JP5404374B2 - 太陽光受熱器及び太陽光集光受熱システム - Google Patents

太陽光受熱器及び太陽光集光受熱システム Download PDF

Info

Publication number
JP5404374B2
JP5404374B2 JP2009291637A JP2009291637A JP5404374B2 JP 5404374 B2 JP5404374 B2 JP 5404374B2 JP 2009291637 A JP2009291637 A JP 2009291637A JP 2009291637 A JP2009291637 A JP 2009291637A JP 5404374 B2 JP5404374 B2 JP 5404374B2
Authority
JP
Japan
Prior art keywords
heat
flow path
header
heat receiving
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009291637A
Other languages
English (en)
Other versions
JP2011132846A (ja
Inventor
浩己 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009291637A priority Critical patent/JP5404374B2/ja
Priority to EP10839043.6A priority patent/EP2495440A4/en
Priority to AU2010334038A priority patent/AU2010334038B2/en
Priority to PCT/JP2010/067358 priority patent/WO2011077806A1/ja
Priority to US13/513,081 priority patent/US10054335B2/en
Publication of JP2011132846A publication Critical patent/JP2011132846A/ja
Priority to ZA2012/04007A priority patent/ZA201204007B/en
Application granted granted Critical
Publication of JP5404374B2 publication Critical patent/JP5404374B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/80Accommodating differential expansion of solar collector elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、太陽光線を受光して高温の熱エネルギーに変換し、熱エネルギーを熱伝達により熱媒体に伝える太陽光受熱器及び太陽光集光受熱システムに関する。
近年、環境に影響を与えないクリーンなエネルギーとして、太陽光線を集光して得られる熱エネルギーを利用した装置が知られている。このような装置として、太陽光線を集光して得られる熱エネルギーを電気エネルギーに変換することで発電を行う太陽光集光受熱システム(以下、集光受熱システムという)の開発が進められている。
上述した集光受熱システムにおいて、太陽光線を集光する方式の一つとしてタワー集光方式という方式がある。
タワー集光方式とは、地上から立設されたタワー部上に集光受熱器を配置するとともに、タワー部の周囲に太陽光線を追尾するように動作制御された複数のヘリオスタットを配置し、ヘリオスタットで反射される太陽光線を集光受熱器に導くことで集光・集熱するものである。
図15は、従来の集光受熱器をケーシングの軸方向から見た断面図である。
図15に示すように、従来の集光受熱器500は、図示しないタワー部上に設置され、ヘリオスタットで反射される太陽光線が入射する開口部501を有する有底筒状のケーシング502と、軸方向がケーシング502の中心軸と平行になるようにして、ケーシング502の内壁面に沿って配列され、ケーシング502内に入射した太陽光線を受光する複数の受熱管503とを有している。
ところで、上述した集光受熱器500では、各受熱管503の周方向において大きな温度差が生じるという問題がある。具体的に、ヘリオスタットで反射された太陽光線H’は、開口部501からケーシング502内に入射し、開口部501からケーシング502内周側に向かって進む。そのため、受熱管503における太陽光線H’の照射方向手前側の面(受熱管503の周方向においてケーシング502の径方向内側を向いた面)は、太陽光線H’を直接受光する受光面503aとなり、太陽光線H’の照射方向奥側の面(受熱管503の周方向においてケーシング502の径方向外側を向いた面)は太陽光線H’を直接受光できない非受光面503bとなる。その結果、非受光面503bでは太陽光線H’による熱エネルギーを効率的に得ることができず、受光面503aと非受光面503bとの間で温度差が大きくなるという問題がある。
この場合、受光面503aと非受光面503bとの温度差に起因して熱応力が発生することで、受熱管503が変形して、受熱管503自体や複数の受熱管503を集合させるヘッダ(不図示)との接続部分等に応力が集中する虞がある。また、太陽光線H’は、昼夜のサイクルや、天候等により日射量が変動するため、受熱管503にはそれらの日射量変化の影響によっても温度変化が生じる。そして、温度変化の度に受熱管503は熱応力による変形を繰り返すことで、疲労寿命が低下する虞もある。
そこで、例えば特許文献1には、受熱管の補強、及び受光面側と非受光面側との熱伝達の向上を図るために、受熱管の受光面側と非受光面側とを接触させる支持体を挿入する構成が開示されている。
特開昭56−105250号公報
しかしながら、上述した特許文献1の構成のように、支持体による受光面側と非受光面側との熱伝達だけでは、受光面と非受光面との温度差を十分に低減することが難しく、受熱管には未だ大きな熱応力が作用する。その結果、上述したように応力集中や疲労寿命の低下等により、受熱管503の耐久性が低下するという問題がある。
そこで、本発明は、上述した事情に鑑みてなされたものであって、受熱管における照射側と非照射側との温度差を低減することで、受熱管の耐久性の向上を図ることができる太陽光受熱器及び太陽光集光受熱システムの提供を目的とするものである。
上記課題を解決するために、本発明の太陽光受熱器では、内部に熱媒体が流通するとともに、照射される太陽光の熱を熱媒体に伝熱させる受熱管を有する太陽光受熱器であって、前記受熱管の内部を、太陽光が照射される照射側の第1流路と、太陽光の照射方向における前記第1流路と反対側であって非照射側の第2流路と、に区画する仕切部材を備え、前記第2流路への熱媒体の流入を制限する制限手段を有することを特徴とする。
そして、このような構成の太陽光受熱器によれば、熱媒体が流通する受熱管を太陽光線の照射側の第1流路と、非照射側の第2流路とに区画することで、第1流路と第2流路とで熱媒体の流通条件をそれぞれ設定することができる。
この場合、例えば第1流路内に流通する熱媒体の流量が、第2流路内に流通する熱媒体の流量に比べて多くなるように設定することで、第1流路から熱媒体への熱伝達の効率は、第2流路から熱媒体への熱伝達の効率に比べて高くなる。すなわち、第1流路での熱媒体への熱伝達を、第2流路での熱媒体への熱伝達よりも積極的に行わせることで、熱媒体への熱伝達による第2流路の温度低下を、第1流路の温度低下に比べて抑制することができる。これにより、太陽光の照射側と非照射側との温度差を低減することができるので、両者間での温度差に起因して発生する熱応力を低減することが可能となる。その結果、応力集中や、応力の繰り返し発生による疲労寿命の低下を抑制することができるので、受熱管の耐久性を向上させることができる。
また制限手段により第2流路内へ流入する熱媒体の流量を制限することで、第1流路内を流通する熱媒体の流量を、第2流路内に流通する熱媒体の流量に比べて多くすることができる。その結果、上述したように第1流路から熱媒体への熱伝達の効率を、第2流路から熱媒体への熱伝達の効率に比べて高くすることができる。その結果、上述したように照射側と非照射側との温度差を低減することができる。
また、本発明の太陽光受熱器では、複数の前記受熱管と、前記複数の受熱管における熱媒体の流通方向上流端が連結され、前記複数の受熱管に向けて熱媒体を導入させる熱媒体導入ヘッダとを備え、前記熱媒体導入ヘッダは、前記受熱管の前記第1流路に連通する第1ヘッダと、前記受熱管の前記第2流路に連通する第2ヘッダとを備え、前記第2ヘッダに前記制限手段が設けられていることを特徴とする。
この構成によれば、熱媒体導入ヘッダを第1ヘッダと第2ヘッダとに区画するとともに、第2ヘッダに制限手段を設けることで、複数の受熱管の第2流路に対して一括して流量を制限することができる。これにより、上述したように第1流路から熱媒体への熱伝達の効率を、第2流路から熱媒体への熱伝達の効率に比べて高くすることができる。その結果、上述したように照射側と非照射側との温度差を低減することができる。
また、本発明の太陽光受熱器では、内部に熱媒体が流通するとともに、照射される太陽光の熱を熱媒体に伝熱させる受熱管を有する太陽光受熱器であって、前記受熱管の内部を、太陽光が照射される照射側の第1流路と、太陽光の照射方向における前記第1流路と反対側であって非照射側の第2流路と、に区画する仕切部材を備え、前記第1流路と前記第2流路とは、熱媒体の流通方向一端側で連通し、熱媒体は、前記第1流路の流通方向他端側から供給され、前記第2流路の流通方向他端側から排出されることを特徴とする。
この構成によれば、熱媒体が第1流路側から流入して、第2流路側から排出されるため、第1流路には比較的低温の熱媒体が、第2流路には第1流路で熱交換された比較的高温の熱媒体が流通することになる。すなわち、第1流路と第1流路内を流通する熱媒体との温度差は、第2流路と第2流路内を流通する熱媒体の温度差に比べて大きくなる。そのため、第1流路での熱媒体への熱伝達が、第2流路での熱媒体への熱伝達よりも積極的に行われることになるので、熱媒体への熱伝達による第2流路の温度低下を、第1流路の温度低下に比べて抑制することができる。その結果、照射側と非照射側との温度差を低減することができる。
また受熱管は、他端側のみで熱媒体導入ヘッダ及び熱媒体導出ヘッダに連結されているので、一端側は自由端となっている。そのため、仮に受熱管が温度変化により変形した場合であっても、この変形が許容されることになるので、受熱管に作用する熱応力を低減することができる。
また、本発明の太陽光集光受熱システムでは、地上に設置され、太陽光線を反射する複数の反射鏡と、前記地上から立設されたタワー部と、前記タワー部に支持され、太陽光線を集光する開口部を有するケーシングと、前記ケーシング内に収容された上記本発明の太陽光受熱器とを備えていることを特徴とする。
そして、このような構成の太陽光集光受熱システムでは、上記本発明の太陽光受熱器を備えているので、照射側と非照射側との温度差を低減した上で、太陽光線からの熱エネルギーを熱媒体に対して効率的に伝達することができる。
本発明の太陽光受熱器では、受熱管における照射側と非照射側との温度差を低減することで、受熱管の耐久性を向上させることができる。
また、本発明の太陽光集光受熱システムでは、上記本発明の太陽光受熱器を備えているので、照射側と非照射側との温度差を低減した上で、太陽光線からの熱エネルギーを熱媒体に対して効率的に伝達することができる。
実施形態における発電装置を側面から見た図である。 実施形態における発電装置を上面から見た図である。 実施形態における発電装置の構成を示す図であって、(a)は発電装置を上面から見た断面図、(b)は側面から見た断面図である。 実施形態における集光受熱器の一部を破断して示す斜視図である。 実施形態における受熱部の斜視図である。 図3(b)のA−A線に沿う断面図である。 図6の矢印Bから見た斜視図である。 受熱部の拡大斜視図である。 第2実施形態の受熱部を一部破断して示す平面図である。 第3実施形態の受熱部を示す断面図である。 第4実施形態の受熱部を示す断面図である。 第5実施形態の集光受熱器を軸方向から見た断面図である。 制限手段の他の構成を示す受熱管の斜視図である。 受熱管の他の構成を示す受熱管の斜視図である。 従来の集光受熱器を軸方向から見た断面図である。
次に、本発明の実施形態を図面に基づいて説明する。以下の説明では、本発明の太陽光集光受熱器と、太陽光集光受熱器により加熱された熱媒体を用いて発電を行う発電ユニットとが一体的に構成された太陽熱発電装置(以下、発電装置という)を例にして説明する。
(発電装置)
図1,2は、ヘリオスタットと、タワー上の集光受熱器との位置関係を示す説明図であり、図1は側面図、図2は平面図を示している。なお、地球上で発電装置の立地に適する場所は、太陽からの直達日射が強く良好な回帰線に近い亜熱帯高圧帯の乾燥地域である。そこで、本実施形態の発電装置では、特に亜熱帯高圧帯の中における低緯度地域に配置される全周配置方式の発電装置について説明する。
図1において、符号1で示すものは、グランドGに設けられたヘリオスタットフィールドである。発電装置100は、このヘリオスタットフィールド1に照射される太陽光線Hを集光し受熱する集光受熱システム101と、集光受熱システム101で受熱した熱により加熱された熱媒体を用いて発電を行う発電ユニット102とを備えている。
(集光受熱システム)
集光受熱システム101は、ヘリオスタットフィールド1上に配置され、太陽光線Hを反射するための複数のヘリオスタット2と、グランドGに立設されたタワー部3と、タワー部3上に設置されたハウジング12と、ハウジング12内に収納されて太陽光線Hを受光する集光受熱器10とを備えている。ここで、本実施形態では、タワー部3は、ヘリオスタットフィールド1の内部に配置されている。すなわち、ヘリオスタットフィールド1内のヘリオスタット2は、タワー部3を約360度全周囲むように配置されている(図2参照)。
ハウジング12は、軸方向と鉛直方向とが一致した状態で配置された有底筒状のものであり、上面は閉塞される一方、下面における径方向中央部には、グランドGに向けて開口する開口部15が形成されている。また、ハウジング12内には、軸方向における上部と下部とを仕切る仕切床16が設けられており、仕切床16で仕切られた上部空間は発電ユニット102が配置されたタービン発電機室17、下部空間は集光受熱器10が配置された集光室18として構成されている。
タワー部3は、グランドGからハウジング12の下面に向かって立設された複数(例えば、4本)の支柱21と、各支柱21間を架け渡すように連結された梁部22とを備えている。
(発電ユニット)
図3の(a)は発電装置を上面から見た断面図、(b)は側面から見た断面図である。
図3に示すように、発電ユニット102は、ハウジング12のタービン発電機室17内に収納されており、圧縮機23及びタービン24からなるガスタービン25と、吸気フィルター26と、再生熱交換器27と、発電機28とを主に備えている。
ガスタービン25は、減速機31を介して発電機28に連結された回転可能なロータ30を備え、このロータ30に対して同軸上に配置されるように圧縮機23及びタービン24が取り付けられている。
圧縮機23は、ハウジング12の外部に設けられた図示しない供給源から空気供給路35を流通して供給される空気を、ハウジング12の空気取込口29から作動流体として取り込んで圧縮空気を生成するものである。圧縮機23には、圧縮機23で圧縮された圧縮空気が集光受熱器10の上流端に向けて流通する受熱器供給路32が接続されている(図4参照)。そして、集光受熱器10で加熱された圧縮空気は、集光受熱器10の下流端に接続されたタービン供給路33を通ってタービン24に供給されるようになっている(図4中矢印F2参照)。
タービン24は、タービン供給路33から供給される圧縮空気の熱エネルギーをロータ30の回転エネルギーに変換して駆動力を発生させるものである。そして、この駆動力がロータ30に連結された発電機28に出力されることで、発電が行われるようになっている。そして、タービン24内を流通した圧縮空気は、排出ガスとなって空気排出路34を通ってタービン24から排気される。
吸気フィルター26は、空気供給路35上における供給源と圧縮機23との間に配置され、供給源から供給される空気中に含まれる塵埃等を圧縮機23に供給される前段で除去するためのものである。
また、再生熱交換器27には、受熱器供給路32と空気排出路34とが接続されており、受熱器供給路32内を流通する圧縮空気と、空気排出路34内を流通する排出ガスとの間で熱交換を行い、受熱器供給路32内を流通する圧縮空気が集光受熱器10に供給される前段で予備加熱されるようになっている。
(集光受熱器)
図4は、集光受熱器の一部を破断して示す斜視図である。
図3,4に示すように、集光受熱器10は、ハウジング12の集光室18に収納されており、ケーシングとなる受熱器本体41と、受熱器本体41の内部に設けられ、ヘリオスタット2で反射された太陽光線Hが照射されて受熱する受熱部42とを有する。
受熱器本体41は、軸方向がハウジング12の軸方向に一致した状態で配置された有底筒状のものであり、上部は天板部43により閉塞される一方、下部にはグランドGに向けて開口する開口部44が形成されている。そして、受熱器本体41の天板部43と仕切床16とは、複数のフック部材45(図3(b)参照)により連結されており、これらフック部材45により受熱器本体41は仕切床16から吊り下げられた状態で集光室18内に収納されている。なお、後述するがフック部材45の下端部は受熱器本体41を貫通しており、受熱部42にも連結されている。すなわち、集光受熱器10の受熱器本体41及び受熱部42は、ともに同一のフック部材45により支持されている。
受熱器本体41の開口部44の端面位置は、ハウジング12の下面に対して鉛直方向において同位置に配置されており、ヘリオスタット2で反射された太陽光線Hは、開口部44から受熱器本体41内に取り込まれるようになっている。また、受熱器本体41の下部には、開口部44(下方)に向かって内径が漸次縮小するテーパ部46が形成されている。
また、受熱器本体41の内壁面には、全域に亘って断熱材47(図4参照)が取り付けられている。これにより、受熱器本体41内の熱エネルギーが、受熱器本体41の壁面から外部に向けて放射されることを抑制することができる。
図5は受熱部の斜視図である。
図3〜5に示すように、受熱部42は、複数の受熱管51と、複数の受熱管51における圧縮空気の流通方向上流端がまとめて接続された低温側ヘッダ((熱媒体導入ヘッダ))52と、複数の受熱管51における圧縮空気の流通方向下流端がまとめて接続された高温側ヘッダ(熱媒体導出ヘッダ)53とを備えている。
低温側ヘッダ52は、受熱器本体41のテーパ部46を囲むように配置された環状の部材であり、その外周面には圧縮機23と受熱部42との間を接続する複数の受熱器供給路32が設けられている。受熱器供給路32は、低温側ヘッダ52の周方向に沿って等間隔に配置されており、受熱器供給路32から低温側ヘッダ52内に供給された圧縮空気が低温側ヘッダ52の全域に行き渡るようになっている。このように、低温側ヘッダ52が受熱器本体41の外部に配置されているので、低温側ヘッダ52の材料として耐熱性の高い材料を用いる必要がない。そのため、装置コストの低減を図ることができる。
高温側ヘッダ53は、受熱器本体41内において天板部43の外周側に沿って配置された環状の部材である。高温側ヘッダ53の内周側には、径方向中心に向かって延出する複数(例えば、4本)の流出管55が周方向に沿って等間隔に形成されている。これら流出管55は、高温側ヘッダ53の径方向中心で集合してタービン供給路33を構成している。そして、タービン供給路33は、天板部43及び仕切床16を鉛直方向に沿って貫通してタービン発電機室17内を望むように延出しており、その下流端でタービン24に接続されている。なお、高温側ヘッダ53には、上述した複数のフック部材45が連結されており、これにより受熱部42が仕切床16に吊り下げ支持されている。
図6は図3(b)のA−A線に沿う断面図であり、図7は図6の矢印Bから見た斜視図である。
図4〜図7に示すように、受熱管51は、その軸方向が受熱器本体41の軸方向と平行になるように配置された部材であり、受熱器本体41の内壁面における周方向全周に亘って複数配列されている。各受熱管51の下端部(上流端)は、テーパ部46を貫通して低温側ヘッダ52の上部にそれぞれ接続される一方、上端部(下流端)は受熱器本体41内で高温側ヘッダ53の下部にそれぞれ接続されている。すなわち、低温側ヘッダ52を流通する圧縮空気は各受熱管51内に分散され、各受熱管51内で加熱された後、再び高温側ヘッダ53で集合するようになっている。
各受熱管51は、受熱器本体41の周方向において隣接する受熱管51との間に間隔を空けた状態で、所定の管ピッチ(配列ピッチ)P毎に互いに平行に配列されている。なお、管ピッチPとは、受熱器本体41の周方向において、隣接する受熱管51の中心軸(例えば、O1,O2)間の距離である。そして、受熱管51の外周面の周方向において、受熱器本体41の径方向内側を向いた約180度の領域(太陽光線Hの照射方向手前側)が、開口部44から集光された太陽光線Hの照射方向に対向して太陽光線Hを直接受光する受光面(照射側)51aを構成している。一方、受熱管51の径方向外側を向いた約180度の領域(太陽光線Hの照射方向奥側)が、断熱材47に対向して太陽光線Hが直接受光されない非受光面(非照射側)51bを構成している。
図8は、受熱部の拡大斜視図である。
ここで、図6〜図8に示すように、各受熱管51内には、上述した受光面51a側と非受光面51b側とを区画する仕切板56が配置されている。この仕切板56は、溶接加工や引抜き加工等により受熱管51に一体的に形成された平板状のものであり、受熱管51の軸方向における全長に亘って形成されている。これにより、受熱管51は、受光面51aと仕切板56とに囲まれた受光側流路(第1流路)61と、非受光面51bと仕切板56とに囲まれた非受光側流路(第2流路)62とに区画されている。
また、非受光側流路62の上流側、すなわち非受光側流路62における低温側ヘッダ52からの流入口には、非受光側流路62の流入口を閉塞するようにオリフィスプレート(制限手段)63が設けられている。このオリフィスプレート63には、厚さ方向に貫通するオリフィス孔64が形成され、これにより、非受光側流路62内に流入する圧縮空気の流量を受光側流路61内に流入する圧縮空気の流量に比べて制限している。
(発電装置の動作方法)
次に、上述した発電装置の動作方法について説明する。
まず、図3に示すように、発電機28が作動し、減速機31を介してロータ30が回転し始めると、供給源に貯留された空気が空気取込口29から空気供給路35内に流入し、吸気フィルター26を通って圧縮機23内に流入する。圧縮機23に流入した空気は圧縮機23内で圧縮された後、圧縮空気となって受熱器供給路32に流出し、受熱器供給路32から受熱部42の低温側ヘッダ52内に供給される(図4中矢印F1参照)。
図4に示すように、低温側ヘッダ52内に供給された圧縮空気は、低温側ヘッダ52内を周方向全域に行き渡った後、低温側ヘッダ52の周方向全周に亘って接続された各受熱管51内に流入する。
一方、ヘリオスタット2に入射した太陽光線Hは、ヘリオスタット2で反射された後、受熱器本体41の開口部44から受熱器本体41内に入射する。受熱器本体41に入射した太陽光線Hのうち、受熱管51の受光面51aで受光される太陽光線Hは熱エネルギーとなって受熱管51を直接加熱する。具体的には、図1に示すように、集光受熱器10に最も近い最近点に位置するヘリオスタット2からの太陽光線Hは受熱管51の上部(下流側)を照射し、また、集光受熱器10から最も遠い最遠点に位置するヘリオスタット2からの太陽光線Hが受熱管51の下部(上流側)を照射するようになっている。
そして、加熱された受熱管51と受熱管51内を流通する圧縮空気との間で熱交換が行われ、圧縮空気は受熱管51内を流通する間に高温となる。
ここで、上述したように受熱器本体41に入射した太陽光線Hは、受熱管51の受光面51aで受光されるため、受光側流路61は非受光側流路62に比べて高温となる。そして、低温側ヘッダ52から受熱管51内に流入する圧縮空気は、受熱管51の流入口で受光側流路61と非受光側流路62とに分岐される。この時、非受光側流路62は、オリフィス孔64によって流路が制限されているため、受光側流路61内に流入する圧縮空気の流量は、非受光側流路62内に流入する圧縮空気の流量に比べて多くなる。すなわち、高温の受光側流路61には、受光側流路61よりも低温の非受光側流路62に比べて多くの圧縮空気が供給される。
そのため、受光側流路61から圧縮空気への熱伝達の効率は、非受光側流路62から圧縮空気への熱伝達の効率に比べて高くなる。すなわち、受光側流路61での圧縮空気への熱伝達を、非受光側流路62での圧縮空気への熱伝達よりも積極的に行わせることで、圧縮空気への熱伝達による非受光側流路62の温度低下を、受光側流路61の温度低下に比べて抑制することができる。
そして、受光側流路61及び非受光側流路62内を流通して高温となった圧縮空気は、受熱管51の下流端から高温側ヘッダ53内に流入する。すなわち、各受熱管51で加熱された圧縮空気は、高温側ヘッダ53内で集合された後、流出管55を通ってタービン供給路33内に流入する。
タービン供給路33内に流入した圧縮空気は、タービン供給路33内を鉛直方向上方に向かって流通し(図4中矢印F2参照)、タービン24内に流入してタービン24を駆動させる。これにより、タービン供給路33から供給される圧縮空気の熱エネルギーがロータ30の回転エネルギーに変換され、タービン24に駆動力を発生させる。そして、この駆動力がロータ30に連結された発電機28に出力され、発電が行われるようになっている。
タービン24内を流通した圧縮空気は排出ガスとなり、空気排出路34を通ってタービン24から排気される。空気排出路34を流通する排出ガスは、再生熱交換器27内に供給され、上述した圧縮機23から受熱部42に向かって流通する圧縮空気との間で熱交換を行った後、外部に排出されるようになっている。このように、再生熱交換器27において、圧縮機23から受熱部42に向かって流通する圧縮空気を受熱部42に供給する前段で予備加熱しておくことで、タービン24に供給される圧縮空気の温度をより高温に設定することができる。その結果、発電装置100の発電効率の更なる向上を図ることができる。しかも、再生熱交換器27では、タービン24で発電に供された排出ガスを有効利用することができるので、別途で熱源を用意することがなく、構成の簡素化及び設備コストの低減を図ることができる。
このように、本実施形態では、受熱管51における受光面51a側と非受光面51b側とを区画する仕切板56を設けるとともに、非受光側流路62内に流入する圧縮空気を制限するオリフィスプレート63を配置する構成とした。
この構成によれば、受光側流路61での圧縮空気との熱交換を非受光側流路62での圧縮空気との熱交換よりも積極的に行わせることで、上述したように受光面51a側と非受光面51b側との温度差を低減することができるので、両者間での温度差に起因して発生する熱応力を低減することが可能となる。これにより、受熱管51自体や受熱管51とヘッダ52,53との接合部分等に作用する応力集中や、応力の繰り返し発生による疲労寿命の低下を抑制することができるので、受熱管51の耐久性を向上させることができる。その結果、受熱管51の寿命を長期化させることで、受熱管51のメンテナンスや交換間隔を長期化させることができるため、設備コストを低減させることができる。これにより設備コストに対する発電量を増加させ、発電効率を向上させることができる。
そして、このような集光受熱システム101では、受光側流路61と非受光側流路62との温度差を低減した上で、太陽光線Hからの熱エネルギーを圧縮空気に対して効率的に伝達することができる。
なお、受熱器本体41に入射した太陽光線Hのうち、各受熱管51の間を通過した太陽光線Hは、断熱材47の内面に照射されて受熱器本体41内で熱エネルギーとなる。この場合、受熱器本体41の内面は、断熱材47によって断熱されるとともに、断熱材47の表面には黒体塗料が塗布されているので、受熱器本体41内で発生した熱エネルギーは受熱器本体41の壁面まで伝達されることはなく、受熱器本体41内に放射される。そのため、受熱器本体41内に放射される熱エネルギーは受熱管51における非受光面51bに伝達され、受熱管51を加熱するようになっている。また、受熱管51が得た熱エネルギーは、受熱管51の内部に放射される一方、受熱管51の外部(受熱器本体41内)にも放射される。この場合も、受熱器本体41の内壁面には断熱材47が設けられているため、受熱器本体41内で熱エネルギーが滞留することになる。そして、この滞留した熱エネルギーが受熱管51に対して放射または放射される。
したがって、受熱管51を周方向全域に亘って加熱することができるので、受光面51aと非受光面51bとの温度差をより効果的に低減することができる。
(第2実施形態)
次に、本発明の第2実施形態について説明する。図9は本実施形態の受熱部を一部破断して示す平面図である。上述した実施形態では、各受熱管51の非受光側流路62の流入口に制限手段であるオリフィスプレート63を配置する構成について説明したが、本実施形態では低温側ヘッダ52に制限手段を配置する点で上述した実施形態と相違している。なお、以下の説明では、上述した実施形態と同様の構成については同一の符号を付して説明を省略する。
図9に示すように、本実施形態の受熱部142は、低温側ヘッダ152を周方向に沿って等間隔に区画する複数の区画壁111が設けられている。区画壁111は、低温側ヘッダ152における各受熱器供給路32の流出口の一端側に配置され、区画壁111間で囲まれた領域が分割ヘッダ112をそれぞれ構成している。すなわち、各分割ヘッダ112は、低温側ヘッダ152を90度毎に分割しており、これら各分割ヘッダ112における周方向一端側で受熱器供給路32の流出口が開口している。
ここで、各分割ヘッダ112は、低温側ヘッダ152の径方向内側と外側とを半分に区画する仕切板(仕切部材)156が設けられている。仕切板156は、分割ヘッダ112における下流側(周方向他端側)の区画壁111から上流側(周方向一端側)の区画壁111に向かって延在する平面視(低温側ヘッダ152の軸方向から見て)略円弧状の部材である。これにより、分割ヘッダ112は、低温側ヘッダ152の径方向内側で仕切板156に囲まれた受光側ヘッダ(第1ヘッダ)113と、低温側ヘッダ152の径方向外側で仕切板156に囲まれた非受光側ヘッダ114とに区画されている。
なお、各分割ヘッダ112において、仕切板156の下流側の端部と下流側の区画壁111とは連結される一方、仕切板156の上流側の端部と上流側の区画壁111とは連結されていない。すなわち、仕切板156の上流側の端部と上流側の区画壁111との間には、受熱器供給路32から圧縮空気が流入してくる共通流路115が形成されている。そのため、受熱器供給路32から各分割ヘッダ112に流入してくる圧縮空気は、共通流路115内を流通した後、受光側ヘッダ113及び非受光側ヘッダ114にそれぞれ分岐されるようになっている。
各仕切板156は、上述した受熱管51の仕切板56と低温側ヘッダ152の軸方向から見て重なるように配置されている。この場合、分割ヘッダ112の受光側ヘッダ113と受熱管51の受光側流路61とが連通する一方、分割ヘッダ112の非受光側ヘッダ114と受熱管51の非受光側流路と62がそれぞれ連通している。
また、非受光側ヘッダ114の流入口には、流入口を閉塞するようにオリフィスプレート163が設けられている。このオリフィスプレート163には、厚さ方向に貫通するオリフィス孔164が形成され、これにより、非受光側ヘッダ114内に流入する圧縮空気の流量を受光側ヘッダ113に流入する圧縮空気の流量に比べて制限している。
本実施形態によれば、低温側ヘッダ152を受光側ヘッダ113と非受光側ヘッダ114とに区画するとともに、非受光側ヘッダ114にオリフィスプレート163を設けることで、複数の受熱管51の非受光側流路62に対して一括して流量を制限することができる。したがって、上述した第1実施形態と同様の効果を奏するとともに、各受熱管51にオリフィスプレート63(図8参照)をそれぞれ設ける場合に比べて、設備コストの低下を図ることができる。
(第3実施形態)
次に、本発明の第3実施形態について説明する。図10は本実施形態の受熱部を示す断面図である。なお、以下の説明では、上述した実施形態と同様の構成については同一の符号を付して説明を省略する。
図10に示すように、本実施形態の受熱部242は、受熱器本体41内において、天板部43の外周側に沿って配置された高温側ヘッダ253と、高温側ヘッダ253の径方向内側に配置された低温側ヘッダ252と、これらヘッダ252,253を連通させる複数の受熱管251とを備えている。なお、低温側ヘッダ252及び高温側ヘッダ253は、複数のフック部材245により天板部43から吊り下げられた状態で支持されている。
各受熱管251は、1本の配管が仕切板256によって受光側流路261と非受光側流路262とに区画されたものであり、受光側流路261及び非受光側流路262の一端側(上端側)の開口部にはそれぞれ分岐管201,202が接続されて二股状に延在する一方、他端側の開口部には開口部同士を連通させる折返し流路203が接続されたY字状のものである。そして、各受熱管251は、受光側流路261の分岐管201が低温側ヘッダ252に、非受光側流路262の分岐管202が高温側ヘッダ253にそれぞれ接続されている。すなわち、各受熱管251は、低温側ヘッダ252及び高温側ヘッダ253に吊り下げ支持されるように配置されている。この場合、低温側ヘッダ252を流通する圧縮空気は、分岐管201から受光側流路261に流入し、折返し流路203で折り返された後、非受光側流路262を流通し、分岐管202から高温側ヘッダ253内に流入するようになっている。
本実施形態によれば、低温側ヘッダ252が受光側流路261に接続される一方、高温側ヘッダ253が非受光側流路262に接続されているため、圧縮空気は受光側流路261側から流入して、非受光側流路262側から排出される。そのため、受光側流路261には低温側ヘッダ252から供給される比較的低温の圧縮空気が、非受光側流路262には受光側流路261で熱交換された比較的高温の圧縮空気が流通することになる。すなわち、受光側流路261と圧縮空気の温度差は、非受光側流路262と圧縮空気との温度差に比べて大きくなる。そのため、受光側流路261での圧縮空気への熱伝達が、非受光側流路262での圧縮空気への熱交換よりも積極的に行われることになるので、受光側流路261と非受光側流路262との温度差を低減することができる。
また、受熱管251は、上端側のみで低温側ヘッダ252及び高温側ヘッダ253に連結されているので、下端側は拘束されておらず、自由端となっている。そのため、仮に受熱管251が温度変化により変形した場合であっても、この変形が許容されることになるので、受熱管251に作用する熱応力を低減することができる。
さらに、各ヘッダ252,253がともに受熱器本体41の上端側に配置されているため、上述した第1実施形態のように圧縮機23で圧縮された圧縮空気を低温側ヘッダ52まで供給するために、受熱器本体41の下端側まで引き回す必要がない。そのため、装置のレイアウト性を向上させることも可能である。
(第4実施形態)
次に、本発明の第4実施形態について説明する。図11は本実施形態の受熱部を示す断面図である。本実施形態では、受熱管251の配置方向を第3実施形態に比べて上下逆向きに配置している。なお、以下の説明では、上述した実施形態と同様の構成については同一の符号を付して説明を省略する。
図11(a)に示すように、本実施形態における受熱部242は、受熱器本体41内において、低温側ヘッダ252及び高温側ヘッダ253が重力方向下部に配置されるとともに、これら低温側ヘッダ252及び高温側ヘッダ253から上方に向けて延在するように複数の受熱管251が接続されている。
また、受熱器本体41内における天板部43には、天板部43と各受熱管251の上端面とを連結する複数のフック部材345が設けられ、これにより、受熱部242は受熱器本体41内で吊り下げ支持されている。
このように、本実施形態によれば、第3実施形態に対して受熱管251を上下逆向きに配置した場合であっても、上述した第3実施形態と同様の効果を奏することができる。なお、受熱部242を吊り下げる構成としては、上述した構成の他に、例えば図11(b)に示すような構成にしても構わない。具体的に、各受熱管251の上端面に貫通孔346aを有する連結部材346を形成する一方、フック部材345の先端(下端)に貫通孔346内に挿入されるリング部347を形成し、これら連結部材346とリング部347とを連結する。これにより、受熱器本体41内において、受熱部242がフック部材345によって吊り下げ支持されることになる。
(第5実施形態)
次に、本発明の第5実施形態について説明する。図12は、集光受熱器を軸方向から見た断面図である。本実施形態では、受熱器本体の内壁面に反射鏡を配置する点で上述した各実施形態と相違している。なお、以下の説明では、上述した実施形態と同様の構成については同一の符号を付して説明を省略する。
図12に示すように、受熱器本体41の内壁面には全周に亘って反射鏡401が配置されている。この反射鏡401は、受熱器本体41の周方向に沿って山部402と谷部403とが連続的に形成された断面視波型のものであり、各山部403間に受熱管351が配置されている。この場合、受熱器本体41内に入射した太陽光線Hのうち、一部は受熱管351の受光面351aに直接照射される。一方、受熱器本体41内に入射した太陽光線Hのうち、各受熱管351間を通過した太陽光線Hは、受熱器本体41の内壁面に設けられた反射鏡401で反射され、開口部44から入射した太陽光線Hを直接受光できない非受光面351bに照射される。
これにより、受熱管351の非受光面351bに積極的に太陽光線Hを照射することができるので、受熱管51を周方向全域に亘って加熱して、受光面351aと非受光面351bとの温度差を低減することができる。
なお、上述した第5実施形態では、上述した第1〜第4実施形態と異なり、仕切板(例えば、仕切板56)によって区画されていない受熱管351を用いて説明したが、第1〜第4実施形態の仕切板が形成された受熱管51,151,251を用いても構わない。これにより、受光面351aと非受光面351bとの温度差をより低減することができる。また、反射鏡401は、凹面状に形成しても構わない。また、反射鏡401が配置される間隔は必ずしも受熱管351が配置される間隔に合わせる必要はない。
なお、本発明の技術範囲は上述した実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な構造や形状などはほんの一例に過ぎず、適宜変更が可能である。
例えば、上述した実施形態では、集光受熱器10で加熱した圧縮空気を作動流体としてタービン24に供給する場合について説明したが、これに限らず、タービン24には別途作動流体(例えば、燃焼ガス)を供給し、受熱部42で加熱された圧縮空気を作動流体の熱交換に用いる構成にしても構わない。
また、集光受熱器と発電ユニットとの位置関係は適宜設計変更が可能である。すなわち、発電ユニットの配置位置は、集光受熱器の上方や、後方に限られることはない。
さらに、上述した実施形態では、発電機28がロータ30を駆動させるとともに、タービン24が回転することによって発電を行うオルタネータとしての機能を有している場合について説明したが、これに限らず発電機28とは別体でロータ30を回転させる駆動モータを採用しても構わない。
ところで、発電装置100では、設置場所が高緯度になるにつれ、太陽高度が低くなる関係で、一部の方角(例えば、北半球の場合は南側)における太陽光の集光効率が低下するという傾向がある。そのため、上述した各実施形態では、亜熱帯高圧帯の中における低緯度地域に配置される全周配置方式の発電装置100について説明したが、これ限らずヘリオスタット2を発電装置100に対して片側のみに配置する片側配置方式を採用することも可能である。この場合、片側配置方式の発電装置では、受熱器本体を半円状に形成して、その円弧状に沿って受熱管を配列することで構成される。そして、低緯度地域と高緯度地域とでの太陽高度に応じて、これら全周配置方式の発電装置100と、片側配置方式の発電装置とを使い分けることが好ましい。
また、上述した各実施形態では、非受光側流路62内を流通する圧縮空気の流量を制限する制限手段として、オリフィスプレート63を採用した場合について説明したが、これに限られない。例えば、図13に示すように、非受光側流路62における流入口の一部を覆うガイドベーン410を設ける構成にしても構わない。さらに、このガイドベーン410を可動式にして、非受光側流路62の流入口の開口幅を太陽光線Hの日射量等に基づいて可変するようにしても構わない。この場合、空調ダンパーのように複数の羽根によって、受熱管51の開口幅を可変にするようにしても構わない。
さらに、上述した実施形態では、仕切板56を溶接や引抜き等により一体的に形成する場合について説明したが、例えば図14に示すように、受熱管451の内周面に径方向内側に向かって突出するリブ452を設け、このリブ452間に別体で仕切板456を挿入する構成でも構わない。この場合、受熱管451と仕切板456とを異種材料で形成しても構わない。
また、上述した第1各実施形態、第2実施形態及び第5実施形態では、受熱管51の軸方向全域に亘って仕切板56を設ける場合について説明したが、受熱管51の軸方向における一部のみを仕切板56によって区画する構成でも構わない。この場合、集光受熱システム101では、ヘリオスタットフィールド1における外周側に向かうにつれ、ヘリオスタット2の配置個数が増加するため、ヘリオスタットフィールド1の内周側から外周側に向かうにつれ受熱器本体41の開口部44内に入射する太陽光線Hの入射量が増加する。そのため、受熱管51の受光量は軸方向上部よりも下部の方が多く、受熱管51の下部側で受光面51aと非受光面51bとの温度差が大きくなる。そのため、受熱管51の下部側のみで受光側流路61と非受光側流路62とに区画し、受熱管51の上部側では受光側流路61と非受光側流路62との集合配管とすることが好ましい。
また、上述した第2実施形態では、受光側流路61と非受光側流路62とに流入する圧縮空気の流量を、低温側ヘッダ152で制限する構成について説明したが、低温側ヘッダ152よりも上流側でまとめて制限しても構わない。この場合、受光側流路61に圧縮空気を供給する受光側供給流路と、非受光側流路62に圧縮空気を供給する非受光側供給流路とに分岐させ、非受光側供給流路に流量制御弁を設けることで、低温ヘッダ152に圧縮空気が供給される前段で、受光側流路61と非受光側流路62とに供給される圧縮空気の流量を調整しても構わない。
2 ヘリオスタット
3 タワー部
10 集光受熱器(太陽光受熱器)
41 受熱器本体(ケーシング)
44 開口部
51,151,251,351,451 受熱管
51a,351a 受光面(照射側)
51b,351b 非受光面(非照射側)
52,152,252 低温側ヘッダ(熱媒体導入ヘッダ)
53,253 高温側ヘッダ(熱媒体導出ヘッダ)
56,156,256,456 仕切板(仕切部材)
61,261 受光側流路(第1流路)
62,262 非受光側流路(第2流路)
63,163 オリフィスプレート(制限手段)
113 受光側ヘッダ(第1ヘッダ)
114 非受光側ヘッダ(第2ヘッダ)

Claims (5)

  1. 内部に熱媒体が流通するとともに、照射される太陽光の熱を熱媒体に伝熱させる受熱管を有する太陽光受熱器であって、
    前記受熱管の内部を、太陽光が照射される照射側の第1流路と、太陽光の照射方向における前記第1流路と反対側であって非照射側の第2流路と、に区画する仕切部材を備え
    前記第2流路への熱媒体の流入を制限する制限手段を有することを特徴とする太陽光受熱器。
  2. 請求項記載の太陽光受熱器において、
    複数の前記受熱管と、
    前記複数の受熱管における熱媒体の流通方向上流端が連結され、前記複数の受熱管に向けて熱媒体を導入させる熱媒体導入ヘッダとを備え、
    前記熱媒体導入ヘッダは、
    前記受熱管の前記第1流路に連通する第1ヘッダと、
    前記受熱管の前記第2流路に連通する第2ヘッダとを備え、
    前記第2ヘッダに前記制限手段が設けられていることを特徴とする太陽光受熱器。
  3. 内部に熱媒体が流通するとともに、照射される太陽光の熱を熱媒体に伝熱させる受熱管を有する太陽光受熱器であって、
    前記受熱管の内部を、太陽光が照射される照射側の第1流路と、太陽光の照射方向における前記第1流路と反対側であって非照射側の第2流路と、に区画する仕切部材を備え、
    前記第1流路と前記第2流路とは、熱媒体の流通方向一端側で連通し、
    熱媒体は、前記第1流路の流通方向他端側から供給され、前記第2流路の流通方向他端側から排出されることを特徴とする太陽光受熱器。
  4. 請求項記載の太陽光受熱器において、
    複数の前記受熱管と、
    前記複数の受熱管における前記第1流路の流通方向他端側が連結され、前記各第1流路に向けて熱媒体を導入させる熱媒体導入ヘッダと、
    前記第2流路の流通方向他端側が連結され、前記各第2流路から熱媒体が導出される熱媒体導出ヘッダとを備えていることを特徴とする太陽光受熱器。
  5. 地上に設置され、太陽光線を反射する複数の反射鏡と、
    前記地上から立設されたタワー部と、
    前記タワー部に支持され、太陽光線を集光する開口部を有するケーシングと、
    前記ケーシング内に収容された請求項1ないし請求項の何れか1項に記載の太陽光受熱器とを備えていることを特徴とする太陽光集光受熱システム。
JP2009291637A 2009-12-24 2009-12-24 太陽光受熱器及び太陽光集光受熱システム Expired - Fee Related JP5404374B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009291637A JP5404374B2 (ja) 2009-12-24 2009-12-24 太陽光受熱器及び太陽光集光受熱システム
EP10839043.6A EP2495440A4 (en) 2009-12-24 2010-10-04 SOLAR LIGHT HEAT RECEIVER AND SOLAR LIGHT COLLECTION AND HEAT RECEPTION SYSTEM
AU2010334038A AU2010334038B2 (en) 2009-12-24 2010-10-04 Solar light heat receiver, and solar light collecting and heat receiving system
PCT/JP2010/067358 WO2011077806A1 (ja) 2009-12-24 2010-10-04 太陽光受熱器及び太陽光集光受熱システム
US13/513,081 US10054335B2 (en) 2009-12-24 2010-10-04 Solar light heat receiver, and solar light collecting and heat receiving system
ZA2012/04007A ZA201204007B (en) 2009-12-24 2012-05-31 Solar light heat receiver,and solar light collecting and heat receiving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291637A JP5404374B2 (ja) 2009-12-24 2009-12-24 太陽光受熱器及び太陽光集光受熱システム

Publications (2)

Publication Number Publication Date
JP2011132846A JP2011132846A (ja) 2011-07-07
JP5404374B2 true JP5404374B2 (ja) 2014-01-29

Family

ID=44195352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291637A Expired - Fee Related JP5404374B2 (ja) 2009-12-24 2009-12-24 太陽光受熱器及び太陽光集光受熱システム

Country Status (6)

Country Link
US (1) US10054335B2 (ja)
EP (1) EP2495440A4 (ja)
JP (1) JP5404374B2 (ja)
AU (1) AU2010334038B2 (ja)
WO (1) WO2011077806A1 (ja)
ZA (1) ZA201204007B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2345379B1 (es) * 2009-03-20 2011-09-16 Abengoa Solar New Technologies S.A. Planta solar combinada de tecnologia de aire y vapor.
MX2011002035A (es) 2011-02-11 2012-08-30 Fricaeco America S A De C V Calentador solar de líquidos.
JP5734803B2 (ja) * 2011-10-05 2015-06-17 住友重機械工業株式会社 太陽集光システム及び太陽熱発電システム
JP2013113459A (ja) * 2011-11-25 2013-06-10 Mitsubishi Heavy Ind Ltd 太陽光受熱器及び太陽熱発電装置
WO2015103559A1 (en) * 2014-01-06 2015-07-09 Skyfuel, Inc. Linear receivers for solar collectors
US8936020B1 (en) * 2014-03-12 2015-01-20 Fricaeco America Sapi De C.V. Solar fluids preheating system with low thermal losses
US9534811B2 (en) 2014-12-31 2017-01-03 Fricaeco America, SAPI de C.V. Solar fluid preheating system having a thermosiphonic aperture and concentrating and accelerating convective nanolenses

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE555535A (ja) * 1956-03-06
US2932091A (en) * 1956-10-08 1960-04-12 Day George Donald Heated shell drum dryers
FR1194319A (ja) * 1958-04-09 1959-11-09
US3399656A (en) * 1967-01-19 1968-09-03 Electrodyne Res Corp Circulation system for a steam generator
US3847750A (en) * 1970-10-30 1974-11-12 Standard Oil Co Aerobic fermentation apparatus
JPS5124434A (en) * 1974-08-23 1976-02-27 Hitachi Ltd Taiyonetsu karyokuheiyohatsudensochi
US3957109A (en) * 1974-10-31 1976-05-18 Worthington Mark N Solar collector -- heat exchanger
US4156420A (en) * 1975-04-10 1979-05-29 Gunderson Charles F Solar heat collector
JPS5341836A (en) * 1976-09-29 1978-04-15 Agency Of Ind Science & Technol Absorbing body to collect solar radiation energy
US4284068A (en) * 1977-07-13 1981-08-18 Gunderson Charles F Solar heat collector for gasses
US4198956A (en) * 1977-11-01 1980-04-22 Joe Simpkins Multi-purpose solar energy collector
US4299200A (en) * 1977-12-12 1981-11-10 University Of Iowa Research Foundation Apparatus and method for collecting solar energy
US4289114A (en) * 1978-09-12 1981-09-15 The Babcock & Wilcox Company Control system for a solar steam generator
US4273104A (en) * 1979-06-25 1981-06-16 Alpha Solarco Inc. Solar energy collectors
DE2937529C2 (de) * 1979-09-17 1983-05-11 Kraftwerk Union AG, 4330 Mülheim Sonnenkraftwerk
JPS5819015B2 (ja) 1980-01-25 1983-04-15 工業技術院長 太陽熱集熱管
JPS56162350A (en) * 1980-04-30 1981-12-14 Kaaruson Kuraaku Piitaa Heating panel
US4505260A (en) * 1982-09-09 1985-03-19 Metzger Research Corporation Radiant energy device
JPS61107051A (ja) 1984-10-31 1986-05-24 Agency Of Ind Science & Technol 太陽エネルギ−集熱管
JPS63243463A (ja) * 1987-03-30 1988-10-11 Agency Of Ind Science & Technol 発電装置
JP3055253B2 (ja) * 1991-10-18 2000-06-26 日産自動車株式会社 車両用ドアの開閉制御装置
JPH05341836A (ja) * 1992-06-10 1993-12-24 Japan Aviation Electron Ind Ltd 無人搬送車
US5572987A (en) * 1994-07-18 1996-11-12 Moratalla; Jose M. Solar energy system
US6254734B1 (en) * 1995-03-14 2001-07-03 Hugo H Sephton Barometric evaporation process and evaporator
DE10132639C1 (de) * 2001-07-05 2003-03-20 Schuetz Gmbh & Co Kgaa Solarkollektor
US6604521B2 (en) * 2001-09-11 2003-08-12 Travis Smith Solar collector pipe
US6619283B2 (en) * 2001-09-11 2003-09-16 Manu Ghela Solar collector pipe
US6931851B2 (en) * 2002-12-13 2005-08-23 The Boeing Company Solar central receiver with inboard headers
US6957630B1 (en) * 2005-03-31 2005-10-25 Alstom Technology Ltd Flexible assembly of once-through evaporation for horizontal heat recovery steam generator
WO2009027986A2 (en) * 2007-08-30 2009-03-05 Yeda Research And Development Company Ltd Solar receivers and systems thereof
WO2009105689A2 (en) * 2008-02-22 2009-08-27 Esolar, Inc. Solar receivers with internal reflections and flux-limiting patterns of reflectivity
WO2010034071A1 (en) * 2008-09-25 2010-04-01 Solfast Pty Ltd Solar collector

Also Published As

Publication number Publication date
EP2495440A1 (en) 2012-09-05
AU2010334038B2 (en) 2013-12-19
ZA201204007B (en) 2013-02-27
WO2011077806A1 (ja) 2011-06-30
EP2495440A4 (en) 2013-10-23
AU2010334038A1 (en) 2012-06-21
US20120234312A1 (en) 2012-09-20
JP2011132846A (ja) 2011-07-07
US10054335B2 (en) 2018-08-21

Similar Documents

Publication Publication Date Title
JP5404374B2 (ja) 太陽光受熱器及び太陽光集光受熱システム
US7836695B2 (en) Solar energy system
US8613278B2 (en) Solar thermal receiver for medium- and high-temperature applications
CN102388277A (zh) 太阳能传递及存储设备
US9279416B2 (en) Solar power system
US10072875B2 (en) Heat concentrator device for solar power system
WO2011096339A1 (ja) 太陽熱受熱器
US10961987B2 (en) Solar collector and turbine arrangement
WO2015033249A1 (en) Solar energy transfer and storage apparatus
WO2018050075A1 (zh) 太阳能集热器
JP2011007459A (ja) 太陽光集光受熱器及び太陽熱発電装置
WO2012090651A1 (ja) 太陽光集光受熱器及び太陽光集光受熱システム
CN111247336B (zh) 用非成像太阳能集中器收集辐射能的***
JP2011007458A (ja) 太陽光集光受熱器及び太陽熱発電装置
JP2011032902A (ja) 太陽光集光受熱装置
KR101155217B1 (ko) 태양에너지와 풍력을 이용한 복합 발전시스템
JP2013119969A (ja) 太陽熱受熱器、および、太陽熱発電装置
CN219640464U (zh) 一种菲涅尔柱状透镜阵列的聚能装置
JP2011007150A (ja) 受熱器
CN106330093B (zh) 一种光伏-光热一体化发电***
US20140238386A1 (en) Radiation absorbing metal pipe
WO2013077410A1 (ja) 太陽光受熱器及び太陽熱発電装置
JP2011094820A (ja) 太陽光集光受熱システム
CN115596629A (zh) 一种电厂用槽式dsg太阳能集热辅助发电装置
JP2011094819A (ja) 太陽光集光受熱装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

LAPS Cancellation because of no payment of annual fees