JP5404521B2 - Biaxially stretched polyester film for deep drawing simultaneous transfer - Google Patents

Biaxially stretched polyester film for deep drawing simultaneous transfer Download PDF

Info

Publication number
JP5404521B2
JP5404521B2 JP2010104631A JP2010104631A JP5404521B2 JP 5404521 B2 JP5404521 B2 JP 5404521B2 JP 2010104631 A JP2010104631 A JP 2010104631A JP 2010104631 A JP2010104631 A JP 2010104631A JP 5404521 B2 JP5404521 B2 JP 5404521B2
Authority
JP
Japan
Prior art keywords
film
polyester
layer
particles
deep drawing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010104631A
Other languages
Japanese (ja)
Other versions
JP2011230436A (en
Inventor
俊治 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2010104631A priority Critical patent/JP5404521B2/en
Publication of JP2011230436A publication Critical patent/JP2011230436A/en
Application granted granted Critical
Publication of JP5404521B2 publication Critical patent/JP5404521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

本発明は、電気製品や自動車部品などの曲面のあるやや形状が複雑な樹脂成形品の表面をマット調に装飾するために用いられる成形同時加飾シートの基材フィルムとして有用な深絞り成形同時転写用二軸延伸ポリエステルフィルムに関する。   The present invention relates to a deep drawing simultaneous use useful as a base film of a simultaneous molding decorative sheet used for decorating the surface of a resin molded product having a curved surface and a slightly complicated shape such as an electric product or an automobile part in a matte tone. The present invention relates to a biaxially stretched polyester film for transfer.

電化製品等の曲面を有するプラスチック成形品の加飾方法の一つとして、成形と同時に転写印刷を施す、いわゆるインモールド成形法が広く利用されている。インモールド成形法とは、あらかじめ離型層、インキ層、接着層等からなる印刷層を基材フィルムの上に積層させた転写シートを作成し、プラスチックの射出成形時の熱と圧力を利用して転写印刷する方法である。本発明は成形品の表面に艶消し性に優れたマット調の外観をつくるときに用いる成形同時転写用二軸延伸ポリエステルフィルムに関する。   As a method for decorating a plastic molded product having a curved surface such as an electric appliance, a so-called in-mold molding method in which transfer printing is performed simultaneously with molding is widely used. The in-mold molding method uses a heat and pressure during plastic injection molding to create a transfer sheet in which a printing layer consisting of a release layer, ink layer, adhesive layer, etc. is laminated on a substrate film in advance. Transfer printing. TECHNICAL FIELD The present invention relates to a biaxially stretched polyester film for simultaneous transfer molding used for producing a matte appearance having excellent matting properties on the surface of a molded product.

基材フィルムの離型層と接する面は、マット調の外観を成形品に転写させるため表面に微細な凹凸を有する。基材フィルムの表面に微細な凹凸を付ける方法は、エンボス加工や微細粒子を含有した塗布液をコートする方法があるが基材フィルムの製造工程が増える問題がある。またポリエステルフィルム製造時に粒子を比較的大量に添加して表面を荒らしたフィルムは特許文献1に開示されているが、成形品の光沢度は十分に低いとはいえない。一方フィルム表面粗さを大きくするためにフィルム中の粒子濃度を上げるとフィルムが成形同時転写加工時に破れる問題が発生する。また特許文献2によれば共押出積層構成の
表層に粒子を添加した深絞り用に好適なポリエステルフィルムが提案されているが、成形品の平坦部と曲面部で光沢性が変わる問題がある。
The surface in contact with the release layer of the base film has fine irregularities on the surface in order to transfer the matte appearance to the molded product. There are methods for providing fine irregularities on the surface of the base film, such as embossing and a method of coating a coating solution containing fine particles, but there is a problem that the manufacturing process of the base film increases. Moreover, although the film which added a comparatively large quantity of particle | grains at the time of polyester film manufacture and the surface was roughened is disclosed by patent document 1, it cannot be said that the glossiness of a molded article is low enough. On the other hand, if the particle concentration in the film is increased in order to increase the film surface roughness, there arises a problem that the film is torn during the simultaneous transfer processing. Patent Document 2 proposes a polyester film suitable for deep drawing in which particles are added to the surface layer of a co-extrusion laminated structure. However, there is a problem that glossiness changes between a flat portion and a curved portion of a molded product.

特開2007−268708号公報JP 2007-268708 A 特開2008−163275号公報JP 2008-163275 A

本発明は、上記実状に鑑みなされたものであり、その解決課題は、電気製品や自動車部品などの曲面のあるやや形状が複雑な樹脂成形品の表面を光沢ムラの少ないマット調に装飾するために用いる深絞り成形性に優れた成形同時転写用二軸延伸ポリエテルフィルムを提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned actual situation, and its solution is to decorate the surface of a resin molded product having a slightly complicated shape such as an electric product or an automobile part in a matte tone with less gloss unevenness. and to provide a deep drawing having excellent molding simultaneous transfer biaxially stretched polyether scan ether film was used.

本発明者らは、鋭意検討した結果、特定の構成を有するポリエステルフィルムによれば、上記課題を容易に解決できることを見いだし、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that the above problem can be easily solved by using a polyester film having a specific configuration, and have completed the present invention.

すなわち、本発明の要旨は、イソフタル酸単位を5〜25モル%含む共重合ポリエステルからなり、少なくとも一方の表面に平均粒子径2.0〜20μmの粒子を0.1〜10.0重量%含有する厚さ4.0〜20μmの粒子含有の共押出層を有することを特徴とする深絞り成形同時転写用二軸延伸ポリエテルフィルムに存する。 That is, the gist of the present invention consists of a copolymerized polyester containing 5 to 25 mol% of isophthalic acid units, and contains 0.1 to 10.0 wt% of particles having an average particle diameter of 2.0 to 20 μm on at least one surface. It consists in deep-drawing simultaneously transfer biaxially stretched polyether scan ether film characterized by having a co-extruded layer of particle-containing thick 4.0~20μm to.

本発明によれば、深絞り成形性に優れたマット調外観の光沢ムラの少ない成形品を得ることのできる成形同時転写用二軸延伸ポリエテルフィルムを提供することができ、本発明の工業的価値は高い。
According to the present invention, it is possible to provide a molding simultaneous transfer biaxially stretched polyether scan Tel film capable of obtaining a small molded article gloss unevenness superior matte appearance to the deep drawability, industrial invention Target value is high.

本発明に用いるポリエステルは、イソフタル酸単位を5〜25モル%濃度、好ましくは7〜22モル%濃度、さらに好ましくは10〜20モル%含む共重合ポリエステルからなる。イソフタル酸単位を5〜25モル%濃度含む共重合ポリエステルとは、テレフタル酸またはナフタレン−2,6−ジカルボン酸等のような芳香族ジカルボン酸とイソフタル酸5〜25モル%濃度混合物とエチレングリコール、ジエチレングリコールまたはテトラメチレングリコールを縮重合してできたポリエステルである。   The polyester used in the present invention comprises a copolyester containing an isophthalic acid unit in a concentration of 5 to 25 mol%, preferably 7 to 22 mol%, more preferably 10 to 20 mol%. A copolymer polyester containing 5 to 25 mol% of isophthalic acid unit is a mixture of an aromatic dicarboxylic acid such as terephthalic acid or naphthalene-2,6-dicarboxylic acid and 5 to 25 mol% of isophthalic acid, ethylene glycol, It is a polyester made by condensation polymerization of diethylene glycol or tetramethylene glycol.

イソフタル酸単位が5モル%濃度以下では、フィルムの伸び率が小さくなり深絞り成形に適したフィルムをつくることができない。一方30モル%濃度を越えるとフィルムの成形同時転写加工時のフィルム収縮が大きくなり成形加工困難となる。または収縮率を小さくするために熱処理温度を上げるとフィルムが製膜時に破れる。   If the isophthalic acid unit concentration is 5 mol% or less, the elongation rate of the film becomes small and a film suitable for deep drawing cannot be produced. On the other hand, if the concentration exceeds 30 mol%, the film shrinkage during the simultaneous transfer processing of the film becomes large and the forming process becomes difficult. Alternatively, if the heat treatment temperature is increased in order to reduce the shrinkage rate, the film is broken during film formation.

本発明のフィルムは、共押出多層の構成で、少なくとも一方の表面に厚さ4.0〜20μm、好ましくは5.0〜20μm、さらに好ましくは6.0〜20μmの厚さの粒子含有の共押出層を有する。粒子含有層の厚さが4.0μm未満の場合は、深絞り成形時にフィルムが延伸される程度が成形品の平坦部と曲面部で異なるため、成形品外観の光沢性が部分的に変わり成形品外観品質が低下する。単層構成はフィルム全体に粒子が存在するためフィルム伸び率の低下により成形性が低下する。また、粒子含有層の厚さは、20.0μmを超えても成形品光沢ムラ低減の改善効果はほとんど変わらない。   The film of the present invention has a co-extruded multilayer structure, and has at least one surface containing particles having a thickness of 4.0 to 20 μm, preferably 5.0 to 20 μm, and more preferably 6.0 to 20 μm. It has an extruded layer. When the thickness of the particle-containing layer is less than 4.0 μm, the degree to which the film is stretched during deep drawing differs between the flat part and the curved part of the molded product, so the gloss of the molded product appearance changes partially and molding Product appearance quality deteriorates. In the single layer configuration, since particles exist in the entire film, the moldability is lowered due to a decrease in the film elongation. Further, even if the thickness of the particle-containing layer exceeds 20.0 μm, the improvement effect of reducing unevenness in molded product gloss hardly changes.

本発明のフィルムの粒子含有層に含有する粒子は無機または有機粒子であり、それらの平均粒子径は2.0〜20μmであり、好ましくは2.2〜15μm、さらに好ましくは2.5〜10μmである。平均粒子径が2.0μm未満では、表面粗さが小さくなりマット調外観の成形品を作成することができない。一方、平均粒子径が20μmを超える場合は、フィルム製造時のポリエステル押出工程におけるフィルターの圧力上昇が大きくなり生産性が低下する問題が発生する。   The particles contained in the particle-containing layer of the film of the present invention are inorganic or organic particles, and the average particle size thereof is 2.0 to 20 μm, preferably 2.2 to 15 μm, more preferably 2.5 to 10 μm. It is. When the average particle size is less than 2.0 μm, the surface roughness becomes small, and a molded product having a matte appearance cannot be produced. On the other hand, when the average particle diameter exceeds 20 μm, a problem arises in that the increase in the pressure of the filter in the polyester extrusion process at the time of film production increases and the productivity decreases.

かかる粒子の含有量は、フィルムに対して0.1〜10.0重量%であり、好ましくは0.2〜8.0重量%、さらに好ましくは0.3〜5.0重量%である。0.1重量%未満では、フィルム表面粗さを大きくすることは困難でマット調の外観の成形品を作成することができない。一方、10重量%を超えての添加はフィルムの伸び率が小さくなり、深絞り成形に適したフィルムをつくることができない。   The content of such particles is 0.1 to 10.0% by weight with respect to the film, preferably 0.2 to 8.0% by weight, and more preferably 0.3 to 5.0% by weight. If it is less than 0.1% by weight, it is difficult to increase the film surface roughness, and a molded product having a matte appearance cannot be produced. On the other hand, addition exceeding 10% by weight decreases the elongation of the film, and a film suitable for deep drawing cannot be produced.

なお、本発明で使用する無機または有機粒子は、単成分でもよく、また、2成分以上を同時に用いてもよい。具体的な粒子の例としては、炭酸カルシウム、シリカ、酸化アルミニウム、炭酸バリウム、硫酸バリウム、ガラス等の無機質微粒子やメラミン樹脂、ポリスチレン、有機シリコーン樹脂、アクリル−スチレン共重合体等の有機粒子が挙げられる。
本発明の粒子含有層のポリエステル組成は、イソフタル酸単位を5〜25モル%濃度、好ましくは7〜22モル%濃度、さらに好ましくは10〜20モル%含む共重合ポリエステルからなる。さらに粒子含有層のポリエステルのイソフタル酸単位をAモル%濃度とすると、粒子含有層と接する共押出層のイソフタル酸単位は、好ましくは0.5A〜2.0Aさらに好ましくは0.6A〜1.7A、特に好ましくは0.7〜1.5Aモル%濃度である。
The inorganic or organic particles used in the present invention may be a single component, or two or more components may be used simultaneously. Specific examples of the particles include inorganic fine particles such as calcium carbonate, silica, aluminum oxide, barium carbonate, barium sulfate, and glass, and organic particles such as melamine resin, polystyrene, organic silicone resin, and acrylic-styrene copolymer. It is done.
The polyester composition of the particle-containing layer of the present invention comprises a copolyester containing 5 to 25 mol% isophthalic acid unit, preferably 7 to 22 mol%, more preferably 10 to 20 mol%. Furthermore, when the isophthalic acid unit of the polyester of the particle-containing layer is A mol% concentration, the isophthalic acid unit of the coextruded layer in contact with the particle-containing layer is preferably 0.5A to 2.0A, more preferably 0.6A to 1.A. The concentration is 7A, particularly preferably 0.7 to 1.5A mol%.

この範囲を外れると粒子含有層と接する共押出層との伸び率の物性差が大きくなり、成形加工時に層の界面で剥離が発生する。   Outside this range, the difference in physical properties between the coextruded layer and the coextruded layer in contact with the particle-containing layer becomes large, and peeling occurs at the layer interface during molding.

本発明のフィルムの25℃破断伸度は、好ましくは130%以上、さらに好ましくは150%以上、特に好ましくは160%以上である。フィルムの25℃伸び率が130%未満では、成形同時転写加工時にフィルムが破れやすい。   The 25 ° C. breaking elongation of the film of the present invention is preferably 130% or more, more preferably 150% or more, and particularly preferably 160% or more. If the 25 degreeC elongation rate of a film is less than 130%, a film will be easy to tear at the time of shaping | molding simultaneous transfer processing.

本発明のフィルムの表面粗さSaは、好ましくは200nm以上、さらに好ましくは220nm以上、特に好ましくは250nm以上である。表面粗さSaが200nm未満ではマット調の成形同時転写の成形品を作成することができないことがある。本発明で言うマット調とは、成形品の光沢度が90以下であることを意味し、したがってフィルムの光沢度は、好ましくは100以下、さらに好ましくは90以下、特に好ましくは80以下である。   The surface roughness Sa of the film of the present invention is preferably 200 nm or more, more preferably 220 nm or more, and particularly preferably 250 nm or more. If the surface roughness Sa is less than 200 nm, it may not be possible to produce a molded product for matte simultaneous molding transfer. The matte tone referred to in the present invention means that the gloss of the molded product is 90 or less, and therefore the gloss of the film is preferably 100 or less, more preferably 90 or less, and particularly preferably 80 or less.

本発明においては、フィルム表面に、必要に応じて離型層、帯電防止層、易接着層等の塗布層が設けられたり、化学処理や放電処理が施されたりしても構わない。   In the present invention, a coating layer such as a release layer, an antistatic layer, and an easy adhesion layer may be provided on the film surface as necessary, or chemical treatment or discharge treatment may be performed.

また本発明におけるフィルムの厚さは、通常25〜150μmであり、好ましくは30〜100μmである。   Moreover, the thickness of the film in this invention is 25-150 micrometers normally, Preferably it is 30-100 micrometers.

次に本発明のフィルムの製造方法を具体的に説明するが、本発明の構成要件を満足する限り、以下の例示に特に限定されるものではない。   Next, although the manufacturing method of the film of this invention is demonstrated concretely, as long as the structural requirements of this invention are satisfied, it is not specifically limited to the following illustrations.

本発明のフィルムの製造は、ポリエステルの融点以上の温度に加熱してそれぞれ溶融させる。次いで、各押出機からの溶融ポリマーをギヤポンプとフィルターを介してフィードブロックで合流させダイから溶融シートとして押出す。続いて、溶融シートを回転冷却ドラム上でガラス転位温度未満にまで急冷し、非晶質の未延伸フィルムを得る。このとき、未延伸フィルムの平面性を向上させるために、静電印加密着法や液体塗布密着法等によって、未延伸フィルムと回転冷却ドラムとの密着性を向上させてもよい。   In the production of the film of the present invention, each film is melted by heating to a temperature equal to or higher than the melting point of the polyester. Next, the molten polymer from each extruder is merged with a feed block through a gear pump and a filter and extruded from a die as a molten sheet. Subsequently, the molten sheet is rapidly cooled to below the glass transition temperature on a rotary cooling drum to obtain an amorphous unstretched film. At this time, in order to improve the flatness of the unstretched film, the adhesion between the unstretched film and the rotating cooling drum may be improved by an electrostatic application adhesion method, a liquid application adhesion method, or the like.

次いで、ロール延伸機を用いて、未延伸フィルムをその長手方向に延伸(縦延伸)することにより一軸延伸フィルムを得る。このときの延伸温度は、原料レジンのガラス転移温度(Tg)のマイナス10℃からプラス40℃の温度範囲で延伸する。また、延伸倍率は、好ましくは1.5〜6.0倍、さらに好ましくは2.0〜5.0倍である。さらに、縦延伸を一段階のみで行ってもよいし、二段階以上に分けて行ってもよい。次いでテンターに導きテンター延伸機を用いて、一軸延伸フィルムをその幅方向に延伸(横延伸)することにより二軸延伸フィルムを得る。このときの延伸温度は、原料レジンのガラス転移温度(Tg)からプラス50℃の温度範囲で延伸する。また、延伸倍率は、好ましくは2.5〜6.0倍、さらに好ましくは3.0〜5.0倍である。さらに、横延伸を一段階のみで行ってもよいし、二段以上に分けて行ってもよい。また縦と横を同時に行う同時二軸延伸を行ってもよい。   Next, a uniaxially stretched film is obtained by stretching the unstretched film in the longitudinal direction (longitudinal stretching) using a roll stretching machine. The stretching temperature at this time is stretched in a temperature range of minus 10 ° C. to plus 40 ° C. of the glass transition temperature (Tg) of the raw material resin. The draw ratio is preferably 1.5 to 6.0 times, more preferably 2.0 to 5.0 times. Furthermore, longitudinal stretching may be performed in only one stage, or may be performed in two or more stages. Next, the biaxially stretched film is obtained by stretching the uniaxially stretched film in the width direction (lateral stretching) using a tenter stretching machine. The stretching temperature at this time is stretched in a temperature range of + 50 ° C. from the glass transition temperature (Tg) of the raw material resin. The draw ratio is preferably 2.5 to 6.0 times, more preferably 3.0 to 5.0 times. Further, the transverse stretching may be performed only in one stage, or may be performed in two or more stages. Moreover, you may perform simultaneous biaxial stretching which performs vertical and horizontal simultaneously.

得られた二軸延伸フィルムを熱処理することにより積層フィルムが製造される。このときの熱処理温度は、通常Tm−6〜Tm−18℃であり、また熱固定の時間は通常1.5〜10秒である。また二軸延伸フィルムを熱処理するときには、二軸延伸フィルムに対して20%以内の弛緩を行ってもよい。   A laminated film is manufactured by heat-treating the obtained biaxially stretched film. The heat treatment temperature at this time is usually Tm-6 to Tm-18 ° C, and the heat setting time is usually 1.5 to 10 seconds. Moreover, when heat-treating a biaxially stretched film, the biaxially stretched film may be relaxed within 20%.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。なお、実施例および本発明で用いた測定法および用語の定義は次のとおりである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. The measurement methods and terms used in the examples and the present invention are defined as follows.

(1)粒子の平均粒子径
低温灰化プラズマ装置にて、フィルム延伸方向の表面を1μmまで灰化した後、走査型電子顕微鏡にて、粒径1μm以上の粒子の長径と短径を少なくとも100個について求め、相加平均を平均粒子径とする。
(1) Average particle diameter of particles After ashing the surface in the film stretching direction to 1 μm with a low-temperature ashing plasma apparatus, the major axis and the minor axis of particles having a particle diameter of 1 μm or more are at least 100 with a scanning electron microscope. It calculates | requires about a piece and makes an arithmetic mean the average particle diameter.

(2)破断伸度
(株)インテスコ製引張試験機インテスコモデル2001型を用いて、温度25℃、湿度50%RHに調節された室内において、縦方向と横方向に採取したチャック間距離50mm、幅15mmの試料フィルムを200mm/分の速度で引張り、それぞれN=3回測定し平均値を試料の破断伸度とする。
(2) Elongation at break 50 mm between chucks taken in the vertical and horizontal directions in a room adjusted to a temperature of 25 ° C. and a humidity of 50% RH using an Intesco tensile tester, Intesco Model 2001 type A sample film with a width of 15 mm is pulled at a speed of 200 mm / min, and each N = 3 times is measured, and the average value is taken as the breaking elongation of the sample.

(3)フィルム表面の粗さSa
3次元非接触表面形状測定システム MN537N−M100(株式会社 菱化システム)を用いて測定する。
(3) Film surface roughness Sa
Measurement is performed using a three-dimensional non-contact surface shape measurement system MN537N-M100 (Ryoka System Co., Ltd.).

(4)粒子含有層の厚さ
試料フィルムをエポキシ樹脂にて包埋し、ウルトラミクロトームでセクショニングを行い、得られた薄片を走査型電子顕微鏡にて断面観察を行い、粒子がほぼ一定の頻度で観察される範囲を50点測定しその平均値を粒子含有層の厚さとした。
(4) Thickness of the particle-containing layer The sample film is embedded with an epoxy resin, sectioned with an ultramicrotome, and the obtained flakes are observed with a scanning electron microscope. The observed range was measured at 50 points, and the average value was defined as the thickness of the particle-containing layer.

(5)光沢度
JIS Z−8741−1983の方法3(60゜光沢度)によって、フィルム表面に光を入射して測定する。
(5) Glossiness Measured by making light incident on the film surface according to method 3 (60 ° glossiness) of JIS Z-8741-1983.

(6)成形性
フィルムの離型層形成面(A層)にメラミン樹脂を溶解した有機溶媒溶液を塗布し乾燥厚み1μmの離型層を形成し、縦35cm、横25cm、最大深さ3.0cmの金型を用い、IRヒーターでフィルムを予備加熱後、金型内部に真空および圧空にて予備成形した後、加熱した樹脂を射出して成形を行った。成型性を以下のように評価した。
○:フィルム破れが発生しなく使用可能。
△:フィルム破れは発生しないが、局所的にフィルムが極めて薄い部分があるものの使用可能。
×:フィルム破れが頻発し、使用不可能。
(6) Formability An organic solvent solution in which a melamine resin is dissolved is applied to the release layer forming surface (A layer) of the film to form a release layer having a dry thickness of 1 μm, and the length is 35 cm, the width is 25 cm, and the maximum depth is 3. Using a 0 cm mold, the film was preheated with an IR heater, preliminarily molded inside the mold with vacuum and compressed air, and then the heated resin was injected for molding. The moldability was evaluated as follows.
○: Can be used without film breakage.
Δ: Film breakage does not occur, but it can be used even though there is a locally thin film portion.
X: Film tear frequently occurs and cannot be used.

(7)成形品光沢ムラの評価
上記(6)で作成した成型品の外観を目視観察して成形品光沢ムラを以下のように評価した。
○:コーナー部の光沢が平坦部とほとんど変わらなく成形外観品質に問題なし
△:コーナー部の光沢が平坦部と比較してやや高いが、50cm離れて観察するとほとんど違いがわからなく成形外観品質的に許容できる
×:コーナー部の光沢が平坦部と比較して高く、成形外観品質的に許容できない
(7) Evaluation of molded product gloss unevenness The appearance of the molded product prepared in (6) above was visually observed to evaluate the molded product gloss unevenness as follows.
○: The gloss of the corner is almost the same as that of the flat part, and there is no problem in the molding appearance quality. △: The gloss of the corner is slightly higher than that of the flat part. Acceptable ×: The gloss of the corner portion is higher than that of the flat portion, and the molding appearance quality is not acceptable.

(原料の調整)
・ポリエステルa
テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒として酢酸マグネシウム・四水塩0.09重量部を反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物にエチルアシッドフォスフェート0.04部を添加した後、三酸化アンチモン0.04部を加えて、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.63に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させた。得られたポリエステルaの極限粘度は0.63である。
(Raw material adjustment)
・ Polyester a
Using 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol as starting materials, 0.09 parts by weight of magnesium acetate tetrahydrate as a catalyst is placed in the reactor, the reaction start temperature is set to 150 ° C., and the methanol is distilled off gradually. The reaction temperature was raised to 230 ° C. after 3 hours. After 4 hours, the transesterification reaction was substantially terminated. After adding 0.04 part of ethyl acid phosphate to this reaction mixture, 0.04 part of antimony trioxide was added, and a polycondensation reaction was carried out for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to an intrinsic viscosity of 0.63 due to a change in stirring power of the reaction tank, and the polymer was discharged under nitrogen pressure. The intrinsic viscosity of the obtained polyester a is 0.63.

・ポリエステルb
テレフタル酸ジメチル、イソフタル酸ジメチルとエチレングルコールを用いて、イソフタル酸を30モル%含有する共重合ポリエステルを常法により合成した極限粘度0.72の共重合ポリエステル樹脂である。
・ Polyester b
It is a copolyester resin having an intrinsic viscosity of 0.72 obtained by synthesizing a copolyester containing 30 mol% of isophthalic acid by a conventional method using dimethyl terephthalate, dimethyl isophthalate and ethylene glycol.

・ポリエステルc
ポリエステルaに平均粒径4.5μmの架橋スチレン−アクリル有機粒子を練り込み10重量%含有させたものである。
・ Polyester c
Polyester a is kneaded with 10% by weight of crosslinked styrene-acrylic organic particles having an average particle diameter of 4.5 μm.

・ポリエステルd
ポリエステルaに平均粒径6.0μmの架橋スチレン-アクリル有機粒子を練り込み10重量%含有させたものである。
・ Polyester d
Polyester a is kneaded with 10% by weight of crosslinked styrene-acrylic organic particles having an average particle size of 6.0 μm.

・ポリエステルe
平均粒子径3.5μmの不定形シリカ粒子をポリエチレンテレフタレートの重縮合時に添加し合成された、該粒子の含有量が2.0重量%の極限粘度0.68のポリエチレンテレフタレート樹脂である。
・ Polyester e
This is a polyethylene terephthalate resin having an intrinsic viscosity of 0.68 and containing 2.0% by weight of the particles, which is synthesized by adding amorphous silica particles having an average particle size of 3.5 μm at the time of polycondensation of polyethylene terephthalate.

・ポリエステルf
平均粒子径0.7μmの合成炭酸カルシウム粒子をポリエチレンテレフタレートの重縮合時に添加し合成された、該粒子の含有量が1.8重量%の極限粘度0.68のポリエチレンテレフタレート樹脂である。
・ Polyester f
This is a polyethylene terephthalate resin having an intrinsic viscosity of 0.68 and containing 1.8% by weight of synthetic calcium carbonate particles having an average particle size of 0.7 μm, which are synthesized by polycondensation of polyethylene terephthalate.

・ポリエステルg
ポリエステルaに平均粒径80μmのシリカ粒子を練り込み10重量%含有させたものである。
・ Polyester g
Polyester a is kneaded with silica particles having an average particle size of 80 μm and contains 10% by weight.

実施例1:
表層(A層)を形成するポリエステルa/ポリエステルb/ポリエステルcの比率が30/40/30(重量比)の混合物をベント付き2軸押出機(サブ)に供給し、中間層(B層)を構成するポリエステルa/ポリエステルbの比率が60/40(重量比)の混合物を別のベント付き2軸押出機(メイン)に供給して溶融温度280℃で溶融したあと、各押出機からの溶融ポリマーをギヤポンプとフィルターを介してフィードブロックで合流させ、ダイを通してキャスティングドラムに引き取り2種3層の未延伸フィルムを得た。かくして得られた未延伸フィルムを縦延伸ロールに送り込み、まずフィルム温度80℃で3.4倍延伸した後、テンターに導き95℃で横方向に3.6倍延伸して二軸配向フィルムを得た。次いで、得られた二軸配向フィルムを熱固定ゾーンに導き、185℃で熱処理し、表1に記載した5/40/5μmの厚み構成のポリエステルフィルムを得た。
Example 1:
A mixture of the ratio of polyester a / polyester b / polyester c forming the surface layer (A layer) is 30/40/30 (weight ratio) is fed to a vented twin screw extruder (sub), and the intermediate layer (B layer) A mixture of polyester a / polyester b in the ratio of 60/40 (weight ratio) is supplied to another twin-screw extruder with a vent (main) and melted at a melting temperature of 280 ° C. The molten polymer was merged with a feed block via a gear pump and a filter, and was drawn on a casting drum through a die to obtain an unstretched film of two types and three layers. The unstretched film thus obtained was fed into a longitudinal stretching roll, first stretched 3.4 times at a film temperature of 80 ° C., then led to a tenter and stretched 3.6 times in the transverse direction at 95 ° C. to obtain a biaxially oriented film. It was. Next, the obtained biaxially oriented film was introduced into a heat setting zone and heat-treated at 185 ° C. to obtain a polyester film having a thickness of 5/40/5 μm described in Table 1.

実施例2:
表層(A層)に供給する樹脂量と中間層(B層)に供給する樹脂量を調整し7/36/7μmの厚み構成のポリエステルフィルムを得たほか、実施例1と同じ。
Example 2:
The same as in Example 1, except that the amount of resin supplied to the surface layer (A layer) and the amount of resin supplied to the intermediate layer (B layer) were adjusted to obtain a polyester film having a thickness of 7/36/7 μm.

実施例3:
表層(A層)を形成するポリエステルa/ポリエステルb/ポリエステルcの比率が10/60/30(重量比)の混合物をベント付き2軸押出機(サブ)に供給し、中間層(B層)を構成するポリエステルa/ポリエステルbの比率が40/60(重量比)の混合物を別のベント付き2軸押出機(メイン)に供給したほか、実施例2と同じ。
Example 3:
A mixture having a ratio of polyester a / polyester b / polyester c forming the surface layer (A layer) of 10/60/30 (weight ratio) is supplied to a twin screw extruder (sub) with a vent, and an intermediate layer (B layer) A mixture of polyester a / polyester b in the ratio of 40/60 (weight ratio) was supplied to another twin-screw extruder with a vent (main), and the same as in Example 2.

比較例1:
表層(A層)に供給する樹脂量と中間層(B層)に供給する樹脂量を調整し3/44/3μmの厚み構成のポリエステルフィルムを得たほか、実施例1と同じ。
Comparative Example 1:
The amount of resin supplied to the surface layer (A layer) and the amount of resin supplied to the intermediate layer (B layer) were adjusted to obtain a polyester film having a thickness of 3/44/3 μm, and the same as in Example 1.

比較例2:
単層構成で、ポリエステルa/ポリエステルeの比率が60/40(重量比)の混合物をベント付き2軸押出機に供給し、225℃で熱処理したほか比較例1と同じ。
Comparative Example 2:
Same as Comparative Example 1 except that a mixture of polyester a / polyester e with a ratio of 60/40 (weight ratio) was supplied to a vented twin screw extruder and heat treated at 225 ° C.

比較例3:
表層(A層)を形成するポリエステルb/ポリエステルfの比率が60/40(重量比)の混合物を用い、表層(A層)に供給する樹脂量と中間層(B層)に供給する樹脂量を調整し5/40/5μmの厚み構成のポリエステルフィルムを得たほか、実施例3と同じ。
Comparative Example 3:
Using a mixture of the ratio of polyester b / polyester f forming the surface layer (A layer) of 60/40 (weight ratio), the amount of resin supplied to the surface layer (A layer) and the amount of resin supplied to the intermediate layer (B layer) Was adjusted to obtain a polyester film having a thickness of 5/40/5 μm, and the same as in Example 3.

比較例4:
ポリエステル原料の比率をポリエステルa/ポリエステルb/ポリエステルe=34.5/63/2.5(重量比)とし、185℃で熱処理したほか比較例2と同じ。
Comparative Example 4:
The ratio of the polyester raw material was set to polyester a / polyester b / polyester e = 34.5 / 63 / 2.5 (weight ratio), and the same as Comparative Example 2 except that the heat treatment was performed at 185 ° C.

比較例5:
ポリエステル原料の比率をポリエステルb/ポリエステルd=30/70(重量比)とし、200℃で熱処理したほか比較例2と同じ。
Comparative Example 5:
The ratio of the polyester raw material was set to polyester b / polyester d = 30/70 (weight ratio), and heat treatment at 200 ° C. was the same as Comparative Example 2.

比較例6:
ポリエステルcの代わりにポリエステルgを用いて実施例1と同じく製膜を試みたが、フィルム製造時のポリエステル押出工程におけるフィルターの圧力上昇が大きくなりフィルムを作成は断念した。
Comparative Example 6:
Film formation was attempted in the same manner as in Example 1 using polyester g instead of polyester c, but the production of the film was abandoned because of an increase in the pressure of the filter in the polyester extrusion process during film production.

比較例7:
ポリエステルaに平均粒径4.5μmの架橋スチレン−アクリル有機粒子を練り込み30重量%含有の粒子マスターバッチをつくろうとしたが、レジンのチップ化ができずに表層(A層)に粒子を20重量%添加したフィルムを作成できなかった。
Comparative Example 7:
A polyester master a was kneaded with crosslinked styrene-acrylic organic particles having an average particle size of 4.5 μm to make a particle masterbatch containing 30% by weight. However, the resin could not be made into chips and 20 particles were added to the surface layer (A layer). A film to which wt% was added could not be prepared.

比較例8:
表層(A層)を形成するポリエステル原料の比率をポリエステルb/ポリエステルc=92/8(重量比)とし、中間層(B層)を構成するポリエステルa/ポリエステルbの比率が8/92(重量比)の混合物を用い、実施例1と同じ条件で製膜を試みたがフィルムが製膜中に破れ採取できなかった。
Comparative Example 8:
The ratio of the polyester raw material forming the surface layer (A layer) is polyester b / polyester c = 92/8 (weight ratio), and the ratio of polyester a / polyester b constituting the intermediate layer (B layer) is 8/92 (weight). Ratio) was used and film formation was attempted under the same conditions as in Example 1, but the film was broken during film formation and could not be collected.

以上、採取できたフィルムの評価結果をまとめて下記表1と表2に示す。   The evaluation results of the collected films are summarized in Table 1 and Table 2 below.

Figure 0005404521
Figure 0005404521

Figure 0005404521
Figure 0005404521

実施例1から3のフィルムは、深絞り成形性に優れ、光沢ムラが少ないマット調外観の成形品を得るこのできるフィルムである。特に実施例2と3は表層厚みが7μmと厚く光沢ムラが小さい。一方、比較例1は、表層厚みが4.0μm未満のため光沢ムラが大きい。比較例2は、イソフタル酸単位が5モル%濃度未満のため成形性が悪い。比較例3は、表層の粒子径が小さいため、また比較例4は粒子添加濃度が小さいためマット調の外観を得る製品を作ることができない。また比較例5、単層構成のため成形性が劣る。   The films of Examples 1 to 3 are films capable of obtaining a molded article having a matte appearance with excellent deep drawability and less gloss unevenness. Particularly in Examples 2 and 3, the surface layer thickness is as thick as 7 μm, and gloss unevenness is small. On the other hand, Comparative Example 1 has large gloss unevenness because the surface layer thickness is less than 4.0 μm. In Comparative Example 2, the moldability is poor because the isophthalic acid unit is less than 5 mol% concentration. Since Comparative Example 3 has a small particle size of the surface layer, and Comparative Example 4 has a small particle addition concentration, a product having a matte appearance cannot be produced. Moreover, since the comparative example 5 is a single layer structure, the moldability is inferior.

本発明のフィルムは、深絞り成形同時転写用のフィルムとして好適に利用することができる。   The film of the present invention can be suitably used as a film for deep drawing simultaneous transfer.

Claims (1)

イソフタル酸単位を5〜25モル%濃度含む共重合ポリエステルからなるフィルムであり、少なくとも一方の表面に、平均粒子径2.0〜20μmの粒子を0.1〜10.0重量%含有する厚さ4.0〜20μmの共押出層を有することを特徴とする深絞り成形同時転写用二軸延伸ポリエテルフィルム。 A film comprising a copolymerized polyester containing an isophthalic acid unit in a concentration of 5 to 25 mol%, and containing 0.1 to 10.0% by weight of particles having an average particle size of 2.0 to 20 μm on at least one surface polyether scan ether film, wherein the deep drawing molding simultaneous transfer biaxial stretching to have a coextruded layer of 4.0~20Myuemu.
JP2010104631A 2010-04-29 2010-04-29 Biaxially stretched polyester film for deep drawing simultaneous transfer Active JP5404521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010104631A JP5404521B2 (en) 2010-04-29 2010-04-29 Biaxially stretched polyester film for deep drawing simultaneous transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010104631A JP5404521B2 (en) 2010-04-29 2010-04-29 Biaxially stretched polyester film for deep drawing simultaneous transfer

Publications (2)

Publication Number Publication Date
JP2011230436A JP2011230436A (en) 2011-11-17
JP5404521B2 true JP5404521B2 (en) 2014-02-05

Family

ID=45320246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010104631A Active JP5404521B2 (en) 2010-04-29 2010-04-29 Biaxially stretched polyester film for deep drawing simultaneous transfer

Country Status (1)

Country Link
JP (1) JP5404521B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY172054A (en) * 2011-12-02 2019-11-13 Toray Industries Polyester film, solar cell backsheet, and solar cell
JP6187025B2 (en) * 2013-08-20 2017-08-30 東レ株式会社 Biaxially oriented polyester film for mold release
JP6642070B2 (en) * 2015-02-18 2020-02-05 東レ株式会社 Biaxially oriented polyester film
JP6512246B2 (en) * 2017-08-01 2019-05-15 東レ株式会社 Releasing biaxially oriented polyester film
JP7180251B2 (en) * 2018-09-28 2022-11-30 三菱ケミカル株式会社 laminated polyester film

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3038843B2 (en) * 1990-08-30 2000-05-08 三菱化学ポリエステルフィルム株式会社 Matte laminated polyester film for molding
JPH07196821A (en) * 1993-12-28 1995-08-01 Diafoil Co Ltd Polyester film for deep drawing and similtaneous transfer printing
JP3852979B2 (en) * 1996-05-16 2006-12-06 帝人株式会社 Polyester film for transfer foil
JP4839012B2 (en) * 2005-04-05 2011-12-14 帝人デュポンフィルム株式会社 Polyester film for in-mold molding
JP2008163275A (en) * 2007-01-04 2008-07-17 Mitsubishi Plastics Ind Ltd Polyester film for simultaneous forming and transfer printing
JP4927615B2 (en) * 2007-03-29 2012-05-09 三菱樹脂株式会社 Biaxially stretched polyester film for simultaneous molding transfer
JP5127296B2 (en) * 2007-05-14 2013-01-23 三菱樹脂株式会社 Polyester film for deep drawing molding simultaneous transfer foil
JP2009185264A (en) * 2008-02-09 2009-08-20 Mitsubishi Plastics Inc Polyester film for simultaneous molding and transfer
JP2009262443A (en) * 2008-04-25 2009-11-12 Teijin Dupont Films Japan Ltd Film for in-mold transfer foil
JP2010201858A (en) * 2009-03-05 2010-09-16 Mitsubishi Plastics Inc Biaxially-oriented polyester film for molding simultaneous transfer
JP2010201857A (en) * 2009-03-05 2010-09-16 Mitsubishi Plastics Inc Biaxially-oriented polyester film for molding simultaneous transfer

Also Published As

Publication number Publication date
JP2011230436A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5696360B2 (en) Polyester film
JP5127296B2 (en) Polyester film for deep drawing molding simultaneous transfer foil
JPWO2007094382A1 (en) Polyester film for molded parts
JP5404521B2 (en) Biaxially stretched polyester film for deep drawing simultaneous transfer
JP2010201857A (en) Biaxially-oriented polyester film for molding simultaneous transfer
JP5234690B2 (en) Polyester film for simultaneous transfer of molding
JP2010065065A (en) Polyester film for molding
JP2008162220A (en) Polyester film for molding simultaneous transfer
JP2014024341A (en) Polyester film for in-mold transfer
JP2010138261A (en) Polyester film for laminated glass, and its layered product
JP4583699B2 (en) Polyester film, polyester film for molding, and molded member using the same
JP2008088410A (en) Surface protective polyester film for molding
JP2009208302A (en) Polyester film for in-mold transfer
JP2009220479A (en) Biaxially oriented polyester film for molding member and laminate for molding
JP2010138024A (en) Polyester film for laminated glass, and laminated glass
KR101731384B1 (en) Polyester optical film and manufacturing method thereof
JP6154626B2 (en) Softening polyester film
JP5127295B2 (en) Polyester film for molded simultaneous transfer foil
JP5147470B2 (en) Laminated biaxially stretched polyester film
JP2012140498A (en) Biaxially oriented polyester film for concurrent deep drawing and transfer
JP5642244B2 (en) Biaxially stretched polyester film for simultaneous molding transfer
JP4572584B2 (en) Polylactic acid film for decorative sheet, transfer foil and decorative sheet
JP2007168148A (en) Biaxially oriented polyester film for molded member
JP2009214489A (en) Method of manufacturing laminated biaxially stretched polyester film
JP2008163275A (en) Polyester film for simultaneous forming and transfer printing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5404521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350