JP5414058B2 - Thermal diffusivity measuring device - Google Patents

Thermal diffusivity measuring device Download PDF

Info

Publication number
JP5414058B2
JP5414058B2 JP2010053333A JP2010053333A JP5414058B2 JP 5414058 B2 JP5414058 B2 JP 5414058B2 JP 2010053333 A JP2010053333 A JP 2010053333A JP 2010053333 A JP2010053333 A JP 2010053333A JP 5414058 B2 JP5414058 B2 JP 5414058B2
Authority
JP
Japan
Prior art keywords
sample
thermal diffusivity
shape
laser beam
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010053333A
Other languages
Japanese (ja)
Other versions
JP2011185852A (en
Inventor
貴志 八木
英幸 加藤
清治 村井
めぐみ 阿子島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010053333A priority Critical patent/JP5414058B2/en
Publication of JP2011185852A publication Critical patent/JP2011185852A/en
Application granted granted Critical
Publication of JP5414058B2 publication Critical patent/JP5414058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、周期加熱放射測温法を用いた熱拡散率測定装置に関する。   The present invention relates to a thermal diffusivity measuring apparatus using a periodic heating radiation temperature measuring method.

従来、材料の熱拡散率を測定するために試料の一部に周期的に加熱を加え加熱した位置からある距離を離れた部分の温度測定を行い、その温度変化の周期より熱拡散率を得る方法および装置が知られている。
例えば、特許文献1には、薄い測定試料の両面に導電性の薄膜を形成し、ジュール加熱による熱源と抵抗式温度計を用いた厚さ方向の熱拡散率の測定方法および装置が記載されている。特許文献2には、被測定試料板に帯状の熱エネルギーを照射し、前記被測定試料板の非照射部に固着した温度検出素子により温度を測定し、面内方向の熱拡散率を得る測定方法および装置が記載されている。特許文献3には、レンズ機能付き光ファイバを用いたレーザ照射による試料の加熱と赤外光検知器による温度測定を用いる装置および測定法が記載されている。
Conventionally, in order to measure the thermal diffusivity of a material, a part of a sample is periodically heated, and the temperature of a part away from the heated position is measured, and the thermal diffusivity is obtained from the cycle of the temperature change. Methods and apparatus are known.
For example, Patent Document 1 describes a method and an apparatus for measuring the thermal diffusivity in the thickness direction using a heat source by Joule heating and a resistance thermometer by forming a conductive thin film on both sides of a thin measurement sample. Yes. In Patent Document 2, a measurement sample plate is irradiated with a band-shaped thermal energy, a temperature is measured by a temperature detection element fixed to a non-irradiated portion of the measurement sample plate, and a thermal diffusivity in an in-plane direction is obtained. Methods and apparatus are described. Patent Document 3 describes an apparatus and a measurement method using heating of a sample by laser irradiation using an optical fiber with a lens function and temperature measurement by an infrared light detector.

特許第2591570号公報Japanese Patent No. 2591570 特公平7−65976号公報Japanese Patent Publication No. 7-65976 特開2009−139163号公報JP 2009-139163 A

しかしながら、特許文献1に記載の例では、厚さ方向の熱拡散率測定を行うために試料には加熱手段と温度測定の手段として導電性薄膜を利用し、これをもって試料の厚さ方向に均質な1次元の熱拡散場を形成するが、この導電性膜が施された部位の平均的な熱拡散率を得るので、試料の特定な興味のある場所を選択して測定を行うことはできない。さらに前記導電性薄膜の形成のための特別な手順および設備を要する。
特許文献2に記載の例では、帯状に熱エネルギーを照射する手段を備え、前記帯状の照射部の両側の試料面内に広く一次元熱拡散場を形成することができるが、その照射形状を変える手段を持たないので、試料の大きさは装置に決まったサイズでなければならない。また、温度測定を試料に固着した素子で行うため、その素子を設置するための手順が必要である。また、試料を挟んで片面に加熱源を配置し、その半対面に温度測定部を配置して前記加熱源と前記温度測定部との水平距離を制御する構成においては、試料の面内方向の熱拡散率を測定するために試料の厚みの影響を除外する必要があり、試料の面方向のみの熱拡散場を仮定できる条件を実現するために加熱位置と温度測定部との距離が試料の厚みよりも充分に長い距離として測定を行わなければならない。このようなことから試料の熱拡散率は全面に渡って均質な材料を測定することが前提となっている。
上記の特許文献1および2の例では、いずれも試料の加熱手段と温度測定手段のいずれかもしくは両方において変更の自由度はなく、熱拡散率が均質な試料を評価するための装置構成となっている。
特許文献3では、レンズ機能付き光ファイバと移動可能な赤外光検知器による温度測定手段を備え、該光ファイバを上下動させることにより任意のスポット径に調整する手段を備えるので、試料の特定の場所における熱拡散率測定を可能としている。しかし、照射形状の変更可能なのはスポット径の大きさのみであり形状そのものを変更することはできないので、例えば厚さ方向の熱拡散率測定において最適な照射形状を与えることはできない。また、また赤外光検知器を移動して試料の任意の箇所の温度測定が可能であるが、該赤外光検知器自体を移動させる機構であるため、質量と容積の大きい該検知器を保持し移動させるためには高価かつ強力な移動ステージと大きな空間が必要であり、ひいては装置全体の大きさを増大させる原因となっていた。また、前記特許文献2の例と同様に、試料を挟んで片面に加熱源を配置しその半対面に温度測定部を配置して前記加熱源と前記温度測定部との水平距離を制御する構成においては、試料の面内方向の熱拡散率を測定するために試料の厚みの影響を除外する必要があり、試料の面方向のみの熱拡散場を仮定できる条件を実現するために加熱位置と温度測定部との距離が試料の厚みよりも充分に長い距離として測定を行わなければならない。
However, in the example described in Patent Document 1, in order to measure the thermal diffusivity in the thickness direction, the sample uses a conductive thin film as a heating means and a temperature measurement means, and this is used in a uniform direction in the thickness direction of the sample. A one-dimensional thermal diffusion field is formed, but since an average thermal diffusivity of the portion where the conductive film is applied is obtained, measurement cannot be performed by selecting a specific place of interest of the sample. . Furthermore, special procedures and equipment for forming the conductive thin film are required.
In the example described in Patent Document 2, a means for irradiating heat energy in a band shape is provided, and a one-dimensional thermal diffusion field can be widely formed in the sample surface on both sides of the band-shaped irradiation unit. Since there is no means to change, the size of the sample must be determined by the apparatus. Further, since temperature measurement is performed with an element fixed to a sample, a procedure for installing the element is required. In addition, in the configuration in which the heating source is arranged on one side of the sample and the temperature measuring unit is arranged on the half-facing side to control the horizontal distance between the heating source and the temperature measuring unit, the in-plane direction of the sample In order to measure the thermal diffusivity, it is necessary to exclude the influence of the thickness of the sample, and in order to realize a condition that can assume a thermal diffusion field only in the surface direction of the sample, the distance between the heating position and the temperature measurement unit is The measurement must be performed at a distance sufficiently longer than the thickness. For this reason, the thermal diffusivity of the sample is premised on measuring a homogeneous material over the entire surface.
In the examples of Patent Documents 1 and 2 described above, there is no degree of freedom of change in either or both of the sample heating means and the temperature measurement means, and the apparatus configuration for evaluating a sample having a uniform thermal diffusivity is obtained. ing.
In Patent Document 3, a temperature measuring means using an optical fiber with a lens function and a movable infrared light detector is provided, and a means for adjusting to an arbitrary spot diameter is provided by moving the optical fiber up and down. It is possible to measure the thermal diffusivity at the location. However, the irradiation shape can be changed only by the size of the spot diameter, and the shape itself cannot be changed. Therefore, for example, an optimal irradiation shape cannot be given in the thermal diffusivity measurement in the thickness direction. In addition, the infrared light detector can be moved to measure the temperature of an arbitrary part of the sample, but since the infrared light detector itself is moved, the detector having a large mass and volume can be used. In order to hold and move, an expensive and powerful moving stage and a large space are required, which in turn increases the overall size of the apparatus. Similarly to the example of Patent Document 2, a heating source is arranged on one side of a sample and a temperature measuring unit is arranged on a half-facing surface to control a horizontal distance between the heating source and the temperature measuring unit. In order to measure the thermal diffusivity in the in-plane direction of the sample, it is necessary to exclude the influence of the thickness of the sample, and in order to realize a condition that can assume a thermal diffusion field only in the plane direction of the sample, The measurement must be performed with the distance from the temperature measurement unit being sufficiently longer than the thickness of the sample.

本発明の目的は、前記の背景技術における問題点を解消するために、加熱レーザビームの照射形状をスポット形状、ライン形状、円形状に容易に変換しこれらを選択できることで、試料の面積が小さい場合や部分的な測定が行いたい場合にはスポット形状による照射を適用し、均質かつ薄い材料において面内方向の熱拡散率を精密に測定する場合にはライン形状の照射を適用し、厚さ方向の熱拡散率を測定する場合には厚み方向に沿った1次元熱拡散場を形成するための広い円形状の照射を適用することで、材料の形状や測定の方向に合わせた最適な測定を行うことができるようにすることを目的とする。
さらに、温度測定に赤外光ファイバを活用することで放射測温による温度測定位置の移動に際して動作ステージの小型化を達成し、装置全体の小型化および低価格化を図ることを目的とする。
さらに、試料を挟んで片面側に加熱源を配置し、その半対面側に温度測定部を配置し、両者の水平距離を制御する構成において、試料の厚さの影響に寄らず正確な熱拡散率を得ることを目的とする。
The object of the present invention is to reduce the area of the sample by easily converting the irradiation shape of the heating laser beam into a spot shape, a line shape, and a circular shape and selecting these in order to solve the problems in the background art. In some cases or when partial measurement is desired, use spot-shaped irradiation, and to accurately measure the thermal diffusivity in the in-plane direction for a homogeneous and thin material, apply line-shaped irradiation and thickness. When measuring the thermal diffusivity in the direction, by applying a wide circular irradiation to form a one-dimensional thermal diffusion field along the thickness direction, the optimal measurement according to the shape of the material and the direction of measurement The purpose is to be able to perform.
It is another object of the present invention to achieve downsizing of the operation stage by moving the temperature measurement position by radiation temperature measurement by utilizing an infrared optical fiber for temperature measurement, thereby reducing the size and cost of the entire apparatus.
In addition, a heat source is placed on one side of the sample, a temperature measurement unit is placed on the half-facing side, and the horizontal distance between the two is controlled. The purpose is to get rates.

上記課題を解決するために、本発明の熱拡散率測定装置は、試料にレーザビームを周波数fで周期的に照射するための加熱レーザビーム照射手段と、試料のある一点から放射される赤外光を集光するための赤外光集光手段とが、試料を挟みそれぞれ対向する位置に配置され、試料の周期的な温度変化から熱拡散率の測定を行う周期加熱放射測温法熱物性測定装置において、前記加熱レーザビーム照射手段が、試料面における照射形状を任意の形状に変換制御するための光学系を備えており、前記赤外光集光手段をXY方向に移動させるための移動手段を備え、前記赤外光集光手段により集光された赤外光を放射温度計まで導く赤外用ファイバを備え、前記放射温度計の温度変化の周期と前記加熱レーザビームの周期との位相差θを測定し、当該位相差θと前記周波数fから熱拡散率を演算する制御手段を備えることを特徴とする。
また、本発明の熱物性測定装置は、さらに前記加熱レーザビーム照射手段とは、加熱レーザビームの照射形状をスポット形状、円形状、ライン形状のいずれかに変換し選択する光学系であることを特徴とする。
また、本発明の熱拡散率測定装置は、さらに前記制御手段とは、前記位相差θと(l+d0.5の直線関係の傾きhと前記周波数fからπf/hを演算して熱拡散率を求める、ただし、lは前記照射形状の中心位置と前記赤外光集光手段により集光した試料の領域の中心位置との水平距離、dは試料の厚さであることを特徴とする。
また、本発明の熱拡散率測定装置を用いた熱拡散率測定方法は、試料の表面に加熱レーザビームを周波数fで周期的に照射する加熱ステップと、前記赤外光集光手段の位置を前記XYステージにより試料と水平な面内において一軸方向に移動する移動ステップと、前記移動ステップごとに前記放射温度計によって試料の温度変化の周期を検知し前記加熱レーザビームの周期との位相差を測定する位相差測定ステップと、記加熱レーザビーム照射手段により照射された照射形状の中心位置と前記赤外光集光手段により集光した試料の領域の中心位置との水平距離をlとし、試料の厚さをdとし、前記位相差測定ステップで得られた位相差をθとしたときに、前記θと(l+d0.5の直線関係の傾きhと前記周波数fからπf/hを演算して熱拡散率を求めるステップとを備えることを特徴とする。
In order to solve the above problems, a thermal diffusivity measuring apparatus according to the present invention comprises a heating laser beam irradiation means for periodically irradiating a sample with a laser beam at a frequency f, and an infrared ray emitted from a certain point of the sample. Infrared light condensing means for condensing light are placed at positions facing each other across the sample, and periodic heating radiation thermometry method that measures the thermal diffusivity from the periodic temperature change of the sample In the measuring apparatus, the heating laser beam irradiating means includes an optical system for controlling the irradiation shape on the sample surface to an arbitrary shape, and moves to move the infrared light condensing means in the XY directions. And an infrared fiber for guiding the infrared light collected by the infrared light collecting means to a radiation thermometer, and the order of the temperature change period of the radiation thermometer and the period of the heating laser beam. Measure the phase difference θ and Characterized in that it comprises a control means for calculating the thermal diffusivity from the phase difference θ between the frequency f.
Further, in the thermophysical property measuring apparatus of the present invention, the heating laser beam irradiation means is an optical system that converts the irradiation shape of the heating laser beam into a spot shape, a circular shape, or a line shape and selects it. Features.
Further, in the thermal diffusivity measuring apparatus of the present invention, the control means further calculates πf / h 2 from the phase difference θ and the slope h of the linear relationship of (l 2 + d 2 ) 0.5 and the frequency f. Where l is the horizontal distance between the center position of the irradiation shape and the center position of the sample region collected by the infrared light collecting means, and d is the thickness of the sample. It is characterized by.
The thermal diffusivity measuring method using the thermal diffusivity measuring apparatus of the present invention comprises a heating step of periodically irradiating a surface of a sample with a heating laser beam at a frequency f, and a position of the infrared light condensing means. A moving step that moves in a uniaxial direction within a plane parallel to the sample by the XY stage, and a period of temperature change of the sample is detected by the radiation thermometer at each moving step, and a phase difference from the period of the heating laser beam is detected. The horizontal distance between the phase difference measurement step to be measured, the center position of the irradiation shape irradiated by the heating laser beam irradiation means and the center position of the sample region condensed by the infrared light focusing means is defined as l, Where d is the thickness of the phase difference and θ is the phase difference obtained in the phase difference measurement step, the inclination h of the linear relationship of θ and (l 2 + d 2 ) 0.5 and the frequency f to πf / the h 2 Calculated to, characterized in that it comprises a step of obtaining the thermal diffusivity.

本発明によれば、加熱レーザビームの照射形状をスポット形状、ライン形状、円形状に任意に変換可能とすることによって、試料の形状や熱拡散率の測定の方向に合わせた最適な加熱手段を提供することが可能である。これにより従来の測定装置では横方向の測定や厚さ方向の測定または試料の部分的な測定などに機能が特化していたものをひとつの装置で実現することができる。また光学系の交換に際しては、それ以外の装置構成には一切干渉せずに実現できるので時間的にも費用的にもコストの大幅な低減を実現可能である。
さらに、赤外ファイバを活用した放射測温方式により、測温位置の移動機構として従来よりも大幅に小型なXYステージを利用することが可能になり、また、従来装置の中で非常に大きな空間を占めていた赤外光検知器の動作空間を削減し、装置全体の小型化に寄与する。
さらに、厚さdの試料を挟んで片面側に加熱源を配置し、その半対面側に温度測定部を配置し、両者の水平距離lを制御する構成とした場合に、従来は厚さの影響が無視できるまでlを大きくして測定を行う必要があったものを、前記lの替わりに(l+d0.5の長さを用いることで面積の小さな試料のようにlが小さくならざるを得ない場合であっても正確な熱拡散率の値を得ることができるようになる。
According to the present invention, by making it possible to arbitrarily convert the irradiation shape of the heating laser beam into a spot shape, a line shape, or a circular shape, an optimum heating means that matches the direction of measurement of the shape of the sample and the thermal diffusivity is provided. It is possible to provide. As a result, in the conventional measuring apparatus, it is possible to realize what has specialized functions for measuring in the lateral direction, measuring in the thickness direction, or partially measuring the sample with a single apparatus. In addition, the replacement of the optical system can be realized without interfering with any other device configuration, so that the cost can be greatly reduced in terms of time and cost.
In addition, the radiation temperature measurement method using infrared fibers makes it possible to use a much smaller XY stage than the conventional movement mechanism for the temperature measurement position. This reduces the operating space of the infrared light detector, which contributes to the downsizing of the entire device.
Further, when a heating source is arranged on one side of a sample having a thickness d and a temperature measuring unit is arranged on the half-facing side, and the horizontal distance l of both is controlled, When it was necessary to perform measurement while increasing l until the influence could be ignored, instead of the l, the length of (l 2 + d 2 ) 0.5 was used, so that l Even when it is unavoidable, an accurate value of thermal diffusivity can be obtained.

本発明の熱拡散率測定装置の構成を示す概念図The conceptual diagram which shows the structure of the thermal diffusivity measuring apparatus of this invention. スポット形状集光レンズ4、円形状集光レンズ5、ライン形状集光レンズ6による加熱用レーザビームAの照射形状の変換の例を表す図である。It is a figure showing the example of conversion of the irradiation shape of the laser beam A for heating by the spot shape condensing lens 4, the circular shape condensing lens 5, and the line shape condensing lens 6. FIG. スポット形状の照射を選択し、面内方向の熱拡散率測定を実施した例である。This is an example in which spot-shaped irradiation is selected and thermal diffusivity measurement in the in-plane direction is performed. 横方向の熱拡散率測定を実施する際に、距離lに対して厚さdの影響がある場合にも精度良く熱拡散率が求められることを表した図である。It is a figure showing that a thermal diffusivity is calculated | required with high precision, even when there is an influence of the thickness d with respect to the distance 1 when measuring a thermal diffusivity of a horizontal direction. 円形状の照射を選択し、厚さ方向の熱拡散率測定を実施した例である。This is an example in which circular irradiation is selected and thermal diffusivity measurement in the thickness direction is performed.

本発明の実施例について図面を参照しながら説明する。図1は本発明の実施形態に係る熱拡散率測定装置の概念図である。
加熱レーザ2は、周波数発生器3から発した変調用信号により周波数fで光強度の変調が行われる。加熱レーザ2は、例えば波長808nm、最大出力5Wの半導体レーザで構成される。加熱レーザ2より発した加熱レーザビームAは、レンズ入替機構7によって選択されたスポット形状集光レンズ4または円形状集光レンズ5またはライン形状集光レンズ6のいずれかを通り、試料1の上面に照射される。図2は、実施例における加熱レーザビームAの照射形状を示したものであり、前記スポット形状集光レンズ5を通過した加熱レーザビームAは試料1の表面において直径150μmの点状に照射される。また、円形状集光レンズ5が選択され、これを通過した加熱レーザビームAは試料1の表面において直径5mmでかつ円内のエネルギー分布が均質な円形状に照射される。一方、ライン形状集光レンズ6が選択され、これを通過した加熱レーザビームAは試料1の表面において200μm×20mmのライン形状に照射される。
ここで、レンズ入替機構7には、スポット形状集光レンズ4または円形状集光レンズ5またはライン形状集光レンズ6を一列に並べて加熱レーザビームAの光軸にスライドして挿入する方法や、前記集光レンズを円状のターレットに配して回転させて挿入する手法、それぞれの前記集光レンズを収めたセルを付け替える手法などを使用することができる。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram of a thermal diffusivity measuring apparatus according to an embodiment of the present invention.
In the heating laser 2, the light intensity is modulated at the frequency f by the modulation signal emitted from the frequency generator 3. The heating laser 2 is composed of a semiconductor laser having a wavelength of 808 nm and a maximum output of 5 W, for example. The heating laser beam A emitted from the heating laser 2 passes through either the spot-shaped condensing lens 4, the circular condensing lens 5, or the line-shaped condensing lens 6 selected by the lens replacement mechanism 7, and the upper surface of the sample 1. Is irradiated. FIG. 2 shows the irradiation shape of the heating laser beam A in the embodiment, and the heating laser beam A that has passed through the spot-shaped condensing lens 5 is irradiated in a spot shape having a diameter of 150 μm on the surface of the sample 1. . Further, the circular condensing lens 5 is selected, and the heated laser beam A that has passed therethrough is irradiated on the surface of the sample 1 in a circular shape having a diameter of 5 mm and a uniform energy distribution in the circle. On the other hand, the line-shaped condensing lens 6 is selected, and the heated laser beam A that has passed through this is irradiated onto the surface of the sample 1 in a line shape of 200 μm × 20 mm.
Here, in the lens replacement mechanism 7, a method of inserting the spot-shaped condenser lens 4, the circular condenser lens 5, or the line-shaped condenser lens 6 in a line and sliding on the optical axis of the heating laser beam A, For example, a method of inserting the condensing lens into a circular turret and rotating it, a method of changing the cell containing the condensing lens, or the like can be used.

赤外光集光光学系8は、赤外ファイバ10の入射口とともに、試料1を挟んで加熱レーザビームAの照射側とは反対側に設置され、XYステージ9に固定される。赤外ファイバ10の出射口は、放射温度計11に接続されており、試料1の下面の直径250μmの領域から発せられる赤外光の強度が検知される。前記赤外ファイバ10の出射口と放射温度計11は、XYステージ9の動作には干渉しない装置内の別の場所に固定される。
ここで赤外光集光光学系8には、CaF、Si、Ge、ZnSeなど波長1μmから10μmの光に良好な透過性を有する材料を用いた有限補正系のレンズや金コートされた2つの放物面ミラーなどを用いることができる。
The infrared light collecting optical system 8 is installed on the opposite side of the irradiation side of the heating laser beam A across the sample 1 together with the entrance of the infrared fiber 10 and is fixed to the XY stage 9. The emission port of the infrared fiber 10 is connected to the radiation thermometer 11, and the intensity of infrared light emitted from a region having a diameter of 250 μm on the lower surface of the sample 1 is detected. The exit port of the infrared fiber 10 and the radiation thermometer 11 are fixed to another place in the apparatus that does not interfere with the operation of the XY stage 9.
Here, the infrared light condensing optical system 8 is a finite correction lens or a gold-coated 2 using a material having good transmittance for light having a wavelength of 1 μm to 10 μm, such as CaF 2 , Si, Ge, ZnSe. Two parabolic mirrors can be used.

放射温度計11によって検知された赤外光は電気信号へ変換され、増幅器12により増幅されてロックインアンプ13により周波数fで振動する温度変化の位相θが測定される。ここで前記θの値は、周波数発生器3が加熱レーザ2を変調するための変調信号を分岐してロックインアンプ13に入力し、前記変調信号を基準とした位相値である。制御用コンピュータ14は、XYステージ9の座標を制御して試料1の任意の場所における温度測定を実施して、ロックインアンプ13から得た位相値θとXYステージ9の座標を記録する。   The infrared light detected by the radiation thermometer 11 is converted into an electric signal, amplified by the amplifier 12, and measured by the lock-in amplifier 13 for the phase θ of the temperature change that vibrates at the frequency f. Here, the value of θ is a phase value with the frequency generator 3 branching a modulation signal for modulating the heating laser 2 and inputting it to the lock-in amplifier 13 and using the modulation signal as a reference. The control computer 14 controls the coordinates of the XY stage 9 to measure the temperature at an arbitrary location of the sample 1 and records the phase value θ obtained from the lock-in amplifier 13 and the coordinates of the XY stage 9.

以上の装置構成によれば、次のような測定が可能である。
厚さdである試料1の面内方向の熱拡散率を測定する場合には、スポット形状集光レンズ4またライン形状集光レンズ6を使用する。スポット形状またはライン形状の照射により周波数fで試料1を加熱し、赤外光集光光学系8による赤外光集光位置をXYステージ9により走査して位相θを測定する。ここでスポット形状の照射を選択した場合は温度測定の走査は任意の方向で可能である。一方、ライン形状の照射を選択した場合には、試料面内においてライン照射形状の中心を通りライン照射形状に垂直な軸上で温度測定の走査を行う。前記照射形状の中心と温度測定が行われる領域の中心との距離をlとし、制御用コンピュータ14は、位相θを(l+d0.5に対してプロットして表示を行い、得られた直線の傾きhを算出する。このとき前記試料1の面内方向の熱拡散率α//は次の式(1)で表される。
According to the above apparatus configuration, the following measurement is possible.
When measuring the thermal diffusivity in the in-plane direction of the sample 1 having the thickness d, the spot-shaped condenser lens 4 or the line-shaped condenser lens 6 is used. The sample 1 is heated at the frequency f by spot-shaped or line-shaped irradiation, and the infrared light condensing position by the infrared light converging optical system 8 is scanned by the XY stage 9 to measure the phase θ. Here, when spot-shaped irradiation is selected, scanning of temperature measurement is possible in an arbitrary direction. On the other hand, when line-shaped irradiation is selected, temperature measurement scanning is performed on an axis that passes through the center of the line irradiation shape in the sample plane and is perpendicular to the line irradiation shape. The distance between the center of the irradiation shape and the center of the region where the temperature is measured is l, and the control computer 14 plots and displays the phase θ with respect to (l 2 + d 2 ) 0.5 . The slope h of the obtained straight line is calculated. At this time, the thermal diffusivity α // in the in-plane direction of the sample 1 is expressed by the following equation (1).

ただし、前記lに対して前記dの値が無視できないほど大きい場合には、得られた熱拡散率は厚さ方向の熱拡散率の影響を含む値である。
スポット形状集光レンズ4は、面積の小さな材料や面内方向に熱拡散率の異方性を有する材料の測定に特に有利である。
ライン形状集光レンズ6は、有機フィルムなどのように熱拡散率が非常に小さいためスポット状に加熱した場合に加熱された場所の温度上昇が大きくなりすぎる場合や、熱拡散率が均質な試料に対して、試料面内のライン形状の照射位置の両側に広く均質な一次元熱拡散場を形成できるので、より正確な測定結果を得たい場合に用いることができる。
However, when the value of d is so large that it cannot be ignored with respect to l, the obtained thermal diffusivity is a value including the influence of the thermal diffusivity in the thickness direction.
The spot-shaped condensing lens 4 is particularly advantageous for measuring a material having a small area or a material having anisotropy of thermal diffusivity in the in-plane direction.
The line-shaped condensing lens 6 has a very small thermal diffusivity, such as an organic film, so that when the spot is heated in a spot shape, the temperature rise in the heated place becomes too large, or the sample having a uniform thermal diffusivity On the other hand, a wide and uniform one-dimensional thermal diffusion field can be formed on both sides of the line-shaped irradiation position in the sample surface, so that it can be used when a more accurate measurement result is desired.

次に、厚さ方向の熱拡散率を測定する場合には、円形状集光レンズ5を使用し、試料1の表面を円形状の照射により加熱を行う。赤外光集光光学系8は、厚さdの試料を挟んで、加熱された円の中心の温度を測定するように配置される。その後、前記赤外光集光光学系の位置を固定し、周波数fを変更するステップごとに位相θを測定し、制御用コンピュータ14は、位相θをf0.5に対してプロットして表示する。得られたプロットから傾きkを算出し、このとき前記試料1の厚さ方向の熱拡散率α⊥は次の式(2)で表される。 Next, when measuring the thermal diffusivity in the thickness direction, the circular condensing lens 5 is used, and the surface of the sample 1 is heated by circular irradiation. The infrared light collecting optical system 8 is arranged so as to measure the temperature of the center of the heated circle with the sample having a thickness d interposed therebetween. Thereafter, the position of the infrared light collecting optical system is fixed, and the phase θ is measured at each step of changing the frequency f, and the control computer 14 plots and displays the phase θ with respect to f 0.5 . To do. The slope k is calculated from the obtained plot. At this time, the thermal diffusivity α⊥ in the thickness direction of the sample 1 is expressed by the following equation (2).

図3は、スポット形状の照射を選択し、試料lに純度99.999%、厚さ0.1mmのAl板を用いて、位相θと距離(l+d0.5との関係をプロットしたものである。使用した周波数fは40Hzである。図3のプロットの傾きhを求め、式(1)より、面内方向の熱拡散率は、9.5×10−5/sと測定された。純Alの熱拡散率の文献値は9.7×10−5/sであるので、前記測定結果は文献値と良い一致を示している。 FIG. 3 shows the relationship between the phase θ and the distance (l 2 + d 2 ) 0.5 by selecting spot-shaped irradiation and using an Al plate with a purity of 99.999% and a thickness of 0.1 mm for the sample l. It is a plot. The frequency f used is 40 Hz. The slope h of the plot in FIG. 3 was obtained, and the thermal diffusivity in the in-plane direction was measured as 9.5 × 10 −5 m 2 / s from the equation (1). Since the literature value of the thermal diffusivity of pure Al is 9.7 × 10 −5 m 2 / s, the measurement result shows a good agreement with the literature value.

図4は、横方向の熱拡散率測定を実施する際に、距離lに対して厚さdの影響がある場合にも精度良く熱拡散率が求められることを表した図である。加熱にはスポット形状の照射を選択し、試料1には純度99.5%、厚さ0.5mmのTi板を用いた。加熱レーザビームAの周波数fは10Hzである。本図では下側の横軸には距離lをとり、上側の横軸には距離(l+d0.5をとって、同じ測定から得られた位相θのデータを異なる横軸についてプロットしたものである。図中、□で示すプロットは距離lと位相θとの関係であり、距離lが小さいときには厚さの影響を受けて、プロットは上向きに凸の緩やかなカーブを描く。熱拡散率の計算には傾きが一定である領域のデータが必要であるので、この図からは少なくとも膜厚の倍以上はなれたプロットから結果を得なければならない。一方で、図中、■で示すプロットは、距離(l+d0.5に対する位相θの関係であり、ほぼ全ての領域でよい直線関係が得られることが分かる。後者のプロットより傾きhを求め、式(1)より熱拡散率を計算すると9.0×10−6/sが得られた。レーザフラッシュ法により同じTi板の熱拡散率を測定した結果は9.1×10−6/sであり両者はよい一致を示した。 FIG. 4 is a diagram showing that when the thermal diffusivity measurement in the horizontal direction is performed, the thermal diffusivity can be obtained with high accuracy even when the thickness d has an influence on the distance l. Spot-shaped irradiation was selected for heating, and a Ti plate having a purity of 99.5% and a thickness of 0.5 mm was used for Sample 1. The frequency f of the heating laser beam A is 10 Hz. In this figure, the lower horizontal axis is the distance l, the upper horizontal axis is the distance (l 2 + d 2 ) 0.5, and the phase θ data obtained from the same measurement is shown for different horizontal axes. It is a plot. In the figure, the plot indicated by □ is the relationship between the distance l and the phase θ, and when the distance l is small, it is affected by the thickness, and the plot draws a gentle curve that is convex upward. Since the calculation of the thermal diffusivity requires data in a region where the slope is constant, the result must be obtained from a plot that is at least twice as thick as the film thickness. On the other hand, the plot indicated by ■ in the figure shows the relationship of the phase θ with respect to the distance (l 2 + d 2 ) 0.5 , and it can be seen that a good linear relationship can be obtained in almost all regions. The slope h was obtained from the latter plot, and the thermal diffusivity was calculated from the formula (1), and 9.0 × 10 −6 m 2 / s was obtained. The result of measuring the thermal diffusivity of the same Ti plate by the laser flash method was 9.1 × 10 −6 m 2 / s, and both showed good agreement.

図5は、円形状の照射を選択し、厚さ方向の熱拡散率測定を実施した例である。試料1として純度99.96%、厚さ0.5mmのCu板を用いて、前記Cu板の片面に直径5mmの円形状に加熱レーザビームAを照射し、照射の中心軸上かつ照射した面とは反対面における赤外光を赤外集光光学系で集光し検知した。加熱レーザビームAの周波数fは、30Hzから400Hzまで段階的に変更し、その都度位相θを測定した。本図は、このようにして得られた位相θを周波数fの0.5乗に対してプロットしたものである。本プロットから直線の傾きkを求め、式(2)より厚さ方向の熱拡散率を計算すると1.1×10−4/sが得られた。純Cuの熱拡散率の文献値は1.2×10−4/sであり、前期測定値は文献値と良い一致を示している。 FIG. 5 is an example in which circular irradiation is selected and thermal diffusivity measurement in the thickness direction is performed. Using a Cu plate having a purity of 99.96% and a thickness of 0.5 mm as sample 1, one surface of the Cu plate was irradiated with a heating laser beam A in a circular shape having a diameter of 5 mm, and the surface irradiated and irradiated on the central axis Infrared light on the opposite side was collected and detected by an infrared condensing optical system. The frequency f of the heating laser beam A was changed stepwise from 30 Hz to 400 Hz, and the phase θ was measured each time. In this figure, the phase θ obtained in this way is plotted against the frequency f raised to the 0.5th power. When the slope k of the straight line was obtained from this plot and the thermal diffusivity in the thickness direction was calculated from the equation (2), 1.1 × 10 −4 m 2 / s was obtained. The literature value of the thermal diffusivity of pure Cu is 1.2 × 10 −4 m 2 / s, and the measured value in the previous period is in good agreement with the literature value.

このように、本発明における実施形態においては、加熱レーザビームAを集光するためのレンズを切り替えるだけで、他の装置構成にはなんら手を加えることもなく、厚さ方向や面内方向の複数機能の熱拡散率測定を行うことが可能になる。したがって、最小限のコストで従来の数台分の装置に匹敵する機能を実現することができる。   As described above, in the embodiment of the present invention, only the lens for condensing the heating laser beam A is switched, and the thickness direction and the in-plane direction are not added to the other apparatus configuration. It becomes possible to measure the thermal diffusivity of multiple functions. Therefore, it is possible to realize a function comparable to that of several conventional devices at a minimum cost.

本発明は、先端産業で広く用いられている材料の熱物性値を計測するために利用可能である。   The present invention can be used to measure thermophysical values of materials widely used in advanced industries.

1 試料
2 加熱レーザ
3 周波数発生器
4 スポット形状集光レンズ
5 円形状集光レンズ
6 ライン形状集光レンズ
7 4、5、6のレンズ入替機構
8 赤外光集光光学系
9 XYステージ
10 赤外ファイバ
11 放射温度計
12 増幅器
13 ロックインアンプ
14 制御用コンピュータ
A 加熱レーザビーム
B 熱放射
C 電気配線
DESCRIPTION OF SYMBOLS 1 Sample 2 Heating laser 3 Frequency generator 4 Spot shape condensing lens 5 Circular shape condensing lens 6 Line shape condensing lens 7 Lens replacement mechanism 8 4, 5 and 6 Infrared light condensing optical system 9 XY stage 10 Red Outer fiber 11 Radiation thermometer 12 Amplifier 13 Lock-in amplifier 14 Control computer A Heating laser beam B Thermal radiation C Electrical wiring

Claims (2)

試料にレーザビームを周波数fで周期的に照射するための加熱レーザビーム照射手段と、試料のある一点から放射される赤外光を集光するための赤外光集光手段とが、試料を挟みそれぞれ対向する位置に配置され、試料の周期的な温度変化から熱拡散率の測定を行う周期加熱放射測温法熱物性測定装置において
前記加熱レーザビーム照射手段が、試料面における照射形状を任意の形状に変換制御するための光学系を備えており
前記赤外光集光手段をXY方向に移動させるための移動手段を備え
前記赤外光集光手段により集光された赤外光を放射温度計まで導く赤外用ファイバを備え
前記放射温度計の温度変化の周期と前記加熱レーザビームの周期との位相差θを測定し、当該位相差θと前記周波数fから熱拡散率を演算する制御手段を備え
前記制御手段は、前記位相差θと(l+d0.5の直線関係の傾きhと前記周波数fからπf/hを演算して熱拡散率を求める、ただし、lは前記照射形状の中心位置と前記赤外光集光手段により集光した試料の領域の中心位置との水平距離、dは試料の厚さであることを特徴とする熱拡散率測定装置。
A heating laser beam irradiating means for periodically irradiating the sample with a laser beam at a frequency f, and an infrared light condensing means for condensing infrared light emitted from a certain point of the sample, In the periodic heating radiation thermometry thermophysical property measuring device, which is arranged at positions facing each other, and measures the thermal diffusivity from the periodic temperature change of the sample ,
The heating laser beam irradiation means includes an optical system for controlling the irradiation shape on the sample surface into an arbitrary shape ,
A moving means for moving the infrared light collecting means in the XY directions ;
An infrared fiber for guiding the infrared light collected by the infrared light collecting means to a radiation thermometer ;
A control means for measuring a phase difference θ between a period of temperature change of the radiation thermometer and a period of the heating laser beam, and calculating a thermal diffusivity from the phase difference θ and the frequency f ;
The control means obtains a thermal diffusivity by calculating πf / h 2 from an inclination h of the linear relationship of the phase difference θ and (l 2 + d 2 ) 0.5 and the frequency f, where l is the irradiation A thermal diffusivity measuring apparatus, characterized in that a horizontal distance between the center position of the shape and the center position of the region of the sample collected by the infrared light collecting means, d is the thickness of the sample.
前記加熱レーザビーム照射手段は、加熱レーザビームの照射形状をスポット形状、円形状、ライン形状のいずれかに変換し選択する光学系を備えていることを特徴とする請求項1に記載の熱拡散率測定装置。   2. The thermal diffusion according to claim 1, wherein the heating laser beam irradiation means includes an optical system that selects and converts the irradiation shape of the heating laser beam into a spot shape, a circular shape, or a line shape. Rate measuring device.
JP2010053333A 2010-03-10 2010-03-10 Thermal diffusivity measuring device Active JP5414058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010053333A JP5414058B2 (en) 2010-03-10 2010-03-10 Thermal diffusivity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010053333A JP5414058B2 (en) 2010-03-10 2010-03-10 Thermal diffusivity measuring device

Publications (2)

Publication Number Publication Date
JP2011185852A JP2011185852A (en) 2011-09-22
JP5414058B2 true JP5414058B2 (en) 2014-02-12

Family

ID=44792309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010053333A Active JP5414058B2 (en) 2010-03-10 2010-03-10 Thermal diffusivity measuring device

Country Status (1)

Country Link
JP (1) JP5414058B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107683409A (en) * 2015-06-10 2018-02-09 国立大学法人名古屋大学 It is orientated identification apparatus, orientation authentication method and distribution identification apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021791A (en) 2013-07-17 2015-02-02 株式会社ベテル Thermal diffusivity measuring device
RU2535657C1 (en) * 2013-08-23 2014-12-20 Шлюмберже Текнолоджи Б.В. Method and device for determination of heat conductivity and temperature conductivity of non-uniform material
JP2015108546A (en) * 2013-12-04 2015-06-11 国立大学法人名古屋大学 Thermal diffusivity measuring apparatus
RU2548408C1 (en) * 2013-12-18 2015-04-20 Шлюмберже Текнолоджи Б.В. Method to determine heat conductivity and temperature conductivity of materials
JP6620499B2 (en) * 2015-10-07 2019-12-18 株式会社ジェイテクト Optical nondestructive inspection apparatus and optical nondestructive inspection method
JP6604210B2 (en) * 2016-01-13 2019-11-13 株式会社ジェイテクト Optical nondestructive inspection method and optical nondestructive inspection apparatus
JP6545765B2 (en) * 2017-09-20 2019-07-17 国立大学法人名古屋大学 Thermal diffusivity measurement device
EP3907501B1 (en) * 2019-02-06 2023-04-12 Panasonic Intellectual Property Management Co., Ltd. Thickness measurement method, thickness measurement device, defect detection method, and defect detection device
JP2023004776A (en) * 2021-07-02 2023-01-17 アイエルテクノロジー株式会社 High-stability measurement method and measuring instrument of temperature response signal in laser periodic heating method
WO2023048161A1 (en) * 2021-09-21 2023-03-30 国立大学法人東海国立大学機構 Interface information identification device, interface information identification method, program, internal information identification device, and optical heating device
WO2023145846A1 (en) * 2022-01-27 2023-08-03 国立大学法人東海国立大学機構 Device, method, and program

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250652A (en) * 1985-08-30 1987-03-05 Res Dev Corp Of Japan Method and instrument for measuring thermal diffusivity
JPH0726925B2 (en) * 1985-08-30 1995-03-29 真空理工株式会社 Thermal diffusivity measurement method
JP2599282B2 (en) * 1988-03-25 1997-04-09 科学技術庁無機材質研究所長 Thermal constant measurement method
JPH03162654A (en) * 1989-11-20 1991-07-12 Kawasaki Steel Corp Thermal property measuring instrument
JPH03189547A (en) * 1989-12-20 1991-08-19 Hitachi Ltd Method and device for measuring heat diffusivity
JP2824499B2 (en) * 1992-06-04 1998-11-11 ミヤチテクノス株式会社 Welding quality judgment method and device
US6874932B2 (en) * 2003-06-30 2005-04-05 General Electric Company Methods for determining the depth of defects
FR2897687B1 (en) * 2006-02-17 2008-09-26 Commissariat Energie Atomique METHOD AND DEVICE FOR CHARACTERIZING, BY ACTIVE PYROMETRY, A THIN-LAYER MATERIAL ARRANGED ON A SUBSTRATE
JP5288533B2 (en) * 2007-12-05 2013-09-11 株式会社ベテル Periodic heating radiation thermometry thermophysical property measuring apparatus and thermophysical property measuring method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107683409A (en) * 2015-06-10 2018-02-09 国立大学法人名古屋大学 It is orientated identification apparatus, orientation authentication method and distribution identification apparatus

Also Published As

Publication number Publication date
JP2011185852A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5414058B2 (en) Thermal diffusivity measuring device
JP6082634B2 (en) X-ray fluorescence analyzer
JP2005512288A5 (en)
US4556875A (en) Irradiated power monitoring system for optical fiber
JPWO2012137579A1 (en) Laser processing equipment
JP5288533B2 (en) Periodic heating radiation thermometry thermophysical property measuring apparatus and thermophysical property measuring method using the same
TWI611427B (en) Method and system for adjusting a position of an amplified light beam
TW201341784A (en) Apparatus for measuring thermal diffusivity and method for measuring thermal diffusivity
JP6545765B2 (en) Thermal diffusivity measurement device
JP2015108546A (en) Thermal diffusivity measuring apparatus
WO2015008632A1 (en) Thermal diffusivity measurement device
CN106644085A (en) Temperature measuring method and infrared thermometer
JP2020536740A (en) Equipment for laser machining systems, laser machining systems using it, and methods for adjusting the focal position of optics
CN109421275A (en) Equipment for manufacturing three-dimension object
JP2015155847A (en) Probe positioning method and device in passive type proximity field microscope
JP5015581B2 (en) Thermophysical property measurement method
JP6601748B2 (en) Thermal diffusivity measuring device, thermal diffusivity measuring method and program
KR101614851B1 (en) Accuracy measuring device of temperature distribution, and method using it
JP5597856B2 (en) Electrical resistance measuring device
JP6998034B2 (en) Radiation analyzer
WO2012039198A1 (en) Hot displacement measuring device, hot displacement measuring method, and electric resistance measuring device
KR20040098687A (en) In-situ monitering system for bonding process and method thereof
JP5683187B2 (en) Hot displacement measuring device and hot displacement measuring method
CN106909083B (en) System and method for real-time control of temperature of measurement area based on Raman scattering
JP6328451B2 (en) X-ray fluorescence analyzer and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

R150 Certificate of patent or registration of utility model

Ref document number: 5414058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250