JP5415379B2 - Processing method of measured values in ATP method - Google Patents

Processing method of measured values in ATP method Download PDF

Info

Publication number
JP5415379B2
JP5415379B2 JP2010181862A JP2010181862A JP5415379B2 JP 5415379 B2 JP5415379 B2 JP 5415379B2 JP 2010181862 A JP2010181862 A JP 2010181862A JP 2010181862 A JP2010181862 A JP 2010181862A JP 5415379 B2 JP5415379 B2 JP 5415379B2
Authority
JP
Japan
Prior art keywords
value
atp
measured
measurement
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010181862A
Other languages
Japanese (ja)
Other versions
JP2012042251A (en
Inventor
治正 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010181862A priority Critical patent/JP5415379B2/en
Publication of JP2012042251A publication Critical patent/JP2012042251A/en
Application granted granted Critical
Publication of JP5415379B2 publication Critical patent/JP5415379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、ATP法における計測値の処理方法に関し、特に、発光量の計測の際に発生することのある突発値によって、計測結果が影響されることのない正確な発光量の計測を行うことができるATP法における計測値の処理方法に関するものである。   The present invention relates to a method for processing a measurement value in the ATP method, and in particular, to perform an accurate measurement of a light emission amount that does not affect a measurement result due to a sudden value that may occur when measuring the light emission amount. The present invention relates to a method for processing measurement values in the ATP method.

従来、空中浮遊菌の検査方法としては、本件出願人が先に提案した空中浮遊菌の捕集デバイスとそれを用いた分析システムの中で、ATP発光試薬を用いて生物発光反応を行わせ、生物発光反応による発光量を計測することにより検査試料に含まれるATP量を求め、空中浮遊菌の菌数を算出する方法(以下、「ATP法」という)が開示されている(例えば、特許文献1参照)。   Conventionally, as a method for inspecting airborne bacteria, in the airborne bacteria collection device previously proposed by the applicant and an analysis system using the same, a bioluminescent reaction is performed using an ATP luminescent reagent, A method (hereinafter referred to as “ATP method”) is disclosed in which the amount of ATP contained in a test sample is determined by measuring the amount of light emitted by a bioluminescent reaction and the number of airborne bacteria is calculated (hereinafter referred to as “ATP method”). 1).

このATP法は、容器と、容器内に収容された温度が、40℃以下、より具体的には、15℃以上35℃以下の範囲でゲル−ゾル間の相転移をする高分子を含む捕集担体とからなる捕集デバイスを、吸気ノズルを備えた捕集装置に取り付け、捕集装置を作動させて空中浮遊菌を捕集する捕集工程、捕集担体をゲル状からゾル状に相転移し、菌懸濁液(検査試料)とする菌回収工程、検査試料中の菌外ATPや死菌内のATPを消去するATP消去工程、菌より小さい夾雑物を含む液体成分をろ別し、検査試料中の生菌をフィルタ上に捕捉するろ過工程、生菌の細胞壁を溶解し、生菌の細胞質に含まれるATPを検査試料溶液中に抽出するATP抽出工程、生菌から抽出したATPを含む検査試料溶液を得るATP回収工程を経て、ATP計測工程において検査試料中のATP含有量を求め、単位体積当たりの空中浮遊菌数として検査結果を提供するもので、ATP計測工程は、以下の手順に従って行われる。   In this ATP method, a container and a trap containing a polymer that undergoes a phase transition between gel and sol in a temperature range of 40 ° C. or lower, more specifically, 15 ° C. or higher and 35 ° C. or lower. A collection device comprising a collection carrier is attached to a collection device equipped with an intake nozzle, the collection device is operated to collect airborne bacteria, and the collection carrier is phased from gel to sol. Bacterium recovery process to transfer to a bacterial suspension (test sample), ATP elimination process to erase extracellular ATP in test specimen and ATP in dead bacteria, liquid components containing contaminants smaller than bacteria are filtered out A filtration process for capturing live bacteria in a test sample on a filter, an ATP extraction process for dissolving ATP in the cytoplasm of live bacteria and extracting ATP contained in the cytoplasm of the live bacteria, ATP extracted from live bacteria ATP measurement through an ATP recovery process to obtain a test sample solution containing Determine the ATP content of a test sample in extent, is provided a test result as airborne bacterial count per unit volume, ATP measuring process is carried out according to the following procedure.

まず、ATP計測工程に先立って、計測系の背景ノイズとなるベースラインの発光量の計測を行う。
発光量の計測は、光電子増倍管とコンパレータを組み合わせ、光電子増倍管に入射する光の1光子あたり1パルスを出力するフォトンカウンティング方式の光電子増倍管を使用し、発光の光量をパルスの発生数(単位はcps:Count Per Seconds)として計数する。
これは、ATPを注入する前の予め設定した期間の発光量を計測することによって求められ、その平均値をC1として記録する。
次いで、既知のATP含有量に調整した所定量のATP(以下、「標準ATP」という。)を注入した直後の予め設定した期間のATP発光試薬の発光量を計測し、最初のピーク値をC2とし、前記C1の値を減じて標準ATPの実効発光量を求め、実効発光量を標準ATPのATP濃度K1及び分注量V1で除することで計測感度である単位ATP当たりの発光係数R1を求める(式1)。
次に、C2を計測後、一定時間経過した後の予め設定した期間のATP発光試薬の発光量の平均値C3を記録し、ATP回収工程によって得られた、気中から捕集した空中浮遊菌の生菌に由来するATP(以下、「検査試料の生菌に由来するATP」という。)を注入した直後の予め設定した期間のATP発光試薬の発光量を計測し、最初のピーク値をC4とし、前記C3の値を減じて、検査試料の生菌に由来するATPの実効発光量を求める。(C3の値は、検査試料の生菌に由来するATPを注入する前の予め設定した期間の計測値の平均値となる。)
そして、先に求めた計測感度である単位ATP当たりの発光係数R1を乗じるとともに、検査試料の生菌に由来するATPの分注量V2で除して検査試料の生菌に由来するATPのATP換算量Sを求める(式2)。
さらに、検査試料の生菌に由来するATPのATP換算量Sを一生菌当たりのATP含有量の平均値(約2amol)で除算することにより検査試料の生菌に由来するATP中の平均生菌数を求め、検査試料の生菌に由来するATP中の平均生菌数を捕集した気体試料の体積で除算することにより、単位体積の気体試料に含まれる平均生菌数を求めるようにしている。
R1=(C2−C1)/(K1・V1)・・・(式1)
R1:単位ATP当たりの発光係数(cps/(amol・μL))
C1:ATPを注入する前の予め設定した期間のATP発光試薬の発光量の平均値(cps)
C2:所定量のATPを注入した直後の予め設定した期間のATP発光試薬の発光量の計測値の最初のピーク値(cps)
K1:所定量のATPの濃度(amol)
V1:所定量のATPの分注量(μL)
S=(C4−C3)・R1/V2(amol)・・・(式2)
S:気中から捕集した空中浮遊菌の生菌に由来するATPの換算量(amol)
C3:所定量のATPを注入し、一定時間経過した後の予め設定した期間のATP発光試薬の発光量の平均値(cps)
C4:気中から捕集した空中浮遊菌の生菌に由来するATPを注入した直後の予め設定した期間のATP発光試薬の発光量の計測値の最初のピーク値(cps)
V2:気中から捕集した空中浮遊菌の生菌に由来するATPの分注量(μL)
First, prior to the ATP measurement process, the amount of light emitted from the baseline that becomes background noise of the measurement system is measured.
The amount of emitted light is measured by combining a photomultiplier tube and a comparator, and using a photon counting photomultiplier tube that outputs one pulse per photon of light incident on the photomultiplier tube. The number of occurrences (unit: cps: Count Per Seconds) is counted.
This is obtained by measuring the amount of light emission in a preset period before injecting ATP, and the average value is recorded as C1.
Next, the luminescence amount of the ATP luminescence reagent during a preset period immediately after injecting a predetermined amount of ATP adjusted to a known ATP content (hereinafter referred to as “standard ATP”) is measured, and the first peak value is expressed as C2. The effective light emission amount of standard ATP is obtained by subtracting the value of C1, and the effective light emission amount is divided by the ATP concentration K1 and the dispensing amount V1 of standard ATP to obtain the light emission coefficient R1 per unit ATP, which is the measurement sensitivity. Calculate (Equation 1).
Next, after measuring C2, the average value C3 of the amount of luminescence of the ATP luminescence reagent for a preset period after a predetermined time has elapsed is recorded, and the airborne bacteria collected from the air obtained by the ATP recovery step The amount of luminescence of the ATP luminescence reagent during a preset period immediately after injecting ATP derived from live bacteria (hereinafter referred to as “ATP derived from live test specimen”) was measured, and the first peak value was determined as C4. Then, the value of C3 is subtracted to determine the effective light emission amount of ATP derived from viable bacteria of the test sample. (The value of C3 is the average value of the measured values for a preset period before injecting ATP derived from live bacteria of the test sample.)
Then, the ATP of ATP derived from the live sample of the test sample is multiplied by the light emission coefficient R1 per unit ATP, which is the previously obtained measurement sensitivity, and divided by the dispensing amount V2 of ATP derived from the live sample of the test sample. A conversion amount S is obtained (Formula 2).
Further, by dividing the ATP equivalent amount S of ATP derived from the live bacteria of the test sample by the average value (about 2 amol) of the ATP content per live cell, the average live bacteria in the ATP derived from the live bacteria of the test sample By calculating the number and dividing the average viable count in the ATP derived from the viable bacteria of the test sample by the volume of the collected gas sample, the average viable count contained in the gas sample of the unit volume is obtained. Yes.
R1 = (C2-C1) / (K1 · V1) (Formula 1)
R1: Luminescence coefficient per unit ATP (cps / (amol · μL))
C1: Average value of luminescence amount of ATP luminescence reagent during a preset period before injecting ATP (cps)
C2: First peak value (cps) of the measured value of the luminescence amount of the ATP luminescence reagent in a preset period immediately after injecting a predetermined amount of ATP
K1: Concentration (amol) of predetermined amount of ATP
V1: Dispensed amount of predetermined amount of ATP (μL)
S = (C4-C3) .R1 / V2 (amol) (Formula 2)
S: ATP conversion amount (amol) derived from live airborne bacteria collected from the air
C3: An average value (cps) of the luminescence amount of the ATP luminescence reagent during a preset period after a predetermined amount of ATP was injected and a predetermined time passed.
C4: First peak value (cps) of the measured value of the luminescence amount of the ATP luminescence reagent in a preset period immediately after injecting ATP derived from live airborne bacteria collected from the air
V2: ATP dispensing amount (μL) derived from live airborne bacteria collected from the air

特開2009−139115号公報JP 2009-139115 A

ところで、上記従来のATP法は、ATP発光試薬の発光量を計測し、ATP換算量を求めることによって、空中浮遊菌の菌数を算出することができ、空中浮遊菌の捕集工程によって捕集された空中浮遊菌は、その後の菌回収工程からATP発光試薬の発光量の計測を行うATP計測工程までの一連の工程を、機械化された自動計測装置で処理される。
そして、光電子増倍管(PMT)からなる計測手段による発光量の計測に際して、PMTの光電面近傍での電荷の放電が主要な原因となって、静電気が発生し、前後と大きく乖離した偶発的で継続することのない値(以下、突発値という)が発生する場合がある。
この突発値は、(1)時間的に継続することなく、1秒あるいは2秒程度で本来のデータに戻る。(2)前後のデータと大きく乖離している。(3)発生する時期が特定できない。という特徴があり、ATPの発光量の計測を行うときに突発値が発生すると、上述した平均値C1、C3(背景ノイズの平均値)の値、場合によっては、ATP発光試薬の発光量のピーク値C2、C4の値を正確に測定することができず、空中浮遊菌の菌数を算出するために必要な、発光計数(R1)やATPの換算量(S)を正確に求めることができない場合があるが、従来のATP法においては、計測中に突発値が発生しても、計測値の処理方法としてなんら突発値に対処する計測値の処理方法が採用されていないという問題があった。
By the way, the above-mentioned conventional ATP method can calculate the number of airborne bacteria by measuring the amount of luminescence of the ATP luminescent reagent and obtaining the ATP equivalent amount, and it can be collected by the airborne bacteria collection process. The airborne bacteria thus processed are processed by a mechanized automatic measuring device through a series of steps from the subsequent bacteria recovery step to the ATP measurement step for measuring the luminescence amount of the ATP luminescent reagent.
Then, when measuring the amount of light emitted by the measuring means comprising a photomultiplier tube (PMT), static discharge occurs mainly due to the discharge of electric charge in the vicinity of the photocathode of the PMT, and it is an incidental event that is largely separated from the front and rear. In some cases, a value (hereinafter referred to as a sudden value) that does not continue is generated.
This sudden value (1) returns to the original data in about 1 second or 2 seconds without continuing in time. (2) There is a big difference from the data before and after. (3) The time of occurrence cannot be specified. If a sudden value occurs when measuring the amount of luminescence of ATP, the average values C1 and C3 (average values of background noise) described above, and in some cases, the peak of the luminescence amount of the ATP luminescence reagent The values C2 and C4 cannot be measured accurately, and the luminescence count (R1) and the ATP conversion amount (S) necessary for calculating the number of airborne bacteria cannot be accurately determined. In some cases, the conventional ATP method has a problem that even if an unexpected value occurs during measurement, a measured value processing method for dealing with the unexpected value is not adopted as a measured value processing method. .

また、ATPの発光量の計測において発光反応の起きる前の状態、すなわち背景光の状態では、計測手段内は完全に外乱光を遮断しても光電子増倍管のフォトカウントがゼロにはならず、光電子増倍管の内部での熱電子放出が光電子増倍管内部で増幅されダークカウントと呼ばれる計数値が発生する。
そして、ATP発光試薬の発光量の計測において計測できる最小計測値は、計測手段の内部ノイズと計測値との間に有意な差が認識できる値となるが、背景光として計測する値は、PMTの他に発光試薬と試料を反応させる容器の自家発光の光としての計数値と、容器に生じる誘電分極を含む静電気を光電子増倍管が検出する計数値との合計値となり、これら背景光のノイズ(背景ノイズ)が大きくなるとATP発光試薬の発光量の計測において計測できる最小計測値が大きくなり、精密な計測(ダイナミックレンジの広い計測)を行うことができないという問題があった。
Moreover, in the state before the luminescence reaction occurs in the measurement of the amount of ATP emitted light, that is, in the background light state, the photomultiplier tube photocount does not become zero even if disturbance light is completely blocked in the measuring means. Thermionic emission inside the photomultiplier tube is amplified inside the photomultiplier tube, and a count value called dark count is generated.
The minimum measurement value that can be measured in the measurement of the luminescence amount of the ATP luminescence reagent is a value that can recognize a significant difference between the internal noise of the measurement means and the measurement value, but the value measured as background light is PMT. In addition to this, the total value of the count value as the self-emission light of the container in which the luminescent reagent and the sample are reacted and the count value by which the photomultiplier tube detects the static electricity including the dielectric polarization generated in the container. When the noise (background noise) increases, the minimum measurement value that can be measured in the measurement of the luminescence amount of the ATP luminescence reagent increases, and there is a problem that precise measurement (measurement with a wide dynamic range) cannot be performed.

本発明は、上記従来のATP法における計測値の処理方法の有する課題に鑑み、計測手段によって計測された計測値から、前後の計測値と比較して乖離した計測値(突発値)を特定して、除外又は前後の計測値に応じて変換することにより、突発値によって影響されることのない正確な発光量の計測を行うことができるATP法における計測値の処理方法を提供することを第1の目的とする。   In view of the problems of the measurement value processing method in the conventional ATP method, the present invention specifies a measurement value (abrupt value) that deviates from the measurement value measured by the measurement means compared to the previous and subsequent measurement values. Thus, it is a first object of the present invention to provide a measurement value processing method in the ATP method that can accurately measure the amount of light emitted without being influenced by the sudden value by converting according to the excluded or previous and subsequent measurement values. 1 purpose.

また、背景ノイズを低減し、計測のダイナミックレンジを拡張することができるATP法における計測値の処理方法を提供することを第2の目的とする。   It is a second object of the present invention to provide a measurement value processing method in the ATP method that can reduce background noise and extend the dynamic range of measurement.

まず、上記第2の目的を達成するため、本明のATP法における計測値の処理方法は、計測手段によって計測した所定量のATPを注入した後のATP発光試薬の生物発光反応による発光量の計測値の最初のピーク値から所定量のATPを注入する前の予め設定した期間の計測値の平均値を減じた値と、検査試料の生菌に由来するATPを注入した後のATP発光試薬の生物発光反応による発光量の計測値の最初のピーク値から検査試料の生菌に由来するATPを注入する前の予め設定した期間の計測値の平均値を減じた値とを比較して、検査試料の生菌の数を算出するようにしたATP法における計測値の処理方法において、所定量のATP又は検査試料の生菌に由来するATPを注入する前の予め設定した期間の発光量の計測値の分散と、発光量の計測期間のうち任意の移動平均期間における発光量の計測値の分散とを比較し、移動平均期間の計測値の分散の方が小さい場合には、前記予め設定した期間の発光量の計測値を、移動平均区間の値に置き換え、移動平均期間の計測値の分散の方が大きい場合には、両者の分散の比に応じて、前記予め設定した期間の発光量の計測値を、該計測値と移動平均期間の計測値との間の値に置き換えるようにしたことを特徴とする。 First, in order to achieve the second object, the processing method of the measurement values in this onset Ming ATP method, the light emitting amount of bioluminescent reaction of ATP light emission reagent after injection of the predetermined amount of ATP was measured by the measuring means A value obtained by subtracting the average value of the measured values for a preset period before injecting a predetermined amount of ATP from the first peak value of ATP, and ATP emission after injecting ATP derived from live bacteria of the test sample Compared with the value obtained by subtracting the average value of the measured values for a preset period before injecting ATP derived from the live bacteria of the test sample from the first peak value of the measured value of the luminescence amount due to the bioluminescence reaction of the reagent In the method of processing a measurement value in the ATP method in which the number of viable bacteria of the test sample is calculated, the amount of luminescence during a preset period before injecting a predetermined amount of ATP or ATP derived from the live bacteria of the test sample Variance of measured values The dispersion of the measurement value of the light emission amount in an arbitrary moving average period in the measurement period of the light emission amount is compared, and when the dispersion of the measurement value of the moving average period is smaller, the light emission amount of the preset period When the variance of the measured value of the moving average period is greater than the measured value of the moving average period, the measured value of the light emission amount during the preset period is set according to the ratio of the variance of both. The measurement value is replaced with a value between the measurement value of the moving average period.

この場合において、上記第1の目的を併せて達成するため、本発明のATP法における計測値の処理方法は、上記ATP法における計測値の処理方法と、前記計測手段によって計測された計測値を、次の(1)〜(3)の処理手法の1つ又は2つ以上の組み合わせによって処理し、該処理によって特定される前後の計測値と比較して乖離した計測値を除外又は前後の計測値に応じて変換するようにするATP法における計測値の処理方法とを併用することができる。
(1)有限インパルス応答処理
(2)隣接する計測値の差をサンプリング時間で除した微分係数処理
(3)計測値の有効データ範囲の平均値及び分散からマハラノビス距離を求める処理
In this case, in order to achieve the first object, the measurement value processing method in the ATP method of the present invention includes the measurement value processing method in the ATP method and the measurement value measured by the measurement means. Then, processing is performed by one or a combination of two or more of the following processing methods (1) to (3), and the measured values that are different from the measured values before and after specified by the processing are excluded or measured before and after It is possible to use a measurement value processing method in the ATP method in which conversion is performed according to the value .
(1) Finite impulse response processing
(2) Differential coefficient processing by dividing the difference between adjacent measurement values by the sampling time
(3) Processing to obtain the Mahalanobis distance from the average value and variance of the effective data range of the measured value

また、この場合において、特定した計測値を、該計測値の前後の計測値の中間値に置き換えることができる。In this case, the specified measurement value can be replaced with an intermediate value between the measurement values before and after the measurement value.

明のATP法における計測値の処理方法によれば、所定量のATP又は検査試料の生菌に由来するATPを注入する前の予め設定した期間の発光量の計測値の分散と、発光量の計測期間のうち任意の移動平均期間における発光量の計測値の分散とを比較し、移動平均期間の計測値の分散の方が小さい場合には、前記予め設定した期間の発光量の計測値を、移動平均区間の値に置き換え、移動平均期間の計測値の分散の方が大きい場合には、両者の分散の比に応じて、前記予め設定した期間の発光量の計測値を、該計測値と移動平均期間の計測値との間の値に置き換えるようにしたことにより、共に背景ノイズの計測値である、所定量のATP又は検査試料の生菌に由来するATPを注入する前の予め設定した期間の発光量の計測値の分散と、移動平均期間の計測値の分散とを比較して、背景ノイズの計測値を最適な値に置き換えることができ、背景ノイズの計測値の分散を低減することができる。 According to the processing method of the measurement values in this onset Ming ATP method, the dispersion of the measured values of the light emission quantity of a predetermined period before injection of ATP derived from viable cells in a given amount of ATP or the test sample, the light emitting When the variance of the measurement value of the light emission amount in any moving average period in the measurement period of the amount is compared and the variance of the measurement value of the moving average period is smaller, the measurement of the light emission amount in the preset period When the value is replaced with the value of the moving average section, and the variance of the measured value of the moving average period is larger, the measured value of the light emission amount of the preset period according to the ratio of both variances By replacing it with a value between the measured value and the measured value of the moving average period, both of the measured values of background noise before injecting a predetermined amount of ATP or ATP derived from live bacteria of the test sample Dispersion of measured values of light emission over a preset period , By comparing the variance of the measurement values of the moving average period, measured values of the background noise can be replaced with an optimum value, it is possible to reduce the variance of the measurement values of the background noise.

さらに、2つのATP法における計測値の処理方法を併用することにより、景ノイズの低減図ることができることに加えて、突発値の適切な処理、すなわち、計測手段によって計測された計測値を複数の処理手法の1つ又は2つ以上の組み合わせによって処理し、該処理によって特定される前後の計測値と比較して乖離した計測値を除外又は前後の計測値に応じて変換するようにしたことにより、背景ノイズの平均値やATP発光試薬の発光量のピーク値を正確な値として取得することができ、精度の高い空中浮遊菌の菌数の算出を行うことができ、ATP法における発光量の計測のSN比を向上させることができる。 Moreover, measurement by combination treatment method of the measurement values at the two ATP method, in addition to Rukoto can be reduced background noise, appropriate processing of unexpected values, i.e., measured by the measuring means A value is processed by one or a combination of two or more of a plurality of processing methods, and a measured value deviating from the measured value before and after specified by the process is excluded or converted according to the measured value before and after As a result, the average value of background noise and the peak value of the light emission amount of the ATP luminescence reagent can be obtained as accurate values, the number of airborne bacteria can be calculated with high accuracy , and the ATP method It is possible to improve the SN ratio of the measurement of the light emission amount in

また、突発値とし特定した計測値を、該計測値の前後の計測値の中間値に置き換えることにより、突発値として特定された計測値を前後の計測値に応じた最適な値に置き換えて、計測値から突発値を分離することができる。In addition, by replacing the measurement value identified as the sudden value with an intermediate value between the measurement values before and after the measurement value, the measurement value identified as the sudden value is replaced with an optimum value according to the previous and subsequent measurement values, The sudden value can be separated from the measured value.

本発明のATP法における計測値の処理方法のATP計測工程によって計測されるATP発光試薬の発光量を示すグラフである。It is a graph which shows the light-emission quantity of the ATP luminescent reagent measured by the ATP measurement process of the processing method of the measured value in the ATP method of this invention. 同ATP計測工程において、試料ATP発光の手前で突発値が発生した現れた例を示す。In the same ATP measurement process, an example will be shown in which a sudden value occurs before the sample ATP emission. ATP法における計測値の処理方法における突発値処理手法のうちの有限インパルス応答フィルタによる処理を説明するためのフロー図である。It is a flowchart for demonstrating the process by the finite impulse response filter among the sudden value processing methods in the processing method of the measured value in ATP method. 計測データを対数変換し、有限インパルス応答フィルタによる処理をしたグラフを示す。The graph which carried out the logarithm conversion of measurement data and processed by the finite impulse response filter is shown. 同突発値処理手法のうちの微分係数法による処理を説明するためのフロー図である。It is a flowchart for demonstrating the process by the differential coefficient method among the sudden value processing methods. 微分係数法による処理をしたグラフを示す。The graph which processed by the differential coefficient method is shown. 同突発値処理手法のうちの対数距離法による処理を説明するためのフロー図である。It is a flowchart for demonstrating the process by the logarithmic distance method among the sudden value processing methods. 一定以上の値でデータ区間の前方と後方から有効データ区間を決定した場合のデータに対する対数距離法による処理をしたグラフを示す。The graph which processed by the logarithmic distance method with respect to the data at the time of determining an effective data section from the front and back of a data section with the value more than fixed is shown. 明のATP法における計測値の処理方法を説明するためのフロー図である。It is a flowchart for explaining the processing method of the measurement values in this onset Ming ATP method. 同方法処理の結果を示し、(a)は標準ATPを注入した直後の大きな値に対しての処理の結果を示し、(b)は発光量の僅少な検査試料の生菌に由来するATPに対する処理の結果を示す。The results of the method treatment are shown, (a) shows the results of the treatment for a large value immediately after injection of standard ATP, and (b) shows the results for ATP derived from live bacteria of a test sample with a small amount of luminescence. The result of processing is shown. ATP法における計測値の処理方法における突発値処理手法と背景光の分散低減方法の両方を行う場合のフローを示す。The flow in the case of performing both the sudden value processing method and the background light dispersion reduction method in the measurement value processing method in the ATP method is shown.

以下、本発明のATP法における計測値の処理方法の実施の形態を、図面に基づいて説明する。   Hereinafter, an embodiment of a method for processing measurement values in the ATP method of the present invention will be described with reference to the drawings.

図1〜図8に、本明のATP法における計測値の処理方法の一実施例を示す。
このATP法における計測値の処理方法は、計測手段によって計測した所定量のATPを注入した後のATP発光試薬の生物発光反応による発光量の計測値の最初のピーク値Bから所定量のATPを注入する前の予め設定した期間Aの計測値の平均値を減じた値と、検査試料の生菌に由来するATPを注入した後のATP発光試薬の生物発光反応による発光量の計測値の最初のピーク値Dから検査試料の生菌に由来するATPを注入する前の予め設定した期間Cの計測値の平均値を減じた値とを比較して、検査試料の生菌の数を算出するようにしたATP法における計測値の処理方法であって、計測手段によって計測された計測値を、次の(1)〜(3)の処理手法の1つ又は2つ以上の組み合わせによって処理し、処理によって特定される前後の計測値と比較して乖離した計測値を除外又は前後の計測値に応じて変換するようにしている。
(1)有限インパルス応答フィルタによる処理
(2)隣接する計測値の差をサンプリング時間で除した微分係数処理
(3)計測値の有効データ範囲の平均値及び分散からマハラノビス距離を求める処理
In FIGS. 1 to 8 show an embodiment of a processing method of the measurement values in this onset Ming ATP method.
The processing method of the measured value in this ATP method is that a predetermined amount of ATP is obtained from the first peak value B of the measured amount of luminescence by the bioluminescence reaction of the ATP luminescence reagent after injecting the predetermined amount of ATP measured by the measuring means. The value obtained by subtracting the average value of the measurement values for the preset period A before injection and the first measurement value of the luminescence amount due to the bioluminescence reaction of the ATP luminescence reagent after injecting ATP derived from the live bacteria of the test sample The number of viable bacteria of the test sample is calculated by comparing the peak value D with the value obtained by subtracting the average value of the measured values during the preset period C before injecting ATP derived from the live bacteria of the test sample. The measurement value processing method in the ATP method as described above, wherein the measurement value measured by the measurement means is processed by one or a combination of two or more of the following processing methods (1) to (3), Identified by processing Exclusion measured value deviates by comparing the measurement value or is to be converted according to the front and rear of the measured value after.
(1) Processing by finite impulse response filter (2) Differential coefficient processing by dividing difference between adjacent measurement values by sampling time (3) Processing to obtain Mahalanobis distance from mean value and variance of effective data range of measurement values

計測手段によって計測された計測値の処理手法のうち、有限インパルス応答フィルタによる突発値の処理は、図3に示すフロー図に沿って行われるもので、まず、第一段階として、計測手段によって計測された計測値を対数変換する。
対数変換は必ずしも行う必要はないが、対数変換を行うことによって周知の通り、取り扱う値の処理の利便性が向上し、広いレンジで背景ノイズから突発値を特定し、処理(分離等)することができる。
特に、単純なフィルタリング処理では分離することが困難なATPの発光反応の前後に発生することがある、尖頭値がATPの発光反応のピーク値の2倍前後の突発値に対して有効に処理することができる。
Among the processing methods of the measured values measured by the measuring means, the sudden value processing by the finite impulse response filter is performed according to the flow chart shown in FIG. 3, and first, measured by the measuring means as the first stage. Logarithmically transform the measured value.
Although logarithmic conversion is not necessarily performed, as is well known by performing logarithmic conversion, the convenience of processing of handled values is improved, and sudden values are identified from background noise and processed (separated, etc.) over a wide range. Can do.
In particular, it is effective for sudden values where the peak value is about twice the peak value of the ATP luminescence reaction, which may occur before and after the ATP luminescence reaction, which is difficult to separate by simple filtering. can do.

次に、対数変換した計測値に対して高域通過処理を有限インパルス応答フィルタ処理により行う。
有限インパルス応答フィルタは、カットオフ周波数を、サンプリング周波数の10分の1の周波数よりも低い周波数を直流を含めて遮断し、それよりも高い周波数だけを通過させる設定にする。
一般式としては、
g(m)=Σh(k)・f(m−k)(K=0→p)・・・(式3)
f(m):入力データ
g(m):出力データ
h(k):フィルタ計数
として表される。
これにより、サンプリング周波数1Hzであれば、0.1Hz以上だけを通過させることとなる。このとき、フィルタ次数は、高次数とすることが望ましいが、高次数にした場合、計算時間の遅延、メモリの大量消費という問題が生じることとなるため、25次以上で31次以下程度が望ましい。
これを(データ個数−フィルタ長)まで繰り返した後、着目範囲で基準値との比較を行うが、高域通過フィルタを通した突発値の特徴として、突発値の発生点で正の突出した値になり、正の突出した値の前後に負の突出した値が対称に発生することとなる。
このため、基準値との比較は、連続する正の突発値及び負の突発値の両方が基準値と比較して基準値以上又は基準値以下であれば突発値の処理を行う。
Next, high-pass processing is performed on the logarithmically converted measurement values by finite impulse response filter processing.
The finite impulse response filter cuts off the cut-off frequency including frequencies lower than one-tenth of the sampling frequency, including direct current, and passes only the higher frequency.
As a general formula,
g (m) = Σh (k) · f (m−k) (K = 0 → p) (Equation 3)
f (m): input data g (m): output data h (k): filter count
Thus, if the sampling frequency is 1 Hz, only 0.1 Hz or higher is allowed to pass. At this time, it is desirable that the filter order is a high order. However, if the order is high, problems such as a delay in calculation time and a large consumption of memory occur. .
After repeating this up to (number of data-filter length), a comparison is made with the reference value in the range of interest. As a feature of the sudden value passing through the high-pass filter, a positive protruding value at the point of occurrence of the sudden value Thus, negative protruding values are generated symmetrically around the positive protruding value.
For this reason, in comparison with the reference value, if both the consecutive positive and negative sudden values are compared with the reference value and the reference value is greater than or less than the reference value, the sudden value is processed.

突発値の処理は、計測された突発値を除外又は前後の計測値に応じて変換するもので、特に限定されるものではないが、本実施例においては、特定した計測値(突発値)を、突発値の前後の計測値の中間値に置き換えるようにしている。
これにより、突発値として特定された計測値を、前後の計測値に応じた最適な値に置き換えて、計測値から突発値を分離することができる。
The processing of the sudden value excludes the measured sudden value or converts it according to the measured values before and after, and is not particularly limited, but in the present embodiment, the specified measured value (sudden value) is used. The intermediate values of the measured values before and after the sudden value are replaced.
Thereby, the measured value specified as the sudden value can be replaced with an optimum value according to the previous and subsequent measured values, and the sudden value can be separated from the measured value.

図4に計測データを対数変換し、有限インパルス応答フィルタ処理(FIRフィルタ処理)したグラフを示す。
このグラフからも明らかなように、正の突出した値の前後に負の突出した値が対称に発生し、突発値を容易に特定し、処理することができる。
なお、有限インパルス応答フィルタ処理では、フィルタ次数の1/2に相当する遅延は、補正した結果に対して元のデータとフィルタ計算後の突発値を比較するようにしている。
ここで、所定量のATP発光の場合、数値が徐々に小さくなるため、FIRフィルタ処理した結果は、発光開始の点から2〜3秒間は大きな値を示すが、この突出した値は非対称となり、正の突出した値の後に、負の突出した値は表れない。
FIG. 4 shows a graph obtained by logarithmically converting measured data and performing finite impulse response filter processing (FIR filter processing).
As is apparent from this graph, negative protruding values are generated symmetrically before and after the positive protruding value, and the sudden value can be easily identified and processed.
In the finite impulse response filter processing, the delay corresponding to 1/2 of the filter order is compared with the original data and the unexpected value after the filter calculation with respect to the corrected result.
Here, in the case of a predetermined amount of ATP light emission, since the numerical value gradually decreases, the result of FIR filter processing shows a large value for 2 to 3 seconds from the point of light emission start, but this protruding value becomes asymmetric, A negative protruding value does not appear after a positive protruding value.

次に、隣接する計測値の差をサンプリング時間で除した微分係数処理の処理手法(以下、微分係数法という)を説明する。
微分係数法による突発値の処理は、図5に示すフロー図に沿って行われるもので、隣接する2つの計測値の差をサンプリング時間で除したものを微分係数として計算する。
突発値が発生した点での微分係数は、正の大きな値と負の大きな値とが対となって出現する。これに対して、所定量のATPの注入にあわせて急激に発光反応が進む場合、正のピーク値は、2秒〜3秒に亘って発生し、発光の減衰は半減期が数分以上のグロー発光では、正の2秒〜3秒のピーク値の後に負の大きな値は現れることはないが、突発値は正と負の大きな値が対で現れる。
このため、微分係数が、正とそれに続く負の突発的な値として基準値を超えるか否かを判定することで、突発値を特定することができる。
突発値として特定した計測値の処理は、有限インパルス応答フィルタによる突発値の処理と同様に、突発値の前後の計測値の中間値に置き換えるようにしている。
Next, a differential coefficient processing method (hereinafter referred to as differential coefficient method) in which the difference between adjacent measurement values is divided by the sampling time will be described.
The sudden value processing by the differential coefficient method is performed according to the flow chart shown in FIG. 5, and a value obtained by dividing the difference between two adjacent measurement values by the sampling time is calculated as a differential coefficient.
The differential coefficient at the point where the sudden value occurs appears as a pair of a large positive value and a large negative value. On the other hand, when the luminescence reaction proceeds rapidly in accordance with the injection of a predetermined amount of ATP, a positive peak value occurs over 2 to 3 seconds, and the decay of luminescence has a half-life of several minutes or more. In glow light emission, a large negative value does not appear after a positive peak value of 2 to 3 seconds, but a large positive and negative value appears in pairs as a sudden value.
For this reason, the sudden value can be specified by determining whether or not the differential coefficient exceeds the reference value as a positive and subsequent negative sudden value.
The processing of the measured value specified as the sudden value is replaced with an intermediate value between the measured values before and after the sudden value, similarly to the sudden value processing by the finite impulse response filter.

図6に、微分処理法によって処理した計測値のグラフを示す。
計測値の中に突発値が含まれる場合には、グラフに示すように、正の大きな値と負の大きな値とが対となって出現する。
FIG. 6 shows a graph of measured values processed by the differential processing method.
When an unexpected value is included in the measured value, a large positive value and a large negative value appear as a pair as shown in the graph.

次に、計測値の有効データ範囲の平均値及び分散からマハラノビス距離を求める処理手法(以下、対数距離法という)を説明する。
対数距離法による突発値の処理は、図7に示すフロー図に沿って行われるもので、最初に有効データ範囲を決定する。
有効データの範囲は、特に限定するものではないが、本実施例においては、所定量のATPを注入する前の予め設定した期間(背景ノイズ)の計測に対する処理の場合は、予め設定した期間となり、例えば、所定量のATPを注入する前の30秒の期間(図1に示す期間Aの範囲)とする。
そして、所定量のATPを注入した後のATP発光試薬の生物発光反応による発光量の計測に対する処理の場合は、計測値がピーク値を超えてから20秒間の期間(図1に示すピーク値Bから20秒の範囲)とする。
また、検査試料の生菌に由来するATPを注入する前の予め設定した期間(背景ノイズ)の計測に対する処理の場合は、所定量のATPの場合と同様に、予め設定した期間となり、例えば、検査試料の生菌に由来するATPを注入する前の30秒の期間(図1に示す期間Cの範囲)とし、検査試料の生菌に由来するATPを注入した後のATP発光試薬の生物発光反応による発光量の計測に対する処理の場合は、ATPを注入した後の20秒間の期間(図1に示すピーク値Dから20秒の範囲)とする。
Next, a processing method (hereinafter referred to as a logarithmic distance method) for obtaining the Mahalanobis distance from the average value and the variance of the effective data range of the measurement values will be described.
The sudden value processing by the logarithmic distance method is performed according to the flowchart shown in FIG. 7, and the effective data range is first determined.
The range of valid data is not particularly limited, but in this embodiment, in the case of processing for measurement of a preset period (background noise) before injecting a predetermined amount of ATP, it is a preset period. For example, a period of 30 seconds (a range of period A shown in FIG. 1) before injecting a predetermined amount of ATP is used.
In the case of processing for measuring the amount of luminescence by bioluminescence reaction of the ATP luminescence reagent after injecting a predetermined amount of ATP, a period of 20 seconds after the measured value exceeds the peak value (the peak value B shown in FIG. 1). To 20 seconds).
In addition, in the case of processing for measurement of a preset period (background noise) before injecting ATP derived from live bacteria of the test sample, it becomes a preset period as in the case of a predetermined amount of ATP, for example, The bioluminescence of the ATP luminescence reagent after injecting ATP derived from the live sample of the test sample, with a period of 30 seconds (in the range of period C shown in FIG. 1) before injecting ATP derived from the live sample of the test sample In the case of processing for measuring the amount of luminescence by reaction, a period of 20 seconds after ATP is injected (a range of 20 seconds from the peak value D shown in FIG. 1) is used.

また、汎用的に使用する場合の有効データ範囲は、背景ノイズの平均と標準偏差とを予め計算しておき、背景ノイズの平均値に標準偏差を加えた値を超える値を基準値として計測データの先頭から計測値の検索を行い、基準値を越える値を有効データ範囲の起点とする。
一方、終点は、計測データの最後から前方に向かって計測値の検索を行い、基準値を超える値を有効範囲の終点として有効データ範囲を決定する。
In addition, the effective data range for general use is calculated based on the average value of the background noise and the standard deviation calculated in advance and a value that exceeds the average value of the background noise plus the standard deviation as the reference value. The measured value is searched from the beginning of, and the value exceeding the reference value is set as the starting point of the valid data range.
On the other hand, for the end point, the measurement value is searched from the end of the measurement data to the front, and the effective data range is determined with the value exceeding the reference value as the end point of the effective range.

次に、有効データ範囲に対して平均値と分散とを計算する。
平均値は式4、分散は式5から、一般的な統計量として求められ、マハラノビス距離は式6によって求められる。

Figure 0005415379
Figure 0005415379
Figure 0005415379
標準偏差で規格化したマハラノビス距離は、突発値とそれ以外の計測値とでは、距離が大きく離れるため距離の閾値で突発値を特定する。
また、ATP発光試薬の生物発光反応による発光量の計測値に関しても、半減期が数分で指数関数的に減衰する発光量の計測値は、片対数グラフで直線的に減衰し、半減期の数分に対して30秒程度の期間で見れば突発値として現れる計測値と距離で分離することができ、突発値とATP発光試薬の生物発光反応による発光量の計測値のピーク値とを区別することができる。 Next, an average value and a variance are calculated for the valid data range.
The average value is obtained from Equation 4 and the variance is obtained from Equation 5 as a general statistic, and the Mahalanobis distance is obtained from Equation 6.
Figure 0005415379
Figure 0005415379
Figure 0005415379
Since the Mahalanobis distance normalized by the standard deviation has a large distance between the sudden value and the other measured values, the sudden value is specified by the distance threshold.
In addition, regarding the measured value of the luminescence amount due to the bioluminescence reaction of the ATP luminescence reagent, the measured value of the luminescence amount whose half-life decays exponentially in several minutes is linearly attenuated in the semilogarithmic graph, If you look at a period of about 30 seconds for several minutes, you can separate the measured value that appears as a sudden value from the distance, and distinguish between the sudden value and the peak value of the measured value of the amount of light emitted by the bioluminescent reaction of the ATP luminescent reagent. can do.

図8に一定以上の値でデータ区間の前方と後方から有効データ区間を決定した場合のデータに対する距離データのグラフを示す。
距離は正の値だけとなるため、平均値に対して一定以上距離の離れたデータを突発値として処理することができる。
FIG. 8 shows a graph of distance data with respect to data in a case where an effective data section is determined from the front and rear of the data section with a certain value or more.
Since the distance is only a positive value, data that is more than a certain distance away from the average value can be processed as an unexpected value.

対数距離法による突発値の特定を、計測値を対数変換することなく行った場合でも、背景ノイズの部分では、分散が安定したほぼ一定の値になるために突発値を特定し、計測値から分離することができるが、ATP発光試薬の発光量の計測値の部分では、有効データ区間の分散が大きな値となり、突発値が計測値と近い場合には、対数変換していない場合、突発値を特定し、計測値から分離することが困難になる。   Even if the logarithmic distance method is used to identify the sudden value without logarithmic conversion of the measured value, the background noise part identifies the sudden value because the variance is stable and almost constant. In the portion of the measured value of the luminescence amount of the ATP luminescent reagent, the variance of the effective data section becomes a large value, and when the sudden value is close to the measured value, when the logarithmic conversion is not performed, the sudden value Is difficult to identify and separate from the measured value.

以上、処理手法として3つの手法を説明したが、それぞれの方法のデータを対数変換しない方法を含め、いずれか1つの手法を用いるだけで突発値とみなして突発値の前後の計測値に応じて変換するようにする他、2つ以上の手法を組み合わせ、2つ以上の手法から突発値と判定された計測値に対して、突発値の前後の計測値に応じて変換することで測定値の処理方法としての信頼性を上げることができる。   As described above, three methods have been described as processing methods. However, depending on the measured values before and after the sudden value, it can be regarded as a sudden value by using any one of the methods, including a method that does not logarithmically convert the data of each method. In addition to conversion, two or more methods are combined, and the measurement value determined as the sudden value from the two or more methods is converted according to the measurement values before and after the sudden value. Reliability as a processing method can be improved.

また、突発値の出現は、1回だけ出現するとは限らず、2回以上出現することもあるが、有限インパルス応答フィルタによる処理の場合には、突発値の出現回数に関係なく特定することができる。
これに対して、微分係数法では、単独に出現する突発値の特定には有効であるが、所定量又は検査試料の生菌に由来するATPの注入に同期した立ち上がり部分に突発値が重畳した場合、突出値とATP発光試料のピーク値(尖頭値)の差が少ない場合には、それらを区別して、突発値を分離することが困難となる。
In addition, the appearance of the sudden value is not limited to appearing once, and may appear twice or more. However, in the case of processing by the finite impulse response filter, the sudden value may be identified regardless of the number of appearances of the sudden value. it can.
On the other hand, the differential coefficient method is effective for identifying the sudden value that appears independently, but the sudden value is superimposed on the rising portion synchronized with the injection of ATP derived from the predetermined amount or the live microorganism of the test sample. In this case, when the difference between the protruding value and the peak value (peak value) of the ATP luminescent sample is small, it is difficult to distinguish the sudden value by distinguishing them.

これらのことから、2つ以上の手法を組み合わせることによって、突発値の特定の精度を有効に向上させることができる。   From these facts, by combining two or more methods, it is possible to effectively improve the specific accuracy of the sudden value.

図9〜図10に、本明のATP法における計測値の処理方法の一実施例を示す。
このATP法における計測値の処理方法は、所定量のATP又は検査試料の生菌に由来するATPを注入する前の予め設定した期間の発光量の計測値の分散と、発光量の計測期間のうち任意の移動平均期間における発光量の計測値の分散とを比較し、移動平均期間の計測値の分散の方が小さい場合には、前記予め設定した期間の発光量の計測値を、移動平均区間の値に置き換え、移動平均期間の計測値の分散の方が大きい場合には、両者の分散の比に応じて、前記予め設定した期間の発光量の計測値を、計測値と移動平均期間の計測値との間の値に置き換えるようにしている。
これによって、背景ノイズを低減し、発光量の計測のダイナミックレンジを拡張することができる。
Figure 9-10 shows an embodiment of a processing method of the measurement values in this onset Ming ATP method.
The processing method of the measurement value in this ATP method is the dispersion of the measurement value of the luminescence amount in a preset period before injecting a predetermined amount of ATP or ATP derived from the living microbe of the test sample, and the measurement period of the luminescence amount. If the variance of the measured value of the light emission amount in any moving average period is compared, and the variance of the measured value of the moving average period is smaller, the measured value of the light emission amount of the preset period is converted to the moving average When the variance of the measured value of the moving average period is larger than the value of the section, the measured value of the light emission amount of the preset period is changed to the measured value and the moving average period according to the ratio of both variances. It replaces with the measured value between.
As a result, the background noise can be reduced and the dynamic range of the light emission measurement can be expanded.

背景ノイズの低減処理は、具体的には、図9に示すフロー図に沿って処理される。
まず、背景光の領域を特定し(図1に示す、期間A及び期間C)、係る領域における計測値の平均値及び分散を求める。
平均値は式7、分散は式8によって求められる。

Figure 0005415379
Figure 0005415379
Specifically, the background noise reduction processing is performed according to the flowchart shown in FIG.
First, a background light region is specified (period A and period C shown in FIG. 1), and an average value and a variance of measured values in the region are obtained.
The average value is obtained by Equation 7 and the variance is obtained by Equation 8.
Figure 0005415379
Figure 0005415379

次に、発光量の計測期間のうち任意の移動平均期間における発光量の計測値の分散を求め、背景光の領域の分散と比較する。
そして、移動平均期間の計測値の分散の方が小さい場合には、特定した背景光の領域の計測値を、移動平均区間の値に置き換える。
また、移動平均期間の計測値の分散の方が大きい場合には、両者の分散の比に応じて、特定した背景光の領域の計測値を、式9によって求められる計測値と移動平均期間の計測値との間の値に置き換える。

Figure 0005415379
Figure 0005415379
式9の係数部分は、式10のa(i)に相当し、ATP発光で背景光よりも大きく、尖頭値に近い領域では、a(i)は1に近づき推定値も1に近づくこととなり、結果として推定値は計測値に近づく。
一方、ベースラインである背景光に近い領域では計数a(i)はゼロに近くなり、推定値は単純平均に値に近づくこととなる。 Next, the dispersion of the measurement value of the light emission amount in an arbitrary moving average period in the light emission amount measurement period is obtained and compared with the dispersion of the background light region.
Then, when the variance of the measurement value in the moving average period is smaller, the measurement value in the specified background light area is replaced with the value of the moving average section.
In addition, when the variance of the measured value of the moving average period is larger, the measured value of the specified background light region is calculated according to the ratio of the variance between the measured value obtained by Equation 9 and the moving average period. Replace with a value between the measured values.
Figure 0005415379
Figure 0005415379
The coefficient part of Equation 9 corresponds to a (i) of Equation 10, and in the region where ATP emission is larger than the background light and is close to the peak value, a (i) approaches 1 and the estimated value also approaches 1. As a result, the estimated value approaches the measured value.
On the other hand, in the region close to the background light that is the baseline, the count a (i) is close to zero, and the estimated value approaches the simple average value.

図10(a)は、標準ATPを注入した直後の大きな値に対しての処理の結果を示し、図10(b)は、発光量の僅少な検査試料の生菌に由来するATPに対する処理の結果を示す。
標準ATPを注入した後の2秒以内に尖頭値に達する発光で背景光から大きく乖離した発光反応のデータでは、推定値は計測値とほぼ同じ値となっているが、背景光の部分では期間の移動平均に置換することができる。
背景光部分と信号成分であるATPの発光部分のデータの分離には、背景光のノイズに信号が埋没しないようにすることが必要となり、ノイズ部分の平均値にノイズの標準偏差の2倍〜3倍の値を加算した値以上の信号成分が無いとデータの信頼性の観点から分離が困難となる。
そのため、ノイズ部分の標準偏差を、移動平均により1/2〜1/3に低減することで発光量の計測の感度を同一としながら最小計測値の検出限界を、ノイズの標準偏差の低減率に比例して低減させることができ、発光量の計測のダイナミックレンジを拡張することができる。
FIG. 10 (a) shows the result of processing for a large value immediately after injection of standard ATP, and FIG. 10 (b) shows the processing for ATP derived from live bacteria of a test sample with a small amount of luminescence. Results are shown.
In the luminescence reaction data that deviates greatly from the background light by the luminescence reaching the peak value within 2 seconds after the injection of standard ATP, the estimated value is almost the same as the measured value, but in the background light part It can be replaced with a moving average of the period.
In order to separate the data of the background light portion and the light emission portion of the ATP signal component, it is necessary to prevent the signal from being buried in the background light noise, and the average value of the noise portion is twice the standard deviation of the noise. Separation becomes difficult from the viewpoint of data reliability if there is no signal component equal to or greater than the value obtained by adding three times the value.
Therefore, by reducing the standard deviation of the noise part to 1/2 to 1/3 by moving average, the detection limit of the minimum measurement value is reduced to the reduction rate of the standard deviation of noise while keeping the sensitivity of light emission measurement the same. It can be reduced proportionally, and the dynamic range of light emission measurement can be expanded.

また、2つのATP法における計測値の処理方法を併用することにより、突発値の適切な処理と背景ノイズの低減とを図ることができ、ATP法における発光量の計測のSN比を向上させることができる。
図11は、ATP法における計測値の処理方法における突発値処理手法と背景光の分散低減方法の両方を行う場合のフローを示す。
この場合、突発値の処理を先に行い、その後で背景光の低減を行う。これは、適応化平滑化法ではベースラインから離れた突発値に対してはフィルタ処理効果がないため、突発値を先に処理する必要がある。
In addition, by combining the measurement value processing methods in the two ATP methods , it is possible to appropriately process sudden values and reduce background noise, and to improve the signal-to-noise ratio in measuring the amount of light emission in the ATP method. Can do.
FIG. 11 shows a flow in the case of performing both the sudden value processing method and the background light dispersion reduction method in the measurement value processing method in the ATP method.
In this case, the sudden value processing is performed first, and then the background light is reduced. This is because the adaptive smoothing method has no filtering effect on the sudden value far from the baseline, and the sudden value needs to be processed first.

以上、本発明のATP法における計測値の処理方法について、複数の実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As mentioned above, although the processing method of the measured value in the ATP method of this invention was demonstrated based on several Example, this invention is not limited to the structure described in the said Example, The range which does not deviate from the meaning The configuration can be changed as appropriate.

本発明のATP法における計測値の処理方法は、突発値によって影響されることのない正確な発光量の計測を行うことができるという特性を有していることから、広くATP法を用いて行う空中浮遊菌の菌数を算出に際しての計測値の処理方法の用途に好適に用いることができる。   The measurement value processing method according to the ATP method of the present invention has a characteristic that it can accurately measure the amount of light emitted without being affected by the sudden value, and therefore is widely used using the ATP method. It can be used suitably for the use of the processing method of the measured value at the time of calculating the number of airborne bacteria.

A 期間(背景光の領域)
B ピーク値
C 期間(背景光の領域)
D ピーク値
Period A (background light area)
B Peak value C Period (background light area)
D Peak value

Claims (3)

計測手段によって計測した所定量のATPを注入した後のATP発光試薬の生物発光反応による発光量の計測値の最初のピーク値から所定量のATPを注入する前の予め設定した期間の計測値の平均値を減じた値と、検査試料の生菌に由来するATPを注入した後のATP発光試薬の生物発光反応による発光量の計測値の最初のピーク値から検査試料の生菌に由来するATPを注入する前の予め設定した期間の計測値の平均値を減じた値とを比較して、検査試料の生菌の数を算出するようにしたATP法における計測値の処理方法において、所定量のATP又は検査試料の生菌に由来するATPを注入する前の予め設定した期間の発光量の計測値の分散と、発光量の計測期間のうち任意の移動平均期間における発光量の計測値の分散とを比較し、移動平均期間の計測値の分散の方が小さい場合には、前記予め設定した期間の発光量の計測値を、移動平均区間の値に置き換え、移動平均期間の計測値の分散の方が大きい場合には、両者の分散の比に応じて、前記予め設定した期間の発光量の計測値を、該計測値と移動平均期間の計測値との間の値に置き換えるようにしたことを特徴とするATP法における計測値の処理方法。   The measured value of a preset period before injecting the predetermined amount of ATP from the first peak value of the measured amount of luminescence by the bioluminescence reaction of the ATP luminescence reagent after injecting the predetermined amount of ATP measured by the measuring means The ATP derived from the living sample of the test sample from the first peak value of the luminescence amount measured by the bioluminescence reaction of the ATP luminescent reagent after injecting the ATP derived from the live sample of the test sample and the ATP derived from the live sample of the test sample In the processing method of the measured value in the ATP method in which the number of viable bacteria of the test sample is calculated by comparing with the value obtained by subtracting the average value of the measured value in the preset period before injecting Of the measured amount of luminescence during the preset period before injecting the ATP of ATP or ATP derived from live bacteria of the test sample, and the measured value of the luminescence during any moving average period of the luminescence amount measurement period Compare with variance When the variance of the measurement value of the moving average period is smaller, the measurement value of the light emission amount in the preset period is replaced with the value of the moving average period, and the variance of the measurement value of the moving average period is larger In this case, the measured value of the light emission amount during the preset period is replaced with a value between the measured value and the measured value during the moving average period according to the ratio of the variance between the two. Processing method of measured value in ATP method. 請求項記載のATP法における計測値の処理方法と、前記計測手段によって計測された計測値を、次の(1)〜(3)の処理手法の1つ又は2つ以上の組み合わせによって処理し、該処理によって特定される前後の計測値と比較して乖離した計測値を除外又は前後の計測値に応じて変換するようにするATP法における計測値の処理方法を併用することを特徴とするATP法における計測値の処理方法。
(1)有限インパルス応答処理
(2)隣接する計測値の差をサンプリング時間で除した微分係数処理
(3)計測値の有効データ範囲の平均値及び分散からマハラノビス距離を求める処理
The processing method of the measured value in the ATP method according to claim 1 and the measured value measured by the measuring means are processed by one or a combination of two or more of the following processing methods (1) to (3). and characterized in that a combination of the processing method of the measurement value in the ATP method to be converted according to the measured value of the negative or back and forth measurement value deviates by comparing the measurement values before and after being identified by said processing A method for processing measurement values in the ATP method.
(1) Finite impulse response processing
(2) Differential coefficient processing by dividing the difference between adjacent measurement values by the sampling time
(3) Processing to obtain the Mahalanobis distance from the average value and variance of the effective data range of the measured value
特定した計測値を、該計測値の前後の計測値の中間値に置き換えるようにしたことを特徴とする請求項2記載のATP法における計測値の処理方法。3. The method for processing measurement values in the ATP method according to claim 2, wherein the specified measurement value is replaced with an intermediate value between measurement values before and after the measurement value.
JP2010181862A 2010-08-16 2010-08-16 Processing method of measured values in ATP method Expired - Fee Related JP5415379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010181862A JP5415379B2 (en) 2010-08-16 2010-08-16 Processing method of measured values in ATP method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010181862A JP5415379B2 (en) 2010-08-16 2010-08-16 Processing method of measured values in ATP method

Publications (2)

Publication Number Publication Date
JP2012042251A JP2012042251A (en) 2012-03-01
JP5415379B2 true JP5415379B2 (en) 2014-02-12

Family

ID=45898763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010181862A Expired - Fee Related JP5415379B2 (en) 2010-08-16 2010-08-16 Processing method of measured values in ATP method

Country Status (1)

Country Link
JP (1) JP5415379B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6189191B2 (en) * 2013-11-21 2017-08-30 Dmg森精機株式会社 Surface shape measuring device and machine tool
CN103675659B (en) * 2013-11-30 2016-06-08 许继电气股份有限公司 Breaker on-off travel-time waveform pretreatment process and device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256980A (en) * 1995-03-20 1996-10-08 Fujitsu Ltd Electric/physiological experimenting method and apparatus
JP4094317B2 (en) * 2002-03-28 2008-06-04 株式会社東芝 Ultrasonic diagnostic equipment
JP5245379B2 (en) * 2007-12-04 2013-07-24 株式会社日立プラントテクノロジー Collection device and analysis system using the same

Also Published As

Publication number Publication date
JP2012042251A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
CN109154549B (en) Particle detection method and system for implementing the same
EP4343813A3 (en) Charge detection mass spectrometry
RU2010105853A (en) METHODS AND SYSTEMS FOR MODULATION OF BACKGROUND ILLUMINATION WITH DETECTION OF PLAN CHANGE
FI107081B (en) Procedure and arrangement for determining the number of partial discharges
CN104515725B (en) A kind of method and system and its cytoanalyze for recognizing abnormal particle
CN103892830A (en) Emotion detection method and system based on human skin resistance changes
JP5415379B2 (en) Processing method of measured values in ATP method
CN112673088A (en) Method for detecting white blood cells, blood cell analyzer and storage medium
Bolic et al. Pileup correction algorithms for very-high-count-rate gamma-ray spectrometry with NaI (Tl) detectors
CA2765336C (en) Method for discriminating a gamma component and a neutron component in an electronic signal
CN104515723A (en) Cell analyzer, erythrocyte agglutination warning method and erythrocyte agglutination warning system of the cell analyzer
US20210318222A1 (en) Method for correcting a blood cell parameter, blood sample analyzer and storage medium
CN111122420A (en) Synchronous identification method and device of multichannel pulse signals and particle detection system
CN109793509B (en) Nuclear radiation detection and heart rate measurement method and device
CN109374686B (en) Gas sensor
CN108490311B (en) Weak impact signal extraction and separation method based on power frequency sampling
WO2020042027A1 (en) Blood sample testing method, blood sample testing device, and storage medium
CN107064990B (en) A kind of signal processing method and device of small-sized scintillator detector
CN107179303A (en) Droplet fluorescence detection method, device, system, storage medium and computer equipment
CN110456238B (en) Corona discharge ion source detection method and system
CN107422362B (en) A kind of noise-reduction method of energy spectrum and time spectrum
CN111235023A (en) Single particle detection method based on multi-channel triggering
CN116564411B (en) Method, system, device and storage medium for determining isothermal amplification result of nucleic acid
CN118091344B (en) Power converter detection method and system
Lavner et al. An algorithm for processing and analysis of Gas Chromatography-Mass Spectrometry (GC-MS) signals for early detection of Parkinson's disease

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131113

LAPS Cancellation because of no payment of annual fees