JP5407358B2 - Gasification gas purification method and apparatus - Google Patents

Gasification gas purification method and apparatus Download PDF

Info

Publication number
JP5407358B2
JP5407358B2 JP2009012764A JP2009012764A JP5407358B2 JP 5407358 B2 JP5407358 B2 JP 5407358B2 JP 2009012764 A JP2009012764 A JP 2009012764A JP 2009012764 A JP2009012764 A JP 2009012764A JP 5407358 B2 JP5407358 B2 JP 5407358B2
Authority
JP
Japan
Prior art keywords
gas
gasification
gasification gas
separation membrane
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009012764A
Other languages
Japanese (ja)
Other versions
JP2010168482A (en
Inventor
宏明 大原
行貴 濱田
克明 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009012764A priority Critical patent/JP5407358B2/en
Publication of JP2010168482A publication Critical patent/JP2010168482A/en
Application granted granted Critical
Publication of JP5407358B2 publication Critical patent/JP5407358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Industrial Gases (AREA)

Description

本発明は、ガス化ガス精製方法及び装置に関するものである。   The present invention relates to a gasification gas purification method and apparatus.

一般に、石炭等のガス化ガス精製装置は、図3に示す如くガス化原料として石炭と水蒸気とを供給してガス化ガスを生成するガス化炉1と、ガス化炉1からのガス化ガスを高温にて酸化改質する酸化改質炉2と、酸化改質炉2で改質したガス化ガスを冷却する水冷壁3と、水冷壁3で冷却したガス化ガスを更に冷却して熱回収する熱交換器4と、熱交換器4で冷却した後のガス化ガスを冷却する直接冷却器5と、直接冷却器5で冷却したガス化ガスを更に間接冷却する間接冷却器6と、間接冷却器6で間接冷却したガス化ガスを加圧する昇圧機7と、昇圧機7で昇圧されたガス化ガスから硫黄分・窒素分・CO等を除去する脱硫器・脱窒素器・脱CO器8と、直接冷却器5、間接冷却器6、昇圧機7で発生した排水を処理する排水処理器9とを備えている。 In general, a gasification gas refining apparatus for coal or the like includes a gasification furnace 1 that generates coal gas by supplying coal and water vapor as gasification raw materials as shown in FIG. 3, and a gasification gas from the gasification furnace 1. The oxidation reforming furnace 2 for oxidizing and reforming the gas at high temperature, the water cooling wall 3 for cooling the gasification gas reformed in the oxidation reforming furnace 2, the gasification gas cooled by the water cooling wall 3 is further cooled and heated A heat exchanger 4 to be recovered, a direct cooler 5 for cooling the gasification gas after being cooled by the heat exchanger 4, an indirect cooler 6 for further indirectly cooling the gasification gas cooled by the direct cooler 5, A booster 7 that pressurizes the gasified gas indirectly cooled by the indirect cooler 6, and a desulfurizer / denitrogenator / desorber that removes sulfur, nitrogen, CO 2, etc. from the gasified gas pressurized by the booster 7. and CO 2 unit 8, directly cooler 5, indirect cooler 6, waste water treatment for processing the waste water generated in the booster 7 And a 9.

ガス化炉1は、石炭を700℃〜900℃の温度にてガス化するように設定されており、更にガス化炉1には、石炭と水蒸気のみならず、排水処理器9からのタール分やチャー、循環して残ったガス化ガス等が供給されるようになっている。   The gasification furnace 1 is set to gasify coal at a temperature of 700 ° C. to 900 ° C. Further, the gasification furnace 1 includes not only coal and water vapor but also tar content from the waste water treatment device 9. Gas, gas, and other gasification gas remaining after circulation are supplied.

酸化改質炉2は、酸素、空気を導入すると共に水素を燃焼して1100℃〜1300℃程度の高温になるように設定されている。   The oxidation reforming furnace 2 is set so that oxygen and air are introduced and hydrogen is burned to reach a high temperature of about 1100 ° C to 1300 ° C.

水冷壁3は、冷却水等の配管を有する構成を備えると共に、熱交換器4は、ボイラ等の熱回収構造により構成されている。   The water cooling wall 3 includes a configuration having piping such as cooling water, and the heat exchanger 4 is configured by a heat recovery structure such as a boiler.

直接冷却器5は、水スプレー噴霧等の冷却手段を備えると共に、間接冷却器6は、熱交換用の配管等の間接冷却手段を備えている。   The direct cooler 5 includes cooling means such as water spray spray, and the indirect cooler 6 includes indirect cooling means such as heat exchange pipes.

昇圧機7は、ガス化ガスを1MPa〜5MPa程度まで加圧するガスコンプレッサであり、ガス化ガス中のタール分の飽和蒸気濃度を下げるようにしている。   The booster 7 is a gas compressor that pressurizes the gasified gas to about 1 MPa to 5 MPa, and lowers the saturated vapor concentration of tar in the gasified gas.

脱硫器・脱窒素器・脱CO器8は、ガス化ガスから硫黄分(HS、COS、CS)、窒素分(NH、HCN)及びCOを分離するように構成されている。 The desulfurizer / denitrogenator / deCO 2 unit 8 is configured to separate sulfur (H 2 S, COS, CS 2 ), nitrogen (NH 3 , HCN) and CO 2 from the gasification gas. Yes.

排水処理器9は、直接冷却器5、間接冷却器6、昇圧機7において発生する排水を処理し、可燃性物質のタール分及びチャーと、処理水とを分離するように構成されている。   The waste water treatment device 9 is configured to treat waste water generated in the direct cooler 5, the indirect cooler 6, and the booster 7, and to separate the tar content and char of the combustible material from the treated water.

ガス化ガスを処理する際には、ガス化炉1において石炭等をガス化し、ガス化炉1からのガス化ガスを酸化改質炉2で酸化・水蒸気改質することでガス化ガスに含まれるタール分を除去し、改質したガス化ガスを水冷壁3で冷却し、更に熱交換器4で冷却して熱回収し、冷却後のガス化ガスを直接冷却器5及び間接冷却器6で冷却してガス化ガスに残存する水蒸気を凝縮させ、冷却したガス化ガスを昇圧機7で加圧し、加圧したガス化ガスを脱硫器・脱窒素器・脱CO器8で冷却して硫黄分、窒素分、COを分離し、COを含むガス化ガスを合成ガスとして発電、化学原料合成に利用する。 When the gasification gas is processed, coal or the like is gasified in the gasification furnace 1, and the gasification gas from the gasification furnace 1 is oxidized and steam reformed in the oxidation reforming furnace 2 to be included in the gasification gas. The reformed gasification gas is cooled by the water cooling wall 3 and further cooled by the heat exchanger 4 to recover the heat, and the cooled gasification gas is directly cooled by the cooler 5 and the indirect cooler 6. Then, the water vapor remaining in the gasified gas is condensed, and the cooled gasified gas is pressurized by the booster 7, and the pressurized gasified gas is cooled by the desulfurizer / denitrogenator / deCO 2 unit 8. Then, the sulfur content, the nitrogen content, and CO 2 are separated, and the gasified gas containing CO is used as synthesis gas for power generation and chemical raw material synthesis.

ここで酸化改質炉2の出口側では、水冷壁3でガス温度を1100℃程度まで下げ、下流側の熱交換器4等の耐久性を保証しているが、ガス化ガスの20%程度(モル流量比)の冷却水(クエンチ水)を噴霧してガス温度を1100℃程度まで下げ、下流側の熱交換器4等の耐久性を保証しても良い。またガス化炉1に投入した水蒸気や、噴霧した冷却水は、下流側の直接冷却器5、間接冷却器6、昇圧機7で温度低下に伴って凝縮され、排水処理器9に送られている。   Here, at the outlet side of the oxidation reforming furnace 2, the gas temperature is lowered to about 1100 ° C. by the water cooling wall 3 to ensure the durability of the heat exchanger 4 on the downstream side, but about 20% of the gasification gas. The cooling water (quenching water) of (molar flow ratio) may be sprayed to lower the gas temperature to about 1100 ° C. to ensure the durability of the downstream heat exchanger 4 and the like. Further, the steam introduced into the gasification furnace 1 and the sprayed cooling water are condensed as the temperature decreases in the downstream direct cooler 5, indirect cooler 6, and booster 7, and sent to the wastewater treatment device 9. Yes.

また排水処理器9は、排水から可燃性物質のタール分及びチャーを分離してガス化炉1へ供給している。   The waste water treatment device 9 separates the combustible material tar and char from the waste water and supplies them to the gasifier 1.

尚、ガス化ガス精製方法や燃料ガス改質装置の一般的技術水準を示すものとしては、例えば、特許文献1,2がある。
特開2007−45857号公報 特開2005−60533号公報
For example, Patent Documents 1 and 2 show the general technical level of the gasification gas purification method and the fuel gas reforming apparatus.
JP 2007-45857 A JP 2005-60533 A

しかしながら、このようなガス化ガス精製方法及び装置において大量のガス化ガスを処理する場合には、直接冷却器5、間接冷却器6、昇圧機7等が大型化し、製造コストや運転コストが増加するという問題があった。また特許文献の場合にも同じ問題を生じていた。   However, when a large amount of gasification gas is processed in such a gasification gas purification method and apparatus, the direct cooler 5, the indirect cooler 6, the booster 7, etc. are increased in size, and the manufacturing cost and the operating cost are increased. There was a problem to do. In the case of patent literature, the same problem has occurred.

本発明は、斯かる実情に鑑み、機器を小型化すると共に水素を容易に利用し得るガス化ガス精製方法及び装置を提供しようとするものである。   In view of such circumstances, the present invention intends to provide a gasification gas purification method and apparatus capable of downsizing an apparatus and easily using hydrogen.

本発明のガス化ガス精製方法は、ガス化炉にガス化原料として石炭と水蒸気とを供給してガス化ガスとし、該ガス化炉からのガス化ガスを酸化改質炉で酸化改質してガス化ガス中のタール分を除去し、該改質したガス化ガスを熱交換器で冷却して熱回収し、該冷却後のガス化ガスを冷却器で冷却してガス化ガスに残存する水蒸気を凝縮させ、該冷却したガス化ガスを昇圧機で加圧し、該加圧したガス化ガスをCO吸収装置で処理してCOを分離するガス化ガス精製方法であって、前記酸化改質炉の下流側で酸化改質炉と熱交換器の間に水素分離膜を配し、ガス化ガスを1000℃以上で水素分離膜に通してガス化ガスから水素を分離し、ガス化ガスの体積を低減するものである。 The gasification gas purification method of the present invention supplies coal and steam as gasification raw materials to a gasification furnace to form gasification gas, and oxidizes and reforms the gasification gas from the gasification furnace in an oxidation reforming furnace. The tar content in the gasified gas is removed, and the reformed gasified gas is cooled with a heat exchanger to recover heat, and the cooled gasified gas is cooled with a cooler and remains in the gasified gas. steam to condense, a said the cooled gasification gas pressurized by the booster, the pressurized pressurized gasification gas purification method of the gasification gas is treated with CO 2 absorber to separate the CO 2, the A hydrogen separation membrane is disposed downstream of the oxidation reforming furnace between the oxidation reforming furnace and the heat exchanger , and the gasification gas is passed through the hydrogen separation membrane at 1000 ° C. or more to separate hydrogen from the gasification gas. This is to reduce the volume of the chemical gas.

また本発明のガス化ガス精製方法においては、冷却後のガス化ガスを1000℃〜1100℃の温度で水素分離膜に通し、タール分による水素分離膜への詰まりを防止することが好ましい。 In the gasification gas purification method of the present invention, it is preferable to pass the cooled gasification gas through a hydrogen separation membrane at a temperature of 1000 ° C. to 1100 ° C. to prevent clogging of the hydrogen separation membrane due to tar content .

また本発明のガス化ガス精製方法においては、熱交換器と冷却器の間で、酸性ガスシフト反応器によりガス化ガスに対してシフト反応を行い、更に水素分離膜により水素を分離することが好ましい。   In the gasification gas purification method of the present invention, it is preferable that a shift reaction is performed on the gasification gas by an acid gas shift reactor between the heat exchanger and the cooler, and further hydrogen is separated by a hydrogen separation membrane. .

また本発明のガス化ガス精製方法においては、水素分離膜で分離した水素を間接冷却器により冷却することが好ましい。   Moreover, in the gasification gas purification method of this invention, it is preferable to cool the hydrogen isolate | separated with the hydrogen separation membrane with an indirect cooler.

本発明のガス化ガス精製装置は、ガス化原料として石炭と水蒸気とを供給してガス化ガスを生成するガス化炉と、
ガス化炉からのガス化ガスを酸化改質する酸化改質炉と、
該酸化改質炉で改質したガス化ガスを冷却して熱回収する熱交換器と、
該熱交換器で冷却した後のガス化ガスを冷却して水蒸気を凝縮させる冷却器と、
該冷却器で冷却したガス化ガスを加圧する昇圧機と、
該昇圧機で加圧したガス化ガスを冷却してCOを分離するCO吸収装置と、
酸化改質炉の下流側で酸化改質炉と熱交換器の間に位置し、ガス化ガスを1000℃以上で水素分離膜に通してガス化ガスから水素を分離する水素分離膜の分離器とを備えるものである。
The gasification gas purification apparatus of the present invention supplies a coal and water vapor as gasification raw materials to generate gasification gas,
And oxidation reforming furnace gasification gas oxidizing reforming from the gasifier,
A heat exchanger for recovering heat by cooling the gasified gas reformed in the oxidation reforming furnace;
A cooler for condensing water vapor by cooling the gasification gas after cooling by the heat exchanger;
A booster for pressurizing the gasified gas cooled by the cooler;
And CO 2 absorbing apparatus for separating CO 2 by cooling the pressurized gasification gas by said booster,
A separator for a hydrogen separation membrane, which is located between an oxidation reforming furnace and a heat exchanger downstream of the oxidation reforming furnace and separates hydrogen from the gasification gas by passing the gasification gas through the hydrogen separation membrane at 1000 ° C. or higher . Are provided.

また本発明のガス化ガス精製装置においては、冷却後のガス化ガスを1000℃〜1100℃の温度で水素分離膜に通し、タール分による水素分離膜への詰まりを防止するように構成したものである In the gasification gas purification apparatus of the present invention, the cooled gasification gas is passed through the hydrogen separation membrane at a temperature of 1000 ° C. to 1100 ° C. to prevent clogging of the hydrogen separation membrane due to tar content . Is a thing

また本発明のガス化ガス精製装置においては、熱交換器と冷却器の間に、ガス化ガスに対してシフト反応を行う酸性ガスシフト反応器を備えると共に、酸性ガスシフト反応器の下流側に、水素を分離する水素分離膜の分離器を備えたものである。   In the gasification gas purification apparatus of the present invention, an acid gas shift reactor for performing a shift reaction on the gasification gas is provided between the heat exchanger and the cooler, and hydrogen gas is provided downstream of the acid gas shift reactor. The separator of the hydrogen separation membrane which isolate | separates is equipped.

また本発明のガス化ガス精製装置においては、水素分離膜で分離した水素を冷却する間接冷却器を備えたものである。   In addition, the gasification gas purification apparatus of the present invention includes an indirect cooler that cools the hydrogen separated by the hydrogen separation membrane.

本発明のガス化ガス精製方法及び装置によれば、酸化改質炉の下流側でガス化ガスから水素を分離してガス化ガスの体積を低減するので、熱交換器、冷却器、昇圧機、CO吸収装置での処理容量を減らすことができ、よって熱交換器、冷却器、昇圧機、CO吸収装置を小型化して製造コストや運転コストを低減することができる。また分離した水素を容易に利用することができるという優れた効果を奏し得る。 According to the gasification gas purification method and apparatus of the present invention, hydrogen is separated from the gasification gas on the downstream side of the oxidation reforming furnace to reduce the volume of the gasification gas. Therefore, the heat exchanger, the cooler, and the booster The processing capacity of the CO 2 absorber can be reduced, and therefore the heat exchanger, cooler, booster, and CO 2 absorber can be miniaturized to reduce manufacturing costs and operating costs. Moreover, the outstanding effect that the isolate | separated hydrogen can be utilized easily can be show | played.

以下、本発明を実施する形態の第一例を図1を参照して説明する。   Hereinafter, a first example of an embodiment of the present invention will be described with reference to FIG.

図1はガス化ガス精製方法及び装置を実施する形態の第一例であり、図中、図3と同一の符号を付した部分は同一物を表している。   FIG. 1 is a first example of an embodiment for carrying out a gasification gas purification method and apparatus. In the figure, the same reference numerals as those in FIG. 3 denote the same parts.

第一例のガス化ガス精製装置は、ガス化原料として石炭と水蒸気とを供給してガス化ガスを生成するガス化炉1と、ガス化炉1からのガス化ガスを高温にて酸化改質する酸化改質炉2と、酸化改質炉2で改質したガス化ガスを冷却する水冷壁3と、水冷壁3で冷却したガス化ガスを更に冷却して熱回収する熱交換器10と、熱交換器10で冷却した後のガス化ガスを冷却する直接冷却器(冷却器)11と、直接冷却器11で冷却したガス化ガスを更に間接冷却する間接冷却器12と、間接冷却器12で間接冷却したガス化ガスを加圧する昇圧機13と、昇圧機13で昇圧されたガス化ガスからCOを分離するCO吸収装置14と、直接冷却器11、間接冷却器12、昇圧機13で発生した排水を処理する排水処理器9とを備えている。 The gasification gas purification apparatus of the first example includes a gasification furnace 1 that supplies coal and steam as gasification raw materials to generate gasification gas, and gasification gas from the gasification furnace 1 is oxidized and modified at a high temperature. Oxidation reforming furnace 2 for cooling, water cooling wall 3 for cooling the gasification gas reformed in oxidation reforming furnace 2, and heat exchanger 10 for further cooling and recovering the gasification gas cooled by water cooling wall 3 A direct cooler (cooler) 11 that cools the gasified gas after cooling by the heat exchanger 10, an indirect cooler 12 that further indirectly cools the gasified gas cooled by the direct cooler 11, and indirect cooling A pressure booster 13 that pressurizes the gasified gas indirectly cooled by the pressure vessel 12, a CO 2 absorber 14 that separates CO 2 from the gasified gas pressure boosted by the pressure booster 13, a direct cooler 11, an indirect cooler 12, And a waste water treatment device 9 for treating the waste water generated by the booster 13.

ここで、熱交換器10、直接冷却器11、間接冷却器12、昇圧機13は、従来例と略同じ構成を備える一方で、ガス化ガスの処理し得る体積量を低減して小型化されている。   Here, the heat exchanger 10, the direct cooler 11, the indirect cooler 12, and the booster 13 have substantially the same configuration as the conventional example, but are reduced in size by reducing the volume of gasified gas that can be processed. ing.

またCO吸収装置14は、アミンやメタノール、ポリエチレングリコール等の吸収液を用いるCO吸収塔等で構成され、同様にガス化ガスの処理し得る体積量を低減して小型化されている。 The CO 2 absorber 14 is composed of a CO 2 absorption tower using an absorbing liquid such as amine, methanol, polyethylene glycol, and the like, and is similarly miniaturized by reducing the volume of gasification gas that can be processed.

酸化改質炉2の下流側に位置する水冷壁3と熱交換器10の間には、水素を分離するように、水素分離膜を有する分離器15が配置されている。分離器15の水素分離膜は、シリカ系やアルミナ系のセラミック分離膜やセラミックで強化したパラジウム膜で構成されている。ここで水素分離膜は分離器15に着脱し得るものでも良いし、固定するものでも良いし、ガス化ガスを通過させるものならば形状や設置構造は特に制限されるものではない。   A separator 15 having a hydrogen separation membrane is disposed between the water cooling wall 3 located on the downstream side of the oxidation reforming furnace 2 and the heat exchanger 10 so as to separate hydrogen. The hydrogen separation membrane of the separator 15 is composed of a silica-based or alumina-based ceramic separation membrane or a palladium membrane reinforced with ceramic. Here, the hydrogen separation membrane may be detachable from the separator 15 or may be fixed, and the shape and installation structure are not particularly limited as long as the gasification gas can pass therethrough.

また水素分離膜を有する分離器15には、分離した水素を製品の状態で利用先へ供給する供給ライン16が接続されており、供給ライン16には、冷水管等を有する間接冷却器17が配置されている。   The separator 15 having a hydrogen separation membrane is connected to a supply line 16 for supplying the separated hydrogen to the user in the product state. The supply line 16 includes an indirect cooler 17 having a cold water pipe or the like. Has been placed.

以下本発明を実施する形態の第一例の作用を説明する。   The operation of the first embodiment of the present invention will be described below.

ガス化ガスを処理する際には、ガス化炉1において石炭等をガス化し、ガス化炉1からのガス化ガスを酸化改質炉2で酸化改質することでガス化ガスに含まれるタール分を除去し、改質したガス化ガスを水冷壁3で冷却し、冷却後のガス化ガスを約1000℃〜1100℃程度の温度で水素分離膜の分離器15に通して水素を分離し、ガス化ガスの主成分をCO、CO、水蒸気にすると共に微量成分を硫黄分(HS、COS、CS)、窒素分(NH、HCN)にする。 When the gasification gas is treated, coal or the like is gasified in the gasification furnace 1, and the gas contained in the gasification gas is oxidized and reformed in the oxidation reforming furnace 2 from the gasification furnace 1. The reformed gasification gas is cooled by the water cooling wall 3 and the cooled gasification gas is passed through the separator 15 of the hydrogen separation membrane at a temperature of about 1000 ° C. to 1100 ° C. to separate the hydrogen. The main components of the gasification gas are CO, CO 2 and water vapor, and the trace components are sulfur (H 2 S, COS, CS 2 ) and nitrogen (NH 3 , HCN).

続いて熱交換器10で冷却して熱回収した後、冷却後のガス化ガスを直接冷却器11及び間接冷却器12で冷却してガス化ガスに残存する水蒸気を凝縮させて分離し、冷却したガス化ガスを昇圧機13で加圧し、加圧したガス化ガスをCO吸収装置14で冷却して硫黄分、窒素分、COを分離し、COのガス化ガスを発電や、水蒸気とのシフト反応に利用する。 Subsequently, after cooling by the heat exchanger 10 and recovering heat, the gasified gas after cooling is directly cooled by the cooler 11 and the indirect cooler 12 to condense and separate water vapor remaining in the gasified gas, The pressurized gasification gas is pressurized by the booster 13, and the pressurized gasification gas is cooled by the CO 2 absorber 14 to separate sulfur, nitrogen, and CO 2 , and the CO gasification gas is generated by power generation or steam. Used for shift reaction.

同時に分離器15では、ガス化ガスを1000℃以上で水素分離膜に通し、タール分等が水素分離膜に詰まることを防止すると共に、分離した水素を供給ライン16に供給し、間接冷却器17により冷却して製品の状態で利用先に供給する。   At the same time, in the separator 15, the gasified gas is passed through the hydrogen separation membrane at 1000 ° C. or higher to prevent clogging of tars and the like into the hydrogen separation membrane, and the separated hydrogen is supplied to the supply line 16. The product is cooled and supplied to the user in the product state.

また水素分離膜の分離器15はガス化ガスから水素を分離してガス化ガスの体積を低減し、熱交換器10、直接冷却器11、間接冷却器12のガス化ガスの冷却容量を減らすと共にCO吸収装置14で処理するガス化ガスの量を約半分に減らし、水素分離膜の分離器15の下流側の機器の処理容量を減らす。 The separator 15 of the hydrogen separation membrane separates hydrogen from the gasification gas to reduce the volume of the gasification gas, and reduces the cooling capacity of the gasification gas in the heat exchanger 10, the direct cooler 11, and the indirect cooler 12. At the same time, the amount of gasification gas to be processed by the CO 2 absorber 14 is reduced to about half, and the processing capacity of the equipment downstream of the hydrogen separation membrane separator 15 is reduced.

而して、このように実施の形態の第一例によれば、酸化改質炉2の下流側でガス化ガスから水素を分離してガス化ガスの体積を低減するので、熱交換器10、直接冷却器11、間接冷却器12、昇圧機13、CO吸収装置14での処理容量を減らすことができ、よって熱交換器10、直接冷却器11、間接冷却器12、昇圧機13、CO吸収装置14を小型化して製造コストや運転コストを低減することができる。また分離した水素を容易に利用することができる。 Thus, according to the first example of the embodiment as described above, since the hydrogen is separated from the gasification gas on the downstream side of the oxidation reforming furnace 2, the volume of the gasification gas is reduced. , The processing capacity of the direct cooler 11, the indirect cooler 12, the booster 13, and the CO 2 absorber 14 can be reduced, so that the heat exchanger 10, the direct cooler 11, the indirect cooler 12, the booster 13, The CO 2 absorber 14 can be downsized to reduce manufacturing costs and operating costs. Moreover, the separated hydrogen can be easily used.

実施の形態の第一例において、酸化改質炉2と熱交換器10の間で水素分離膜により水素を分離すると、水素分離膜より下流側の機器である熱交換器10、直接冷却器11、間接冷却器12、昇圧機13、CO吸収装置14での処理容量を容易に減らすことができ、よって熱交換器10、直接冷却器11、間接冷却器12、昇圧機13、CO吸収装置14を適切に小型化して製造コストや運転コストを一層低減することができる。 In the first example of the embodiment, when hydrogen is separated by the hydrogen separation membrane between the oxidation reforming furnace 2 and the heat exchanger 10, the heat exchanger 10 and the direct cooler 11 which are devices downstream from the hydrogen separation membrane are used. , The processing capacity in the indirect cooler 12, the booster 13, and the CO 2 absorber 14 can be easily reduced, so that the heat exchanger 10, the direct cooler 11, the indirect cooler 12, the booster 13, the CO 2 absorption The device 14 can be appropriately downsized to further reduce manufacturing costs and operating costs.

実施の形態の第一例において、水素分離膜で分離した水素を間接冷却器17により冷却すると、分離した水素を製品の状態で利用先に供給し得るので、水素を一層容易に利用することができる。   In the first example of the embodiment, when the hydrogen separated by the hydrogen separation membrane is cooled by the indirect cooler 17, the separated hydrogen can be supplied to the user in a product state, so that hydrogen can be used more easily. it can.

以下、本発明の実施の形態の第二例を図2を参照して説明する。図中、図1と同一の符号を付した部分は同一物を表している。   Hereinafter, a second example of the embodiment of the present invention will be described with reference to FIG. In the figure, the same reference numerals as those in FIG. 1 denote the same parts.

本発明のガス化ガス精製方法及び装置の形態の第二例は、水素を分離する構成や分離位置を変更したものであり、その他の構成は第一例と略同じ構成を備えている。   The second example of the gasification gas purification method and apparatus of the present invention is a configuration in which hydrogen is separated and the separation position is changed, and the other configurations are substantially the same as the first example.

第二例の直接冷却器11、間接冷却器12、昇圧機13、CO吸収装置14は、第一例と同様に、ガス化ガスの処理し得る体積量を低減して小型化している。 Similarly to the first example, the direct cooler 11, the indirect cooler 12, the booster 13, and the CO 2 absorber 14 of the second example are reduced in size by reducing the volume of gasification gas that can be processed.

また熱交換器4と直接冷却器11(冷却器)の間には、ガス化ガスに対してシフト反応を行う酸性ガスシフト反応器18が配置されていると共に、酸性ガスシフト反応器18と直接冷却器11の間には、水素を分離する水素分離膜の分離器19が配置されている。   Between the heat exchanger 4 and the direct cooler 11 (cooler), an acid gas shift reactor 18 for performing a shift reaction on the gasification gas is disposed, and the acid gas shift reactor 18 and the direct cooler are disposed. 11, a hydrogen separation membrane separator 19 for separating hydrogen is disposed.

酸性ガスシフト反応器18は、シフト反応を生じる触媒を備えており、触媒は酸性ガスシフト触媒であってガス化ガス中の硫黄分による被毒を回避するようにしている。   The acid gas shift reactor 18 includes a catalyst that causes a shift reaction, and the catalyst is an acid gas shift catalyst so as to avoid poisoning due to sulfur in the gasification gas.

また分離器19の水素分離膜は、第一例と同様に、シリカ系やアルミナ系のセラミック分離膜やセラミックで強化したパラジウム膜で構成されている。ここで水素分離膜は分離器19に着脱し得るものでも良いし、固定するものでも良いし、ガス化ガスを通過させるものならば形状や設置構造は特に制限されるものではない。   Similarly to the first example, the hydrogen separation membrane of the separator 19 is composed of a silica-based or alumina-based ceramic separation membrane or a palladium membrane reinforced with ceramic. Here, the hydrogen separation membrane may be detachable from the separator 19 or may be fixed, and the shape and installation structure are not particularly limited as long as the gasification gas can pass therethrough.

更に水素分離膜を有する分離器19には、分離した水素を製品の状態で利用先へ供給する供給ライン20が接続されており、供給ライン20には、冷水管等を有する間接冷却器21が配置されている。   In addition, a separator 19 having a hydrogen separation membrane is connected to a supply line 20 for supplying the separated hydrogen to a user in a product state. The supply line 20 includes an indirect cooler 21 having a cold water pipe or the like. Has been placed.

以下本発明を実施する形態の第二例の作用を説明する。   The operation of the second embodiment of the present invention will be described below.

ガス化ガスを処理する際には、ガス化炉1において石炭等をガス化し、ガス化炉1からのガス化ガスを酸化改質炉2で酸化改質することでガス化ガスに含まれるタール分を除去し、改質したガス化ガスを水冷壁3で冷却し、更に熱交換器4で冷却して熱回収し、冷却後のガス化ガスを約400℃〜500℃程度の温度で酸性ガスシフト反応器18に通してガス化ガス中の水素の割合を増やし、そしてガス化ガスを水素分離膜の分離器19に通して水素を分離し、ガス化ガスの主成分をCO、CO、水蒸気にすると共に微量成分を硫黄分(HS、COS、CS)、窒素分(NH、HCN)にする。 When the gasification gas is treated, coal or the like is gasified in the gasification furnace 1, and the gas contained in the gasification gas is oxidized and reformed in the oxidation reforming furnace 2 from the gasification furnace 1. The reformed gasification gas is cooled by the water-cooled wall 3 and further cooled by the heat exchanger 4 to recover the heat. The cooled gasification gas is acidic at a temperature of about 400 ° C to 500 ° C. The gas shift reactor 18 is used to increase the proportion of hydrogen in the gasification gas, and the gasification gas is passed through the separator 19 of the hydrogen separation membrane to separate the hydrogen, and the main components of the gasification gas are CO, CO 2 , sulfur trace components as well as water vapor (H 2 S, COS, CS 2), to nitrogen partial (NH 3, HCN).

続いてガス化ガスを直接冷却器11及び間接冷却器12で冷却してガス化ガスに残存する水蒸気を凝縮させて分離し、冷却したガス化ガスを昇圧機13で加圧し、加圧したガス化ガスをCO吸収装置14で冷却して硫黄分、窒素分、COを分離し、COのガス化ガスを発電や、水蒸気とのシフト反応に利用する。 Subsequently, the gasified gas is cooled by the direct cooler 11 and the indirect cooler 12 to condense and separate the water vapor remaining in the gasified gas, and the cooled gasified gas is pressurized by the booster 13 and then pressurized. The gasified gas is cooled by the CO 2 absorber 14 to separate sulfur, nitrogen, and CO 2, and the gasified CO gas is used for power generation and shift reaction with water vapor.

同時に分離器19では、分離した水素を供給ライン20に供給し、間接冷却器21により冷却して製品の状態で利用先に供給する。   At the same time, in the separator 19, the separated hydrogen is supplied to the supply line 20, cooled by the indirect cooler 21, and supplied to the user in the product state.

また水素分離膜の分離器19はガス化ガスから水素を分離してガス化ガスの体積を低減し、直接冷却器11、間接冷却器12のガス化ガスの冷却容量を減らすと共にCO吸収装置14で処理するガス化ガスの量を大幅に減らし、水素分離膜の分離器19の下流側の機器の処理容量を減らす。 The hydrogen separation membrane separator 19 separates hydrogen from the gasification gas to reduce the volume of the gasification gas, to reduce the cooling capacity of the gasification gas in the direct cooler 11 and the indirect cooler 12, and to reduce the CO 2 absorption device. 14 greatly reduces the amount of gasification gas to be processed, and reduces the processing capacity of equipment downstream of the hydrogen separation membrane separator 19.

而して、このように実施の形態の第二例によれば、熱交換器4の下流側でガス化ガスから水素を分離してガス化ガスの体積を低減するので、直接冷却器11、間接冷却器12、昇圧機13、CO吸収装置14での処理容量を減らすことができ、よって直接冷却器11、間接冷却器12、昇圧機13、CO吸収装置14を小型化して製造コストや運転コストを低減することができる。また分離した水素を容易に利用することができる。 Thus, according to the second example of the embodiment, hydrogen is separated from the gasification gas on the downstream side of the heat exchanger 4 to reduce the volume of the gasification gas. The processing capacity of the indirect cooler 12, the booster 13, and the CO 2 absorber 14 can be reduced, and thus the direct cooler 11, the indirect cooler 12, the booster 13, and the CO 2 absorber 14 can be reduced in size and manufacturing cost. And operating costs can be reduced. Moreover, the separated hydrogen can be easily used.

実施の形態の第二例において、熱交換器4と直接冷却器(冷却器)11の間で、酸性ガスシフト反応器18によりガス化ガスに対してシフト反応を行い、更に水素分離膜により水素を分離すると、水素分離膜より下流側の機器である直接冷却器11、間接冷却器12、昇圧機13、CO吸収装置14での処理容量を容易に減らすことができ、よって直接冷却器11、間接冷却器12、昇圧機13、CO吸収装置14を適切に小型化して製造コストや運転コストを一層低減することができる。 In the second example of the embodiment, a shift reaction is performed on the gasification gas by the acidic gas shift reactor 18 between the heat exchanger 4 and the direct cooler (cooler) 11, and hydrogen is further removed by the hydrogen separation membrane. When separated, the processing capacity in the direct cooler 11, the indirect cooler 12, the booster 13, and the CO 2 absorber 14 which are devices downstream from the hydrogen separation membrane can be easily reduced, and thus the direct cooler 11, The indirect cooler 12, the booster 13, and the CO 2 absorber 14 can be appropriately downsized to further reduce manufacturing costs and operating costs.

実施の形態の第二例において、水素分離膜で分離した水素を間接冷却器21により冷却すると、分離した水素を製品の状態で利用先に供給し得るので、水素を一層容易に利用することができる。   In the second example of the embodiment, when the hydrogen separated by the hydrogen separation membrane is cooled by the indirect cooler 21, the separated hydrogen can be supplied to the user in a product state, so that the hydrogen can be used more easily. it can.

尚、本発明のガス化ガス精製方法及び装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the gasification gas purification method and apparatus of the present invention are not limited to the illustrated examples described above, and it is needless to say that various modifications can be made without departing from the scope of the present invention.

本発明を実施する形態の第一例を示す全体概要構成図である。1 is an overall schematic configuration diagram showing a first example of an embodiment for carrying out the present invention. 本発明を実施する形態の第二例を示す全体概要構成図である。It is a whole schematic block diagram which shows the 2nd example of embodiment which implements this invention. 従来のガス化ガス精製装置を示す全体概要構成図である。It is a whole schematic block diagram which shows the conventional gasification gas refinement | purification apparatus.

1 ガス化炉
2 酸化改質炉
4 熱交換器
10 熱交換器
11 直接冷却器(冷却器)
12 間接冷却器
13 昇圧機
14 CO吸収装置
15 水素分離膜の分離器
17 間接冷却器
18 酸性ガスシフト反応器
19 水素分離膜の分離器
21 間接冷却器
DESCRIPTION OF SYMBOLS 1 Gasification furnace 2 Oxidation reforming furnace 4 Heat exchanger 10 Heat exchanger 11 Direct cooler (cooler)
12 indirect cooler 13 booster 14 CO 2 absorber 15 hydrogen separation membrane separator 17 indirect cooler 18 the acidic gas shift reactor 19 the hydrogen separation membrane separator 21 indirect cooler

Claims (8)

ガス化炉にガス化原料として石炭と水蒸気とを供給してガス化ガスとし、該ガス化炉からのガス化ガスを酸化改質炉で酸化改質してガス化ガス中のタール分を除去し、該改質したガス化ガスを熱交換器で冷却して熱回収し、該冷却後のガス化ガスを冷却器で冷却してガス化ガスに残存する水蒸気を凝縮させ、該冷却したガス化ガスを昇圧機で加圧し、該加圧したガス化ガスをCO吸収装置で処理してCOを分離するガス化ガス精製方法であって、前記酸化改質炉の下流側で酸化改質炉と熱交換器の間に水素分離膜を配し、ガス化ガスを1000℃以上で水素分離膜に通してガス化ガスから水素を分離し、ガス化ガスの体積を低減することを特徴とするガス化ガス精製方法。 Coal and water vapor are supplied to the gasification furnace as gasification raw materials to form gasification gas. The gasification gas from the gasification furnace is oxidized and reformed in the oxidation reforming furnace to remove the tar content in the gasification gas. The reformed gasification gas is cooled by a heat exchanger to recover heat, the cooled gasification gas is cooled by a cooler to condense water vapor remaining in the gasification gas, and the cooled gas gases was pressurized with booster, the the pressurized pressure gasification gas to a gasification gas purification method of separating CO 2 is treated with CO 2 absorber, oxidation reforming in the downstream side of the oxidation reformer A hydrogen separation membrane is placed between the heat treatment furnace and the heat exchanger , and the gasification gas is passed through the hydrogen separation membrane at 1000 ° C. or higher to separate hydrogen from the gasification gas, thereby reducing the volume of the gasification gas. Gasification gas purification method. 冷却後のガス化ガスを1000℃〜1100℃の温度で水素分離膜に通し、タール分による水素分離膜への詰まりを防止することを特徴とする請求項1に記載のガス化ガス精製方法。The gasified gas purification method according to claim 1, wherein the gasified gas after cooling is passed through the hydrogen separation membrane at a temperature of 1000 ° C to 1100 ° C to prevent clogging of the hydrogen separation membrane due to tar content. 熱交換器と冷却器の間で、酸性ガスシフト反応器によりガス化ガスに対してシフト反応を行い、更に水素分離膜により水素を分離することを特徴とする請求項1に記載のガス化ガス精製方法。   The gasification gas purification according to claim 1, wherein a shift reaction is performed on the gasification gas by an acid gas shift reactor between the heat exchanger and the cooler, and further hydrogen is separated by a hydrogen separation membrane. Method. 水素分離膜で分離した水素を間接冷却器により冷却することを特徴とする請求項1〜3のいずれかに記載のガス化ガス精製方法。   The gasified gas purification method according to any one of claims 1 to 3, wherein the hydrogen separated by the hydrogen separation membrane is cooled by an indirect cooler. ガス化原料として石炭と水蒸気とを供給してガス化ガスを生成するガス化炉と、
ガス化炉からのガス化ガスを酸化改質する酸化改質炉と、
該酸化改質炉で改質したガス化ガスを冷却して熱回収する熱交換器と、
該熱交換器で冷却した後のガス化ガスを冷却して水蒸気を凝縮させる冷却器と、
該冷却器で冷却したガス化ガスを加圧する昇圧機と、
該昇圧機で加圧したガス化ガスを冷却してCOを分離するCO吸収装置と、
酸化改質炉の下流側で酸化改質炉と熱交換器の間に位置し、ガス化ガスを1000℃以上で水素分離膜に通してガス化ガスから水素を分離する水素分離膜の分離器とを備えたことを特徴とするガス化ガス精製装置。
A gasification furnace for supplying gas and steam as gasification raw materials to generate gasification gas;
And oxidation reforming furnace gasification gas oxidizing reforming from the gasifier,
A heat exchanger for recovering heat by cooling the gasified gas reformed in the oxidation reforming furnace;
A cooler for condensing water vapor by cooling the gasification gas after cooling by the heat exchanger;
A booster for pressurizing the gasified gas cooled by the cooler;
And CO 2 absorbing apparatus for separating CO 2 by cooling the pressurized gasification gas by said booster,
A separator for a hydrogen separation membrane, which is located between an oxidation reforming furnace and a heat exchanger downstream of the oxidation reforming furnace and separates hydrogen from the gasification gas by passing the gasification gas through the hydrogen separation membrane at 1000 ° C. or higher . A gasification gas purification apparatus comprising:
冷却後のガス化ガスを1000℃〜1100℃の温度で水素分離膜に通し、タール分による水素分離膜への詰まりを防止するように構成したことを特徴とする請求項5に記載のガス化ガス精製装置。 6. The gas according to claim 5 , wherein the gasified gas after cooling is passed through a hydrogen separation membrane at a temperature of 1000 ° C. to 1100 ° C. to prevent clogging of the hydrogen separation membrane due to tar content. Gas purification equipment. 熱交換器と冷却器の間に、ガス化ガスに対してシフト反応を行う酸性ガスシフト反応器を備えると共に、酸性ガスシフト反応器の下流側に、水素を分離する水素分離膜の分離器を備えたことを特徴とする請求項5に記載のガス化ガス精製装置。   Between the heat exchanger and the cooler, an acid gas shift reactor that performs a shift reaction on the gasification gas is provided, and a hydrogen separation membrane separator that separates hydrogen is provided downstream of the acid gas shift reactor. The gasification gas purification apparatus of Claim 5 characterized by the above-mentioned. 水素分離膜で分離した水素を冷却する間接冷却器を備えたことを特徴とする請求項5〜7のいずれかに記載のガス化ガス精製装置。   The gasification gas purification apparatus according to any one of claims 5 to 7, further comprising an indirect cooler for cooling hydrogen separated by the hydrogen separation membrane.
JP2009012764A 2009-01-23 2009-01-23 Gasification gas purification method and apparatus Active JP5407358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009012764A JP5407358B2 (en) 2009-01-23 2009-01-23 Gasification gas purification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009012764A JP5407358B2 (en) 2009-01-23 2009-01-23 Gasification gas purification method and apparatus

Publications (2)

Publication Number Publication Date
JP2010168482A JP2010168482A (en) 2010-08-05
JP5407358B2 true JP5407358B2 (en) 2014-02-05

Family

ID=42700919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009012764A Active JP5407358B2 (en) 2009-01-23 2009-01-23 Gasification gas purification method and apparatus

Country Status (1)

Country Link
JP (1) JP5407358B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4443799B2 (en) * 2000-07-26 2010-03-31 三菱重工業株式会社 Biomass methanol synthesis system
JP2004182501A (en) * 2002-12-02 2004-07-02 Kansai Electric Power Co Inc:The Method of producing hydrogen from biomass
JP4255279B2 (en) * 2002-12-27 2009-04-15 独立行政法人科学技術振興機構 Solid fuel gasification system
JP3925481B2 (en) * 2003-10-03 2007-06-06 新菱冷熱工業株式会社 Method for producing hydrogen or hydrogen-containing gas from organic waste
JP4594821B2 (en) * 2005-08-05 2010-12-08 新日鉄エンジニアリング株式会社 Purification method of gasification gas

Also Published As

Publication number Publication date
JP2010168482A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
EP2543743B1 (en) Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
JP5412171B2 (en) Method and apparatus for separating acidic gas from synthesis gas
RU2546266C2 (en) Method of producing direct reduced iron with limited emissions of co2 into atmosphere
DK2883940T3 (en) Process and apparatus for biomass gasification by recirculation of the carbon dioxide without oxygen
KR101321072B1 (en) Apparatus for manufacturing syngas containing co and h2 and method thereof
JP4395542B1 (en) High purity CO2 recovery method and system from gasification gas
JP5810537B2 (en) How to use carbon oxide-containing gas
TW201730099A (en) ATR based ammonia process and plant
JP6652694B2 (en) Plasma arc furnace and applications
EA021500B1 (en) Co-production of methanol and ammonia
JP5594370B2 (en) Product gas reforming method and apparatus
Damanabi et al. Potential of tri-reforming process and membrane technology for improving ammonia production and CO2 reduction
JP5217295B2 (en) Coal gasification gas purification method and apparatus
KR20140038672A (en) Igcc with co2 removal system
JP5407358B2 (en) Gasification gas purification method and apparatus
JP2020055946A (en) Gasification gas production apparatus, and production method of gasification gas
JP5407376B2 (en) Gasification gas purification method and apparatus
JP5182635B2 (en) High-grade hydrocarbon oil production apparatus and production method
US11021373B2 (en) Ammonia production plant and ammonia production method
JP2020055947A (en) Gasification gas production apparatus, and production method of gasification gas
JP6293472B2 (en) Hydrogen production apparatus and hydrogen production method
JP2010168481A (en) Method and apparatus for purifying gasified gas
JP4507276B2 (en) Operation method of waste gasification processing equipment
JP2017206402A (en) Hydrogen gas production method and biogas hydrogenation facility
JP6077169B1 (en) Method for producing hydrogen gas and biogas hydrogenation facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R151 Written notification of patent or utility model registration

Ref document number: 5407358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250