温度110℃、表面フッソ加工)に油剤(リン酸エステルカリウム塩0.3%付着)を付着させたポリプロピレンマルチフィラメント(繊度2dtex、280フィラメント)を多糸状に並べて供給して捲縮加工を行った後、長さ24mmにカットした。この繊維をC―1繊維と称する。   Polypropylene multifilaments (fineness 2dtex, 280 filaments) with oil agent (phosphate ester potassium salt 0.3% adhesion) attached to cardboard corrugator (gear height 2mm, pitch 3mm, heating temperature 110 ° C, surface fluorine processing) After being fed in a string and fed and crimped, it was cut to a length of 24 mm. This fiber is referred to as C-1 fiber.

ダンボールコルゲーター(ギヤ高さ3mm、ピッチ5mm、加熱温度110℃、表面フッソ加工)に油剤(リン酸エステルカリウム塩0.3%付着)を付けた芯鞘繊維マルチフィラメント(繊度6dtex、150フィラメント、鞘成分:エチレンとプロピレン、ブテンのランダム共重合ポリマー、融点130℃、芯成分:ポリプロピレン)を多糸状に並べて供給して捲縮加工を行った後、長さ38mmにカットした。この繊維をC−2繊維と称する。   Core-sheath fiber multifilament (fineness 6dtex, 150 filament, sheath) with corrugated cardboard (gear height 3mm, pitch 5mm, heating temperature 110 ° C, surface fluorine processing) with oil agent (attached to 0.3% phosphate potassium salt) Components: Random copolymer of ethylene, propylene, and butene, melting point 130 ° C., core component: polypropylene) were fed in a multifilament form and crimped, and then cut to 38 mm in length. This fiber is referred to as C-2 fiber.

また、実施例1のA−1繊維を用意した。   Moreover, the A-1 fiber of Example 1 was prepared.

そして、これらの繊維の配合率をA−1:C−1:C−2=60:20:20としたウエッブを、従来行われている方法で作成した。すなわち、各繊維を少量ずつに小分けせず、A−1の短繊維の上にC−1短繊維を乗せ、更にC−2短繊維を乗せた状態で開綿機、カード機の順番で湿気を与える操作も行わないでウエッブを作成したが、全ての繊維に油剤が付着しているため全く問題なくウエッブ作成ができた。   And the web which made the blending ratio of these fibers A-1: C-1: C-2 = 60: 20: 20 was created by the method performed conventionally. That is, each fiber is not subdivided into small amounts, but the C-1 short fiber is placed on the A-1 short fiber, and the C-2 short fiber is further placed on the opening machine and the card machine in the order of moisture. Although the web was prepared without the operation of giving the web, it was possible to create the web without any problems because the oil was adhered to all the fibers.

このウエッブに熱風を通し、熱接着を行い、次いで熱カレンダーに通して厚み0.5mm、繊維見掛け密度0.2g/cc、目付100g/mの繊維構造体を得た。これに+30kvでコロナ放電加工を行ってエレクトレット加工を行った。その結果、得られたエレクトレット繊維構造体は、圧損が4Pa、捕集効率が3%であった。明らかに付着した油剤の影響でエレクトレット化が進まないことが確認できた。 Hot air was passed through this web for thermal bonding, and then passed through a thermal calendar to obtain a fiber structure having a thickness of 0.5 mm, an apparent fiber density of 0.2 g / cc, and a basis weight of 100 g / m 2 . This was subjected to corona discharge machining at +30 kv to perform electret machining. As a result, the electret fiber structure obtained had a pressure loss of 4 Pa and a collection efficiency of 3%. It was confirmed that electretization did not proceed under the influence of the oil agent that was clearly attached.

(比較例2)
油剤が付着していない繊維でウエッブ作成が出来るか試験するため、実施例1で用いた繊維B−1とB−2を質量比1:1に配合した原綿を開綿機/カード機に通しウエッブを作成しようとしたが、開綿機で静電気が発生したため十分に開綿できず、またカードではネップの発生と巻き付きが発生しウエッブの作成が困難であった。油剤が付着していない繊維だけでのウエッブ作成は困難であることが確認できた。
(Comparative Example 2)
In order to test whether or not the web can be made with a fiber to which no oil agent is adhered, the raw cotton blended with the fibers B-1 and B-2 used in Example 1 in a mass ratio of 1: 1 is passed through a cotton opener / card machine. An attempt was made to create a web, but it was difficult to open the web due to the occurrence of static electricity in the opener, and the card was difficult to create due to the occurrence of wrapping and wrapping. It was confirmed that it was difficult to create a web with only fibers to which no oil was attached.

本発明のエレクトレット繊維構造体は、エアフィルター用濾材およびフィルターユニットに好適に使用できる。   The electret fiber structure of the present invention can be suitably used for air filter media and filter units.

Claims (6)

少なくとも短繊維(B)となる繊維の原綿Bを短繊維(A)となる繊維の原綿Aで挟む形で積層し、開綿機に供給しウェブを製造する工程、得られたウェブの繊維間接着を行う工程、および繊維間接着されたウェブをエレクトレット加工する工程を有することを特徴とする
油剤が付着した短繊維(A)と油剤が付着していないエレクトレット短繊維(B)とで構成された不織布を含むエレクトレット繊維構造体の製造方法。
A process of laminating at least a raw fiber B of a fiber that becomes a short fiber (B) with a raw cotton A of a fiber that becomes a short fiber (A), supplying the raw material to a cotton opening machine, and a fiber indirect of the obtained web It consists of a short fiber (A) to which an oil agent is adhered and an electret short fiber (B) to which no oil agent is adhered, characterized in that it has a step of performing adhesion and a step of electret-processing the web bonded between fibers. Method of electret fiber structure including a non-woven fabric.
前記短繊維(A)が熱接着性である、請求項1に記載のエレクトレット繊維構造体の製造方法 The manufacturing method of the electret fiber structure of Claim 1 whose said short fiber (A) is heat adhesiveness . 前記短繊維(A)の繊度が6dtex以上30dtex以下、短繊維(B)の繊度が0.1〜7dtexである請求項1〜いずれかに記載のエレクトレット繊維構造体の製造方法。 The method for producing an electret fiber structure according to any one of claims 1 to 2, wherein the fineness of the short fibers (A) is 6 dtex or more and 30 dtex or less, and the fineness of the short fibers (B) is 0.1 to 7 dtex. 前記短繊維(A)および短繊維(B)が捲縮していることを特徴とする請求項1〜いずれかに記載の繊維構造体の製造方法。 The said short fiber (A) and the short fiber (B) are crimped, The manufacturing method of the fiber structure in any one of Claims 1-3 characterized by the above-mentioned. エレクトレット繊維構造体における短繊維(B)の配合比率が60%以下であることを特徴とする請求項1〜いずれかに記載の繊維構造体の製造方法。 The method for producing a fiber structure according to any one of claims 1 to 4 , wherein a blending ratio of the short fibers (B) in the electret fiber structure is 60% or less. 請求項1〜の製造方法で得られた繊維構造体を備えてなるエアフィルター。 Air filter comprising comprising the resulting fiber structure in the manufacturing process according to claim 1-5.
JP2008243855A 2008-09-24 2008-09-24 Manufacturing method of fiber structure Expired - Fee Related JP5417783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008243855A JP5417783B2 (en) 2008-09-24 2008-09-24 Manufacturing method of fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008243855A JP5417783B2 (en) 2008-09-24 2008-09-24 Manufacturing method of fiber structure

Publications (3)

Publication Number Publication Date
JP2010077545A JP2010077545A (en) 2010-04-08
JP2010077545A5 JP2010077545A5 (en) 2011-09-15
JP5417783B2 true JP5417783B2 (en) 2014-02-19

Family

ID=42208284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008243855A Expired - Fee Related JP5417783B2 (en) 2008-09-24 2008-09-24 Manufacturing method of fiber structure

Country Status (1)

Country Link
JP (1) JP5417783B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039517A (en) * 2011-08-12 2013-02-28 Kurashiki Seni Kako Kk Flame retardant air filter
JP6265612B2 (en) * 2013-03-27 2018-01-24 日本バイリーン株式会社 Electret filter
US10252201B2 (en) 2014-01-28 2019-04-09 Teijin Frontier Co., Ltd. Multilayer filter medium for filter, method for producing the same, and air filter
CN111304827A (en) * 2020-05-07 2020-06-19 刘志坚 Composite short fiber electret hot air non-woven fabric preparation process
JP2023072923A (en) * 2021-11-15 2023-05-25 宇部エクシモ株式会社 Method for manufacturing cartridge filter, and cartridge filter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568823A (en) * 1991-09-10 1993-03-23 Toray Ind Inc Filter medium
JPH07251015A (en) * 1994-03-16 1995-10-03 Toyobo Co Ltd Electret filter and its production
JP2002030556A (en) * 2000-07-18 2002-01-31 Shiga Shokusan Kk Fiber-molded wadding
JP2003334411A (en) * 2002-05-20 2003-11-25 Toyobo Co Ltd Filter medium
WO2008053741A1 (en) * 2006-10-30 2008-05-08 Kinsei Seishi Co., Ltd. Highly rigid air filters

Also Published As

Publication number Publication date
JP2010077545A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
US8118902B2 (en) Filtering medium and filter unit
JP5417783B2 (en) Manufacturing method of fiber structure
JP6158958B2 (en) Multilayer filter medium, filter manufacturing method and air filter
JP5096726B2 (en) Composite filter media
US10596499B2 (en) Pre-air-filter for internal combustion engine
WO2016153062A1 (en) Filter material for air filter
JP2009209456A (en) Filter nonwoven fabric
WO2016017484A1 (en) Filtration material, filter element using same, and manufacturing method of filtration material
JP4882984B2 (en) Electret filter media and filter unit
JP2011214217A (en) Method for producing bulky nonwoven fabric
WO2019065807A1 (en) Nonwoven fabric, filter using same, and nonwoven fabric manufacturing method
JP2013052324A (en) Composite filter medium and method for manufacturing the same
JP4747255B2 (en) Tow having charging property and laminate using the same
JPH11226337A (en) Activated carbon fiber sheet for filter
JP6129655B2 (en) Air filter medium manufacturing method
JP2012082539A (en) Flame retardant fiber structure
JP6347699B2 (en) Three-layer filter medium, filter element using the same, and method for manufacturing three-layer filter medium
JP6691874B2 (en) Filtration material, filter element using the same, and method for manufacturing filtration material
JP6368184B2 (en) Filter material, filter element using the same, and filter material manufacturing method
WO2018174002A1 (en) Electret filter medium and filter
JPH04346806A (en) Electret filter
JP7386670B2 (en) Base material for filters
JP2007039841A (en) Bulky nonwoven fabric
JP2009279479A (en) Non-halogen flame retardant filter medium for air filter
JP2015209621A (en) Nonwoven fabric and filter including nonwoven fabric

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

LAPS Cancellation because of no payment of annual fees