JP5404510B2 - Building damping material - Google Patents

Building damping material Download PDF

Info

Publication number
JP5404510B2
JP5404510B2 JP2010089747A JP2010089747A JP5404510B2 JP 5404510 B2 JP5404510 B2 JP 5404510B2 JP 2010089747 A JP2010089747 A JP 2010089747A JP 2010089747 A JP2010089747 A JP 2010089747A JP 5404510 B2 JP5404510 B2 JP 5404510B2
Authority
JP
Japan
Prior art keywords
building
plate
friction
force
friction damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010089747A
Other languages
Japanese (ja)
Other versions
JP2011219975A (en
Inventor
好光 大橋
紀之 栗田
東航 呉
善也 加藤
智彦 野溝
豊 森田
秀男 立花
剛 吉田
隆司 南雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hory Corp
Original Assignee
Hory Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hory Corp filed Critical Hory Corp
Priority to JP2010089747A priority Critical patent/JP5404510B2/en
Publication of JP2011219975A publication Critical patent/JP2011219975A/en
Application granted granted Critical
Publication of JP5404510B2 publication Critical patent/JP5404510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Description

この発明は、地震や強風等により発生する建物の揺れを低減するための制震部材に関し、詳しくは摩擦ダンパーを用いる建物用制震部材に関するものである。   The present invention relates to a vibration control member for reducing the shaking of a building caused by an earthquake or strong wind, and more particularly to a vibration control member for a building using a friction damper.

制震部材は、建物に作用する地震力等を、建物内部の機構によって減衰させたりあるいは増幅を防いだりする部材であって、地震動等の力をエネルギーとして捉え、建物自体に組み込んだエネルギー吸収機構によって建物の揺れを抑え、構造体の損傷を防ぐ技術である。   The damping member is a member that attenuates the seismic force acting on the building or prevents the amplification by the mechanism inside the building, and captures the force of earthquake motion as energy and incorporates it into the building itself. This is a technology that suppresses the shaking of the building and prevents damage to the structure.

従来、建物用制震部材は大規模建築物に採用される事が多かったが、免震部材等に比べてコストが安価となる技術が開発されてきているため、近年では戸建ての木造住宅での採用例も増加している。   Traditionally, building seismic control members have often been used in large-scale buildings, but technology has been developed that is less expensive than seismic isolation members. Examples of adoption are also increasing.

制震部材に用いられ装置としては、高減衰ゴム、粘弾性体、オイルダンパー、あるいは摩擦ダンパーを用いる各種の装置が開発されている。ここで摩擦ダンパは、建築構造物の梁又はブレースに設置する装置で、相対変位する金属板同士を一定圧で圧着し、相対的にこすり合わせることで振動エネルギーを摩擦エネルギーに変換し、揺れを減衰させる機構となっている。   Various devices using a high damping rubber, a viscoelastic body, an oil damper, or a friction damper have been developed as a device used for a vibration control member. Here, the friction damper is a device installed on a beam or brace of a building structure, and the vibration energy is converted into friction energy by pressing the relative displacement metal plates against each other with a constant pressure and rubbing them relatively. It has a damping mechanism.

このような摩擦ダンパーを用いる建物用制震部材としては、例えば下記に示すような従来技術があった。
特許第3988298号公報 特開平2009−2120号公報
As a building vibration control member using such a friction damper, for example, there has been a conventional technique as described below.
Japanese Patent No. 3988298 Japanese Unexamined Patent Publication No. 2009-2120

特許文献1に記載される制震部材は、図6に示すように上下一対の外板118,118に挟み込まれる中板112とを備え、それぞれに形成したボルト挿通孔118a,112aに高力ボルト121を貫通させて、ナット122により締め付けていた。このナット122の締付けによりボルト121の軸力Nが発生し、この軸力Nは外板118に伝達され、中板112の挟み込み力として作用していた。   As shown in FIG. 6, the vibration damping member described in Patent Document 1 includes a middle plate 112 sandwiched between a pair of upper and lower outer plates 118, 118, and high-strength bolts in bolt insertion holes 118a, 112a formed respectively. 121 was passed through and tightened with a nut 122. By tightening the nut 122, an axial force N of the bolt 121 is generated, and this axial force N is transmitted to the outer plate 118 and acts as a pinching force for the intermediate plate 112.

又、外板118と中板112の間には摩擦板119を介在させており、中板112のボルト挿通孔112aは、図7に示すように外板118と中板112の延設方向に長軸となる長孔として形成され、ボルト挿通孔112aの長軸方向に外板118と中板112との相対移動が許容されるもので、中板112と摩擦板119との間で所定の摩擦係数μをもって滑動させるようになっていた。   Further, a friction plate 119 is interposed between the outer plate 118 and the middle plate 112, and the bolt insertion holes 112a of the middle plate 112 are arranged in the extending direction of the outer plate 118 and the middle plate 112 as shown in FIG. It is formed as a long hole that becomes a long axis, and relative movement between the outer plate 118 and the intermediate plate 112 is allowed in the long axis direction of the bolt insertion hole 112a. A predetermined distance is provided between the intermediate plate 112 and the friction plate 119. It was made to slide with a friction coefficient μ.

即ち、外板118と中板112及び高力ボルト121とナット122、並びに摩擦板119等によりボルト接合部は摩擦ダンパ110として構成されていた。地震や風などの外力によって建物架構が振動する際に、この振動による変位力が所定値を超えると、外板118と中板112とは中板112両面の円滑面112bと摩擦板119との滑動を伴って相対移動する。このとき、中板112と摩擦板119との間は高力ボルト121の軸力Nをもって圧接されるとともに、所定の摩擦係数μが作用しており、これら中板112と摩擦板119とが滑動される際には、振動エネルギーがμ×Nの摩擦抵抗力Rに変換されて振動減衰され、建物架構の制振に寄与するようになっていた。   That is, the bolt joint portion is configured as the friction damper 110 by the outer plate 118, the middle plate 112, the high-strength bolt 121, the nut 122, the friction plate 119, and the like. When the building frame vibrates due to an external force such as an earthquake or a wind, and the displacement force due to this vibration exceeds a predetermined value, the outer plate 118 and the middle plate 112 are formed between the smooth surface 112b on both sides of the middle plate 112 and the friction plate 119. Relative movement with sliding. At this time, the intermediate plate 112 and the friction plate 119 are pressed against each other with the axial force N of the high-strength bolt 121, and a predetermined friction coefficient μ is applied. The intermediate plate 112 and the friction plate 119 slide. In this case, the vibration energy is converted into the frictional resistance force R of μ × N and is attenuated, thereby contributing to vibration control of the building frame.

特許文献2に記載される制震部材は、図8及び図9に示すように、鋼板からなる板材212と、板材212の表裏面に取り付けられた滑り材216と、板材212を挟むようにして板材212と離間配置された一対の相手板218,218と、それらの表面に取り付けられた保護板219,219とで構成されていた。   As shown in FIGS. 8 and 9, the vibration control member described in Patent Document 2 includes a plate material 212 made of a steel plate, a sliding material 216 attached to the front and back surfaces of the plate material 212, and a plate material 212 sandwiching the plate material 212. And a pair of opposing plates 218, 218 spaced apart from each other, and protective plates 219, 219 attached to the surfaces thereof.

保護板219の端部は、建築構造部材の一部である接続板222の上下面に当接され、接続板222を挟持していた。相手板218、保護板219、接続板222には、相手板218の上面から相手板218の下面へ貫通する貫通孔が形成されており、この貫通孔にボルト221が挿通され、ナット223で締結されることで、接続板222に相手板218及び保護板219の一方端が固定されていた。   The end of the protection plate 219 is in contact with the upper and lower surfaces of the connection plate 222 that is a part of the building structure member, and sandwiches the connection plate 222. The mating plate 218, the protection plate 219, and the connection plate 222 are formed with through holes that penetrate from the upper surface of the mating plate 218 to the lower surface of the mating plate 218. Bolts 221 are inserted into the through holes and fastened with nuts 223. As a result, one end of the mating plate 218 and the protection plate 219 is fixed to the connection plate 222.

又、板材212の一方端は、建築構造部材の一部である接続板220の先端部と共に、鋼板からなる一対の押え板224、224で挟持されており、ボルト234及びナット235を締結することで、接続板220に板材212の一方端が固定されていた。以上の構成により、この制震部材210は、板材212及び滑り材216が一体となって移動し、相手板218及び保護板219が一体となって滑り材216の上面又は下面を摺擦移動していた。滑り材216と保護板219との摩擦面で発生する摩擦力により、揺れの振動エネルギーが徐々に減衰し、建物の制震が行われていた。   Also, one end of the plate 212 is sandwiched between a pair of presser plates 224 and 224 made of a steel plate together with the tip of the connection plate 220 that is a part of the building structure member, and the bolt 234 and the nut 235 are fastened. Thus, one end of the plate material 212 was fixed to the connection plate 220. With the above-described configuration, the vibration damping member 210 moves together with the plate material 212 and the sliding material 216, and the mating plate 218 and the protection plate 219 move together to slide on the upper surface or the lower surface of the sliding material 216. It was. Due to the frictional force generated on the friction surface between the sliding material 216 and the protective plate 219, the vibrational energy of the vibration was gradually attenuated, and the building was controlled.

何れの制震部材においても振動エネルギーを摩擦抵抗力に変換して振動減衰を行なうものであり、適切な制震効果を得るためには相対移動する時の摩擦抵抗力を適切に管理することが重要である。   In any vibration control member, vibration energy is converted into frictional resistance to attenuate vibrations. To obtain an appropriate vibration control effect, the frictional resistance during relative movement must be properly managed. is important.

特許文献1に記載される従来の摩擦ダンパーを用いた制震部材では、長孔に挿通する限定されたボルトによって軸力を付与していたため、摩擦板に作用する摩擦力が均等にならなかった。即ち、ボルト近傍の摩擦板には大きな締付力を作用させることが可能であるが、周辺部では小さめな摩擦力となっていた。   In the vibration control member using the conventional friction damper described in Patent Document 1, since the axial force is applied by the limited bolt inserted through the long hole, the friction force acting on the friction plate is not uniform. . That is, a large tightening force can be applied to the friction plate in the vicinity of the bolt, but a small friction force is generated in the peripheral portion.

又、特許文献2に記載される制震部材では、滑り材と保護板が当接する摩擦面から、かなり離隔した位置で軸力を付与していたので、摩擦面全体に均等な摩擦力を作用させることは困難であった。   In addition, in the vibration damping member described in Patent Document 2, since the axial force is applied at a position that is considerably separated from the friction surface where the sliding material and the protective plate abut, an even friction force is applied to the entire friction surface. It was difficult to do.

1台の摩擦ダンパーで、相対移動する摩擦抵抗力を多段階に設けようとする場合には、その作用する変位力の引張又は圧縮荷重に対応して、多段階の摩擦抵抗力を実現させなければならず、そのためには、摩擦面全体に対する管理された均等な摩擦力付与が必須となる。   When a single friction damper is used to provide multiple stages of frictional resistance that moves relative to each other, the multistage frictional resistance must be realized in accordance with the tensile or compressive load of the acting displacement force. For this purpose, it is essential to apply a controlled and uniform friction force to the entire friction surface.

しかし、従来の摩擦ダンパーでは、詳細な摩擦力管理は不可能であったため、所定の軸力でのみ与えられる固定的なダンパー作動荷重が提示されるだけであった。   However, in the conventional friction damper, since detailed friction force management is impossible, only a fixed damper operation load given only by a predetermined axial force is presented.

ところで、木造住宅に制震部材を適用する場合には、木造住宅構造に見合った簡易な制震技術が必要である。木造住宅では、その軸組みの特徴として一般的に接合部が回転しやすく、柱と梁だけの軸組みでは地震や強風などの強い水平力を受けると容易に変形してしまう。これを防止するため、軸組みに筋違といわれる斜材を金物で取り付けたり、あるいは構造用合板などの面材を所定の釘で打ち付けたりすることで耐力を高めている。   By the way, when applying a damping member to a wooden house, a simple damping technique suitable for the wooden house structure is required. In a wooden house, the joint is generally easy to rotate as a feature of the shaft, and the shaft with only columns and beams is easily deformed when subjected to a strong horizontal force such as an earthquake or strong wind. In order to prevent this, the proof strength is increased by attaching a diagonal material, which is said to be different from the shaft assembly, with a metal object or by striking a face material such as a structural plywood with a predetermined nail.

このように、地震や風などの水平荷重に抵抗する能力をもつ壁を耐力壁といい、建築基準法では木造住宅の各階ごとに所定量の耐力壁を設置することが義務づけられている。   Thus, a wall having the ability to resist horizontal loads such as earthquakes and winds is called a load-bearing wall, and the Building Standard Law requires that a predetermined amount of load-bearing walls be installed on each floor of a wooden house.

耐力壁の性能を表す数値として、壁倍率がある。これは、建築基準法で定められた耐力壁の強さを表した数値で、耐力壁の仕様によって数値は異なり、壁倍率を0.5〜5.0の範囲で定めている。この数値が高いほど大きな水平荷重に耐えることができるが、一方接合部はその荷重に見合った構造が必要となる。   There is a wall magnification as a numerical value representing the performance of the bearing wall. This is a numerical value representing the strength of the load-bearing wall defined by the Building Standards Act, and the numerical value varies depending on the specification of the load-bearing wall, and the wall magnification is determined in the range of 0.5 to 5.0. The higher this value, the greater the horizontal load that can be tolerated, while the joint must have a structure commensurate with the load.

木造住宅における耐震・耐風性能を判断する方法としては、構造計算によるものと、壁量計算と呼ばれる簡易計算方法がある。木造住宅の構造計算を行なう場合には、例えば「3階建て木造住宅の構造設計と防火設計の手引き」((財)日本住宅・木材技術センター)に準拠した場合には、壁の許容耐力及び壁の剛性として、壁長さ1m当たり、1.96kNの水平荷重が作用したときに、その弾性的な水平変形量(層間変位角)が高さの1/120である場合を壁倍率1.0としている。一方、壁量計算は、壁倍率×耐力壁の長さで算出される壁量をもとに、水平荷重に抵抗するための最小限必要な壁量(必要壁量)を、その建物の耐力壁の長さの総計(存在壁量)が満たしているか否かをチェックするものである。   There are two methods for judging earthquake resistance and wind resistance performance in wooden houses: structural calculation and simple calculation method called wall quantity calculation. When calculating the structure of a wooden house, for example, in accordance with the “Guide for Structural Design and Fire Protection Design of a Three-story Wooden House” (Japan Housing and Wood Technology Center), the allowable strength of the wall and As the wall rigidity, the wall magnification is 1.120 when the elastic horizontal deformation amount (interlayer displacement angle) is 1/120 of the height when a horizontal load of 1.96 kN is applied per 1 m of the wall length. 0. On the other hand, the wall quantity calculation is based on the wall quantity calculated by wall magnification x proof wall length, and the minimum required wall quantity (necessary wall quantity) to resist horizontal load is calculated as the building's yield strength. This is to check whether the total wall length (existing wall amount) is satisfied.

以上のように木造住宅に制震部材を適用する場合には、耐力壁として必要な壁倍率を確保しつつ、所望の制震性能を得なければならない。   As described above, when applying a vibration control member to a wooden house, it is necessary to obtain a desired vibration control performance while securing a wall magnification necessary as a load bearing wall.

しかし、従来の摩擦ダンパーを用いた制震部材では、固定的なダンパー作動荷重が適用されたため、必要な壁倍率に対して過不足を生ずる問題点があった。例えば、壁倍率3を必要とする耐力壁に対し、筋違として壁倍率5以上の強度を備える摩擦ダンパーの使用は適切とは言えなかった。又、壁倍率5を必要とする耐力壁に対し、筋違としての強度が壁倍率2.5程度の摩擦ダンパーを使用する際には、1本では不足するためタスキ掛けの必要があった。   However, the conventional damping member using the friction damper has a problem in that a fixed damper operating load is applied, so that the required wall magnification is excessive or insufficient. For example, for a load bearing wall that requires a wall magnification of 3, it was not appropriate to use a friction damper having a strength of wall magnification of 5 or more. In addition, when using a friction damper having a wall strength of about 2.5 for a load bearing wall that requires a wall magnification of 5, it is necessary to apply a tack because one is insufficient.

この発明は、従来の摩擦ダンパーを用いる建物用制震部材が有する上記の問題点を解消すべくなされたものであり、摩擦面全体に均等な摩擦力を作用させ、多段階に管理された摩擦抵抗力が可能な建物用制震部材を提供することを目的としている。   The present invention has been made to eliminate the above-mentioned problems associated with conventional vibration control members for buildings using friction dampers. The frictional force is applied to the entire friction surface and is managed in multiple stages. The object is to provide a vibration control member for buildings that can resist.

又、木造住宅における耐力壁の必要な壁倍率に見合った調整が可能な制震部材を提供することを目的としている。   It is another object of the present invention to provide a vibration control member that can be adjusted in accordance with the required wall magnification of a load bearing wall in a wooden house.

上記課題を解決するため、この発明の建物用制震部材は、建築構造物の一の軸組部材に連結する直線状の平板と、この平板の表裏面に固定する滑り材と、前記一の軸組部材と相対移動する他の軸組部材に連結し前記平板に対して対向配置する一対の外板と、夫々の外板内面に配置され前記滑り材に当接する保護材と、この外板に取り付けられ保護材及び滑り材を介して前記平板に押圧力を作用する締結部材とを備える摩擦ダンパーを用いる建物用制震部材において、前記外板は、平板と滑り材及び保護材の押圧力が作用する面を収納するための対向する凹部を備え、この凹部の両側部には前記締結部材を均等に全体配置することを特徴とするものである。   In order to solve the above-described problems, a building vibration control member according to the present invention includes a linear flat plate connected to one frame member of a building structure, a sliding material fixed to the front and back surfaces of the flat plate, A pair of outer plates that are connected to another shaft member that moves relative to the shaft member and is disposed opposite to the flat plate, a protective material that is disposed on the inner surface of each outer plate and contacts the sliding material, and the outer plate In the vibration control member for a building using a friction damper, which is provided with a fastening member that acts on the flat plate via the protective material and the sliding material, the outer plate is the pressing force of the flat plate, the sliding material, and the protective material. It is characterized in that there are opposed recesses for accommodating the surfaces on which the action acts, and that the fastening members are uniformly arranged on both sides of the recesses.

外板は少なくとも保護材を収納し得る長さを有し、保護材をその内部に保持する。平板に固定する滑り材とこの保護材は相互に摺動し得る。対向する凹部の深さは、平板と滑り材及び保護材を対称に収容して、締結部材によって密着可能な深さとする。締結部材は凹部と平行に配置し押圧力を保護材の全面均等に作用させる。   The outer plate has at least a length that can accommodate the protective material, and holds the protective material therein. The sliding material fixed to the flat plate and the protective material can slide relative to each other. The depth of the opposing recesses is such that the flat plate, the sliding material, and the protective material are accommodated symmetrically and can be brought into close contact with the fastening member. The fastening member is arranged in parallel with the concave portion so that the pressing force acts evenly on the entire surface of the protective material.

請求項2記載の建物用制震部材の締結部材は、前記軸組部材に組み込まれた前記摩擦ダンパーに作用する計算上の仮定荷重値に対応し、その荷重値で作動する摩擦力を実現するための軸力が把握された締付ボルトであることを特徴とするものである。計算上の仮定荷重値は、建築構造物の軸組に組み込まれた制震部材に対して作用する荷重で、この荷重値と最大摩擦抵抗力とを対応させ、摩擦ダンパーが摺動し始める際の荷重値及びその時の締付ボルトの軸力を把握する。   The fastening member of the vibration control member for a building according to claim 2 corresponds to a calculated assumed load value that acts on the friction damper incorporated in the shaft assembly member, and realizes a friction force that operates at the load value. Therefore, the tightening bolt has a grasped axial force. The calculated assumed load value is the load acting on the vibration control member incorporated in the frame of the building structure. When this friction value starts to slide, the load value corresponds to the maximum frictional resistance. Grasp the load value and the axial force of the tightening bolt at that time.

請求項3記載の建物用制震部材における前記仮定荷重値は、前記摩擦ダンパーを組み込むフレームの壁倍率に対応する計算上の荷重値であることを特徴とするものである。   The assumed load value in the building vibration control member according to claim 3 is a calculated load value corresponding to a wall magnification of a frame in which the friction damper is incorporated.

フレームの壁倍率は木造住宅の構造計算を行なう既存の計算手順に基づき、壁の許容耐力及び壁の剛性から基準となる壁倍率(例えば1.0)のフレーム計算を行い、所要の壁倍率時の摩擦ダンパーを組み込む部材に作用する荷重を求める。   The wall magnification of the frame is based on the existing calculation procedure for calculating the structure of a wooden house, and the frame calculation of the standard wall magnification (for example, 1.0) is performed based on the allowable strength of the wall and the rigidity of the wall. The load acting on the member incorporating the friction damper is obtained.

この発明の建物用制震部材は、摩擦ダンパーとなる平板、滑り材及び保護材を押圧する一対の外板と、この外板に均等配置する締結部材を有するので、均等な摩擦力を付与することができる。   The building vibration control member of the present invention has a pair of outer plates that press against a flat plate that serves as a friction damper, a sliding material, and a protective material, and a fastening member that is evenly arranged on the outer plate, so that an equal friction force is applied. be able to.

相互に摺動する平板、滑り材及び保護材は、外板の凹部に収納されるため、締結部材が貫通するための穴あけは不要となる。締付部材と平板等が同一線上で摺動する場合には、平板等に長穴などの加工を施さなければならず、締付力を均等に作用させることが困難となる。又、摩擦ダンパーは平板形状となるので建築用構造部材である柱間の狭隘部にも装着可能となる。   Since the flat plate, the sliding material, and the protective material that slide with each other are accommodated in the concave portion of the outer plate, it is not necessary to make a hole for the fastening member to pass therethrough. When the tightening member and the flat plate slide on the same line, the flat plate or the like must be processed such as a long hole, and it becomes difficult to apply the tightening force evenly. Further, since the friction damper has a flat plate shape, the friction damper can be attached to a narrow portion between columns, which is a structural member for building.

請求項2記載の建物用制震部材は、締付ボルトの軸力と摩擦ダンパーの最大摩擦抵抗力との関係が把握されているので、一組の制震部材であっても多段階に管理された摩擦抵抗力が実現可能な建物用制震部材を提供することができる。   Since the relationship between the axial force of the tightening bolt and the maximum frictional resistance of the friction damper is known, the building vibration control member according to claim 2 can be managed in multiple stages even for a set of vibration control members. It is possible to provide a vibration control member for a building that can realize the frictional resistance obtained.

請求項3記載の建物用制震部材は、壁倍率に対応する荷重値との関係が把握されているので、一組の制震部材であっても多様な壁倍率に見合った建物用制震部材を提供することができる。   Since the vibration control member for building according to claim 3 has a known relationship with the load value corresponding to the wall magnification, even a set of vibration control members can meet the various wall magnifications. A member can be provided.

次にこの発明の実施の形態を添付図面に基づき詳細に説明する。図1は建物用制震部材を使用する建築構造物の軸組を示す正面図、図2は建物用制震部材の正面図である。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a front view showing a framework of a building structure using a building damping member, and FIG. 2 is a front view of the building damping member.

建物用制震部材1は建築構造物の軸組を構成する柱2、梁3、土台4及び柱2,2の中間部に横設する補助材5等の接合部同士を連結する筋違として設けられ、軸組の耐力を高め、その変形を防止すると共に制震機能をも備えるものである。建物用制震部材1は、その両端部を軸組の接合部に固定するブラケット6とボルトナット7によって回動可能に連結している。   The building vibration control member 1 is a strut that connects the joints such as the pillar 2, the beam 3, the base 4, and the auxiliary material 5 that is installed in the middle of the pillars 2 and 2 that constitute the framework of the building structure. It is provided and increases the bearing strength of the shaft assembly, prevents its deformation and also has a vibration control function. The building damping member 1 is rotatably connected by brackets 6 and bolts and nuts 7 that fix both ends thereof to the joints of the shaft assembly.

図2に示すように建物用制震部材1は、断面を扁平なC型に形成する鞘体8と、その一端に収容して端部を突設する平板状の連結板材9と、鞘体8の他端側より収容する摩擦ダンパー10を有する。連結板材9は、ブラケット6に連結するためのボルトナット7用の孔9aを端部に穿設する一方、鞘体8に収容する部分にも図示しない複数の孔を穿設し、この孔と鞘体8に穿設する複数の孔部とを利用してボルトナット9bにより突設長さの調整が可能なように鞘体8に固定されている。   As shown in FIG. 2, the building vibration control member 1 includes a sheath body 8 having a flat C-shaped cross section, a flat connecting plate material 9 accommodated in one end and projecting an end portion, and a sheath body. 8 has a friction damper 10 accommodated from the other end side. The connecting plate 9 has holes 9a for bolts and nuts 7 to be connected to the bracket 6 at the end, and a plurality of holes (not shown) are also formed in the portion accommodated in the sheath body 8, A plurality of holes drilled in the sheath body 8 are used to fix the projecting length with the bolt nut 9b so that the projecting length can be adjusted.

摩擦ダンパー10は、ブラケットに連結するための孔11aを穿設する端部板11と、この端部板11に固着して鞘体8に収容するスライド棒12と、鞘体8内に固定され、内部にスライド棒12を挿入する挟持体13とを備える。挟持体13は鞘体8の内面に略密着する形で挿入され、その両端をストッパ14に当接する。ストッパ14は鞘体8の内面にボルト15で固定されている。又、スライド棒12には滑り材16がボルトナット17により貼着されている。   The friction damper 10 is fixed in the sheath body 8, an end plate 11 having a hole 11 a for connecting to the bracket, a slide bar 12 fixed to the end plate 11 and accommodated in the sheath body 8, And a sandwiching body 13 for inserting the slide rod 12 therein. The sandwiching body 13 is inserted so as to be in close contact with the inner surface of the sheath body 8, and both ends thereof abut against the stopper 14. The stopper 14 is fixed to the inner surface of the sheath body 8 with bolts 15. Further, a sliding material 16 is attached to the slide rod 12 by a bolt nut 17.

次に摩擦ダンパーの詳細を図3及び図4に基づき説明する。図3は摩擦ダンパーの構成の一部を省略して示す分解斜視図、図4は図2のIV−IV断面を示す拡大断面図である。   Next, details of the friction damper will be described with reference to FIGS. FIG. 3 is an exploded perspective view in which a part of the configuration of the friction damper is omitted, and FIG. 4 is an enlarged cross-sectional view showing the IV-IV section of FIG.

摩擦ダンパー10の一部を構成するスライド棒12は直線状の平板であって、その表裏面に滑り材16を固定する。滑り材16は例えばステンレスの薄板で、少なくとも挟持体13の長さを有する。   The slide rod 12 constituting a part of the friction damper 10 is a straight flat plate, and the sliding material 16 is fixed to the front and back surfaces thereof. The sliding material 16 is, for example, a stainless steel thin plate and has at least the length of the sandwiching body 13.

挟持体13は対向配置する一対の外板18,18と、夫々の外板18の内面に配置され滑り材16に当接する保護材19と、この保護材19の移動を防止するための保護材ストッパ20を有する。   The sandwiching body 13 includes a pair of outer plates 18, 18 that are opposed to each other, a protective member 19 that is disposed on the inner surface of each outer plate 18 and that abuts against the sliding member 16, and a protective member for preventing movement of the protective member 19. A stopper 20 is provided.

外板18は長手方向にスライド棒12及び滑り材16を挟持するための凹部18a、両端に保護材ストッパ20を載置固定するための段部18bを形成する。又、鞘体8の底板8a側に配設する外板18の凹部18aの両側部には長手方向にボルト挿通孔18cを複数穿設すると共に、鞘体8の開口部8b側に配設する外板18の対応する箇所には雌ネジを螺刻するボルト孔18dを設ける。   The outer plate 18 is formed with a concave portion 18a for sandwiching the slide rod 12 and the sliding material 16 in the longitudinal direction, and a step portion 18b for mounting and fixing the protective material stopper 20 at both ends. In addition, a plurality of bolt insertion holes 18c are formed in both sides of the concave portion 18a of the outer plate 18 disposed on the bottom plate 8a side of the sheath body 8 in the longitudinal direction, and are disposed on the opening portion 8b side of the sheath body 8. Bolt holes 18d for threading female screws are provided at corresponding locations on the outer plate 18.

鞘体8の底板8aにはボルト挿通孔8cを穿設し、外方より挿入するボルト21にて外板18,18を鞘体8に固定する。ボルト21は凹部18aを挟んで平行に均等な間隔で所定本数配設し、その締付トルクを適切に管理することで外板18から保護材19及び滑り材16を介してスライド棒12に所要の押圧力を作用する。   Bolt insertion holes 8c are formed in the bottom plate 8a of the sheath body 8, and the outer plates 18, 18 are fixed to the sheath body 8 with bolts 21 inserted from the outside. A predetermined number of bolts 21 are arranged in parallel and at equal intervals across the recess 18a, and the tightening torque is appropriately managed so that the bolt 21 is required from the outer plate 18 to the slide rod 12 via the protective member 19 and the sliding member 16. The pressing force is applied.

地震等の振動を受け、図1に示すブラケット6,6が相対移動する際、相対変位しようとするスライド棒12の滑り材16と、挟持体13の保護材19が一定圧で圧着されている。この振動による変位力が所定値を超えると、滑り材16と保護材19が相対移動する。このとき、滑り材16と保護材19との間はボルト21の軸力Nをもって圧接されるとともに、所定の摩擦係数μが作用しており、これら滑り材16と保護材19とが滑動される際には、振動エネルギーがμ×Nの摩擦抵抗力Rに変換されて振動減衰され、建物架構の制振に寄与する。   When the brackets 6 and 6 shown in FIG. 1 move relative to each other due to vibration such as an earthquake, the sliding member 16 of the slide bar 12 and the protective member 19 of the sandwiching body 13 to be relatively displaced are pressure-bonded at a constant pressure. . When the displacement force due to this vibration exceeds a predetermined value, the sliding material 16 and the protective material 19 move relative to each other. At this time, the sliding member 16 and the protective member 19 are pressed against each other with the axial force N of the bolt 21 and a predetermined coefficient of friction μ is applied. The sliding member 16 and the protective member 19 are slid. At that time, the vibration energy is converted to a frictional resistance force R of μ × N and is attenuated by vibration, which contributes to vibration control of the building frame.

締結部材であるボルト21がスライド棒12の全面に亘って均等に配置されているため、摩擦抵抗力Rも均等となる。従って締付トルクを管理することでスライド可能な摩擦抵抗力を多段階に設定することが可能となる。   Since the bolts 21 as the fastening members are evenly arranged over the entire surface of the slide bar 12, the frictional resistance force R is also equalized. Therefore, by controlling the tightening torque, it is possible to set the slidable frictional resistance force in multiple stages.

保護材19は、凹部18aに載置され両端を保護材ストッパ20に当接して固定されるもので、実現する摩擦力に応じて種々の素材の適用が可能である。例えば金属系の軸受素材、詳しくは金属母材中に固体潤滑油を微細、均一に分散させた金属系無給油の軸受素材を用いると、温度変化に強く、耐腐食性があり、高荷重にも耐え、高強度の特質を備える。   The protective material 19 is placed in the recess 18a and fixed at both ends in contact with the protective material stopper 20, and various materials can be applied according to the frictional force to be realized. For example, using a metal bearing material, more specifically, a metal oil-free bearing material in which a solid lubricant is finely and evenly dispersed in a metal base material, is resistant to temperature changes, has corrosion resistance, and has a high load. Endures and has high strength properties.

次にこの建物用制震部材を木造住宅の耐力壁に適用する実施例を説明する。耐力壁としてのフレームは図5に示す所謂K型フレームを用い、木造住宅の軸組寸法に合わせフレーム幅を0.91m、フレーム高さを2.64mとした。このフレームで摩擦ダンパーを介在する部材はブレース部材、即ち節点1−6及び節点6−2の部材である。   Next, an embodiment will be described in which this building damping member is applied to a load-bearing wall of a wooden house. The so-called K-shaped frame shown in FIG. 5 was used as the load-bearing wall, and the frame width was 0.91 m and the frame height was 2.64 m in accordance with the frame assembly dimensions of the wooden house. The members interposing the friction damper in this frame are brace members, that is, members of the nodes 1-6 and 6-2.

壁倍率=1.0として節点1に水平荷重H=1.78kNを作用させた場合、ブレース材には計算上3.14kNの引張または圧縮荷重が発生する。この結果から壁倍率=3.0の時には9.41kNの荷重が、壁倍率=5.0の時には15.72kNの荷重がそれぞれ発生することになる。   When the wall load = 1.0 and a horizontal load H = 1.78 kN is applied to the node 1, a tensile or compressive load of 3.14 kN is generated on the brace material in calculation. From this result, a load of 9.41 kN is generated when the wall magnification = 3.0, and a load of 15.72 kN is generated when the wall magnification = 5.0.

一方図3に示す摩擦ダンパー10において、ボルト21の本数を6本とし、その締付トルクをT=10N・mとした時、ボルト21に生ずる平均的な軸力はN=5.07Nであった。又締付トルクがT=15N・mの時にはN=7.36Nの軸力が、T=20N・mの時にはN=9.54Nの軸力が夫々発生した。   On the other hand, in the friction damper 10 shown in FIG. 3, when the number of bolts 21 is six and the tightening torque is T = 10 N · m, the average axial force generated in the bolts 21 is N = 0.07 N. It was. When the tightening torque was T = 15 N · m, an axial force of N = 7.36 N was generated, and when T = 20 N · m, an axial force of N = 9.54 N was generated.

ここで摩擦ダンパー10において、保護材19の摩擦係数をμ=0.15とすると、締付トルクT別の軸力Nと仮定摩擦力Rの関係は以下のように計算される。なお、摩擦面は上下2面として計算した。
(I)T=10N・m→N=5.07N ボルト本数8本 R=12.1kN
(II)T=15N・m→N=7.36N ボルト本数6本 R=13.25kN
(III)T=20N・m→N=9.54N ボルト本数6本 R=17.17kN
Here, in the friction damper 10, when the friction coefficient of the protective material 19 is μ = 0.15, the relationship between the axial force N for each tightening torque T and the assumed friction force R is calculated as follows. The friction surface was calculated as two upper and lower surfaces.
(I) T = 10N · m → N = 0.07N Eight bolts R = 12.1kN
(II) T = 15 N · m → N = 7.36 N Number of bolts 6 R = 13.25 kN
(III) T = 20 N · m → N = 9.54 N 6 bolts R = 17.17 kN

即ち、(I)の摩擦ダンパーでは壁倍率3.5〜4.0、(II)の摩擦ダンパーでは壁倍率4〜4.5、(III)の摩擦ダンパーでは壁倍率5以上の耐震性能が夫々見込まれ、しかも夫々の荷重が作用した際には各摩擦ダンパーは相対移動して振動エネルギーを摩擦抵抗力に変換し、建物架構を制振することになる。   That is, the friction damper (I) has a wall magnification of 3.5 to 4.0, the friction damper (II) has a wall magnification of 4 to 4.5, and the friction damper (III) has an earthquake resistance of a wall magnification of 5 or more. In addition, when each load is expected, the friction dampers move relative to each other to convert vibration energy into frictional resistance, thereby damping the building frame.

一方、摩擦ダンパー10に荷重を加えて滑動する際の荷重を検証した結果は以下のようになる。
(IV)T=10N・mでボルト本数8本の時→最大荷重=10.74kN
(V)T=15N・mでボルト本数6本の時→最大荷重=12.65kN
(VI)T=20N・mでボルト本数6本の時→最大荷重=16.6kN
On the other hand, the result of verifying the load when sliding is applied to the friction damper 10 is as follows.
(IV) When T = 10 N · m and 8 bolts → Maximum load = 10.74 kN
(V) When T = 15 N · m and 6 bolts → Maximum load = 12.65 kN
(VI) When T = 20N · m and 6 bolts → Maximum load = 16.6kN

これらの試験値は夫々(I)、(II)、(III)の計算値に対応するものである。このように摩擦ダンパー10の締付トルクを適宜設定すれば、所要の壁倍率の耐力壁を得ることができると同時に制震機能を発揮して建物の振動を抑えることができる。   These test values correspond to the calculated values of (I), (II), and (III), respectively. Thus, if the tightening torque of the friction damper 10 is appropriately set, a bearing wall having a required wall magnification can be obtained, and at the same time, a vibration control function can be exhibited to suppress building vibration.

建物用制震部材を使用する建築構造物の軸組を示す正面図である。It is a front view which shows the framework of the building structure which uses the damping member for buildings. 建物用制震部材の正面図である。It is a front view of the vibration control member for buildings. 摩擦ダンパーの構成の一部を省略して示す分解斜視図である。It is a disassembled perspective view which abbreviate | omits and shows a part of structure of a friction damper. 図2のIV−IV断面を示す拡大断面図である。It is an expanded sectional view which shows the IV-IV cross section of FIG. 耐力壁構造計算用の軸組図である。It is a shaft group figure for bearing wall structure calculation. 従来の制震部材の断面図である。It is sectional drawing of the conventional damping member. 従来の制震部材の平面図である。It is a top view of the conventional damping member. 従来の他の制震部材の平面図である。It is a top view of the other conventional damping member. 従来の他の制震部材の断面図である。It is sectional drawing of the other conventional damping member.

1 建物用制震部材
10 摩擦ダンパー
12 スライド棒
13 挟持体
16 滑り材
18 外板
18a 凹部
19 保護材
21 ボルト
DESCRIPTION OF SYMBOLS 1 Damping member for buildings 10 Friction damper 12 Slide rod 13 Holding body 16 Sliding material 18 Outer plate 18a Recessed part 19 Protective material 21 Bolt

Claims (3)

建築構造物の一の軸組部材に連結する直線状の平板と、この平板の表裏面に固定する滑り材と、前記一の軸組部材と相対移動する他の軸組部材に連結し前記平板に対して対向配置する一対の外板と、夫々の外板内面に配置され前記滑り材に当接する保護材と、この外板に取り付けられ保護材及び滑り材を介して前記平板に押圧力を作用する締結部材とを備える摩擦ダンパーを用いる建物用制震部材において、前記外板は、平板と滑り材及び保護材の押圧力が作用する面を収納するための対向する凹部を備え、この凹部の両側部には前記締結部材を均等に全体配置することを特徴とする建物用制震部材。 A linear flat plate connected to one shaft member of a building structure, a sliding material fixed to the front and back surfaces of the flat plate, and the flat plate connected to another shaft member that moves relative to the one shaft member. A pair of outer plates disposed opposite to each other, a protective material disposed on the inner surface of each outer plate and in contact with the sliding material, and a pressing force applied to the flat plate through the protective material and the sliding material attached to the outer plate. In the building vibration control member using the friction damper including the fastening member that acts, the outer plate includes a concave portion facing the flat plate, a sliding material, and a surface on which the pressing force of the protective material acts, and the concave portion The building damping member, wherein the fastening members are uniformly disposed on both sides of the building. 前記締結部材は、前記軸組部材に組み込まれた前記摩擦ダンパーに作用する計算上の仮定荷重値に対応し、その荷重値で作動する摩擦抵抗力を実現するための軸力が把握された締付ボルトであることを特徴とする請求項1記載の建物用制震部材。 The fastening member corresponds to a calculated assumed load value that acts on the friction damper incorporated in the shaft assembly member, and a fastening force in which an axial force for realizing a frictional resistance force that operates at the load value is grasped. The building damping member according to claim 1, wherein the building damping member is an attached bolt. 前記仮定荷重値は、前記摩擦ダンパーを組み込むフレームの壁倍率に対応する計算上の荷重値であることを特徴とする請求項2記載の建物用制震部材。 3. The building vibration control member according to claim 2, wherein the assumed load value is a calculated load value corresponding to a wall magnification of a frame in which the friction damper is incorporated.
JP2010089747A 2010-04-08 2010-04-08 Building damping material Active JP5404510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089747A JP5404510B2 (en) 2010-04-08 2010-04-08 Building damping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089747A JP5404510B2 (en) 2010-04-08 2010-04-08 Building damping material

Publications (2)

Publication Number Publication Date
JP2011219975A JP2011219975A (en) 2011-11-04
JP5404510B2 true JP5404510B2 (en) 2014-02-05

Family

ID=45037290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089747A Active JP5404510B2 (en) 2010-04-08 2010-04-08 Building damping material

Country Status (1)

Country Link
JP (1) JP5404510B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106639029A (en) * 2017-02-04 2017-05-10 同济大学 All-steel-assembled buckling restrained brace with lateral side capable of being inspected

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6248361B2 (en) * 2014-05-13 2017-12-20 富山県 Friction damper and wall body
JP6379005B2 (en) * 2014-10-16 2018-08-22 住友ゴム工業株式会社 Vibration control device
JP6379006B2 (en) * 2014-10-16 2018-08-22 住友ゴム工業株式会社 Vibration control device
CN112627373B (en) * 2015-07-20 2022-01-04 清华大学 Bending assembly type shearing-resistant buckling-restrained energy dissipation device
CN105696456A (en) * 2016-04-07 2016-06-22 成都市大通路桥机械有限公司 Buckling-restrained brace structure for bridge
JP7083127B2 (en) * 2018-06-06 2022-06-10 富山県 Friction damper and wall surface
CN109281418A (en) * 2018-11-14 2019-01-29 辽宁工业大学 A kind of compound multistage re-centring damper
CN113585849B (en) * 2021-08-11 2022-07-26 四川大学 Two-stage friction damper

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4360272B2 (en) * 2004-05-31 2009-11-11 オイレス工業株式会社 Friction damper
JP2009002120A (en) * 2007-06-25 2009-01-08 Takenaka Komuten Co Ltd Friction damper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106639029A (en) * 2017-02-04 2017-05-10 同济大学 All-steel-assembled buckling restrained brace with lateral side capable of being inspected

Also Published As

Publication number Publication date
JP2011219975A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5404510B2 (en) Building damping material
JP5275230B2 (en) Damper device
JP4139901B2 (en) Damping structure of wooden building and damping method of wooden building
TWI444541B (en) Wall type friction damper
JP4355673B2 (en) Building seismic control structure
US9316014B2 (en) Lever viscoelastic damping wall assembly
US20040128921A1 (en) Frictional damper for damping movement of structures
KR101181987B1 (en) Displacement-Amplifying damping system and Construction method using that
JP2006241934A (en) Damper device
JP6248361B2 (en) Friction damper and wall body
JP2001342749A (en) Vibration control member
JPH11269984A (en) Damping structure for building frame
JP2008240513A (en) Vibration control structure of bolt joint portion
JP2001248324A (en) Friction joint type energy absorbing device for frame
JP4349110B2 (en) Damper device
JP2004197502A (en) Vibration control structure of bridge
JP2006183324A (en) Response controlled structure
JP4959636B2 (en) Damping member
JP4591891B2 (en) Tensile member fixture and tension member with fixture
JP2020180547A (en) Vibration control device
KR100943156B1 (en) Hybrid vibration-controlling dampers
JP7502742B2 (en) Vibration damping device, building, stress applying member, and vibration damping device installation method
JP2005314917A (en) Vibration control stud
JP2006283374A (en) Seismic-response controlled structure of lightweight steel-framed house
Popovski et al. Testing of lateral resistance of handcrafted log walls Phase I and II

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5404510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250