JP5416501B2 - Water quality measuring device - Google Patents

Water quality measuring device Download PDF

Info

Publication number
JP5416501B2
JP5416501B2 JP2009174348A JP2009174348A JP5416501B2 JP 5416501 B2 JP5416501 B2 JP 5416501B2 JP 2009174348 A JP2009174348 A JP 2009174348A JP 2009174348 A JP2009174348 A JP 2009174348A JP 5416501 B2 JP5416501 B2 JP 5416501B2
Authority
JP
Japan
Prior art keywords
electrode
cleaning
working electrode
liquid
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009174348A
Other languages
Japanese (ja)
Other versions
JP2011027584A (en
Inventor
佳彦 川口
敦志 田中
一徳 土生
Original Assignee
株式会社 堀場アドバンスドテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 堀場アドバンスドテクノ filed Critical 株式会社 堀場アドバンスドテクノ
Priority to JP2009174348A priority Critical patent/JP5416501B2/en
Publication of JP2011027584A publication Critical patent/JP2011027584A/en
Application granted granted Critical
Publication of JP5416501B2 publication Critical patent/JP5416501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えば水道水などの被測定液中に含まれる残留塩素等の所定成分の濃度を測定する水質測定装置に関するものである。   The present invention relates to a water quality measuring device that measures the concentration of a predetermined component such as residual chlorine contained in a measured liquid such as tap water.

この種の水質測定装置としては、例えば特許文献1に示すように、被測定液中に浸漬した作用極及び対極間に電圧を印加して、それら電極間を流れる電流により被測定液中の残留塩素濃度を測定するものがある。作用極としては金(Au)電極又は白金(Pt)電極が用いられ、対極としては銀/塩化銀(Ag/AgCl)電極が用いられている。   As this type of water quality measuring device, for example, as shown in Patent Document 1, a voltage is applied between a working electrode and a counter electrode immersed in a liquid to be measured, and the residual in the liquid to be measured by a current flowing between the electrodes. Some measure the chlorine concentration. A gold (Au) electrode or a platinum (Pt) electrode is used as the working electrode, and a silver / silver chloride (Ag / AgCl) electrode is used as the counter electrode.

そして、残留塩素の測定中、作用極においては、被測定液中の金属イオン(例えば鉄イオン)が作用極から電子を受け取り還元されて、作用極表面に金属(例えば鉄)の薄膜が形成されてしまう(金属メッキ)。このように、金属メッキされてしまうと、被測定液中の塩素が作用極に到達した際に、作用極から電子を受け取らずに、鉄から電子を受け取ることになる。このとき、鉄はプラスイオンになり、塩素は塩化物イオンになる反応が起こり、作用極及び対極の間に電流が流れず、残留塩素の濃度を測定することができないという問題がある。   During the measurement of residual chlorine, at the working electrode, metal ions (for example, iron ions) in the liquid to be measured receive and reduce electrons from the working electrode, and a thin film of metal (for example, iron) is formed on the surface of the working electrode. (Metal plating). In this way, when the metal is plated, when chlorine in the liquid to be measured reaches the working electrode, it receives electrons from iron without receiving electrons from the working electrode. At this time, there is a problem that a reaction occurs in which iron becomes a positive ion and chlorine becomes a chloride ion, current does not flow between the working electrode and the counter electrode, and the concentration of residual chlorine cannot be measured.

そこで、作用極から金属メッキを除去するための洗浄方法として、例えば、作用極及び対極の電源を逆接続することによって、作用極を陽極、対極を陰極として、作用極に被膜した金属を溶解除去することが考えられる。   Therefore, as a cleaning method for removing the metal plating from the working electrode, for example, by reversely connecting the working electrode and the counter electrode power supply, the working electrode is used as the anode and the counter electrode as the cathode, and the metal coated on the working electrode is dissolved and removed. It is possible to do.

しかしながら、この方法では、対極の銀/塩化銀電極において、塩化銀が銀に還元されてしまい感度が大きく変化してしまうという問題がある。また、作用極においても金又は白金等の金属を用いた電極であれば、金属メッキと作用極間の結合が強く印加電圧を大きくする必要があるだけでなく、金属メッキを除去しにくいという問題がある。   However, this method has a problem that silver chloride is reduced to silver at the counter silver / silver chloride electrode, and the sensitivity greatly changes. Further, if the working electrode is an electrode using a metal such as gold or platinum, not only is the coupling between the metal plating and the working electrode strong and it is necessary to increase the applied voltage, but it is also difficult to remove the metal plating. There is.

また、特許文献2に示すように、対極となる第一の電極、作用極となる第二の電極及び第三の電極を有する残留塩素センサが考えられている。この残留塩素センサは、測定時は、第一の電極及び第二の電極を接続して電圧を印加することにより残留塩素を測定する。一方、被測定時においては、第二の電極及び第三の電極を接続して、第二の電極を陽極、第三の電極を陰極とするものである。   Further, as shown in Patent Document 2, a residual chlorine sensor having a first electrode as a counter electrode, a second electrode as a working electrode, and a third electrode is considered. At the time of measurement, the residual chlorine sensor measures residual chlorine by connecting a first electrode and a second electrode and applying a voltage. On the other hand, at the time of measurement, the second electrode and the third electrode are connected, and the second electrode is an anode and the third electrode is a cathode.

しかしながら、この残留塩素センサは、被測定時において作用極となる第二の電極への汚れの付着を防止するものであり、第二の電極に既に付着した金属メッキ等の汚れを除去するものではない。仮に、第二の電極に付着した金属メッキを除去するとしても、第二の電極が金属製の電極(具体的には白金電極)であり、電気化学洗浄を必要以上に行うと、金属メッキを溶かす以上に作用極自体も酸化して簡単に溶けてしまうという問題がある。   However, this residual chlorine sensor is intended to prevent dirt from adhering to the second electrode, which is the working electrode at the time of measurement, and to remove dirt such as metal plating already attached to the second electrode. Absent. Even if the metal plating attached to the second electrode is removed, the second electrode is a metal electrode (specifically, a platinum electrode). There is a problem that the working electrode itself is oxidized and easily melted more than it is melted.

さらに、上記特許文献1に示すように、セラミックビーズ等の研磨材のみを単独で用いて作用極に被膜された金属メッキを除去する方法も考えられている。   Furthermore, as shown in the above-mentioned patent document 1, a method of removing metal plating coated on the working electrode using only an abrasive such as ceramic beads is also considered.

しかしながら、金属メッキを除去することができるものの、作用極自体を研磨してしまい、作用極の消耗が速くなってしまうという問題がある。   However, although the metal plating can be removed, there is a problem that the working electrode itself is polished and the working electrode is consumed quickly.

特開2006−78260号公報JP 2006-78260 A 特開平9−72879号公報Japanese Patent Laid-Open No. 9-72879

そこで本発明は、上記問題点を一挙に解決するためになされたものであり、銀/塩化銀電極からなる対極の塩化銀を消耗することなく、作用極に形成された金属メッキなどの付着物を物理的にも電気化学的にも容易に除去可能にするとともに、作用極の洗浄に対する耐久性を向上させることをその主たる所期課題とするものである。   Therefore, the present invention has been made to solve the above problems all at once, and deposits such as metal plating formed on the working electrode without consuming the silver chloride of the counter electrode composed of the silver / silver chloride electrode. The main objective is to make it easy to remove the material both physically and electrochemically and to improve the durability of the working electrode with respect to cleaning.

すなわち本発明に係る水質測定装置は、被測定液中に浸漬した作用極及び対極間に電圧を印加して、それら電極間を流れる電流により被測定液中の所定成分濃度を測定する水質測定装置であって、前記作用極となるカーボン電極と、前記対極となる銀/塩化銀電極と、前記カーボン電極との間で電圧が印加され、前記カーボン電極を電気化学洗浄するための洗浄極と、前記カーボン電極に電源の負極を接続し、前記銀/塩化銀電極に電源の正極を接続した測定状態と、前記カーボン電極に電源の正極を接続し、前記洗浄極に電源の負極を接続した洗浄状態とを切り替える切替機構と、を備えていることを特徴とする。   That is, the water quality measurement apparatus according to the present invention applies a voltage between the working electrode and the counter electrode immersed in the liquid to be measured, and measures the concentration of a predetermined component in the liquid to be measured by a current flowing between the electrodes. A voltage is applied between the carbon electrode serving as the working electrode, the silver / silver chloride electrode serving as the counter electrode, and the carbon electrode, and a cleaning electrode for electrochemically cleaning the carbon electrode; Measurement state in which the negative electrode of the power source is connected to the carbon electrode, the positive electrode of the power source is connected to the silver / silver chloride electrode, and the cleaning in which the positive electrode of the power source is connected to the carbon electrode and the negative electrode of the power source is connected to the cleaning electrode And a switching mechanism for switching between states.

このようなものであれば、切替機構によってカーボン電極に電源の正極を接続し、前記洗浄極に電源の負極を接続した洗浄状態として、カーボン電極の洗浄時において銀/塩化銀電極に電圧を印加することがない。したがって、銀/塩化銀電極の塩化銀を消耗することなく、カーボン電極表面に形成された金属メッキを電気化学洗浄により除去することができる。ここで、金属製の作用極表面と金属メッキとの結合に比べて、カーボン電極表面と金属メッキとの結合が弱いことから、電気化学洗浄だけでなく、物理的な洗浄(例えば研磨洗浄)によっても金属メッキを除去し易くすることができる。また、作用極にカーボン電極を用いることにより、従来の金属製の作用極と同程度の性能を確保しながらも電気化学洗浄に対する強度を増すことができ、作用極の長寿命化を実現することができる。   If this is the case, a switching mechanism is used to connect the positive electrode of the power supply to the carbon electrode and connect the negative electrode of the power supply to the cleaning electrode, so that a voltage is applied to the silver / silver chloride electrode when cleaning the carbon electrode. There is nothing to do. Therefore, the metal plating formed on the surface of the carbon electrode can be removed by electrochemical cleaning without consuming the silver chloride of the silver / silver chloride electrode. Here, since the bond between the carbon electrode surface and the metal plating is weaker than the bond between the metal working electrode surface and the metal plating, not only electrochemical cleaning but also physical cleaning (for example, polishing cleaning). Also, the metal plating can be easily removed. In addition, by using a carbon electrode for the working electrode, it is possible to increase the strength against electrochemical cleaning while ensuring the same level of performance as a conventional metal working electrode, and to realize a longer working electrode life. Can do.

水質測定装置の具体的な構成としては、前記被測定液を流通させる流路が形成されたフローチャンバに前記銀/塩化銀電極、前記カーボン電極、及び前記洗浄極が設けられており、前記流路において、前記銀/塩化銀電極の上流側に前記カーボン電極が設けられていることが望ましい。このように銀/塩化銀電極及びカーボン電極を配置することにより、銀/塩化銀電極から溶け出した銀イオンがカーボン電極に到達しにくくすることができ、カーボン電極の表面に銀がメッキされることを防止することができる。   As a specific configuration of the water quality measuring apparatus, the silver / silver chloride electrode, the carbon electrode, and the cleaning electrode are provided in a flow chamber in which a flow path for circulating the liquid to be measured is formed. In the road, the carbon electrode is preferably provided upstream of the silver / silver chloride electrode. By arranging the silver / silver chloride electrode and the carbon electrode in this way, silver ions dissolved from the silver / silver chloride electrode can be made difficult to reach the carbon electrode, and silver is plated on the surface of the carbon electrode. This can be prevented.

より具体的には、前記被測定液を流通させる流路が形成されたフローチャンバに前記銀/塩化銀電極、前記カーボン電極、及び前記洗浄極が設けられており、前記フローチャンバ内の流路に前記被測定液の流れに伴って移動する電極研磨材が設けられ、前記作用極が、前記流路内において前記電極研磨材に当たる位置に設けられ、前記対極が、前記流路内において前記電極研磨材に当たらない位置に設けられていることが望ましい。これならば、洗浄時だけでなく、測定時においてもカーボン電極の付着物を除去することができる。このとき、作用極がカーボン電極であり、電極表面と金属メッキとの結合が弱いことから、電極研磨材を当てることによって電極表面から容易に金属メッキを除去することができる。また、電極研磨材が対極に当たらないように構成しているので、研磨による対極の消耗を防ぐことができる。   More specifically, the silver / silver chloride electrode, the carbon electrode, and the cleaning electrode are provided in a flow chamber in which a flow path for flowing the measurement liquid is formed, and the flow path in the flow chamber An electrode abrasive that moves with the flow of the liquid to be measured is provided, the working electrode is provided in a position that contacts the electrode abrasive in the flow path, and the counter electrode is provided in the flow path. It is desirable to be provided at a position where it does not hit the abrasive. In this case, the carbon electrode deposits can be removed not only during cleaning but also during measurement. At this time, since the working electrode is a carbon electrode and the bond between the electrode surface and the metal plating is weak, the metal plating can be easily removed from the electrode surface by applying an electrode abrasive. In addition, since the electrode abrasive is configured not to hit the counter electrode, it is possible to prevent consumption of the counter electrode due to polishing.

前記各電極が、前記フローチャンバにおいて独立して交換可能に配置されていることが望ましい。これならば、各電極を独立してフローチャンバに取り付けることができ、フローチャンバ内への適切な配置が可能となる。また、消耗又は故障などして交換する必要がある電極のみを交換すれば良いので、ランニングコストを低減することができる。   It is desirable that the electrodes are arranged independently and interchangeably in the flow chamber. If this is the case, each electrode can be independently attached to the flow chamber, and appropriate arrangement in the flow chamber becomes possible. In addition, since only the electrodes that need to be replaced due to wear or failure need to be replaced, the running cost can be reduced.

このように構成した本発明によれば、銀/塩化銀電極からなる対極の塩化銀を消耗することなく、作用極に形成された金属メッキなどの付着物を物理的にも電気化学的にも容易に除去可能にするとともに、作用極の洗浄に対する耐久性を向上させることができる。   According to the present invention configured as described above, deposits such as metal plating formed on the working electrode can be physically and electrochemically consumed without consuming the silver chloride of the counter electrode composed of the silver / silver chloride electrode. While being able to remove easily, durability with respect to washing | cleaning of a working electrode can be improved.

本発明の一実施形態に係る水質測定装置の模式図である。It is a mimetic diagram of a water quality measuring device concerning one embodiment of the present invention. 同実施形態の水質測定装置の測定流路上における電極配置を示す模式的構成図である。It is a typical block diagram which shows electrode arrangement | positioning on the measurement flow path of the water quality | type measuring apparatus of the embodiment. 同実施形態の水質測定装置の対極、比較極及び洗浄極の取付態様を示す図である。It is a figure which shows the attachment aspect of the counter electrode of the water quality measuring apparatus of the embodiment, a comparison electrode, and a washing | cleaning electrode.

以下に本発明に係る水質測定装置の一実施形態について図面を参照して説明する。   An embodiment of a water quality measuring apparatus according to the present invention will be described below with reference to the drawings.

本実施形態に係る水質測定装置100は、例えば水道水などの被測定液中に浸漬した作用極及び対極間に電圧を印加して、それら電極間を流れる電流により被測定液中の残留塩素濃度を測定する残留塩素測定装置であり、図1に示すように、作用極となるカーボン電極2と、対極となる銀/塩化銀電極3と、カーボン電極2との間で電圧が印加され、カーボン電極2を電気化学洗浄するための洗浄極4と、カーボン電極2及び銀/塩化銀電極3に測定電圧を印加する測定状態とカーボン電極2及び洗浄極4に洗浄電圧を印加する洗浄状態とを切り替える切替機構6とを備えている。なお、残留塩素測定装置100は、図1においては図示しないが、銀/塩化銀電極からなる比較極5を有し、作用極2の比較極5に対する電位を、設定した一定値に保つように構成されている。   The water quality measurement apparatus 100 according to the present embodiment applies a voltage between a working electrode and a counter electrode immersed in a liquid to be measured such as tap water, and the residual chlorine concentration in the liquid to be measured by a current flowing between the electrodes. As shown in FIG. 1, a voltage is applied between the carbon electrode 2 serving as the working electrode, the silver / silver chloride electrode 3 serving as the counter electrode, and the carbon electrode 2, as shown in FIG. A cleaning electrode 4 for electrochemically cleaning the electrode 2, a measurement state in which a measurement voltage is applied to the carbon electrode 2 and the silver / silver chloride electrode 3, and a cleaning state in which a cleaning voltage is applied to the carbon electrode 2 and the cleaning electrode 4. And a switching mechanism 6 for switching. Although not shown in FIG. 1, the residual chlorine measuring device 100 has a comparison electrode 5 made of a silver / silver chloride electrode so that the potential of the working electrode 2 with respect to the comparison electrode 5 is kept at a set constant value. It is configured.

カーボン電極2は、固体状の水不透過性及び導電性を有するカーボンからなる電極であり、例えば、グラッシーカーボン、ダイアモンドライクカーボン(DLC)、例えばホウ素等をドープして導電性を持たせたダイアモンド、グラファイトとカーボンの複合材料であるプラスチックフォームドカーボン(PFC)を用いて構成されている。   The carbon electrode 2 is an electrode made of solid water-impermeable and conductive carbon. For example, glassy carbon, diamond-like carbon (DLC), such as diamond doped with boron or the like, is made conductive. In addition, it is made of plastic-formed carbon (PFC) which is a composite material of graphite and carbon.

洗浄極4は、作用極2と同様に、カーボン電極である。これにより、洗浄時において洗浄極4に形成された金属メッキを容易に除去することができるだけでなく、洗浄極4を長寿命化することができ、長期的に安定した測定、洗浄が可能となる。   The cleaning electrode 4 is a carbon electrode like the working electrode 2. As a result, not only can the metal plating formed on the cleaning electrode 4 be easily removed during cleaning, but the service life of the cleaning electrode 4 can be extended, and stable measurement and cleaning can be performed over a long period of time. .

切替機構6は、カーボン電極2(作用極)に電源の負極を接続し、銀/塩化銀電極3(対極)に電源の正極を接続して、作用極2及び対極3間に電流を流す測定状態と、カーボン電極2(作用極)に電源の正極を接続し、洗浄極4に電源の負極を接続して、作用極2を電気化学洗浄する洗浄状態と、を切り替えるものである。   The switching mechanism 6 is a measurement in which the negative electrode of the power source is connected to the carbon electrode 2 (working electrode), the positive electrode of the power source is connected to the silver / silver chloride electrode 3 (counter electrode), and a current flows between the working electrode 2 and the counter electrode 3. The state is switched between a cleaning state in which the positive electrode of the power source is connected to the carbon electrode 2 (working electrode) and the negative electrode of the power source is connected to the cleaning electrode 4 to electrochemically clean the working electrode 2.

具体的な構成は、作用極2及び対極3を接続する第1の回路上7に設けられた第1のスイッチ61と、作用極2及び洗浄極4を接続する第2の回路上8に設けられた第2のスイッチ62とからなる。なお、第1の回路上61には、測定時において作用極2及び対極3に測定電圧を印加するための測定用電源9及び当該回路上を流れる電流を検出する電流検出部10が設けられている。この測定用電源9及び電流検出部10はポテンシオスタットの一部である。また、第2の回路上8には、洗浄時において作用極2及び洗浄極4に洗浄電圧を印加するための洗浄用電源11が接続されている。なお、本実施形態では、測定用電源9及び洗浄用電源11を分けて設けているが、1つの電源で測定電圧及び洗浄電圧をそれぞれの電極に印加するように回路構成しても良い。   Specifically, the first switch 61 provided on the first circuit 7 that connects the working electrode 2 and the counter electrode 3 and the second circuit 8 that connects the working electrode 2 and the cleaning electrode 4 are provided. The second switch 62 is provided. The first circuit 61 is provided with a measurement power source 9 for applying a measurement voltage to the working electrode 2 and the counter electrode 3 at the time of measurement, and a current detection unit 10 for detecting a current flowing on the circuit. Yes. The measurement power supply 9 and the current detection unit 10 are part of a potentiostat. Further, a cleaning power source 11 for applying a cleaning voltage to the working electrode 2 and the cleaning electrode 4 at the time of cleaning is connected to the second circuit 8. In the present embodiment, the measurement power source 9 and the cleaning power source 11 are provided separately, but a circuit configuration may be adopted in which the measurement voltage and the cleaning voltage are applied to the respective electrodes with a single power source.

本実施形態では、測定用電源9により作用極2に印加する測定電位は一定であり、その測定電位は比較極5に対して−0.3〜−0.5Vである。また、洗浄用電源11による作用極2に対する洗浄極4の洗浄電位は−2.5〜−5.0Vである。この洗浄電位は断続的に印加するようにしている。例えば、周波数約10Hzで印加する。これにより、作用極2に付着している付着物(具体的には金属メッキ)は印加直後に素早く溶解し、作用極2周囲の水等の電気分解が生じることを防ぐことができる。   In this embodiment, the measurement potential applied to the working electrode 2 by the measurement power source 9 is constant, and the measurement potential is −0.3 to −0.5 V with respect to the comparison electrode 5. Further, the cleaning potential of the cleaning electrode 4 with respect to the working electrode 2 by the cleaning power supply 11 is −2.5 to −5.0V. This cleaning potential is applied intermittently. For example, it is applied at a frequency of about 10 Hz. Thereby, the deposit | attachment (specifically metal plating) adhering to the working electrode 2 melt | dissolves quickly immediately after application, and it can prevent that electrolysis of the water etc. around the working electrode 2 arises.

そして、測定時においては、第1のスイッチ61を閉じ、第2のスイッチ62を開けることにより、作用極2及び対極3に測定電圧が印加されて両極2、3間に電流が流れ測定状態が形成される。一方、第1のスイッチ61を開け、第2のスイッチ62を閉じることにより作用極2及び洗浄極4に洗浄電極が印加されて両極2、4間に電流が流れ洗浄状態が形成される。なお、このとき作用極2においては、X→X+eの反応が生じる。なおXは金属を示す。これにより、洗浄状態において作用極2表面に被膜された金属を溶解させることができる。 At the time of measurement, by closing the first switch 61 and opening the second switch 62, a measurement voltage is applied to the working electrode 2 and the counter electrode 3, and a current flows between both the electrodes 2 and 3, and the measurement state is established. It is formed. On the other hand, by opening the first switch 61 and closing the second switch 62, the cleaning electrode is applied to the working electrode 2 and the cleaning electrode 4, and a current flows between both the electrodes 2, 4 to form a cleaning state. At this time, a reaction of X → X + + e occurs at the working electrode 2. X represents a metal. Thereby, the metal coated on the surface of the working electrode 2 can be dissolved in the cleaning state.

しかして本実施形態の水質測定装置100は、被測定液を流通させる流路Lが形成されたフローチャンバFCを有し、当該フローチャンバFCに作用極2、対極3、比較極5、及び洗浄極4が設けられている。   Therefore, the water quality measurement apparatus 100 of the present embodiment has a flow chamber FC in which a flow path L through which a liquid to be measured is circulated is formed. The working electrode 2, the counter electrode 3, the comparison electrode 5, and the cleaning are provided in the flow chamber FC. A pole 4 is provided.

このフローチャンバFCは、図2に示すように、上部に接続された導入ポートP1と、当該導入ポートP1に対向して上部に設けられた導出ポートP2と、内部に導入ポートP1及び導出ポートP2を連通する流路Lが形成されたチャンバ本体FC1と、を備えている。なお、流路Lを流れる被測定液の流量は例えば500〜1500cc/minである。   As shown in FIG. 2, the flow chamber FC includes an introduction port P1 connected to the upper part, a derivation port P2 provided at the upper part facing the introduction port P1, and an introduction port P1 and an derivation port P2 inside. And a chamber main body FC1 in which a flow path L communicating therewith is formed. The flow rate of the liquid to be measured flowing through the flow path L is, for example, 500 to 1500 cc / min.

流路Lは、上下方向に延設されており、その下部には、セラミックビーズ等の電極研磨材12が収容される研磨材収容部L1が形成されている。また、研磨材収容部L1を形成するチャンバ本体FC1の底部は分離可能であり、電極研磨材12を交換可能に構成している。この流路Lにおいて、導入ポートP1から流路Lに導入された被測定液は、下方に向かって流れ、研磨材収容部L1で折り返して、上方に向かって流れ、導出ポートP2から導出される。   The flow path L is extended in the up-down direction, and an abrasive material accommodating portion L1 for accommodating the electrode abrasive material 12 such as ceramic beads is formed in the lower part thereof. Further, the bottom of the chamber main body FC1 that forms the abrasive accommodating portion L1 can be separated, and the electrode abrasive 12 can be replaced. In this flow path L, the liquid to be measured introduced into the flow path L from the introduction port P1 flows downward, turns back at the abrasive material storage portion L1, flows upward, and is led out from the lead-out port P2. .

また、導入ポートP1には、導入された被測定液を研磨材収容部L1に案内するための内部配管13が接続されている。これにより、導入ポートP1から導入された被測定液は、内部配管13を通って電極研磨材12に当たり易くし、それにより電極研磨材12が舞い上がるように構成している。   The introduction port P1 is connected to an internal pipe 13 for guiding the introduced liquid to be measured to the abrasive accommodating part L1. As a result, the liquid to be measured introduced from the introduction port P <b> 1 is easy to hit the electrode abrasive 12 through the internal pipe 13, and thereby the electrode abrasive 12 is soared.

そして少なくとも作用極2、比較極5及び対極3は、流路Lにおける被測定液の流れ方向(図2中の矢印A)に沿って、上流側から作用極2、比較極5及び対極3の順で配置されている。   At least the working electrode 2, the comparison electrode 5, and the counter electrode 3 are arranged so that the working electrode 2, the comparison electrode 5, and the counter electrode 3 are arranged from the upstream side along the flow direction (arrow A in FIG. Arranged in order.

より詳細には、作用極2は研磨材収容部L1内部又はその近傍において、被測定液の流れ方向に対して対向するように配置される。つまり、作用極2は、被測定液の流れに伴って移動する電極研磨材12が当たる位置に配置されている。これにより、被測定液の流れによって舞い上がった電極研磨材12が作用極2に当たり、作用極2表面の付着物が除去される。このとき、作用極2がカーボン電極2により構成されていることから、電極研磨材12の接触により付着物が除去され易い。また、作用極2に対して斜めから電極研磨材12が当たるように配置して、作用極2表面の摩耗を可及的に小さくしている。なお、図2において作用極2は、作用極ホルダ14の先端部に交換可能に取り付けられたチップ状をなすものである。作用極ホルダ14は、チャンバ本体FC1の側壁に脱着可能に取り付けられる。   More specifically, the working electrode 2 is disposed inside or near the abrasive container L1 so as to oppose the flow direction of the liquid to be measured. That is, the working electrode 2 is disposed at a position where the electrode abrasive 12 that moves with the flow of the liquid to be measured hits. As a result, the electrode abrasive 12 that has been swollen by the flow of the liquid to be measured hits the working electrode 2 and the deposits on the surface of the working electrode 2 are removed. At this time, since the working electrode 2 is composed of the carbon electrode 2, deposits are easily removed by contact with the electrode abrasive 12. Moreover, it arrange | positions so that the electrode abrasive | polishing material 12 may strike diagonally with respect to the working electrode 2, and the abrasion of the working electrode 2 surface is made as small as possible. In FIG. 2, the working electrode 2 has a chip shape that is replaceably attached to the tip of the working electrode holder 14. The working electrode holder 14 is detachably attached to the side wall of the chamber body FC1.

そして、流路Lにおいて作用極2の下流側に比較極5及び対極3がこの順で設けられている。これにより、対極3から溶け出した銀イオンが作用極2に到達しにくくし、作用極2表面に銀がメッキされることを防止している。   A comparison electrode 5 and a counter electrode 3 are provided in this order on the downstream side of the working electrode 2 in the flow path L. This makes it difficult for the silver ions dissolved from the counter electrode 3 to reach the working electrode 2 and prevents the surface of the working electrode 2 from being plated with silver.

ここで、比較極5は作用極2に可及的に近いことが望ましいが、電極研磨材12が当たることによる消耗を防ぐために、電極研磨材12が当たらない限度で作用極2に近接配置している。また、対極3はこの比較極5の下流側に設けられており、電極研磨材12が当たることによる消耗を防ぐために、電極研磨材12が当たらない位置に配置されている。洗浄極4は流路Lのいずれの位置に配置しても良いが、電極研磨材12による付着物の除去効果を得るためには電極研磨材12が移動する範囲内、具体的には研磨材収容部L1内部又はその近傍に配置することが望ましい。   Here, it is desirable that the comparative electrode 5 be as close as possible to the working electrode 2. ing. Further, the counter electrode 3 is provided on the downstream side of the comparison electrode 5 and is disposed at a position where the electrode abrasive 12 does not contact in order to prevent wear due to the electrode abrasive 12 being applied. The cleaning electrode 4 may be disposed at any position in the flow path L. However, in order to obtain the effect of removing the deposits by the electrode abrasive 12, the electrode abrasive 12 is moved, specifically, the abrasive. It is desirable to arrange in the accommodating part L1 or its vicinity.

なお、本実施形態では、対極3、比較極5及び洗浄極4は、故障時以外に取り外し又は交換の必要がないため、背面部の収容ボックス15に取り付けられて収容されている(図3参照)。そして、収容ボックス15をチャンバ本体FC1から取り外すことによって、対極3、比較極5及び洗浄極4を一挙にチャンバ本体FC1から取り外すことができるように構成している。なお、対極3、比較極5又は洗浄極4それぞれは、独立して収容ボックス15から取り外すことができ、これにより、各極3、4、5をチャンバ本体FC1から取り外すこともできる。   In the present embodiment, the counter electrode 3, the comparison electrode 5, and the cleaning electrode 4 do not need to be removed or replaced except when they are out of order, so that they are attached and accommodated in the accommodation box 15 on the back side (see FIG. 3). ). Then, by removing the storage box 15 from the chamber body FC1, the counter electrode 3, the comparison electrode 5 and the cleaning electrode 4 can be removed from the chamber body FC1 all at once. Each of the counter electrode 3, the comparison electrode 5, and the cleaning electrode 4 can be detached from the storage box 15 independently, whereby each of the electrodes 3, 4, and 5 can be detached from the chamber body FC1.

<本実施形態の効果>
このように構成した本実施形態に係る水質測定装置100によれば、切替機構6によってカーボン電極2に洗浄用電源11の正極を接続し、前記洗浄極4に電源11の負極を接続した洗浄状態として、カーボン電極2の洗浄時において銀/塩化銀電極3に電圧を印加することがない。したがって、銀/塩化銀電極3の塩化銀を消耗することなく、カーボン電極2表面に形成された金属メッキを電気化学洗浄により除去することができる。ここで、金属製の作用極2表面と金属メッキとの結合に比べて、カーボン電極2表面と金属メッキとの結合が弱いことから、電気化学洗浄だけでなく、物理的な洗浄(例えば研磨洗浄)によっても金属メッキを除去し易くすることができる。また、作用極2にカーボン電極2を用いることにより、従来の金属製の作用極2と同程度の性能を確保しながらも電気化学洗浄に対する強度を増すことができ、作用極2の長寿命化を実現することができる。
<Effect of this embodiment>
According to the water quality measuring apparatus 100 according to the present embodiment configured as described above, a cleaning state in which the switching mechanism 6 connects the positive electrode of the cleaning power supply 11 to the carbon electrode 2 and connects the negative electrode of the power supply 11 to the cleaning electrode 4. As a result, no voltage is applied to the silver / silver chloride electrode 3 when the carbon electrode 2 is cleaned. Therefore, the metal plating formed on the surface of the carbon electrode 2 can be removed by electrochemical cleaning without consuming the silver chloride of the silver / silver chloride electrode 3. Here, since the bond between the surface of the carbon electrode 2 and the metal plating is weaker than the bond between the surface of the metal working electrode 2 and the metal plating, not only electrochemical cleaning but also physical cleaning (for example, polishing cleaning) ) Also facilitates removal of the metal plating. In addition, by using the carbon electrode 2 for the working electrode 2, the strength against electrochemical cleaning can be increased while ensuring the same level of performance as the conventional working electrode 2 made of metal, and the life of the working electrode 2 is extended. Can be realized.

なお、本発明は前記実施形態に限られるものではない。   The present invention is not limited to the above embodiment.

例えば、前記実施形態では、作用極、対極及び比較極を有するポーラログラフ法を用いた残留塩素測定装置について説明したが、比較極を有さないポーラログラフを用いたものであっても良いし、ガルバニセル法を用いた残留塩素測定装置であっても良い。   For example, in the above-described embodiment, the residual chlorine measuring device using the polarographic method having the working electrode, the counter electrode, and the reference electrode has been described. It may be a residual chlorine measuring device using

また、前記実施形態の水質測定装置としては、被測定液中の溶存酸素濃度を測定する溶存酸素測定装置であっても良い。   Further, the water quality measuring device of the embodiment may be a dissolved oxygen measuring device that measures the dissolved oxygen concentration in the liquid to be measured.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

100・・・水質測定装置(残留塩素測定装置)
2 ・・・作用極(カーボン電極)
3 ・・・対極(銀/塩化銀電極)
4 ・・・洗浄極
6 ・・・切替機構
9 ・・・測定用電源
11 ・・・洗浄用電源
FC ・・・フローチャンバ
L ・・・流路
12 ・・・電極研磨材
100 ... Water quality measuring device (residual chlorine measuring device)
2 ... Working electrode (carbon electrode)
3 ... Counter electrode (silver / silver chloride electrode)
4 ... Cleaning electrode 6 ... Switching mechanism 9 ... Measurement power supply 11 ... Cleaning power supply FC ... Flow chamber L ... Flow path 12 ... Electrode polishing material

Claims (5)

被測定液中に浸漬したカーボン電極からなる作用極及び銀/塩化銀電極からなる対極間に電圧を印加して、それら電極間を流れる電流により被測定液中の所定成分濃度を測定する被測定液測定装置であって、
前記作用極との間で電圧が印加され、前記作用極を電気化学洗浄するためのカーボン電極からなる洗浄極と、
前記作用極に電源の負極を接続し、前記対極に電源の正極を接続した測定状態と、前記作用極に電源の正極を接続し、前記洗浄極に電源の負極を接続した洗浄状態とを切り替える切替機構と、を備え、
前記被測定液を流通させる流路が形成されたフローチャンバに、前記対極、前記作用極及び前記洗浄極が設けられるとともに、前記被測定液の流れに伴って移動する電極研磨材が設けられており、
前記流路の上流側から順に前記作用極及び前記対極が配置されて、前記作用極が、前記流路内において前記電極研磨材に当たる位置に設けられており、
前記電源が、前記洗浄状態において、前記作用極に対する前記洗浄極の洗浄電位、断続的に印加るものである被測定液測定装置。
A voltage to be measured is applied between a working electrode made of a carbon electrode immersed in the liquid to be measured and a counter electrode made of a silver / silver chloride electrode, and the concentration of a predetermined component in the liquid to be measured is measured by a current flowing between the electrodes. A liquid measuring device,
A voltage is applied between the working electrode and a cleaning electrode comprising a carbon electrode for electrochemically cleaning the working electrode;
Switching between a measurement state in which the negative electrode of the power source is connected to the working electrode and a positive electrode of the power source is connected to the counter electrode, and a cleaning state in which the positive electrode of the power source is connected to the working electrode and the negative electrode of the power source is connected to the cleaning electrode A switching mechanism,
The counter chamber, the working electrode, and the cleaning electrode are provided in a flow chamber in which a flow path for flowing the liquid to be measured is formed, and an electrode abrasive that moves along with the flow of the liquid to be measured is provided. And
The working electrode and the counter electrode are arranged in order from the upstream side of the flow path, and the working electrode is provided at a position in the flow path that contacts the electrode abrasive,
The power supply is, in the above cleaning state, the cleaning potential of the cleaning electrode with respect to the working electrode, test liquid measurement device is shall be intermittently applied.
前記作用極が、その電極面に対して前記電極研磨材が斜めから当たるように配置されている請求項1記載の被測定液測定装置。   The measurement liquid measuring apparatus according to claim 1, wherein the working electrode is arranged so that the electrode abrasive is obliquely applied to the electrode surface. 前記作用極を構成するカーボン電極が、ダイアモンドライクカーボン又は導電性を有するダイアモンドを用いて構成されている請求項1又は2記載の被測定液測定装置。   3. The liquid measurement apparatus according to claim 1, wherein the carbon electrode constituting the working electrode is constituted by using diamond-like carbon or conductive diamond. 前記対極が、前記流路内において前記電極研磨材に当たらない位置に設けられている請求項1乃至3の何れかに記載の被測定液測定装置。   The device for measuring a liquid to be measured according to claim 1, wherein the counter electrode is provided in a position where the electrode does not hit the electrode abrasive in the flow path. 前記洗浄極が、前記流路内において前記電極研磨材に当たる位置に設けられている請求項1乃至4の何れかに記載の被測定液測定装置。   The measured liquid measuring apparatus according to claim 1, wherein the cleaning electrode is provided in a position where the cleaning electrode contacts the electrode abrasive.
JP2009174348A 2009-07-27 2009-07-27 Water quality measuring device Active JP5416501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009174348A JP5416501B2 (en) 2009-07-27 2009-07-27 Water quality measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174348A JP5416501B2 (en) 2009-07-27 2009-07-27 Water quality measuring device

Publications (2)

Publication Number Publication Date
JP2011027584A JP2011027584A (en) 2011-02-10
JP5416501B2 true JP5416501B2 (en) 2014-02-12

Family

ID=43636499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009174348A Active JP5416501B2 (en) 2009-07-27 2009-07-27 Water quality measuring device

Country Status (1)

Country Link
JP (1) JP5416501B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178989A (en) * 2014-03-19 2015-10-08 株式会社industria Coulometric titration method and coulometric titration device
JP2017067736A (en) * 2015-10-02 2017-04-06 株式会社industria Coulometric titration method and device of the same
WO2023149448A1 (en) * 2022-02-01 2023-08-10 株式会社堀場アドバンスドテクノ Measurement instrument, measurement device, measurement system, and measurement method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628050A (en) * 1985-07-05 1987-01-16 Nippon Fuirukon Kk Method and apparatus for measuring concentration of oxidizable substance in liquid to be inspected
JP2535386Y2 (en) * 1991-03-27 1997-05-14 京都電子工業株式会社 Residual chlorine meter
JP3447158B2 (en) * 1995-09-05 2003-09-16 株式会社クボタ Electrode type sensor
JP2002250711A (en) * 2001-02-26 2002-09-06 Shoei:Kk Residual chlorine meter and liquid sterilizer using it
JP2004144662A (en) * 2002-10-25 2004-05-20 Dkk Toa Corp Apparatus and method for measuring oxidation-reduction current
JP3838435B2 (en) * 2003-06-25 2006-10-25 明胤 秋山 Hypochlorous acid concentration measuring device
JP4493010B2 (en) * 2004-05-06 2010-06-30 愛知時計電機株式会社 Flow rate / residual chlorine concentration measuring instrument and tap water flow rate / residual chlorine concentration measurement method
JP4414277B2 (en) * 2004-05-19 2010-02-10 東亜ディーケーケー株式会社 Redox current measuring device and cleaning method for redox current measuring device
JP2006026214A (en) * 2004-07-20 2006-02-02 Fado:Kk Air sterilizing and washing machine
JP2008058025A (en) * 2006-08-29 2008-03-13 Omega:Kk Residual chlorine concentration meter

Also Published As

Publication number Publication date
JP2011027584A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
US7922890B2 (en) Low maintenance on-site generator
JP5416501B2 (en) Water quality measuring device
US20110000797A1 (en) Electrochemical device and method for long-term measurement of hypohalites
JP2011522123A (en) Electrolytic cell cleaning method including electrode and electrolytic product generator
JP2012127943A (en) Method and device for measuring heavy metal ions
WO2015020188A1 (en) Residual-chlorine measurement device, and residual-chlorine measurement method
JP4858164B2 (en) Electric transmission mechanism and residual chlorine meter using the same
RU2572050C2 (en) Method for electrode surface cleaning
JP4365086B2 (en) Concentration measuring device and concentration measuring method
JP2006030027A (en) Sensitivity restoring method of diaphragm type sensor, measuring instrument and electrode regeneration device
JP2009242931A (en) Electrolytic cleaning device and electrolytic cleaning method
KR101630379B1 (en) Low wastewater type valuable metal electrolysis device
JP6011874B2 (en) Method for evaluating inhibitors contained in plating solution
JP2012145436A (en) Cleaning method of ozone water sensor
JP2008058025A (en) Residual chlorine concentration meter
JP4414277B2 (en) Redox current measuring device and cleaning method for redox current measuring device
JP6336757B2 (en) measuring device
JPH0972879A (en) Electrode type sensor
JP7227714B2 (en) Electrochemical measurement device and its cleaning method
JP4282621B2 (en) Metal ion water generator
JP2005345222A (en) Residual chlorine meter
CN1224838A (en) Surface scale preventing method for metal electrode
JP2001141692A (en) Apparatus for measuring concentration of residual chlorine
JP6439512B2 (en) Electrode device for liquid potential measurement and liquid potential measurement system
KR102447389B1 (en) Water quality measurement system and method for water distribution networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131115

R150 Certificate of patent or registration of utility model

Ref document number: 5416501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250