JP5416461B2 - Method for removing rust from steel structures - Google Patents

Method for removing rust from steel structures Download PDF

Info

Publication number
JP5416461B2
JP5416461B2 JP2009098567A JP2009098567A JP5416461B2 JP 5416461 B2 JP5416461 B2 JP 5416461B2 JP 2009098567 A JP2009098567 A JP 2009098567A JP 2009098567 A JP2009098567 A JP 2009098567A JP 5416461 B2 JP5416461 B2 JP 5416461B2
Authority
JP
Japan
Prior art keywords
rust
pressure water
steel structure
khz
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009098567A
Other languages
Japanese (ja)
Other versions
JP2010247058A (en
Inventor
勝幸 柳原
寛 紀平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009098567A priority Critical patent/JP5416461B2/en
Publication of JP2010247058A publication Critical patent/JP2010247058A/en
Application granted granted Critical
Publication of JP5416461B2 publication Critical patent/JP5416461B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、橋梁、プラント、船舶など鋼構造体のさび除去方法に関わり、特に、層状さびなどの厚いさびを効率的に除去する技術に関する。   The present invention relates to a method for removing rust from steel structures such as bridges, plants, and ships, and more particularly, to a technique for efficiently removing thick rust such as layered rust.

橋梁、プラント、船舶など鋼構造体は、長年にわたり風雨に曝されたり、海に隣接した立地である場合は塩害を被るなど、その使用環境に応じた腐食を起こす。鋼材の腐食は美観を損ねるのみならず、鋼材の肉厚が減じることにより構造体自体としての強度が初期の値を維持できなくなるため、鋼構造体を適切に維持管理することが必要である。近年では、より腐食速度の小さい耐候性鋼などの耐食低合金鋼がこれら鋼構造体の部材として用いられるようになっている。しかしながら、耐候性鋼であっても建設後の様々な理由により環境変化が生じた場合、想定以上に腐食速度が上昇し、結果として層状さび、うろこさびなど厚いさびが発生することがある。このように、鋼構造体の腐食速度が大きく、厚いさびが発生する場合は、新たに塗装などの補修を行い、それ以降の腐食速度を低減する必要がある。そのためには大面積に発生したさびを塗装が可能なほど十分に除去することが必要となる。しかしながら、厚いさびの除去作業は困難であり、特に耐候性鋼などの耐食低合金上に発生するさびは緻密で密着性が高いため、その除去が極めて困難である。   Steel structures such as bridges, plants, and ships are subject to corrosion according to their usage environment, such as being exposed to wind and rain for many years, or salt damage when located adjacent to the sea. Corrosion of the steel material not only detracts from aesthetics, but the strength of the structure itself cannot be maintained at the initial value due to the reduction in the thickness of the steel material, so it is necessary to appropriately maintain and manage the steel structure. In recent years, corrosion-resistant low alloy steels such as weathering steel having a lower corrosion rate have been used as members of these steel structures. However, even with weathering steel, when environmental changes occur for various reasons after construction, the corrosion rate increases more than expected, and as a result, thick rust such as layered rust and scale rust may occur. Thus, when the corrosion rate of the steel structure is large and thick rust is generated, it is necessary to newly repair such as painting and reduce the subsequent corrosion rate. For this purpose, it is necessary to sufficiently remove rust generated in a large area so that it can be painted. However, it is difficult to remove a thick rust. In particular, rust generated on a corrosion-resistant low alloy such as weather-resistant steel is dense and has high adhesion, and thus is extremely difficult to remove.

一般に、固着さびの除去にはブラスト法が用いられる。ところが、ブラスト法は粉塵を撒き散らすため環境への負荷が大きいという問題がある。また、ブラスト法では小さなピットあるいは孔中に存在するさびの除去は困難である。特許文献1には、金属回転盤の研削面の一部または全部に20個/cm以上の密度となるようモース硬度9を超える硬質粒子が蝋付け接合された回転研削工具を用いることにより、固着さびを除去する方法が示されている。この方法により安価に固着さびを除去可能であるが、小さなピットあるいは孔中に存在するさびの除去はできず、接合部などの凹凸のある部位のさびの除去は困難である。 In general, a blast method is used to remove sticking rust. However, the blasting method has a problem that the burden on the environment is large because dust is scattered. Also, it is difficult to remove rust present in small pits or holes by the blast method. In Patent Document 1, by using a rotary grinding tool in which hard particles having a Mohs hardness of 9 or more are brazed and bonded to a part or all of a grinding surface of a metal rotating disk so as to have a density of 20 pieces / cm 2 or more, A method of removing sticking rust is shown. Although it is possible to remove the fixed rust at low cost by this method, it is not possible to remove the rust present in the small pits or holes, and it is difficult to remove the rust on the uneven portion such as the joint.

特許文献2には、ウォーターブラストにより鋼構造体表層の腐食生成物やさびなどを除去する技術が示されているが、通常の水を使用する場合は、その水の圧力範囲が10〜300MPa、好ましくは150〜300MPaとしており、非常に高圧の水を使用するためポンプが大型化してしまい設備コストが高くなる。また、研掃材を用いる場合は、より低圧で十分な効果が得られるものの、鋼材表面に研掃材が残留するため均一な塗装を阻害するという問題がある。   Patent Document 2 discloses a technique for removing corrosion products and rust on the surface of a steel structure by water blasting. However, when normal water is used, the pressure range of the water is 10 to 300 MPa, Preferably, the pressure is set to 150 to 300 MPa. Since very high-pressure water is used, the pump is increased in size and the equipment cost is increased. In addition, when the abrasive is used, a sufficient effect can be obtained at a lower pressure, but the abrasive remains on the surface of the steel material, so that there is a problem that uniform coating is hindered.

鋼構造体の腐食速度が大きく、厚いさびが発生する場合は、さびを除去して新たに塗装などを行う必要がある。しかしながら、特許文献1に示されるがごとく、厚いさびの除去作業は困難である。   When the corrosion rate of the steel structure is high and thick rust is generated, it is necessary to remove the rust and perform new coating or the like. However, as shown in Patent Document 1, it is difficult to remove thick rust.

特許文献2に示されるがごとく、高圧水を鋼構造体に噴射することにより、さびを除去できる。また、塩害の多い地区において生成したさびは塩分が多量に付着しているため、さびを除去して塗装する前には、水洗などにより塩分を除去あるいは無害化する必要があるが、高圧水の噴射によりさびを除去すると、塩分を除去する効果がある。   As shown in Patent Document 2, rust can be removed by spraying high-pressure water onto the steel structure. In addition, since rust generated in areas with a lot of salt damage has a large amount of salt, it is necessary to remove or render it harmless by washing before removing the rust and painting. Removing rust by spraying has the effect of removing salt.

したがって、高圧水の噴射により、鋼構造体上に生成する厚いさびを除去して新たに塗装を施す場合、さびを除去する作業速度とそのコストが課題となる。   Therefore, when the thick rust generated on the steel structure is removed by high-pressure water injection and new coating is applied, the work speed and cost for removing the rust are problems.

特開2007−307701号公報JP 2007-307701 A 特開2001−46957号公報JP 2001-46957 A

本発明は、上記課題を解決し、非常に高い吐出圧力の高圧水を必要とせず、鋼構造体のさびを除去する作業速度が大きく、小さなピットあるいは孔中に存在するさびをも除去する技術を提供することを目的とする。   The present invention solves the above-mentioned problems, does not require high-pressure water with a very high discharge pressure, has a high working speed for removing rust of a steel structure, and removes rust existing in small pits or holes. The purpose is to provide.

上記課題を解決するための本発明は、
(1)鋼構造体に発生したさびを、ノズルから高圧水を該鋼構造体に噴射して除去するさび除去方法であって、前記高圧水の吐出圧力が5MPa〜150MPaの範囲であり、前記高圧水に、振動子または前記振動子から繋がる部品の加振により、周波数が20kHz〜100kHzの脈動を与えることで、噴射された高圧水流の液滴化を促進し、前記ノズルからの距離が10〜400mmの位置にある前記鋼構造体に噴射することを特徴とする鋼構造体のさび除去方法。
である。
The present invention for solving the above problems is as follows.
(1) A rust removing method for removing rust generated in a steel structure by injecting high pressure water from a nozzle onto the steel structure, wherein a discharge pressure of the high pressure water is in a range of 5 MPa to 150 MPa, By pulsating the high-pressure water with a vibrator or a component connected to the vibrator by applying a pulsation having a frequency of 20 kHz to 100 kHz, the jetting of the high-pressure water flow is promoted into a droplet, and the distance from the nozzle is 10 A method for removing rust from a steel structure, wherein the steel structure is sprayed onto the steel structure at a position of ~ 400 mm.
It is.

本発明によれば、迅速な作業により、小さなピットあるいは孔中に存在するさびをも除去することが可能であり、その工業的意義は大きい。   According to the present invention, it is possible to remove rust present in small pits or holes by a quick operation, and its industrial significance is great.

先ず、本発明の技術思想について説明する。   First, the technical idea of the present invention will be described.

層状さびなどの厚い固着さびは非常に硬く、しかも鋼材に密着しているため、高圧水の噴射により除去するには、高圧水が鋼構造体へ衝突する際の衝撃力が十分に大きいことが必要である。従来から、高圧水の衝撃力の強化策として、噴射する水の高圧化や流量の増加がなされてきた。しかしながら、噴射する水の高圧化や流量の増加のためには、大型で高価なポンプを必要とするため設備コストが増加する。   Thick sticking rust such as layered rust is very hard and is in close contact with the steel material, so that the impact force when high pressure water collides with the steel structure is sufficiently large to be removed by jetting high pressure water. is necessary. Conventionally, as a measure for strengthening the impact force of high-pressure water, the pressure of water to be injected has been increased and the flow rate has been increased. However, in order to increase the pressure of the water to be injected and to increase the flow rate, a large and expensive pump is required, which increases the equipment cost.

ノズルから噴出した高圧水は、ノズルからの距離に応じて連続流から液滴流に変化する。このノズルから出た直後の連続流領域の噴流は、平均圧力が高く標準偏差が小さい等の特長により、石材やコンクリート等を切断する際に用いられている。また、ノズルからの距離が100〜600mm程度の範囲である液滴流領域では、平均圧力が一定で比較的広範囲に広がり、液滴が衝撃的に鋼片等の被噴射体に当たる。高速水粒が液滴化して鋼片に衝突する際には、ウォーターハンマー効果により衝撃力が増加するため、連続流が衝突する場合より数倍以上の衝撃力となることが知られている。   The high-pressure water ejected from the nozzle changes from a continuous flow to a droplet flow according to the distance from the nozzle. The jet in the continuous flow region immediately after coming out of the nozzle is used when cutting stone, concrete, or the like due to features such as high average pressure and small standard deviation. Further, in the droplet flow region where the distance from the nozzle is in the range of about 100 to 600 mm, the average pressure is constant and spreads over a relatively wide range, and the droplet impacts a target such as a steel slab. It is known that when high-speed water droplets form droplets and collide with a steel piece, the impact force increases due to the water hammer effect, so that the impact force is several times or more than when a continuous flow collides.

本発明者らは、数多くの実験を重ね、振動子により高圧水に高周波の脈動を付与することで、噴射された高圧水流の液滴化が促進され、ノズルからの距離が10〜400mmの範囲で均一に液滴化すること、さらに噴射される高圧水の吐出圧力や流量が一定の場合でも、脈動周波数を高くするほどさび除去能力が高くなることを見出した。   The inventors of the present invention have repeated a number of experiments and imparted high-frequency pulsation to high-pressure water using a vibrator, thereby promoting droplet formation of the injected high-pressure water flow, and a distance from the nozzle of 10 to 400 mm. It was found that even when the discharge pressure and flow rate of the injected high-pressure water are constant, the rust removal ability increases as the pulsation frequency is increased.

高圧水に脈動を付与する方法は、大別して機械式と振動式の2つの方法がある。機械式では、高圧水の噴出口近くで水路を開閉する方法や、ピストン等を用いて配管やノズル内チャンバーの容積を変化させて脈動を与える方法がある。しかしながら、機械的な稼動により高圧水に上記のような高周波数の脈動を与える方法では、稼動部の耐久性に問題がある。一方、振動子により高圧水に脈動を与える方法では、機械的な稼動部が存在しないため耐久性が高い。さらに、機械式より容易に高周波の脈動を付与することが可能であるため、高圧水の液滴化が促進されてさび除去能力が向上する。特に、脈動の周波数が1.0kHz以上になると液滴化が均一に促進されると共に、高圧水の噴流エネルギーに高周波振動のエネルギーが付与されることにより、さらにさび除去能力が向上する。   Methods for imparting pulsation to high-pressure water can be broadly divided into two methods: mechanical and vibration. In the mechanical type, there are a method of opening and closing a water channel near a jet port of high-pressure water, and a method of applying pulsation by changing the volume of a pipe or a chamber in a nozzle using a piston or the like. However, in the method of giving high-frequency pulsation as described above to high-pressure water by mechanical operation, there is a problem in durability of the operating part. On the other hand, the method of pulsating high-pressure water with a vibrator has high durability because there is no mechanical working part. Furthermore, since it is possible to impart high-frequency pulsation more easily than a mechanical type, the formation of high-pressure water droplets is promoted, and the rust removal capability is improved. In particular, when the frequency of pulsation is 1.0 kHz or more, droplet formation is promoted uniformly, and the energy of high-frequency vibration is imparted to the jet energy of high-pressure water, thereby further improving the ability to remove rust.

以下に、本発明における各条件の限定理由について説明する。   Below, the reason for limitation of each condition in this invention is demonstrated.

高圧水の脈動の振動数を1.0kHz〜200kHzとしたのは、1.0kHz未満の脈動では高圧水の液滴化が十分ではなく、また、高周波振動のエネルギーも小さいため脈動の効果が十分に得られないからであり、200kHz以下としたのは、大面積の鋼構造体上に生成する固着さびを迅速に除去するのに必要な圧力及び流量の高圧水に、それ以上の周波数の脈動を付与することは現状の技術レベルでは困難だからである。さび除去能力の向上と振動子の耐久性向上の観点からは、高圧水の脈動の振動数は、10kHz〜50kHzの範囲がより好ましい。   The frequency of the pulsation of the high-pressure water is set to 1.0 kHz to 200 kHz. The pulsation of less than 1.0 kHz is not sufficient to form droplets of high-pressure water, and the energy of the high-frequency vibration is small, so the pulsation effect is sufficient. The reason why the frequency is set to 200 kHz or less is that the pulsation of a frequency higher than that of the high pressure water having the pressure and flow rate necessary to quickly remove the sticking rust generated on the steel structure having a large area. This is because it is difficult to provide the value at the current technical level. From the viewpoint of improving the rust removing ability and improving the durability of the vibrator, the frequency of the pulsation of the high-pressure water is more preferably in the range of 10 kHz to 50 kHz.

また、ノズルからの吐出圧力を5MPa〜150MPaとしたのは、吐出圧力が5MPa未満では、圧力が小さ過ぎるために、高圧水が液滴となるノズルと鋼構造体の距離が10〜400mmの範囲で脈動を付与してもさびを十分早く除去できない可能性があるためであり、150MPa以上の高圧水を噴射するには、設備が大型化してコストが上昇する問題があるためである。設備コストの観点からは、吐出圧力は5MPa〜70MPaの範囲であることがより好ましい。   Moreover, the discharge pressure from the nozzle was set to 5 MPa to 150 MPa because the pressure is too small when the discharge pressure is less than 5 MPa, and the distance between the nozzle where the high-pressure water becomes a droplet and the steel structure is 10 to 400 mm. This is because it is possible that rust cannot be removed quickly enough even if pulsation is applied, and in order to inject high-pressure water of 150 MPa or more, there is a problem that the equipment becomes large and costs increase. From the viewpoint of equipment cost, the discharge pressure is more preferably in the range of 5 MPa to 70 MPa.

以下に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Hereinafter, examples of the present invention will be described. However, the conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

さび除去試験には、塩水散布を半年間行って厚さが約2mmの層状さびが生成された縦300mm、横600mmの耐候性鋼(JISG3114S)を試験材として用い、円形の穴から高圧水を噴射する1本のノズルから、上記試験材に高圧水を噴射してさびを除去した。上記ノズル先端から試験材までの距離が150mmであり、高圧水が試験材に垂直に照射されるようにノズルを固定し、直交するXおよびYの2方向に稼動するステージに固定された試験材を、高圧水の噴射領域を移動させながらさび除去試験を行った。高圧水の噴射により約15mmの幅のさびが除去されるため、X方向にステージを駆動させて高圧水の噴射によりさびを除去した後に、Y方向に15mm移動させ、再びX方向にステージを駆動させることを繰り返して試験材の全面のさびを除去した。X方向の駆動速度は、高圧水を照射した領域でISO8501−1Sa2.5相当の表面を得ることができる最大速度とした。高圧水への加振は、定格容量が2kVAで固有振動数が0.5kHz、2kHz、20kHzおよび100kHzの振動子を用いた。各高圧水の噴射条件において、各ノズルからの吐出圧力は10MPaおよび100MPaで、ノズル1本あたり30L/minである高圧水を噴射した。高圧水噴射条件が異なる各方法はさび除去速度で評価し、さび除去速度の評価は、ISO8501−1Sa2.5相当の表面を得るための作業時間を1m当たりで表した。さらに、比較例として、脈動なしで実験を行った。また、従来法の基準例として、特許文献1に示されている回転研削工具を用いて、表層のさびをISO8501−1Sa2.5相当の表面を得るまで除去した。結果を表1に示す。 For the rust removal test, 300 mm long and 600 mm wide weather resistant steel (JISG3114S), which was layered rust with a thickness of about 2 mm after salt water spraying for six months, was used as a test material. Rust was removed by spraying high-pressure water onto the test material from one nozzle to be sprayed. The distance between the nozzle tip and the test material is 150 mm, the nozzle is fixed so that the high-pressure water is irradiated perpendicularly to the test material, and the test material is fixed to a stage that operates in two orthogonal X and Y directions The rust removal test was conducted while moving the jet region of high pressure water. Since the rust with a width of about 15 mm is removed by jetting high-pressure water, the stage is driven in the X direction to remove rust by jetting high-pressure water, then moved 15 mm in the Y direction, and the stage is driven again in the X direction. The rust on the entire surface of the test material was removed by repeating the process. The driving speed in the X direction was set to the maximum speed at which a surface equivalent to ISO8501-1Sa2.5 could be obtained in the region irradiated with high-pressure water. For the excitation to the high-pressure water, vibrators having a rated capacity of 2 kVA and natural frequencies of 0.5 kHz, 2 kHz, 20 kHz, and 100 kHz were used. Under each high-pressure water injection condition, the discharge pressure from each nozzle was 10 MPa and 100 MPa, and high-pressure water of 30 L / min per nozzle was injected. Each method with different high-pressure water injection conditions was evaluated by the rust removal rate, and the evaluation of the rust removal rate was expressed in terms of work time per 1 m 2 to obtain a surface equivalent to ISO8501-1Sa2.5. Furthermore, as a comparative example, an experiment was performed without pulsation. Further, as a reference example of the conventional method, rust on the surface layer was removed using a rotary grinding tool disclosed in Patent Document 1 until a surface equivalent to ISO8501-1Sa2.5 was obtained. The results are shown in Table 1.

Figure 0005416461
Figure 0005416461

表1に示すように、通常のウォーターブラストである脈動無しや、噴射する高圧水の脈動の周波数が本発明の範囲外である20kHz未満の場合に比べて、本発明の範囲である脈動の周波数が20kHz〜100kHzの範囲である場合、高圧水の液滴化が促進されて衝突の衝撃力が増加し、さび除去能力が著しく強化されて、さび除去に要する時間が短くなることが確認できた。 As shown in Table 1, there is no pulsation which is a normal water blast, and the pulsation frequency which is the range of the present invention compared to the case where the pulsation frequency of the high-pressure water to be injected is less than 20 kHz which is outside the range of the present invention. Is within the range of 20 kHz to 100 kHz, it is confirmed that the formation of high-pressure water droplets is promoted, the impact force of the collision is increased, the rust removal ability is remarkably enhanced, and the time required for rust removal is shortened. did it.

本発明は、各種金属による構造体のさび除去に適用できる。   The present invention can be applied to rust removal of structures using various metals.

Claims (1)

鋼構造体に発生したさびを、ノズルから高圧水を該鋼構造体に噴射して除去するさび除去方法であって、
前記高圧水の吐出圧力が5MPa〜150MPaの範囲であり、
前記高圧水に、振動子または前記振動子から繋がる部品の加振により、周波数が20kHz〜100kHzの脈動を与えることで、噴射された高圧水流の液滴化を促進し、前記ノズルからの距離が10〜400mmの位置にある前記鋼構造体に噴射することを特徴とする鋼構造体のさび除去方法。
A rust removing method for removing rust generated in a steel structure by jetting high pressure water from a nozzle onto the steel structure,
The discharge pressure of the high-pressure water is in the range of 5 MPa to 150 MPa,
By pulsating the high-pressure water with a vibrator or a component connected to the vibrator by pulsation with a frequency of 20 kHz to 100 kHz, the jetted high-pressure water stream is promoted into droplets, and the distance from the nozzle is increased. A method for removing rust from a steel structure, wherein the steel structure is sprayed onto the steel structure at a position of 10 to 400 mm.
JP2009098567A 2009-04-15 2009-04-15 Method for removing rust from steel structures Expired - Fee Related JP5416461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098567A JP5416461B2 (en) 2009-04-15 2009-04-15 Method for removing rust from steel structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098567A JP5416461B2 (en) 2009-04-15 2009-04-15 Method for removing rust from steel structures

Publications (2)

Publication Number Publication Date
JP2010247058A JP2010247058A (en) 2010-11-04
JP5416461B2 true JP5416461B2 (en) 2014-02-12

Family

ID=43310027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098567A Expired - Fee Related JP5416461B2 (en) 2009-04-15 2009-04-15 Method for removing rust from steel structures

Country Status (1)

Country Link
JP (1) JP5416461B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104862715A (en) * 2015-05-14 2015-08-26 新疆德坤元绿色建筑科技有限公司 Rust removal method for reinforcing steel bars

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3296374B2 (en) * 1992-07-06 2002-06-24 川崎製鉄株式会社 Descaling method during hot rolling of austenitic stainless steel
JPH0661965U (en) * 1992-10-07 1994-09-02 矢崎総業株式会社 Anti-corrosion treatment device
JPH07204739A (en) * 1994-01-17 1995-08-08 Nippon Steel Corp Method and device for drawing metallic wire
JP3335833B2 (en) * 1996-02-07 2002-10-21 アルプス電気株式会社 Cleaning method and cleaning device
JPH09271832A (en) * 1996-04-08 1997-10-21 Nippon Steel Corp Descaling method of hot rolled ferritic stainless steel plate
JP4435336B2 (en) * 1999-08-11 2010-03-17 中国塗料株式会社 How to paint a ship or steel structure
JP3802848B2 (en) * 2002-06-28 2006-07-26 新日本製鐵株式会社 Hot rolling method for Si-containing steel sheet
JP2009045923A (en) * 2007-07-24 2009-03-05 Sumitomo Metal Ind Ltd Chromium-free coated steel sheet excellent in anti-red rust on end face

Also Published As

Publication number Publication date
JP2010247058A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP6444232B2 (en) Maintenance painting method for steel structure and circulating blasting device
CN102513237B (en) Cavitation type ultrahigh pressure water hammer type water gun sprayer
CN1052264A (en) The liquid jet of plasma spraying dope layer and sintering dope layer is removed method
KR102463625B1 (en) Laser blasting system for surface treatment of concrete and steel structures
JP6067722B2 (en) Mixed air jet blasting method and apparatus
JP6304901B2 (en) Preventive maintenance method for steel structure, and circulating blasting device used therefor
JP5416461B2 (en) Method for removing rust from steel structures
JPH11207624A (en) Cleaning system for structure surface
CN206202621U (en) Hull cleans monitoring underwater robot brush board with water
CN205465763U (en) Wet -type sand -blast machine
CN204748348U (en) No room environment -friendly sand blasting machine
CN204711831U (en) The sandblasting ramming head of shot-blast apparatus in steel pipe
CN108312070A (en) The rust-proofing method of derusting by sandblasting
JP3149583B2 (en) Descale method
CN206202624U (en) Hull cleans monitoring underwater robot frame with water
CN105964594A (en) Spraying gun special for high-pressure cleaning pump
CN206202630U (en) Hull cleans monitoring underwater robot right angle axle bed with water
CN206202625U (en) Hull cleans monitoring underwater robot brush with water
CN206202631U (en) Hull cleans monitoring underwater robot sensor installing pipe with water
CN206202626U (en) Hull cleans monitoring underwater robot washing head with water
JP6419737B2 (en) Sand blasting device set and method for adjusting base of steel tower
CN109732487A (en) A kind of environmentally friendly, antirust derusting by sandblasting method
JP2020186556A (en) Preventive maintenance method of steel bridge and circulating blasting machine used for the same
CN216830366U (en) Template surface treatment device
JP2020128572A (en) Metallic structure surface-conditioning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130311

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131115

R150 Certificate of patent or registration of utility model

Ref document number: 5416461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees