JP5414069B2 - Ionic organic compound, method for producing the same, and photoresponsive polymer electrolyte using the same - Google Patents

Ionic organic compound, method for producing the same, and photoresponsive polymer electrolyte using the same Download PDF

Info

Publication number
JP5414069B2
JP5414069B2 JP2010236948A JP2010236948A JP5414069B2 JP 5414069 B2 JP5414069 B2 JP 5414069B2 JP 2010236948 A JP2010236948 A JP 2010236948A JP 2010236948 A JP2010236948 A JP 2010236948A JP 5414069 B2 JP5414069 B2 JP 5414069B2
Authority
JP
Japan
Prior art keywords
ionic organic
organic compound
polymer electrolyte
compound
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010236948A
Other languages
Japanese (ja)
Other versions
JP2012087259A (en
Inventor
ビーナ ジェームス
勝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010236948A priority Critical patent/JP5414069B2/en
Publication of JP2012087259A publication Critical patent/JP2012087259A/en
Application granted granted Critical
Publication of JP5414069B2 publication Critical patent/JP5414069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、イオン性有機化合物とその製造方法、並びに該イオン性有機化合物を利用した光に応答して主鎖構造変化を起こす高分子電解質に関する。   The present invention relates to an ionic organic compound, a method for producing the same, and a polymer electrolyte that undergoes a main chain structure change in response to light using the ionic organic compound.

光エネルギーの利用は、自然界における光合成に代表されるように、省エネルギーの観点から重要である。機能性高分子においても、光応答性を有する高分子は広く研究され、例えば、非特許文献1では、フォトクロミック化合物として知られるアゾベンゼンを、分子内に組み込んだ高分子の薄膜が、光照射によって自在に屈曲する材料となることが知られている(非特許文献1)。   Use of light energy is important from the viewpoint of energy saving, as represented by photosynthesis in nature. Among functional polymers, polymers having photoresponsiveness have been widely studied. For example, in Non-Patent Document 1, a polymer thin film in which azobenzene known as a photochromic compound is incorporated in a molecule can be freely irradiated with light. It is known that it will be a material that bends (Non-Patent Document 1).

他方、有機高分子の中で、主鎖中に電荷を有する高分子電解質は、一種の固体電解質として種々の電気化学的な応用が期待される材料である。この高分子電解質の構造に、光応答性のフォトクロミック化合物を組み入れた例は、側鎖として導入された場合には、PAZOの慣用名で知られるアゾベンゼン系高分子が、既に化学試薬として市販されている程度に一般的であるが、主鎖中に直接導入した例は、非特許文献2,3に知られる限られた例のみである。もし、光照射により効率よく主鎖構造の大きな変化が誘起できれば、固体電解質としてのイオン伝導度のスイッチング等が可能な新規有機材料となり得る。   On the other hand, among organic polymers, a polymer electrolyte having a charge in the main chain is a material that is expected to be variously applied as a kind of solid electrolyte. An example of incorporating a photoresponsive photochromic compound into the structure of this polyelectrolyte is that when introduced as a side chain, an azobenzene polymer known by the common name of PAZO has already been marketed as a chemical reagent. Although it is as general as possible, the examples directly introduced into the main chain are limited examples known in Non-Patent Documents 2 and 3. If a large change in the main chain structure can be efficiently induced by light irradiation, it can be a novel organic material capable of switching ionic conductivity as a solid electrolyte.

Y.L.Yu, M.Nakano, T.Ikeda, Nature,425,145(2003).Y.L.Yu, M. Nakano, T. Ikeda, Nature, 425,145 (2003). J.-D.Hong, B.-D.Jung, C.H.Kim, K.Kim, Macromolecules,33,7905(2000).J.-D.Hong, B.-D.Jung, C.H.Kim, K.Kim, Macromolecules, 33, 7905 (2000). B.-D.Jung, J.-D.Hong, A.Voigt, S.Leporatti, L.Dahne, E.Donath, H.Mohwald, Colloids and Surfaces,198-200,483(2002).B.-D.Jung, J.-D.Hong, A.Voigt, S.Leporatti, L.Dahne, E.Donath, H.Mohwald, Colloids and Surfaces, 198-200,483 (2002).

特開2008−248224号公報JP 2008-248224 A 国際公開第2010/027067号International Publication No. 2010/027067

以上のように、光照射によりその主鎖構造及び物性変化が可能な高分子電解質はごく少数のみ知られてきた。本発明は、こうした現状を鑑みてなされたものであって、新しい構造の光応答性高分子電解質を提供することを目的とするものである。   As described above, only a small number of polymer electrolytes whose main chain structure and physical properties can be changed by light irradiation have been known. The present invention has been made in view of the current situation, and an object thereof is to provide a photoresponsive polymer electrolyte having a new structure.

本発明者らは、先に共重合型の新規高分子電解質の合成法を見出し出願した(特許文献1、2)。本発明は、さらに上記の共重合法を発展させた、新たなイオン性有機化合物、並びにそれを利用した光応答性高分子電解質の合成に関するものである。   The present inventors previously found and applied for a method for synthesizing a novel copolymer-type polymer electrolyte (Patent Documents 1 and 2). The present invention relates to a novel ionic organic compound obtained by further developing the above copolymerization method, and to the synthesis of a photoresponsive polymer electrolyte using the same.

すなわち、本発明は、(A)両末端に4−(クロロメチル)ベンズアミド基を有し、置換基を有してもよいシクロヘキサンジアミド化合物又は芳香族ジアミド化合物と、(B)両末端に(ジメチルアミノ)アルキレン基を有するアゾベンゼンジアミド化合物を、縮合反応させることにより、一般式(1)で表されるイオン性有機化合物を合成したもので、つぎの[1]〜[5]の構成を採用する。   That is, the present invention comprises (A) a cyclohexanediamide compound or aromatic diamide compound having a 4- (chloromethyl) benzamide group at both ends and optionally having a substituent, and (B) (dimethyl) at both ends. An ionic organic compound represented by the general formula (1) is synthesized by a condensation reaction of an azobenzenediamide compound having an amino) alkylene group, and the following configurations [1] to [5] are employed. .

[1]下記の一般式(1)で表されるイオン性有機化合物。

Figure 0005414069
(式中、Aは置換基を有してもよい、シクロヘキサン環または芳香環を1個以上有する連結部位、Xは1価のアニオンを示す。nは2もしくは3、mは1〜800の整数を示す。)
[2](A)両末端に4−(クロロメチル)ベンズアミド基を有し、置換基を有してもよいシクロヘキサンジアミド化合物又は芳香族ジアミド化合物と、(B)両末端に(ジメチルアミノ)アルキレン基を有するアゾベンゼンジアミド化合物を、縮合反応させることを特徴とする上記[1]のイオン性有機化合物の製造方法。
[3]前記縮合反応をジメチルホルムアミド中で、50〜80℃で行うことを特徴とする上記[2]のイオン性有機化合物の製造方法。
[4]さらに、得られたイオン性有機化合物のアニオンをアニオン交換反応により他のアニオンに置換することを特徴とする上記[2]又は[3]のイオン性有機化合物の製造方法。
[5]上記[1]のイオン性有機化合物を有効成分とする光応答性高分子電解質。 [1] An ionic organic compound represented by the following general formula (1).
Figure 0005414069
(Wherein A represents an optionally substituted linking site having at least one cyclohexane ring or aromatic ring, X represents a monovalent anion, n is 2 or 3, and m is an integer of 1 to 800. Is shown.)
[2] (A) Cyclohexanediamide compound or aromatic diamide compound having a 4- (chloromethyl) benzamide group at both ends, which may have a substituent, and (B) (dimethylamino) alkylene at both ends The method for producing an ionic organic compound according to the above [1], wherein an azobenzenediamide compound having a group is subjected to a condensation reaction.
[3] The method for producing an ionic organic compound according to the above [2], wherein the condensation reaction is performed in dimethylformamide at 50 to 80 ° C.
[4] The method for producing an ionic organic compound according to the above [2] or [3], wherein the anion of the obtained ionic organic compound is substituted with another anion by anion exchange reaction.
[5] A photoresponsive polymer electrolyte comprising the ionic organic compound of [1] as an active ingredient.

本発明のイオン性有機化合物は、高分子電解質、特に光応答性高分子電解質として有効である。光応答性高分子電解質は、光スイッチ機能を有する擬固体電解質として好適に用いられる。本発明は簡単な工程によって、光応答性高分子電解質として優れた性状を有する新規な化合物を効率よく製造することを可能にするものであり、反応試薬の組み合わせによる物性の制御あるいは機能性官能基の導入による機能性高分子電解質の合成開発に新たな道を拓くものである。   The ionic organic compound of the present invention is effective as a polymer electrolyte, particularly as a photoresponsive polymer electrolyte. The photoresponsive polymer electrolyte is suitably used as a quasi-solid electrolyte having an optical switch function. The present invention makes it possible to efficiently produce a novel compound having excellent properties as a photoresponsive polymer electrolyte by a simple process, and controls physical properties by combining reaction reagents or functional functional groups. It opens up a new path for the synthesis and development of functional polymer electrolytes.

本発明の光応答性高分子電解質の紫外―可視吸収スペクトルを示す図。The figure which shows the ultraviolet-visible absorption spectrum of the photoresponsive polymer electrolyte of this invention.

本発明のイオン性有機化合物は、下記の一般式(1)で表される。

Figure 0005414069
(式中、Aは置換基を有してもよい、シクロヘキサン環または芳香環を1個以上有する連結部位、Xは1価のアニオンを示す。nは2もしくは3、mは1〜800の整数を示す。) The ionic organic compound of the present invention is represented by the following general formula (1).
Figure 0005414069
(Wherein A represents an optionally substituted linking site having at least one cyclohexane ring or aromatic ring, X represents a monovalent anion, n is 2 or 3, and m is an integer of 1 to 800. Is shown.)

上記一般式(1)で表される本発明のイオン性有機化合物は、(A)両末端に4−(クロロメチル)ベンズアミド基を有し、置換基を有してもよいシクロヘキサンジアミド化合物又は芳香族ジアミド化合物と、(B)両末端に(ジメチルアミノ)アルキレン基を有するアゾベンゼンジアミド化合物を縮合反応およびそれに続くアニオン交換反応により得られる。縮合反応溶媒は、ジメチルホルムアミド等の極性有機溶媒を使用することが望ましいが、これに限定されるものではない。また、反応時間は12〜48時間が好ましい。反応温度は50〜80℃程度、特に80℃程度とすることが好ましい。イオン性有機化合物の重合度(m)は1〜800、好ましくは10〜300である。アニオン交換反応の溶媒は、水を使用することが望ましいが、これに限定されるものではない。また、アニオン交換反応時間は5分から1時間程度が好ましい。反応温度は80〜100℃程度とすることが好ましい。   The ionic organic compound of the present invention represented by the general formula (1) is (A) a cyclohexanediamide compound or an aromatic compound which has a 4- (chloromethyl) benzamide group at both ends and may have a substituent. A group diamide compound and (B) an azobenzenediamide compound having a (dimethylamino) alkylene group at both ends are obtained by a condensation reaction followed by an anion exchange reaction. The condensation reaction solvent is preferably a polar organic solvent such as dimethylformamide, but is not limited thereto. The reaction time is preferably 12 to 48 hours. The reaction temperature is preferably about 50 to 80 ° C, particularly about 80 ° C. The degree of polymerization (m) of the ionic organic compound is 1 to 800, preferably 10 to 300. Although it is desirable to use water as the solvent for the anion exchange reaction, the present invention is not limited to this. The anion exchange reaction time is preferably about 5 minutes to 1 hour. The reaction temperature is preferably about 80 to 100 ° C.

(A)両末端に、4−(クロロメチル)ベンズアミド基を有するシクロヘキサンジアミド化合物または芳香族ジアミド化合物の具体例としては、trans−1,4−ビス[(4−クロロメチル)ベンズアミド]シクロヘキサン、4,4’−ビス[(4−クロロメチル)ベンズアミド]ベンズアニリドが挙げられる。   (A) As a specific example of the cyclohexanediamide compound or aromatic diamide compound having a 4- (chloromethyl) benzamide group at both ends, trans-1,4-bis [(4-chloromethyl) benzamide] cyclohexane, 4 , 4'-bis [(4-chloromethyl) benzamido] benzanilide.

また、(B)両末端に(ジメチルアミノ)アルキレン基を有するアゾベンゼンジアミド化合物の具体例としては、(E)-4,4'-(ジアゼン-1,2-ジイル)ビス(N-(2-(ジメチルアミノ)エチル)ベンズアミド)、および(E)-4,4'-(ジアゼン-1,2-ジイル)ビス(N-(3-(ジメチルアミノ)プロピル)ベンズアミド)が挙げられる。   Specific examples of (B) azobenzenediamide compounds having (dimethylamino) alkylene groups at both ends include (E) -4,4 ′-(diazene-1,2-diyl) bis (N- (2- (Dimethylamino) ethyl) benzamide), and (E) -4,4 ′-(diazen-1,2-diyl) bis (N- (3- (dimethylamino) propyl) benzamide).

上記した一般式(1)で表される、好ましいイオン性有機化合物としては、つぎの一般式(A1)で表される化合物が例として挙げられる。

Figure 0005414069
As a preferable ionic organic compound represented by the above general formula (1), a compound represented by the following general formula (A1) is exemplified.
Figure 0005414069

(式中、Xはハロゲンイオン(F,Cl,Br,I)、ビス(トリフルオロメタンスルホニル)アミド基(TFSA)、テトラフルオロホウ酸基(BF)、ヘキサフルオロリン酸基(PF)、チオシアネート(SCN)、硝酸基(NO)、硫酸基(SO)、チオ硫酸基(S)、炭酸基(CO)、炭酸水素基(HCO)、リン酸基、亜リン酸基、次亜リン酸基、各ハロゲン酸化物酸基(XO,XO,XO,XO: X=Cl,Br,I)、トリス(トリフルオロメチルスルホニル)炭素酸基、トリフルオロメチルスルホン酸基、ジシアンアミド基、酢酸基(CHCOO)、ハロゲン化酢酸基((CX3−n)COO,X=F,Cl,Br,I;n=1,2,3)、テトラフェニルホウ酸基(BPh)およびその誘導体(B(Aryl):Aryl=置換フェニル基)から選ばれた少なくとも1種を示す。nは2もしくは3、mは1〜800の整数を示す。) (In the formula, X represents a halogen ion (F, Cl, Br, I), a bis (trifluoromethanesulfonyl) amide group (TFSA), a tetrafluoroboric acid group (BF 4 ), a hexafluorophosphoric acid group (PF 6 ), Thiocyanate (SCN), nitrate group (NO 3 ), sulfate group (SO 4 ), thiosulfate group (S 2 O 3 ), carbonate group (CO 3 ), bicarbonate group (HCO 3 ), phosphate group, phosphorous group Acid group, hypophosphorous acid group, halogen oxide acid group (XO 4 , XO 3 , XO 2 , XO: X = Cl, Br, I), tris (trifluoromethylsulfonyl) carbon acid group, trifluoromethyl sulfonic acid, dicyanamide group, acetate group (CH 3 COO), haloacetic acid group ((CX n H 3-n ) COO, X = F, Cl, Br, I; n = 1,2,3), tetra Phenylborate group (BPh 4 ) and derivatives thereof (B (Aryl) 4 : Aryl = substituted phenyl group), n represents 2 or 3, and m represents an integer of 1 to 800.)

上記方法で得られた一般式(1)で表されるイオン性有機化合物は、高分子電解質として優れた性状を有する。これらの化合物において、イオン性の4級化された窒素原子とカウンターアニオンがイオン電導性を発現するキャリアとなり、また、アゾベンゼン部位が紫外光照射と白色光照射によってシス―トランス異性化を起こすことによって、主鎖構造変化を誘起している。   The ionic organic compound represented by the general formula (1) obtained by the above method has excellent properties as a polymer electrolyte. In these compounds, ionic quaternized nitrogen atoms and counter anions serve as carriers that exhibit ionic conductivity, and the azobenzene moiety undergoes cis-trans isomerization by ultraviolet light irradiation and white light irradiation. , Induced structural changes in the main chain.

以下、実施例により本発明を具体的に説明するが、以下の具体例は本発明を限定するものではない。以下の実施例において、イオン性有機化合物を製造する原料となる4−(クロロメチル)ベンゾイルクロリド、アゾベンゼン-4,4’-ジカルボニルクロリド、 N,N-ジメチルエチレンジアミン、N,N−ジメチルプロピレンジアミン、4,4’−ジアミノベンズアニリド、trans−1,4−ジアミノシクロヘキサンは東京化成工業から購入したものを用いた。脱水塩化メチレン、脱水テトラヒドロフラン(THF)、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)は、関東化学から購入したものを用いた。リチウムビス(トリフルオロメタンスルホニル)アミドは、キシダ化学から購入したものを用いた。分子量測定用のサイズ排除クロマトグラフィーシステム(島津製作所)は、カラムにShodex Asahipak GF−510 HQを使用した。フローレートは、0.4 ml/minとした。カラムの温度をカラムオーブン(島津製作所)により40℃に保った。溶離液に30mMのリチウムビス(トリフルオロメタンスルホニル)アミドを含むN,N−ジメチルホルムアミドを使用した。示差屈折計検出器により得られたクロマトグラムを基にしてポリ(メチルメタクリレート)基準で分子量を算出した。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the following specific examples do not limit this invention. In the following examples, 4- (chloromethyl) benzoyl chloride, azobenzene-4,4′-dicarbonyl chloride, N, N-dimethylethylenediamine, N, N-dimethylpropylenediamine, which are raw materials for producing ionic organic compounds 4,4′-diaminobenzanilide and trans-1,4-diaminocyclohexane were purchased from Tokyo Chemical Industry. Dehydrated methylene chloride, dehydrated tetrahydrofuran (THF), N, N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) were purchased from Kanto Chemical. The lithium bis (trifluoromethanesulfonyl) amide used was purchased from Kishida Chemical. The size exclusion chromatography system for molecular weight measurement (Shimadzu Corporation) used Shodex Asahipak GF-510 HQ for the column. The flow rate was 0.4 ml / min. The column temperature was kept at 40 ° C. by a column oven (Shimadzu Corporation). N, N-dimethylformamide containing 30 mM lithium bis (trifluoromethanesulfonyl) amide was used as the eluent. The molecular weight was calculated based on poly (methyl methacrylate) based on the chromatogram obtained by the differential refractometer detector.

(実施例1)
(E)-4,4'-(ジアゼン-1,2-ジイル)ビス(N-(2-(ジメチルアミノ)エチル)ベンズアミド)の合成

Figure 0005414069
Example 1
Synthesis of (E) -4,4 '-(diazen-1,2-diyl) bis (N- (2- (dimethylamino) ethyl) benzamide)
Figure 0005414069

アルゴン雰囲気下で、無水THF(20mL)中にN,N−ジメチルアミノエチレンジアミン(0.54mL, 4.88mmol)、トリエチルアミン(1.37mL, 9.78mmol)を導入し、氷冷下で滴下ロートを用いて、アゾベンゼン-4,4’-ジカルボニルクロリド(0.5g, 1.63mmol)を含む無水THF(20mL)を加え、そのまま終夜で攪拌した。減圧下で溶媒を除去し、塩化メチレン50mLで三回抽出を行った後、飽和食塩水および無水硫酸ナトリウムにより母液の乾燥を行った。溶液を濃縮後に、ジクロロメタン/ヘキサン混合溶媒による再結晶操作で、式(2)で表わされる目的化合物を橙色固体として得た(530mg、収率79%)。   Under an argon atmosphere, N, N-dimethylaminoethylenediamine (0.54 mL, 4.88 mmol) and triethylamine (1.37 mL, 9.78 mmol) were introduced into anhydrous THF (20 mL), and using an addition funnel under ice-cooling, azobenzene Anhydrous THF (20 mL) containing -4,4′-dicarbonyl chloride (0.5 g, 1.63 mmol) was added, and the mixture was stirred overnight. The solvent was removed under reduced pressure, extraction was performed 3 times with 50 mL of methylene chloride, and then the mother liquor was dried with saturated saline and anhydrous sodium sulfate. After concentrating the solution, the target compound represented by the formula (2) was obtained as an orange solid (530 mg, yield 79%) by recrystallization with a dichloromethane / hexane mixed solvent.

1H NMR(300 MHz, DMSO-d6):δ=8.59(t,J=5.64 Hz,-NH,1H),8.07-7.99(m,4H),3.39(t,J=6.75 Hz,2H),2.42(t,J=6.75 Hz,2H),2.18(s,6H).
UV/vis(DCM):λmax=333nm.
IR (塩化メチレン溶液,νmax/cm-1):3550,3150,1659,1605,1510,1480,1460,1275,1260.
1 H NMR (300 MHz, DMSO-d 6 ): δ = 8.59 (t, J = 5.64 Hz, -NH, 1H), 8.07-7.99 (m, 4H), 3.39 (t, J = 6.75 Hz, 2H) , 2.42 (t, J = 6.75 Hz, 2H), 2.18 (s, 6H).
UV / vis (DCM): λ max = 333 nm.
IR (methylene chloride solution, ν max / cm −1 ): 3550, 3150, 1659, 1605, 1510, 1480, 1460, 1275, 1260.

trans−1,4−ビス[(4−クロロメチル)ベンズアミド]シクロヘキサンの合成

Figure 0005414069
Synthesis of trans-1,4-bis [(4-chloromethyl) benzamide] cyclohexane
Figure 0005414069

無水塩化メチレン(200mL)中、トリエチルアミン(2.02g, 20mmol)存在下で、trans−1,4−ジアミノシクロヘキサン(1.14g, 10mmol)を懸濁させた後、4−(クロロメチル)ベンゾイルクロリド(3.78g, 20mmol)を含む無水塩化メチレン(50mL)溶液を、滴下ロートを用いて加え、室温で18時間攪拌を行った。生成した沈殿物を濾別し、塩化メチレンで洗浄した後、乾燥させることで目的物を無色粉末として得た(4.0g, 96%)。   After trans-1,4-diaminocyclohexane (1.14 g, 10 mmol) was suspended in anhydrous methylene chloride (200 mL) in the presence of triethylamine (2.02 g, 20 mmol), 4- (chloromethyl) benzoyl chloride (3.78 g, 20 mmol) in anhydrous methylene chloride (50 mL) was added using a dropping funnel, and the mixture was stirred at room temperature for 18 hours. The produced precipitate was separated by filtration, washed with methylene chloride, and dried to obtain the desired product as a colorless powder (4.0 g, 96%).

1H NMR(300 MHz, DMSO-d6):δ=8.26(d,J=7.9 Hz,2H,-NH),7.80(d,J=8.2 Hz,4H,Ph-H),7.47(d,J=8.3 Hz,4H,Ph-H),4.77(s,4H,-CH2Cl),3.73(br s,2H,cyclohexyl-CH),1.86(d,J=5.9 Hz,4H,cyclohexyl-CH2),1.42(t,J=10.7 Hz,4H,cyclohexyl-CH2).
IR(DMSO, νmax/cm-1):3456,1648,1541,1504,1318,1228.
1 H NMR (300 MHz, DMSO-d 6 ): δ = 8.26 (d, J = 7.9 Hz, 2H, -NH), 7.80 (d, J = 8.2 Hz, 4H, Ph-H), 7.47 (d, J = 8.3 Hz, 4H, Ph-H), 4.77 (s, 4H, -CH 2 Cl), 3.73 (br s, 2H, cyclohexyl-CH), 1.86 (d, J = 5.9 Hz, 4H, cyclohexyl-CH 2 ), 1.42 (t, J = 10.7 Hz, 4H, cyclohexyl-CH 2 ).
IR (DMSO, ν max / cm −1 ): 3456, 1648, 1541, 1504, 1318, 1228.

イオン性有機化合物の合成(I)

Figure 0005414069
Synthesis of ionic organic compounds (I)
Figure 0005414069

式(2)の化合物(0.080g,0.21mmol)、および(3)で表わされる化合物(0.090g, 0.21mmol)を、DMF(15mL)中、80℃で48時間攪拌した。室温まで冷却後に、沈殿物を濾別することで、上記の式(4)で表されるイオン性有機化合物を収率55%で得た。
IR(D2O,νmax/cm-1):1628,1574,1451,1233,1210,1156.
後述するTFSAアニオン交換誘導体の結果より、サイズ排除クロマトグラフィーの測定から求められた分子量分布において、カチオン主鎖部分の数平均分子量:Mn=2.35×104Da、重量平均分子量:Mw=6.98×104Da、分子量分布の分散度:Mw/Mn=2.9.
The compound of the formula (2) (0.080 g, 0.21 mmol) and the compound represented by (3) (0.090 g, 0.21 mmol) were stirred in DMF (15 mL) at 80 ° C. for 48 hours. After cooling to room temperature, the precipitate was filtered off to obtain the ionic organic compound represented by the above formula (4) in a yield of 55%.
IR (D 2 O, ν max / cm −1 ): 1628, 1574, 1451, 1233, 1210, 1156.
From the results of the TFSA anion exchange derivative described later, in the molecular weight distribution obtained from the measurement of size exclusion chromatography, the number average molecular weight of the cation main chain portion: M n = 2.35 × 10 4 Da, the weight average molecular weight: M w = 6.98 × 10 4 Da, degree of dispersion of molecular weight distribution: M w / M n = 2.9.

(実施例2)
上記の実施例1で得られた、式(4)で表わされるイオン性有機化合物を用いて、0.6×10-5M濃度の水溶液を調製し、その溶液を石英セル中に入れて水銀灯による紫外光照射を行ったところ、図1に示すような、照射時間に依存した紫外吸収スペクトルの変化が観測された。
なお、図中、uvは、紫外線光照射、visは、可視光照射を示す。
図1から、330nm付近の、トランス体アゾベンゼンに由来する吸収極大ピークが時間と共に減少し、それと共に長波長側の440nm付近の吸収強度が増大して、シス体の生成が起こっていることが示唆された。この変化は、下記の式に示すようなアゾベンゼンの光照射による構造異性化に典型的な吸収スペクトル変化であり、主鎖中のアゾベンゼン部位が効率よく光に応答して異性化していることを表している。また、この異性化後の溶液に、長波長側の可視光を照射することによって、シス体からトランス体への戻り反応が起こり、当初のスペクトル形状が回復することも確認された。
(Example 2)
Using the ionic organic compound represented by the formula (4) obtained in Example 1 above, an aqueous solution having a concentration of 0.6 × 10 −5 M was prepared, and the solution was placed in a quartz cell, and ultraviolet light from a mercury lamp was used. When light irradiation was performed, changes in the ultraviolet absorption spectrum depending on the irradiation time as shown in FIG. 1 were observed.
In the figure, uv represents ultraviolet light irradiation, and vis represents visible light irradiation.
Fig. 1 suggests that the absorption maximum peak derived from trans azobenzene at around 330 nm decreases with time, and the absorption intensity at around 440 nm on the long wavelength side increases with the occurrence of cis isomer. It was done. This change is a typical change in absorption spectrum due to structural isomerization of azobenzene by light irradiation as shown in the following formula. It indicates that the azobenzene moiety in the main chain is isomerized in response to light efficiently. ing. It was also confirmed that when the isomerized solution was irradiated with visible light on the long wavelength side, a return reaction from the cis form to the trans form occurred and the original spectral shape was recovered.

Figure 0005414069
Figure 0005414069

(実施例3)
イオン性有機化合物の合成(II):アニオン交換反応

Figure 0005414069
(Example 3)
Synthesis of ionic organic compounds (II): anion exchange reaction
Figure 0005414069

上記実施例1で得られた式(4)で表される高分子電解質(50 mg)を80℃で水(20 mL)に溶かし、その溶液に0.4M濃度のリチウムビス(トリフルオロメタンスルホニル)アミド(Li-TFSA)水溶液(5 mL)を加えると、上記の式(5)で表される光応答性高分子電解質の沈殿物が生じた(収率87%)。   The polymer electrolyte (50 mg) represented by the formula (4) obtained in Example 1 was dissolved in water (20 mL) at 80 ° C., and 0.4 M concentration of lithium bis (trifluoromethanesulfonyl) was added to the solution. When an aqueous amide (Li-TFSA) solution (5 mL) was added, a precipitate of photoresponsive polymer electrolyte represented by the above formula (5) was formed (yield 87%).

1H NMR(300MHz,DMSO-d6):δ=9.04(-NH),8.39(-NH),8.09-7.96(m),7.65-7.69(m),4.68(s),3.85(br s),3.56(br s),3.07(s,-N+(CH3)2-),1.91(br s),1.50(br s).
サイズ排除クロマトグラフィーの測定から求められた分子量分布において、カチオン基を有する主鎖部分の数平均分子量:Mn=2.35×104Da、重量平均分子量:Mw=6.98×104Da、分子量分布の分散度:Mw/Mn=2.9.
1 H NMR (300 MHz, DMSO-d 6 ): δ = 9.04 (-NH), 8.39 (-NH), 8.09-7.96 (m), 7.65-7.69 (m), 4.68 (s), 3.85 (br s) , 3.56 (br s), 3.07 (s, -N + (CH 3 ) 2- ), 1.91 (br s), 1.50 (br s).
In the molecular weight distribution obtained from the measurement of size exclusion chromatography, the number average molecular weight of the main chain portion having a cationic group: M n = 2.35 × 10 4 Da, weight average molecular weight: M w = 6.98 × 10 4 Da, molecular weight distribution Degree of dispersion: M w / M n = 2.9.

(実施例4)
(E)-4,4'-(ジアゼン-1,2-ジイル)ビス(N-(3-(ジメチルアミノ)プロピル)ベンズアミド)の合成

Figure 0005414069
Example 4
Synthesis of (E) -4,4 '-(diazen-1,2-diyl) bis (N- (3- (dimethylamino) propyl) benzamide)
Figure 0005414069

前述した式(2)で表わされる化合物の合成において、N,N−ジメチルアミノエチレンジアミンの代わりに、N,N−ジメチルプロピレンジアミンを用いることで、式(6)で表わされる目的化合物を得た(収率96%)。   In the synthesis of the compound represented by the formula (2) described above, the target compound represented by the formula (6) was obtained by using N, N-dimethylpropylenediamine instead of N, N-dimethylaminoethylenediamine ( Yield 96%).

1H NMR(300 MHz,DMSO-d6):δ=8.71(t,J=5.61 Hz,-NH,1H),8.07-7.97(m,4H),3.30(t,J=6.90 Hz,2H),2.27(d,J=7.02 Hz,2H),2.09(s,6H),1.69-1.65(q,2H).
IR(DCM, νmax/cm-1):3564,2953,1652,1605,1554,1431,1242,1100.
UV/vis(DCM):λmax=334nm.
1 H NMR (300 MHz, DMSO-d 6 ): δ = 8.71 (t, J = 5.61 Hz, -NH, 1H), 8.07-7.97 (m, 4H), 3.30 (t, J = 6.90 Hz, 2H) 2.27 (d, J = 7.02 Hz, 2H), 2.09 (s, 6H), 1.69-1.65 (q, 2H).
IR (DCM, ν max / cm −1 ): 3564, 2953, 1652, 1605, 1554, 1431, 1242, 1100.
UV / vis (DCM): λ max = 334 nm.

イオン性有機化合物の合成(III)

Figure 0005414069
Synthesis of ionic organic compounds (III)
Figure 0005414069

上記実施例1の縮合反応において、式(2)で表わされる化合物の代わりに式(6)のアゾベンゼン化合物を用いて反応を行い、上記式(7)の光応答性高分子電解質を得た(収率70%)。   In the condensation reaction of Example 1 above, the reaction was carried out using the azobenzene compound of Formula (6) instead of the compound represented by Formula (2) to obtain a photoresponsive polymer electrolyte of Formula (7) ( Yield 70%).

(実施例5)
4,4’−ビス[(4−クロロメチル)ベンズアミド]ベンズアニリドの合成

Figure 0005414069
(Example 5)
Synthesis of 4,4'-bis [(4-chloromethyl) benzamido] benzanilide
Figure 0005414069

上記実施例1において、trans−1,4−ジアミノシクロヘキサンの代わりに4,4’−ジアミノベンズアニリドを用いて反応を行い、上記式(8)の目的物を得た(収率99%)。
IR(DMSO,νmax/cm-1):3458,1662,1517,1403,1317,1278,1184.
In Example 1, the reaction was carried out using 4,4′-diaminobenzanilide instead of trans-1,4-diaminocyclohexane to obtain the desired product of the above formula (8) (99% yield).
IR (DMSO, ν max / cm -1 ): 3458,1662,1517,1403,1317,1278,1184.

イオン性有機化合物の合成

Figure 0005414069
Synthesis of ionic organic compounds
Figure 0005414069

上記、実施例4の縮合反応において、式(3)で表わされるアミド化合物の代わりに、上記式(8)のアミド化合物を用いて反応を行い、上記式(9)のイオン性有機化合物を得た(収率70%)。   In the condensation reaction of Example 4, the reaction is carried out using the amide compound of the above formula (8) instead of the amide compound represented by the formula (3) to obtain the ionic organic compound of the above formula (9). (Yield 70%).

IR(D2O,νmax/cm-1):1651,1574,1516,1458,1438,1383,1230,1162.
後述するTFSAアニオン交換誘導体の結果より、サイズ排除クロマトグラフィーの測定から求められた分子量分布において、カチオン基を有する主鎖部分の数平均分子量:Mn=1.81×104Da、重量平均分子量:Mw=3.21×104Da、分子量分布の分散度:Mw/Mn=1.8.
IR (D 2 O, ν max / cm −1 ): 1651, 1574, 1516, 1458, 1438, 1383, 1230, 1162.
From the result of TFSA anion exchange derivative described later, in the molecular weight distribution obtained from the measurement of size exclusion chromatography, the number average molecular weight of the main chain portion having a cation group: M n = 1.81 × 10 4 Da, weight average molecular weight: M w = 3.21 × 10 4 Da, degree of dispersion of molecular weight distribution: M w / M n = 1.8.

(実施例5)
イオン性有機化合物の合成:アニオン交換反応

Figure 0005414069
(Example 5)
Synthesis of ionic organic compounds: anion exchange reaction
Figure 0005414069

上記実施例2において、式(4)のイオン性有機化合物の代わりに、上記式(9)のイオン性有機化合物を用いて、上記の式(10)で表されるイオン性有機化合物の沈殿物が生じた(収率85%)。   In the said Example 2, instead of the ionic organic compound of Formula (4), using the ionic organic compound of said Formula (9), the deposit of the ionic organic compound represented by said Formula (10) (Yield 85%).

1H NMR(300 MHz,DMSO-d6):δ=10.61(-NH),10.35(-NH),10.18(-NH),8.09-7.86(m),7.76-7.70(m),4.63(s),3.34(br s),3.01(s,-N+(CH3)2-),2.14(br s).
サイズ排除クロマトグラフィーの測定から求められた分子量分布において、カチオン基を有する主鎖部分の数平均分子量:Mn=1.81×104Da、重量平均分子量:Mw=3.21×104Da、分子量分布の分散度:Mw/Mn=1.8.
1 H NMR (300 MHz, DMSO-d 6 ): δ = 10.61 (-NH), 10.35 (-NH), 10.18 (-NH), 8.09-7.86 (m), 7.76-7.70 (m), 4.63 (s ), 3.34 (br s), 3.01 (s, -N + (CH 3 ) 2- ), 2.14 (br s).
In the molecular weight distribution obtained from the measurement of size exclusion chromatography, the number average molecular weight of the main chain portion having a cationic group: M n = 1.81 × 10 4 Da, the weight average molecular weight: M w = 3.21 × 10 4 Da, the molecular weight distribution Degree of dispersion: M w / M n = 1.8.

本発明で得られるイオン性有機化合物は、擬固体高分子電解質として、電池のような蓄電デバイスに用いることが可能と考えられる。さらに光応答性高分子電解質は、イオン伝導度を光刺激によって制御し得る性質を利用した、スイッチング素子としての利用も期待できる。   It is considered that the ionic organic compound obtained by the present invention can be used as a quasi-solid polymer electrolyte for an electricity storage device such as a battery. Further, the photoresponsive polymer electrolyte can be expected to be used as a switching element utilizing the property that the ionic conductivity can be controlled by light stimulation.

Claims (5)

下記の一般式(1)で表されるイオン性有機化合物
Figure 0005414069
(式中、Aは置換基を有してもよいシクロヘキサン環または芳香環を1個以上有する連結部位からなる連結部位、Xは1価のアニオンを示す。nは2もしくは3、mは1〜800の整数を示す。)
Ionic organic compounds represented by the following general formula (1)
Figure 0005414069
(In the formula, A represents a linking site comprising a linking site having at least one cyclohexane ring or aromatic ring which may have a substituent, X represents a monovalent anion, n represents 2 or 3, and m represents 1 to 1. Indicates an integer of 800.)
(A)両末端に4−(クロロメチル)ベンズアミド基を有し、置換基を有してもよいシクロヘキサンジアミド化合物又は芳香族ジアミド化合物と、(B)両末端に(ジメチルアミノ)アルキレン基を有するアゾベンゼンジアミド化合物を、縮合反応させることを特徴とする請求項1に記載のイオン性有機化合物の製造方法。   (A) Cyclohexanediamide compound or aromatic diamide compound which has a 4- (chloromethyl) benzamide group at both ends and may have a substituent, and (B) has a (dimethylamino) alkylene group at both ends The method for producing an ionic organic compound according to claim 1, wherein the azobenzenediamide compound is subjected to a condensation reaction. 前記縮合反応をジメチルホルムアミド中で、50〜80℃で行うことを特徴とする請求項2に記載のイオン性有機化合物の製造方法。   The method for producing an ionic organic compound according to claim 2, wherein the condensation reaction is carried out in dimethylformamide at 50 to 80 ° C. さらに、得られたイオン性有機化合物のアニオンをアニオン交換反応により他のアニオンに置換することを特徴とする請求項2又は3に記載のイオン性有機化合物の製造方法。   Furthermore, the anion of the obtained ionic organic compound is substituted by another anion by anion exchange reaction, The manufacturing method of the ionic organic compound of Claim 2 or 3 characterized by the above-mentioned. 請求項1に記載のイオン性有機化合物を有効成分とする光応答性高分子電解質。
A photoresponsive polymer electrolyte comprising the ionic organic compound according to claim 1 as an active ingredient.
JP2010236948A 2010-10-22 2010-10-22 Ionic organic compound, method for producing the same, and photoresponsive polymer electrolyte using the same Active JP5414069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010236948A JP5414069B2 (en) 2010-10-22 2010-10-22 Ionic organic compound, method for producing the same, and photoresponsive polymer electrolyte using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010236948A JP5414069B2 (en) 2010-10-22 2010-10-22 Ionic organic compound, method for producing the same, and photoresponsive polymer electrolyte using the same

Publications (2)

Publication Number Publication Date
JP2012087259A JP2012087259A (en) 2012-05-10
JP5414069B2 true JP5414069B2 (en) 2014-02-12

Family

ID=46259238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010236948A Active JP5414069B2 (en) 2010-10-22 2010-10-22 Ionic organic compound, method for producing the same, and photoresponsive polymer electrolyte using the same

Country Status (1)

Country Link
JP (1) JP5414069B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187985A1 (en) * 2016-04-26 2017-11-02 国立研究開発法人産業技術総合研究所 Ionic compound and photoresponsive nano carbon material dispersant
CN116396323A (en) * 2023-04-13 2023-07-07 四川启睿克科技有限公司 Azobenzene electrolyte, synthesis method, application and solid-state battery and preparation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023151A (en) * 2003-06-30 2005-01-27 Jsr Corp Optically driven actuator, molecular valve and photoresponsive material
EP2330143A4 (en) * 2008-09-08 2014-04-02 Nat Inst Of Advanced Ind Scien Ionic organic compound, production method thereof, hydrogelling agent composed of the ionic organic compound, hydrogel containing same, methanol gelling agent, methanol gel containing same, and carbon nanotube dispersant

Also Published As

Publication number Publication date
JP2012087259A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP4643761B2 (en) Novel cross-linked hexaarylbisimidazole compound and derivative thereof, method for producing the compound, and precursor compound used in the method
Nakabayashi et al. RAFT polymerization of S-vinyl sulfide derivatives and synthesis of block copolymers having two distinct optoelectronic functionalities
CN108084450B (en) Polymerization complex containing vinylphenyl and p-vinylphenol methylamine derivative cadmium and preparation method and application thereof
WO2015040031A1 (en) Electrochromic two-core viologen derivatives and optical articles containing them
CN104292151B (en) Novel viologen compounds and their preparation
Yen et al. Synthesis and unexpected electrochemical behavior of the triphenylamine‐based aramids with ortho‐and para‐trimethyl‐protective substituents
Marin et al. Polymeric ruthenium bipyridine complexes: New potential materials for polymer solar cells
EP3131951A1 (en) Hydroxide-stable ionenes
JP5414069B2 (en) Ionic organic compound, method for producing the same, and photoresponsive polymer electrolyte using the same
CN107163080B (en) Stimulus-responsive triphenylene photochromic material and synthesis method and application thereof
CN106103498B (en) Photoinduction free radical and/or cationic photopolymerization method
US20220298169A1 (en) Spiropyran hydrogels and light-driven expansion thereof
CN109879860B (en) Small molecular hole transport material applied to solution processing type organic electroluminescent device
JP2004263153A (en) Amine-curing type epoxy resin electrolyte having sulfonic acid group and method for producing the same
US9024037B1 (en) Two-photon absorbing polymers based on triarylamine-benzobisthiazole-triarylamine quadrupolar-structure motif
Yamaguchi et al. Ionic helical polymers with expanded π-conjugation system derived from through-space interaction in piperazinium ring and their spontaneous dynamic conformational changes
Lygaitis et al. Synthesis and photophysical properties of bipolar low-molar-mass amorphous materials
JP6317588B2 (en) Azobenzene compound and heat pump system using the same
JP2009062477A (en) Photoresponsive ionic liquid
JP2008195674A (en) Rare earth metal complex graft-copolymerizable with eva resin and method for producing the same
Yamaguchi et al. Eco-friendly synthesis of ionic helical polymers and their chemical properties and reactivity
Yamaguchi et al. Synthesis and Chemical Properties of Diacetylenes with Pyridinium and 4, 4′‐Bipyridinium Groups
Kanji et al. Thermally stable carbamates as novel photobase generator
TW202138347A (en) Compound
Chang et al. Synthesis, characterization and properties of poly (N-allyl-tetrasubstituted imidazole)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

R150 Certificate of patent or registration of utility model

Ref document number: 5414069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250