JP5414285B2 - Aluminum foil for high-pressure anodes in electrolytic capacitors - Google Patents

Aluminum foil for high-pressure anodes in electrolytic capacitors Download PDF

Info

Publication number
JP5414285B2
JP5414285B2 JP2009006279A JP2009006279A JP5414285B2 JP 5414285 B2 JP5414285 B2 JP 5414285B2 JP 2009006279 A JP2009006279 A JP 2009006279A JP 2009006279 A JP2009006279 A JP 2009006279A JP 5414285 B2 JP5414285 B2 JP 5414285B2
Authority
JP
Japan
Prior art keywords
pit
foil
ppm
aluminum foil
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009006279A
Other languages
Japanese (ja)
Other versions
JP2010163649A (en
Inventor
共平 小原
淳 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2009006279A priority Critical patent/JP5414285B2/en
Publication of JP2010163649A publication Critical patent/JP2010163649A/en
Application granted granted Critical
Publication of JP5414285B2 publication Critical patent/JP5414285B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Description

本発明は、電解コンデンサ中高圧陽極用アルミニウム箔に関する。   The present invention relates to an aluminum foil for high-pressure anodes in electrolytic capacitors.

電解コンデンサ中高圧陽極用として用いられるアルミニウム箔は、高い静電容量を得るために、最終焼鈍後の立方晶率すなわち立方体方位(100)面占有率が高く、電解エッチング処理において、トンネルピットを発生し易いものであることが望ましい。   Aluminum foil used for high-voltage anodes in electrolytic capacitors has high cubic crystal ratio after final annealing, that is, cube orientation (100) plane occupancy, in order to obtain high capacitance, and generates tunnel pits in electrolytic etching processing. It is desirable that it is easy to do.

このような特性をそなえたアルミニウム箔を得るために、種々の成分元素を添加したアルミニウム箔、例えば、エッチングピットの密度を増加させるために、微量のFe、Ni、Co、Cr、Mn、Zr、Ti、V、Moや、Pb、Bi、In、Snのうちの一種以上の元素を酸化皮膜中に特定量含有させるとともに、これらの元素のアルミニウム地中での含有量を規制したアルミニウム箔が提案されている(特許文献1参照)。   In order to obtain an aluminum foil having such characteristics, an aluminum foil added with various component elements, for example, a small amount of Fe, Ni, Co, Cr, Mn, Zr, Proposed aluminum foil containing a specific amount of one or more elements of Ti, V, Mo, Pb, Bi, In, Sn in the oxide film, and regulating the content of these elements in the aluminum ground (See Patent Document 1).

また、微量の特定元素を、酸化皮膜中、酸化皮膜とアルミニウム地との界面、アルミニウム地中に特定量存在させて、垂直方向に伸びるエッチングピットを均一に整列して形成させ、静電容量の改善を図ったアルミニウム箔も提案されている(特許文献2、特許文献3参照)。   In addition, a small amount of a specific element is present in the oxide film, the interface between the oxide film and the aluminum ground, and a specific amount in the aluminum ground, and the etching pits extending in the vertical direction are uniformly aligned to form a capacitance. An improved aluminum foil has also been proposed (see Patent Document 2 and Patent Document 3).

特開平8−3673号公報JP-A-8-3673 特開2006−152394号公報JP 2006-152394 A 特開2006−152402号公報JP 2006-152402 A

しかしながら、上記従来のアルミニウム箔においては、電解エッチング処理により形成されるエッチングピットの分散が必ずしも十分ではなく、拡径エッチングで部分的にピット合体が生じる場合がある。   However, in the above-described conventional aluminum foil, dispersion of etching pits formed by the electrolytic etching process is not always sufficient, and pit coalescence may be partially generated by the diameter expansion etching.

本発明は、微量の添加成分の組み合わせ、結晶粒の方位およびサイズと、エッチング特性との関係についてさらに試験、検討を重ねた結果としてなされたものであり、その目的は、電解エッチング処理において、トンネルピットを発生し易く、且つ拡径エッチングでのピット合体が抑制されて向上したピット分散性が得られ、高い静電容量を得ることを可能とする電解コンデンサ中高圧陽極用アルミニウム箔を提供することにある。   The present invention has been made as a result of further examination and examination on the relationship between the combination of a small amount of additive components, the orientation and size of crystal grains, and the etching characteristics. To provide an aluminum foil for a high-pressure anode in an electrolytic capacitor that is easy to generate pits, has improved pit dispersibility by suppressing pit coalescence in diameter expansion etching, and can obtain a high capacitance. It is in.

上記の目的を達成するための請求項1による電解コンデンサ中高圧陽極用アルミニウム箔は、アルミニウム純度が99.97%(質量%、以下同じ)以上で、Cr:10〜100ppm(質量ppm、以下同じ)、Cu:5〜50ppm、Pb:0.3〜1.5ppmを含有し、箔圧延時の中間焼鈍温度を160〜190℃として製造されたアルミニウム箔であって、該箔表面における結晶粒のうち(100)方位以外の方位を有する結晶粒の平均結晶粒径をX、該箔表面における結晶粒のうち(100)方位を有する結晶粒の平均結晶粒径をYとした場合に、Y/Xが0.75以上であることを特徴とする。 The aluminum foil for a high-voltage anode in an electrolytic capacitor according to claim 1 for achieving the above object has an aluminum purity of 99.97% (mass%, the same shall apply hereinafter) or more and Cr: 10 to 100 ppm (mass ppm, hereinafter the same shall apply). ), Cu: 5 to 50 ppm, Pb: 0.3 to 1.5 ppm, an aluminum foil produced at an intermediate annealing temperature of 160 to 190 ° C. during foil rolling , When the average crystal grain size of crystal grains having an orientation other than the (100) orientation is X, and the average crystal grain size of crystal grains having the (100) orientation among the crystal grains on the foil surface is Y, Y / X is 0.75 or more .

本発明によれば、電解エッチング処理において、トンネルピットが発生し易く、且つ拡径エッチングでのピット合体が抑制されて向上したピット分散性が得られ、高い静電容量を得ることができる電解コンデンサ中高圧陽極用アルミニウム箔が提供される。   According to the present invention, in an electrolytic etching process, tunnel pits are easily generated, and pit coalescence in diameter expansion etching is suppressed, and improved pit dispersibility is obtained, and an electrolytic capacitor capable of obtaining a high capacitance. An aluminum foil for medium and high pressure anodes is provided.

本発明による電解コンデンサ中高圧陽極用アルミニウム箔は、アルミニウム純度が99.97%以上で、Si:10〜50ppm、Fe:10〜50ppmを含有するアルミニウムをベースとする。さらに好ましいアルミニウム純度は99.98%以上である。   The aluminum foil for high-pressure anodes in electrolytic capacitors according to the present invention is based on aluminum having an aluminum purity of 99.97% or more and containing Si: 10-50 ppm and Fe: 10-50 ppm. A more preferable aluminum purity is 99.98% or more.

本発明のアルミニウム箔における添加元素の意義および限定理由について説明すると、Crは、電解エッチング処理において、トンネルピットを発生し易くするとともに、ピット分散性を向上させるよう機能する。Crの好ましい含有量は10〜100ppmの範囲であり、10ppm未満では、電解エッチング処理において、適度に分散したトンネルピットを発生させる効果が十分でなく、100ppmを超えて含有すると、電解エッチング処理において、必要以上に表層領域が溶解して有効な表面積拡大領域が制限される。Crのさらに好ましい含有範囲は20〜60ppmである。   The significance and reason for limitation of the additive element in the aluminum foil of the present invention will be described. Cr functions to easily generate tunnel pits and improve pit dispersibility in the electrolytic etching process. The preferable content of Cr is in the range of 10 to 100 ppm, and if it is less than 10 ppm, the effect of generating moderately dispersed tunnel pits is not sufficient in the electrolytic etching treatment. The surface area is dissolved more than necessary to limit the effective surface area expansion area. A more preferable content range of Cr is 20 to 60 ppm.

Cuは、Crと同様、電解エッチング処理において、トンネルピットを発生し易くするとともに、ピット分散性を向上させるよう機能する。Cuの好ましい含有量は5〜50ppmの範囲であり、5ppm未満では、最終焼鈍時に結晶粒界の移動抑制効果が減少して結晶粒が粗大化し易くなり、50ppmを超えて含有すると、電解エッチング処理において孔食反応が過度になりトンネルピットが生じ難くなる。Cuのより好ましい含有範囲は10〜50ppm、さらに好ましい含有範囲は20〜40ppm、最も好ましい範囲は23〜36ppmである。   Cu, like Cr, functions to easily generate tunnel pits and improve pit dispersibility in the electrolytic etching process. The preferable content of Cu is in the range of 5 to 50 ppm, and if it is less than 5 ppm, the effect of suppressing the movement of the crystal grain boundary is reduced at the time of final annealing, and the crystal grains are likely to be coarsened. Pitting corrosion reaction becomes excessive and tunnel pits are hardly generated. A more preferable content range of Cu is 10 to 50 ppm, a further preferable content range is 20 to 40 ppm, and a most preferable range is 23 to 36 ppm.

Pbは、電解エッチング処理時、酸化皮膜に欠陥を生ぜしめて溶解し易くし、ピットの形成と分散性を高めるよう作用する。Pbの好ましい含有量は0.3〜1.5ppmの範囲であり、0.3ppm未満では、酸化皮膜中の欠陥量が少なくピットの分散性が小さくなり、1.5ppmを超えると、酸化皮膜中の欠陥量が過度になって全面溶解し、そのためアルミニウム側表面の微小剥離状溶解も過度になって表面の無効溶解が増加する。   Pb acts to cause the oxide film to form defects and facilitate dissolution during electrolytic etching, and to improve the formation and dispersibility of pits. The preferable content of Pb is in the range of 0.3 to 1.5 ppm. When the content is less than 0.3 ppm, the amount of defects in the oxide film is small and the dispersibility of pits is small. As a result, the amount of defects becomes excessive and the entire surface dissolves, so that the micro-peeling dissolution on the aluminum side surface also becomes excessive and the surface ineffective dissolution increases.

本発明においては、箔表面における結晶粒の方位とサイズが重要であり、非(100)方位、すなわち(100)方位以外の方位を有する結晶粒の平均結晶粒径をX、(100)方位を有する結晶粒の平均結晶粒径をYとした場合に、Y/Xが0.75以上であるよう規定することにより、電解エッチング処理において、適度に分散したトンネルピットが形成され、拡面率が向上して高い静電容量を達成することができる。なお、本発明において、(100)方位とは、SEM−EBSPを用いた解析で、(100)<001>方向から回転角度15°以内の結晶粒として定義した。 In the present invention, the orientation and size of the crystal grains on the foil surface are important. The average grain size of crystal grains having a non- (100) orientation, that is, an orientation other than the (100) orientation is X, and the (100) orientation is By defining Y / X to be 0.75 or more when the average crystal grain size of the crystal grains is Y, moderately dispersed tunnel pits are formed in the electrolytic etching process, and the area expansion ratio is It can be improved to achieve high capacitance . In the present invention, the (100) orientation was defined as a crystal grain having a rotation angle within 15 ° from the (100) <001> direction in the analysis using SEM-EBSP.

本発明の電解コンデンサ中高圧陽極用アルミニウム箔の製造方法について説明すると、前記組成を有するアルミニウム合金を常法に従い溶解、鋳造し、得られた鋳塊を面削した後、熱間圧延を行う。熱間圧延は、前記鋳塊を500℃に加熱した後、450〜480℃の温度で開始する。   The production method of the aluminum foil for a high-pressure anode in an electrolytic capacitor of the present invention will be described. An aluminum alloy having the above composition is melted and cast according to a conventional method, and the obtained ingot is face-cut and then hot-rolled. Hot rolling starts at a temperature of 450 to 480 ° C. after heating the ingot to 500 ° C.

熱間圧延を行った後、冷間圧延、箔圧延を行い、例えば厚さ0.014mmのアルミニウム箔を得る。得られた箔について160〜190℃の温度で12時間の中間焼鈍を実施し、さらに軽圧下して厚さ0.012mmの箔とする。その後550℃の温度で3時間の最終焼鈍を実施する。   After hot rolling, cold rolling and foil rolling are performed to obtain, for example, an aluminum foil having a thickness of 0.014 mm. The obtained foil is subjected to intermediate annealing for 12 hours at a temperature of 160 to 190 ° C., and further lightly reduced to obtain a foil having a thickness of 0.012 mm. Thereafter, a final annealing is performed at a temperature of 550 ° C. for 3 hours.

アルミニウム純度が99.97%以上で、Cr、Cu、Pbを前記特定範囲とするとともに、前記中間焼鈍を通常の中間焼鈍温度よりも低い160〜190℃で実施することにより、結晶粒の方位とサイズがY/X:0.75以上の関係となるよう制御され、エッチング処理時のピット分散性に優れ、静電容量の高い電解コンデンサ中高圧陽極用アルミニウム箔を得ることができる。本発明の合金組成を有するアルミニウム箔であっても、190℃を超える温度で中間焼鈍を実施すると、非(100)方位の結晶粒が粗大化し好ましくない。 The aluminum purity is 99.97% or more, Cr, Cu, and Pb are within the specific range, and the intermediate annealing is performed at 160 to 190 ° C., which is lower than the normal intermediate annealing temperature. It is possible to obtain an aluminum foil for a high-pressure anode in an electrolytic capacitor that is controlled to have a size of Y / X: 0.75 or more , has excellent pit dispersibility during etching, and has a high capacitance. Even when the aluminum foil having the alloy composition of the present invention is subjected to intermediate annealing at a temperature exceeding 190 ° C., the crystal grains of non- (100) orientation are coarsened, which is not preferable.

以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は本発明の一実施態様を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.

実施例、比較例
表1に示す組成を有するアルミニウムを溶解、鋳造し、得られた鋳塊を面削した後、500℃に加熱し、開始温度470℃で熱間圧延を行った。ついで、冷間圧延、箔圧延により厚さ0.014mmの箔とした。得られた箔を、表2に示す条件にて中間焼鈍し、さらに軽圧下して厚さ0.012mmの箔とし、さらに、550℃の温度で3時間の最終焼鈍を実施した。なお、表1において、本発明の条件を外れたものには下線を付した。
Examples and Comparative Examples Aluminum having the composition shown in Table 1 was melted and cast, and the resulting ingot was chamfered, heated to 500 ° C, and hot-rolled at a starting temperature of 470 ° C. Next, a foil having a thickness of 0.014 mm was formed by cold rolling and foil rolling. The obtained foil was subjected to intermediate annealing under the conditions shown in Table 2, further reduced to a 0.012 mm thick foil, and further subjected to final annealing at a temperature of 550 ° C. for 3 hours. In Table 1, those outside the conditions of the present invention are underlined.

Figure 0005414285
Figure 0005414285

前記最終焼鈍後のアルミニウム箔を試験材とし、試験材について、非(100)方位を有する結晶粒の平均結晶粒径(X)、(100)方位を有する結晶粒の平均結晶粒径(Y)を測定し、Y/Xを算出した。結果を表2に示す。なお、表2において、本発明の条件を外れたものには下線を付した。   Using the aluminum foil after the final annealing as a test material, the average crystal grain size (X) of crystal grains having a non- (100) orientation and the average crystal grain size (Y) of crystal grains having a (100) orientation. Was measured and Y / X was calculated. The results are shown in Table 2. In Table 2, those outside the conditions of the present invention are underlined.

Figure 0005414285
Figure 0005414285

また、試験材に対して、塩酸(1モル/l)−硫酸(3モル/l)の水溶液(液温75℃)中で、電流密度0.2A/cmにて直流エッチングを行い、引き続き、硝酸(1モル/l)−リン酸(0.05モル/l)の水溶液(液温80℃)中で、電流密度 0.25A/cmにて直流エッチングを行った。 In addition, the test material was subjected to direct current etching at a current density of 0.2 A / cm 2 in an aqueous solution of hydrochloric acid (1 mol / l) -sulfuric acid (3 mol / l) (liquid temperature: 75 ° C.). Then, direct-current etching was performed in a nitric acid (1 mol / l) -phosphoric acid (0.05 mol / l) aqueous solution (liquid temperature: 80 ° C.) at a current density of 0.25 A / cm 2 .

ピット分散性を評価するため、上記エッチド箔を過塩素酸エタノール中で表層より10〜12μm電解研摩した後、SEM観察を行い、得られたSEM像について画像解析を実施して、ピット密度、平均ピット径を求めた。なお、ピット密度は、単独ピット以外に、ピット同士が合体して見掛け上1つのピットとして観察されるピット(合体ピット)も1つのピットとしてカウントしてピット密度を求め、比較例の試験材17のピット密度を100とする相対値(%)で評価した。平均ピット径(μm)は、各ピット(合体ピット含む)のピット径を、各ピットのピット面積と同等の面積である真円の直径と仮定し、その平均値を算出した。   In order to evaluate the pit dispersibility, the etched foil was electropolished from 10 to 12 μm from the surface layer in ethanol perchlorate, then SEM observation was performed, and the obtained SEM image was subjected to image analysis to determine the pit density, average The pit diameter was obtained. As for the pit density, in addition to single pits, pits that are combined and apparently observed as one pit (unioned pits) are counted as one pit to obtain the pit density, and the comparative test material 17 The relative value (%) where the pit density was 100 was evaluated. The average pit diameter (μm) was calculated on the assumption that the pit diameter of each pit (including coalesced pits) was the diameter of a perfect circle having the same area as the pit area of each pit.

同一エッチング条件で形成されたピットについて、ピット分散性が著しく劣る箔の画像解析を実施すると、拡径エッチングでピット合体が進行しているため、ピット密度は相対的に小さくカウントされ、平均ピット径は、合体ピット増加の影響により相対的に大きくなる。逆に、ピット分散性が優れている箔は、ピット密度が高く、平均ピット径が小さくなる。この観点からエッチド箔のピット分散性を評価し、ピット密度が105%以上、平均ピット径が1.15μm以下のものをピット分散性が優れているもの(◎)、ピット密度が100%以上、平均ピット径が1.20μm以下のものをピット分散性が良好なもの(○)、ピット密度が95%以上、平均ピット径が1.25μm以下のものをピット分散性がやや劣るもの(△)、ピット密度が90%以上、平均ピット径が1.35μm以下のものをピット分散性が劣るもの(×)とした。測定、評価結果を表3に示す。   For pits formed under the same etching conditions, when image analysis of a foil with extremely poor pit dispersibility was performed, pit coalescence progressed by diameter expansion etching, so the pit density was counted relatively small, and the average pit diameter Is relatively large due to an increase in coalescence pits. Conversely, a foil having excellent pit dispersibility has a high pit density and a small average pit diameter. From this point of view, the pit dispersibility of the etched foil was evaluated. A pit density of 105% or more, an average pit diameter of 1.15 μm or less having excellent pit dispersibility (◎), a pit density of 100% or more, Those having an average pit diameter of 1.20 μm or less have good pit dispersibility (◯), those having a pit density of 95% or more and average pit diameter of 1.25 μm or less have slightly inferior pit dispersibility (△) Those having a pit density of 90% or more and an average pit diameter of 1.35 μm or less were determined to have poor pit dispersibility (×). Table 3 shows the measurement and evaluation results.

さらに、前記エッチング処理後のエッチド箔に、ホウ酸5%水溶液中で400Vの化成処理を行って静電容量を測定し、比較例の試験材17の静電容量を100とする相対値(%)で評価した。結果を表3に示す。   Further, the etched foil after the etching treatment was subjected to a chemical conversion treatment at 400 V in a 5% boric acid aqueous solution to measure the capacitance, and the relative value (%) where the capacitance of the test material 17 of the comparative example was 100. ). The results are shown in Table 3.

Figure 0005414285
Figure 0005414285

表2〜3にみられるように、本発明に従う組成とY/X比を有する試験材1〜11はいずれも、向上したピット分散性を有し、高い静電容量をそなえていた。   As can be seen from Tables 2 to 3, all of the test materials 1 to 11 having the composition according to the present invention and the Y / X ratio had improved pit dispersibility and high capacitance.

これに対して、表2〜3に示すように、試験材12はCr、Pbの含有量が多いため、エッチング処理において溶解が進み、ピット密度が小さく平均ピット径が大きくなってピット分散性が劣る。Y/Xも小さく、静電容量が劣っている。試験材13はCrの含有量が多いため、エッチング処理において溶解が進み、ピット密度が小さく平均ピット径が大きくなってピット分散性が劣る。Y/Xも小さく、静電容量が劣っている。   On the other hand, as shown in Tables 2 and 3, since the test material 12 has a large content of Cr and Pb, dissolution proceeds in the etching process, and the pit density is small and the average pit diameter is large, so that the pit dispersibility is high. Inferior. Y / X is also small and the capacitance is inferior. Since the test material 13 has a high Cr content, dissolution proceeds in the etching process, the pit density is small, the average pit diameter is large, and the pit dispersibility is poor. Y / X is also small and the capacitance is inferior.

試験材14はCuの含有量が多いためエッチング処理において孔食反応が過度となり、試験材15はCrの含有量が多いためエッチング処理において溶解が進み、いずれもピット分散性が劣り静電容量が低い。試験材16はCuの含有量が多いためエッチング処理において孔食反応が過度となり、ピット分散性が劣り静電容量が低い。   Since the test material 14 has a high Cu content, the pitting corrosion reaction becomes excessive in the etching process, and the test material 15 has a high Cr content, so that the dissolution progresses in the etching process, both of which have poor pit dispersibility and capacitance. Low. Since the test material 16 has a large Cu content, the pitting corrosion reaction becomes excessive in the etching process, the pit dispersibility is poor, and the capacitance is low.

試験材17、18はCrの含有量が少なく、ピット密度は高いが平均ピット径が大きくなってピット分散性が劣り、静電容量の改善はみられない。試験材19はPbの含有量が少ないため、酸化皮膜中の欠陥数が少なくピット分散性が小さくなり静電容量が低い。試験材20は合金組成は本発明に従うものであるが、190℃を超える温度で中間焼鈍を行ったため非(100)方位の結晶粒が粗大化してY/Xが小さくなり、結果として静電容量が劣るものとなっている。   The test materials 17 and 18 have a low Cr content and a high pit density, but the average pit diameter is large and the pit dispersibility is inferior, and the capacitance is not improved. Since the test material 19 has a small Pb content, the number of defects in the oxide film is small, the pit dispersibility is small, and the electrostatic capacity is low. Although the test material 20 has an alloy composition according to the present invention, since the intermediate annealing was performed at a temperature exceeding 190 ° C., non- (100) -oriented crystal grains were coarsened and Y / X was reduced, resulting in a capacitance. Is inferior.

Claims (1)

アルミニウム純度が99.97%(質量%、以下同じ)以上で、Cr:10〜100ppm(質量ppm、以下同じ)、Cu:5〜50ppm、Pb:0.3〜1.5ppmを含有し、箔圧延時の中間焼鈍温度を160〜190℃として製造されたアルミニウム箔であって、該箔表面における結晶粒のうち(100)方位以外の方位を有する結晶粒の平均結晶粒径をX、該箔表面における結晶粒のうち(100)方位を有する結晶粒の平均結晶粒径をYとした場合に、Y/Xが0.75以上であることを特徴とする電解コンデンサ中高圧陽極用アルミニウム箔。 Aluminum purity is 99.97% (mass%, the same applies hereinafter) , Cr: 10-100 ppm (mass ppm, same applies hereinafter) , Cu: 5-50 ppm , Pb: 0.3-1.5 ppm , foil An aluminum foil manufactured at an intermediate annealing temperature of 160 to 190 ° C. during rolling, wherein the average crystal grain size of crystal grains having an orientation other than the (100) orientation among the crystal grains on the foil surface is X, the foil An aluminum foil for high-pressure anodes in an electrolytic capacitor, wherein Y / X is 0.75 or more , where Y is the average crystal grain size of crystal grains having (100) orientation among crystal grains on the surface.
JP2009006279A 2009-01-15 2009-01-15 Aluminum foil for high-pressure anodes in electrolytic capacitors Expired - Fee Related JP5414285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009006279A JP5414285B2 (en) 2009-01-15 2009-01-15 Aluminum foil for high-pressure anodes in electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009006279A JP5414285B2 (en) 2009-01-15 2009-01-15 Aluminum foil for high-pressure anodes in electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2010163649A JP2010163649A (en) 2010-07-29
JP5414285B2 true JP5414285B2 (en) 2014-02-12

Family

ID=42580041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009006279A Expired - Fee Related JP5414285B2 (en) 2009-01-15 2009-01-15 Aluminum foil for high-pressure anodes in electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP5414285B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3370244B2 (en) * 1996-10-31 2003-01-27 東洋アルミニウム株式会社 Aluminum alloy foil for electrolytic capacitors with high mechanical strength
JP4300041B2 (en) * 2002-08-21 2009-07-22 昭和電工株式会社 Aluminum material for electrolytic capacitor electrode and electrolytic capacitor
JP4071232B2 (en) * 2004-11-30 2008-04-02 三菱アルミニウム株式会社 Aluminum foil for electrolytic capacitors
JP4071233B2 (en) * 2004-11-30 2008-04-02 三菱アルミニウム株式会社 Aluminum foil for electrolytic capacitors
JP2009270138A (en) * 2008-05-01 2009-11-19 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor

Also Published As

Publication number Publication date
JP2010163649A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP2013124402A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP2006291263A (en) Ti ALLOY, Ti ALLOY MEMBER AND MANUFACTURING METHOD THEREFOR
JP2006291263A5 (en)
JP4300041B2 (en) Aluminum material for electrolytic capacitor electrode and electrolytic capacitor
JP2009249668A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP5414285B2 (en) Aluminum foil for high-pressure anodes in electrolytic capacitors
JP5182784B2 (en) Aluminum alloy foil for electrolytic capacitor electrode
JP6619173B2 (en) Aluminum foil for electrolytic capacitors
JP5019371B2 (en) Aluminum foil material for electrolytic capacitor electrodes
JP5324805B2 (en) Aluminum foil for high-pressure anodes in electrolytic capacitors
JP6752110B2 (en) Manufacturing method of aluminum foil for electrolytic capacitors, aluminum foil for electrolytic capacitors, and electrodes for electrolytic capacitors
JP4650887B2 (en) Aluminum foil for electrolytic capacitors
JP3983785B2 (en) Aluminum foil for electrolytic capacitors
JP4874039B2 (en) Aluminum alloy foil for electrolytic capacitor cathode and alloy foil used therefor
JP3920306B1 (en) Aluminum foil for electrolytic capacitors
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP3959106B2 (en) Hard aluminum foil for electrolytic capacitor electrodes
JP2793964B2 (en) Aluminum foil for cathode of electrolytic capacitor
JP3370244B2 (en) Aluminum alloy foil for electrolytic capacitors with high mechanical strength
JP5523731B2 (en) Aluminum foil for electrolytic capacitor cathode and manufacturing method thereof
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP2010275586A (en) Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same
JP2009270138A (en) Aluminum foil for electrolytic capacitor
JP2010013714A (en) Aluminum foil for electrolytic capacitor electrode
JP4958464B2 (en) Aluminum foil for electrolytic capacitor electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131112

R150 Certificate of patent or registration of utility model

Ref document number: 5414285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees