JP5402521B2 - Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material - Google Patents

Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material Download PDF

Info

Publication number
JP5402521B2
JP5402521B2 JP2009242278A JP2009242278A JP5402521B2 JP 5402521 B2 JP5402521 B2 JP 5402521B2 JP 2009242278 A JP2009242278 A JP 2009242278A JP 2009242278 A JP2009242278 A JP 2009242278A JP 5402521 B2 JP5402521 B2 JP 5402521B2
Authority
JP
Japan
Prior art keywords
layer
cubic boron
boron nitride
cutting
cbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009242278A
Other languages
Japanese (ja)
Other versions
JP2011088240A (en
Inventor
満康 西山
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009242278A priority Critical patent/JP5402521B2/en
Publication of JP2011088240A publication Critical patent/JP2011088240A/en
Application granted granted Critical
Publication of JP5402521B2 publication Critical patent/JP5402521B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、合金工具鋼や軸受け鋼の焼入れ材などの高硬度材からなる被削材を高速断続切削加工した場合でも、硬質被覆層が工具基体に対して強固な付着強度を有し、さらに、工具基体と硬質被覆層との界面でのクラックの伝播が抑制されることから、長期の使用にわたって、すぐれた耐欠損性を発揮するとともに、被削材の仕上げ面精度を維持したまま、安定した切削性能を発揮することができる、立方晶窒化ほう素基超高圧焼結材料で構成された切削工具基体の表面に硬質被覆層を形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具(以下、被覆cBN基焼結工具という)に関するものである。   In the present invention, even when a work material made of a hard material such as a hardened material of an alloy tool steel or a bearing steel is subjected to high-speed intermittent cutting, the hard coating layer has a strong adhesion strength to the tool base, Since the propagation of cracks at the interface between the tool base and the hard coating layer is suppressed, it exhibits excellent fracture resistance over a long period of use and is stable while maintaining the finished surface accuracy of the work material. Surface-coated cubic boron nitride-based ultra-high-pressure sintered material with a hard coating layer formed on the surface of a cutting tool base made of cubic boron nitride-based ultra-high-pressure sintered material The present invention relates to a cutting tool (hereinafter referred to as a coated cBN-based sintered tool).

一般に、被覆cBN基焼結工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、前記インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。   In general, a coated cBN-based sintered tool has an insert that can be attached to the tip of a cutting tool for turning of a work material such as various types of steel and cast iron, An insert-type end mill that performs cutting work in the same manner as a solid type end mill used for machining, grooving, and shoulder machining is known.

また、被覆cBN基焼結工具としては、各種の立方晶窒化ほう素基超高圧焼結材料で構成された工具本体(以下、cBN工具基体という)の表面に、チタン炭化物層、チタン窒化物層、チタン炭窒化物層などのTi化合物層からなる硬質被覆層を蒸着形成してなる被覆cBN基焼結工具が知られており、これらが例えば各種の鋼や鋳鉄などの切削加工に用いられていることも知られており、さらに、例えば、特許文献1に示すように、cBN工具基体と硬質被覆層との密着強度を向上させるために、cBN工具基体表面にSi等のイオン注入を行って拡散層を形成し、かつ、該拡散層をアモルファス化することが知られている。   The coated cBN-based sintered tool includes a titanium carbide layer and a titanium nitride layer on the surface of a tool body (hereinafter referred to as a cBN tool base) made of various cubic boron nitride-based ultrahigh pressure sintered materials. Coated cBN-based sintered tools formed by vapor-depositing a hard coating layer made of a Ti compound layer such as a titanium carbonitride layer are known, and these are used for cutting various steels and cast irons, for example. Further, for example, as shown in Patent Document 1, in order to improve the adhesion strength between the cBN tool base and the hard coating layer, ion implantation of Si or the like is performed on the surface of the cBN tool base. It is known to form a diffusion layer and make the diffusion layer amorphous.

特開2002−126913号公報JP 2002-126913 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は、通常の切削条件に加えて、より高速条件下での切削加工が要求される傾向にあるが、上記の従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じないが、これを、合金工具鋼や軸受け鋼の焼入れ材などの高硬度材からなる被削材の高速断続切削に用いた場合には、cBN基体と硬質被覆層との密着強度が十分でないために、切削時に切刃に作用する高負荷により、刃先の境界部分にチッピング、欠損、剥離等の異常損傷(以下、境界異常損傷という)を生じたり、また、被削材の仕上げ面精度が悪化したりすることによって、比較的短時間で使用寿命に至るのが現状である。   In recent years, FA has been remarkable for cutting devices, but on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and accordingly, cutting is performed at higher speed conditions in addition to normal cutting conditions. However, in the above-mentioned conventional coated tools, there is no particular problem when various types of steel and cast iron are machined under normal conditions. When used for high-speed intermittent cutting of work materials made of hard materials such as hardened steel and bearing steel, the contact strength between the cBN substrate and the hard coating layer is not sufficient, so it acts on the cutting edge during cutting. Due to the high load, abnormal damage such as chipping, chipping, peeling, etc. (hereinafter referred to as abnormal boundary damage) occurs at the boundary part of the cutting edge, and the finished surface accuracy of the work material deteriorates. Use in a short time The leads to life is the status quo.

そこで、本発明者等は、上述のような観点から、合金工具鋼や軸受け鋼の焼入れ材などの高硬度材からなる被削材の高速断続切削加工で、硬質被覆層がすぐれた耐欠損性を発揮し、また、長期の使用に亘って、すぐれた仕上げ面精度を維持したまま安定した切削特性を発揮する被覆cBN基焼結工具を開発すべく研究を行った結果、cBN工具基体表面のバインダー相中に、イオン注入等によりSiを所定量含有させるとともに、硬質被覆層の下部層としてTiとSiの複合窒化物(以下、(Ti,Si)Nで示す)を蒸着形成し、この上にTiの窒化物、Tiの炭窒化物、TiとAlの複合窒化物からなる上部層を蒸着形成すると、cBN工具基体と下部層との密着強度が向上するとともに、cBN工具基体と下部層との界面でのクラックの伝播が抑制され、結果として、大きな発熱を伴い、かつ、断続的・衝撃的な負荷が作用する合金工具鋼や軸受け鋼の焼入れ材などの高硬度被削材の高速断続切削加工において、すぐれた耐チッピング性、耐欠損性、耐剥離性を示すとともに、高硬度被削材の仕上げ面精度の低下を招くこともなく、長期の使用に亘って安定した切削性能を発揮することを見出したのである。   In view of the above, the present inventors, from the above viewpoint, have high fracture resistance with a hard coating layer in high-speed intermittent cutting of a work material made of a hard material such as a hardened material of alloy tool steel or bearing steel. As a result of research to develop a coated cBN-based sintered tool that exhibits stable cutting characteristics while maintaining excellent finished surface accuracy over a long period of use, A predetermined amount of Si is contained in the binder phase by ion implantation or the like, and a composite nitride of Ti and Si (hereinafter referred to as (Ti, Si) N) is deposited and formed as a lower layer of the hard coating layer. When an upper layer made of Ti nitride, Ti carbonitride, or Ti and Al composite nitride is deposited on the substrate, the adhesion strength between the cBN tool base and the lower layer is improved, and the cBN tool base and the lower layer are Cracks at the interface Propagation is suppressed, and as a result, it is excellent in high-speed intermittent cutting of high-hardness work materials such as alloy tool steels and quenching materials of bearing steels that generate a large amount of heat and are subjected to intermittent and impact loads. As it has been found that it exhibits chipping resistance, chipping resistance, and peeling resistance, and does not cause deterioration of the finished surface accuracy of high-hardness work materials, and exhibits stable cutting performance over a long period of use. is there.

この発明は、上記知見に基づいてなされたものであって、
「 立方晶窒化ほう素基超高圧焼結材料からなる工具基体の表面に、下部層と上部層からなる硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
(a)上記立方晶窒化ほう素基超高圧焼結材料は、バインダー相であるTiNを20〜50vol%含有し、
(b)上記立方晶窒化ほう素基超高圧焼結材料からなる工具基体の表面から1μm以内の深さ領域において、上記バインダー相は0.1〜5原子%のSiを含有し、
(c)上記立方晶窒化ほう素基超高圧焼結材料からなる工具基体表面上には、
組成式:(Ti1−XSi)N
で表した場合、X=0.001〜0.05(但し、Xは原子比)を満足するTiとSiの複合窒化物からなる下部層が蒸着形成され、
(d)上記下部層の上には、Tiの窒化物、Tiの炭窒化物、および、TiとAlの複合窒化物の何れかからなる上部層が0.5〜5μmの平均層厚で蒸着形成されていることを特徴とする表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
A cutting tool made of surface-coated cubic boron nitride-based ultra-high-pressure sintered material with a hard coating layer consisting of a lower layer and an upper layer deposited on the surface of a tool substrate made of cubic boron nitride-based ultra-high-pressure sintered material In
(A) The cubic boron nitride-based ultra-high pressure sintered material contains 20-50 vol% of TiN as a binder phase,
(B) In the depth region within 1 μm from the surface of the tool base made of the cubic boron nitride-based ultrahigh pressure sintered material, the binder phase contains 0.1 to 5 atomic% of Si,
(C) On the surface of the tool base made of the cubic boron nitride-based ultrahigh pressure sintered material,
Composition formula: (Ti 1-X Si X ) N
The lower layer made of a composite nitride of Ti and Si satisfying X = 0.001 to 0.05 (where X is an atomic ratio) is formed by vapor deposition,
(D) On the lower layer, an upper layer made of any one of Ti nitride, Ti carbonitride, and Ti and Al composite nitride is deposited with an average thickness of 0.5 to 5 μm. A surface-coated cubic boron nitride-based ultra-high pressure sintered material cutting tool characterized by being formed. "
It has the characteristics.

つぎに、この発明の被覆cBN基焼結工具について詳細に説明する。   Next, the coated cBN-based sintered tool of the present invention will be described in detail.

cBN工具基体:
cBN工具基体は、立方晶窒化ほう素基超高圧焼結材料から構成されるが、立方晶窒化ほう素基超高圧焼結材料におけるcBN含有量が40vol%より少なくなると、cBN焼結材料の硬さが低下し、超高圧焼結材料製インサートを用いて高硬度鋼の高速断続切削加工を行うに際し、最小限必要とされる硬さを備えることができなくなり、耐摩耗性が低下し、一方、cBN含有量が70vol%より多くなると、バインダー中へのSiの注入あるいは(Ti,Si)Nからなる下部層を形成したとしても、cBN工具基体と硬質被覆層の密着強度を確保しにくくなり、その結果硬質被覆層の剥離が生じやすくなるため、この発明では、cBN工具基体を構成する立方晶窒化ほう素基超高圧焼結材料におけるcBN含有量を40〜70vol%とすることが望ましい。
なお、cBN粒子の平均粒径については、これが1μmより小さくなると所望の耐摩耗性が得られず、一方、平均粒径が5μmを超えると十分な付着強度が得られないため、cBN粒子の平均粒径は1〜5μmであることが望ましい。
cBN tool substrate:
The cBN tool base is composed of a cubic boron nitride-based ultra-high pressure sintered material. When the cBN content in the cubic boron nitride-based ultra-high pressure sintered material is less than 40 vol%, the hardness of the cBN sintered material is increased. When high-speed intermittent cutting of high-hardness steel is performed using an insert made of ultra-high pressure sintered material, the minimum required hardness cannot be provided, and wear resistance is reduced. When the cBN content exceeds 70 vol%, it is difficult to secure the adhesion strength between the cBN tool base and the hard coating layer even if Si is injected into the binder or a lower layer made of (Ti, Si) N is formed. As a result, peeling of the hard coating layer is likely to occur. Therefore, in the present invention, the cBN content in the cubic boron nitride-based ultrahigh pressure sintered material constituting the cBN tool base is set to 40 to 70 vol. It is desirable to.
As for the average particle size of the cBN particles, if this is smaller than 1 μm, the desired wear resistance cannot be obtained. On the other hand, if the average particle size exceeds 5 μm, sufficient adhesion strength cannot be obtained. The particle size is desirably 1 to 5 μm.

また、立方晶窒化ほう素基超高圧焼結材料を構成するバインダーについては、例えばイオン注入法により、cBN工具基体の表面から1μm以内の深さ領域におけるバインダー相中のSi含有量を0.1〜5原子%とし、cBN工具基体表面近傍(深さ1μm以内の領域)のバインダー相組成を、工具基体表面に蒸着する(Ti,Si)N層のそれに近づけることで、cBN工具基体表面(特に、工具基体表面近傍のバインダー相)と下部層との塑性変形性が近くなること、また、工具基体表面近傍のバインダー相自体の強度が向上することにより、cBN工具基体と硬質被覆層との密着強度の向上、耐チッピング性、耐欠損性を確保することができる。
cBN工具基体の表面から1μm以内の深さ領域におけるバインダー相中のSi含有量が0.1〜5原子%から外れた場合には、cBN工具基体表面近傍のバインダー相組成が、下部層の組成から外れたものとなるため、工具基体表面近傍のバインダー相と下部層との塑性変形性の近似による密着強度の向上を十分に図ることができなくなるので、cBN工具基体の表面から1μm以内の深さ領域におけるバインダー相中のSi含有量を0.1〜5原子%と定めた。
また、cBN工具基体の表面から1μm以内の深さ領域におけるバインダー相中のSi含有量を0.1〜5原子%とし、cBN工具基体表面近傍に、下部層の組成
とほぼ同一の組成を有するバインダー相を形成することで、硬質皮膜中に発生したクラックが伝播してきた場合でも、硬質被覆層とcBN工具基体との界面において、クラックのさらなる伝播を抑制し、その結果、耐チッピング性、耐クラック性を向上させることができ、仕上げ面精度の向上にも寄与する。また、バインダー相中のSi含有領域をcBN工具基体表面から1μm以内としたのは、この範囲でバインダー相中のSi含有量が0.1〜5原子%であれば十分上記効果が得られるためである。
For the binder constituting the cubic boron nitride-based ultrahigh pressure sintered material, the Si content in the binder phase in the depth region within 1 μm from the surface of the cBN tool base is set to 0.1 by, for example, ion implantation. CBN tool substrate surface (especially by making the binder phase composition near the cBN tool substrate surface (within a depth of 1 μm or less) close to that of the (Ti, Si) N layer deposited on the tool substrate surface Adhesion between the cBN tool base and the hard coating layer due to the close plastic deformation between the binder phase in the vicinity of the tool base surface) and the lower layer and the improvement in the strength of the binder phase in the vicinity of the tool base surface. Strength improvement, chipping resistance, and chipping resistance can be ensured.
When the Si content in the binder phase in the depth region within 1 μm from the surface of the cBN tool base is out of the range of 0.1 to 5 atomic%, the binder phase composition in the vicinity of the cBN tool base surface becomes the composition of the lower layer. Therefore, the adhesion strength cannot be sufficiently improved by approximating the plastic deformability between the binder phase and the lower layer in the vicinity of the tool base surface, so that the depth within 1 μm from the surface of the cBN tool base. The Si content in the binder phase in the thickness region was determined to be 0.1 to 5 atomic%.
Further, the Si content in the binder phase in the depth region within 1 μm from the surface of the cBN tool base is 0.1 to 5 atomic%, and the composition is almost the same as the composition of the lower layer in the vicinity of the cBN tool base surface. By forming the binder phase, even when cracks generated in the hard coating have propagated, further propagation of cracks at the interface between the hard coating layer and the cBN tool substrate is suppressed, and as a result, chipping resistance, The crack property can be improved, which contributes to the improvement of the finished surface accuracy. The reason why the Si-containing region in the binder phase is within 1 μm from the surface of the cBN tool substrate is that the above effect can be obtained sufficiently if the Si content in the binder phase is 0.1 to 5 atomic% within this range. It is.

バインダーであるTiNは、cBN工具基体中に20〜50vol%含有されていることが必要である。
バインダー含有量が20vol%未満であると、バインダー相中にSiを含有させ、(Ti,Si)Nからなる下部層を形成したとしても、cBN工具基体と硬質被覆層の密着強度を確保しにくくなり、一方、バインダー含有量が50vol%を超えると、cBN焼結材料の硬さが低下し、高硬度鋼の高速断続切削加工を行うに際し、最小限必要とされる硬さを備えることができなくなり、耐摩耗性が低下することから、バインダー含有量は20〜50vol%と定めた。
TiN, which is a binder, needs to be contained in an amount of 20 to 50 vol% in the cBN tool substrate.
When the binder content is less than 20 vol%, even if Si is contained in the binder phase and a lower layer made of (Ti, Si) N is formed, it is difficult to ensure the adhesion strength between the cBN tool base and the hard coating layer. On the other hand, if the binder content exceeds 50 vol%, the hardness of the cBN sintered material decreases, and the minimum required hardness can be provided when performing high-speed intermittent cutting of high-hardness steel. Since the wear resistance is reduced, the binder content is determined to be 20 to 50 vol%.

下部層((Ti,Si)N層):
(Ti,Si)N層からなる下部層は、例えば、図1に示されるアークイオンプレーティング装置とイオン注入装置を併設した物理蒸着装置を用いて、真空容器内に装着したcBN工具基体に−40〜−60KVのバイアス電圧を付加し、Siイオンを注入し、cBN工具基体の表面近傍(深さ1μm以内の領域)に0.1〜5原子%のSiを含有させることにより、下部層の組成とほぼ同一の組成を有するバインダー相を形成した後、
アークイオンプレーティング(AIP)装置に上記のcBN工具基体を装着し、
装置内加熱温度: 350〜500 ℃、
超硬基体に印加する直流バイアス電圧: −20〜−100 V、
カソード電極:Ti−Si合金、
上記カソード電極とアノード電極間のアーク放電電流: 100〜150 A、
雰囲気ガス:窒素(N)ガス
装置内ガス圧力: 1〜5 Pa、
の条件で蒸着することにより形成することができる。
上記AIP装置を用いて形成した(Ti,Si)N層は、すぐれた高温硬さ、強度、耐熱性を備え、かつ、cBN工具基体の表面近傍(深さ1μm以内の領域)に上記(Ti,Si)N層の組成とほぼ同一の組成を有するバインダー相が形成されているので、硬質皮膜中に発生したクラックが伝播してきた場合でも、硬質被覆層とcBN工具基体との界面において、クラックのさらなる伝播を抑制することができる。
Lower layer ((Ti, Si) N layer):
The lower layer made of the (Ti, Si) N layer is formed on the cBN tool substrate mounted in the vacuum vessel using, for example, a physical vapor deposition apparatus provided with an arc ion plating apparatus and an ion implantation apparatus shown in FIG. A bias voltage of 40 to −60 KV is applied, Si ions are implanted, and 0.1 to 5 atomic% of Si is contained in the vicinity of the surface of the cBN tool base (a region within a depth of 1 μm). After forming a binder phase having a composition almost identical to the composition,
The above-mentioned cBN tool base is mounted on an arc ion plating (AIP) apparatus,
In-apparatus heating temperature: 350-500 ° C.
DC bias voltage applied to the carbide substrate: -20 to -100 V,
Cathode electrode: Ti-Si alloy,
Arc discharge current between the cathode electrode and the anode electrode: 100 to 150 A,
Atmospheric gas: Nitrogen (N 2 ) gas Gas pressure in the apparatus: 1 to 5 Pa,
It can form by vapor-depositing on condition of this.
The (Ti, Si) N layer formed using the AIP apparatus has excellent high-temperature hardness, strength, and heat resistance, and the (Ti, Si) N layer is formed in the vicinity of the surface of the cBN tool base (area within a depth of 1 μm). , Si) Since a binder phase having almost the same composition as that of the N layer is formed, even when cracks generated in the hard coating propagate, cracks are generated at the interface between the hard coating layer and the cBN tool substrate. Further propagation of can be suppressed.

上記(Ti,Si)N層のTi成分は高温強度を向上させ、Si成分は耐熱性を向上させ、また、N成分には層の強度を向上させる作用があり、これらの各成分を共存含有することによりすぐれた高温硬さ、強度、耐熱性を具備するようになるのであるが、上記(Ti,Si)N層を、
組成式:(Ti1−XSi)N
で表した場合、Xの値(原子比)が0.001未満では、所望の耐熱性向上効果を期待することはできず、一方、Xの値が0.05を越えると、相対的にTi成分の含有割合が少なくなり、所望の高温強度が得られなくなることから、Xの値(原子比)は0.001〜0.05と定めた。
また、上記(Ti,Si)N層の平均層厚は1μm未満では、所望の耐摩耗性を確保するのに不十分であり、一方その平均層厚が5μmを越えると、皮膜の剥離やチッピングが発生し易くなることから、その平均層厚は1〜5μmとすることが望ましい。
The Ti component of the (Ti, Si) N layer improves the high temperature strength, the Si component improves the heat resistance, and the N component has the effect of improving the strength of the layer. By doing so, it will have excellent high temperature hardness, strength and heat resistance, but the (Ti, Si) N layer will be
Composition formula: (Ti 1-X Si X ) N
When the value of X (atomic ratio) is less than 0.001, the desired heat resistance improvement effect cannot be expected. On the other hand, when the value of X exceeds 0.05, relatively Ti Since the content ratio of the components decreases and the desired high-temperature strength cannot be obtained, the value of X (atomic ratio) was determined to be 0.001 to 0.05.
On the other hand, if the average layer thickness of the (Ti, Si) N layer is less than 1 μm, it is insufficient to ensure the desired wear resistance, whereas if the average layer thickness exceeds 5 μm, peeling or chipping of the film will occur. Therefore, the average layer thickness is desirably 1 to 5 μm.

上部層(Tiの窒化物層、Tiの炭窒化物層、および、TiとAlの複合窒化物層):
上部層は、Ti化合物層、特に、Tiの窒化物(以下、TiNで示す)層、Tiの炭窒化物(以下、TiCNで示す)層およびTiとAlの複合窒化物(以下、(Ti,Al)Nで示す)層のいずれかにより構成するが、いずれも高温硬さ、靭性にすぐれ、被覆cBN基焼結工具の耐摩耗性向上に寄与する。
Upper layer (Ti nitride layer, Ti carbonitride layer, and Ti and Al composite nitride layer):
The upper layer includes a Ti compound layer, in particular, a Ti nitride (hereinafter referred to as TiN) layer, a Ti carbonitride (hereinafter referred to as TiCN) layer, and a composite nitride of Ti and Al (hereinafter referred to as (Ti, Al) N)), which are excellent in high-temperature hardness and toughness, and contribute to improving the wear resistance of the coated cBN-based sintered tool.

上記Ti化合物層からなる上部層は、例えば、アークイオンプレーティング等により、0.5〜5μmの合計平均層厚で蒸着形成するが、その層厚が0.5μm未満では、自身のもつ耐熱性、高温硬さ、高温強度および耐摩耗性を長期に亘って発揮することができず、工具寿命短命の原因となり、一方その層厚が5μmを越えると、欠損、剥離等を生じ易くなることから、上部層の層厚は0.5〜5μmと定めた。   The upper layer composed of the Ti compound layer is formed by vapor deposition with a total average layer thickness of 0.5 to 5 μm, for example, by arc ion plating or the like. , High-temperature hardness, high-temperature strength and wear resistance cannot be demonstrated over a long period of time, resulting in a short tool life. On the other hand, if the layer thickness exceeds 5 μm, defects, peeling, etc. are likely to occur. The layer thickness of the upper layer was determined to be 0.5 to 5 μm.

なお、上部層を上記(Ti,Al)N層で構成する場合、Al成分を含有することにより、上部層の高温硬さと耐酸化性の向上が期待される。
また、上記(Ti,Al)N層を、
組成式:(Ti1−YAl)N
で表した場合、Yが0.15〜0.65(但し、原子比)を満足するTiAlN層とすることが望ましい。
即ち、上記(Ti,Al)N層において、Tiとの合量に占めるAlの含有割合Yが0.65を超えると、結晶構造の変化により、高温強度が低下し欠損が生じやすくなり、一方、Alの含有割合Yが0.15未満になると、高温硬さと耐熱性が低下し、その結果、耐摩耗性の低下がみられるようになることから、Tiとの合量に占めるAlの含有割合Yの値を0.15〜0.65(但し、原子比)とすることが望ましい。
When the upper layer is composed of the (Ti, Al) N layer, the high temperature hardness and oxidation resistance of the upper layer are expected to be improved by containing the Al component.
The (Ti, Al) N layer is
Composition formula: (Ti 1-Y Al Y ) N
In this case, it is desirable that the TiAlN layer satisfy Y satisfying 0.15 to 0.65 (however, the atomic ratio).
That is, in the (Ti, Al) N layer, when the Al content ratio Y in the total amount with Ti exceeds 0.65, the high-temperature strength decreases due to the change in the crystal structure, and defects tend to occur. When the Al content ratio Y is less than 0.15, the high-temperature hardness and heat resistance are reduced, and as a result, the wear resistance is reduced. Therefore, the Al content in the total amount with Ti The value of the ratio Y is preferably 0.15 to 0.65 (however, the atomic ratio).

この発明の被覆cBN基焼結工具は、特に、cBN工具基体の表面近傍(深さ1μm以内の領域)に下部層((Ti,Si)N層)の組成とほぼ同一の組成を有するバインダー相が形成され、cBN工具基体と下部層との付着強度が大であるとともに、硬質皮膜中に発生したクラックが伝播してきた場合でも、硬質被覆層とcBN工具基体との界面において、クラックのさらなる伝播を抑制することができ、その結果、耐チッピング性、耐欠損性、耐剥離性および仕上げ面精度も向上し、大きな発熱を伴い、かつ、切刃に対して断続的・衝撃的負荷が作用する高硬度被削材の高速断続切削加工において、すぐれた耐チッピング性、耐欠損性、耐剥離性を示すと同時に被削材のすぐれた仕上げ面精度が維持され、長期の使用に亘って、安定した切削性能を発揮することができる。   In particular, the coated cBN-based sintered tool of the present invention has a binder phase having almost the same composition as the composition of the lower layer ((Ti, Si) N layer) in the vicinity of the surface of the cBN tool base (region within a depth of 1 μm). Is formed, and the adhesion strength between the cBN tool base and the lower layer is high, and even when cracks generated in the hard coating propagate, further propagation of cracks at the interface between the hard coating layer and the cBN tool base As a result, chipping resistance, chipping resistance, peel resistance, and finished surface accuracy are improved, accompanied by large heat generation, and intermittent and impact loads acting on the cutting edge. In high-speed intermittent cutting of high-hardness workpieces, it exhibits excellent chipping resistance, chipping resistance, and peeling resistance, while maintaining excellent finished surface accuracy of the workpiece and stable over long-term use. did It can be exhibited cutting performance.

本発明の被覆cBN基焼結工具を作製するための、アークイオンプレーティング装置とイオン注入装置を併設した物理蒸着装置を示し、(a)は平面概略図、(b)は正面概略図である。The physical vapor deposition apparatus which provided the arc ion plating apparatus and the ion implantation apparatus for producing the coated cBN-based sintered tool of the present invention is shown, (a) is a schematic plan view, and (b) is a schematic front view. .

つぎに、この発明の被覆cBN基焼結工具を実施例により具体的に説明する。   Next, the coated cBN-based sintered tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜5μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、Al粉末、Al粉末、WC粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120408の形状(厚さ:4.76mm×一辺長さ:12.7mmの正方形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120408のインサート形状をもったcBN工具基体A〜Eをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, Al powder, Al 2 O 3 powder, and WC powder all having an average particle diameter in the range of 1 to 5 μm are prepared, and these raw material powders are shown in Table 1. After being wet-mixed in a ball mill for 80 hours and dried, it was press-molded into a green compact having a diameter of 50 mm × thickness: 1.5 mm at a pressure of 120 MPa. Pressure: Sintered at a predetermined temperature in the range of 900 to 1300 ° C. in a vacuum atmosphere of 1 Pa for 60 minutes to obtain a presintered body for a cutting edge piece, and this presintered body was prepared separately. Co: 8% by mass, WC: remaining composition, diameter: 50 mm × thickness: mounted on a conventional super high pressure sintering apparatus in a state of being superposed on a support piece made of cemented carbide with a dimension of 2 mm. Pressure, which is a normal condition: 4 GPa, Degree: 1200 to 1400 ° C. Predetermined temperature: Holding time: 0.8 hours under high pressure sintering. After sintering, the upper and lower surfaces are polished with a diamond grindstone, and one side is measured with a wire electric discharge machine. Divided into 3 mm regular triangles, Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and CIS standard SNGA120408 shape (thickness: 4.76 mm × one side length: 12.7 mm square) In the brazed part (corner part) of the insert body made of WC-based cemented carbide with), the composition consisting of Cu: 26%, Ti: 5%, Ni: 2.5%, Ag: the rest in mass%. After brazing using a brazing material of Ag alloy and having a predetermined dimension, the cutting edge is subjected to honing with a width of 0.13 mm and an angle of 25 °, and then subjected to final polishing to ISO standards. SNGA1204 CBN tool bases A to E having an insert shape of 08 were produced, respectively.

図1に示されるアークイオンプレーティング装置とイオン注入装置を併設した物理蒸着装置を用いて、上記cBN工具基体A〜Eの表面に、表2に示される条件のイオン注入法で、表3に示される目標含有量のSiをcBN工具基体表面のバインダー領域に注入し、
ついで、アークイオンプレーティングにより、表3に示される目標組成、目標層厚の下部層((Ti,Si)N層)を蒸着形成し、
ついで、アークイオンプレーティングにより、表3に示される目標成分組成、目標層厚の上部層(Ti化合物層))を蒸着形成することにより、
本発明の被覆cBN基焼結工具1〜10(本発明1〜10という)をそれぞれ製造した。
Using the physical vapor deposition apparatus provided with the arc ion plating apparatus and the ion implantation apparatus shown in FIG. 1, the ion implantation method under the conditions shown in Table 2 is applied to the surfaces of the cBN tool bases A to E. Injecting the indicated target content of Si into the binder region of the cBN tool substrate surface;
Next, by arc ion plating, a lower layer ((Ti, Si) N layer) having a target composition and a target layer thickness shown in Table 3 is formed by vapor deposition.
Next, by arc ion plating, the upper layer (Ti compound layer) of the target component composition and target layer thickness shown in Table 3 is formed by vapor deposition.
Coated cBN-based sintered tools 1 to 10 (referred to as Inventions 1 to 10) of the present invention were produced, respectively.

また、比較の目的で、Siの注入を行わず、cBN工具基体表面にSi含有バインダー領域を形成しない被覆cBN基焼結工具1〜10(比較例1〜10という)をそれぞれ製造した。
即ち、上記のcBN工具基体A〜Eに対して、
アークイオンプレーティングにより、表4に示される目標組成、目標層厚の下部層((Ti,Si)N層)を蒸着形成し、
ついで、アークイオンプレーティングにより、表4に示される目標成分組成、目標層厚の上部層(Ti化合物層))を蒸着形成することにより、
比較例の被覆cBN基焼結工具1〜10(本発明1〜10という)をそれぞれ製造した。
For comparison purposes, coated cBN-based sintered tools 1 to 10 (referred to as Comparative Examples 1 to 10) in which Si was not implanted and no Si-containing binder region was formed on the surface of the cBN tool substrate were manufactured.
That is, for the above cBN tool bases A to E,
By arc ion plating, a lower layer ((Ti, Si) N layer) having a target composition and a target layer thickness shown in Table 4 is formed by vapor deposition.
Next, by arc ion plating, the upper layer (Ti compound layer) of the target component composition and target layer thickness shown in Table 4 is formed by vapor deposition.
Coated cBN-based sintered tools 1 to 10 (referred to as Inventions 1 to 10) of comparative examples were produced, respectively.

この結果得られた本発明1〜10および比較例1〜10について、cBN工具基体表面近傍(表面から深さ1μmの領域)を透過型電子顕微鏡を用いて観察したところ、本発明1〜10ではバインダー相中に表3に示される量のSiが含有されていたのに対して、比較例1〜10ではSiが存在しないことを確認した。
また、本発明1〜10および比較例1〜10について、各層の層厚を透過型電子顕微鏡を用いて測定したところ目標層厚と実質的に同じ層厚が得られていることを確認した。
About this invention 1-10 obtained as a result and Comparative Examples 1-10, when the cBN tool base | substrate surface vicinity (area | region of 1 micrometer depth from the surface) was observed using the transmission electron microscope, in this invention 1-10 The amount of Si shown in Table 3 was contained in the binder phase, whereas in Comparative Examples 1 to 10, it was confirmed that Si was not present.
Moreover, about this invention 1-10 and Comparative Examples 1-10, when the layer thickness of each layer was measured using the transmission electron microscope, it confirmed that the substantially same layer thickness as target layer thickness was obtained.

Figure 0005402521
Figure 0005402521

Figure 0005402521
Figure 0005402521

Figure 0005402521
Figure 0005402521

Figure 0005402521
Figure 0005402521

つぎに、上記の各種の被覆cBN基焼結工具を、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明1〜10および比較例1〜10ついて、以下に示す切削条件A〜Cで高速断続切削試験を実施した。
[切削条件A]
被削材:JIS・SCM420(硬さ:HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 270 m/min.、
切り込み: 0.15 mm、
送り: 0.15 mm/rev.、
切削時間: 6 分、
の条件での浸炭焼入れ合金鋼の湿式断続高速切削加工試験(通常の切削速度は180m/min.)、
[切削条件B]
被削材:JIS・SUJ2(硬さ:HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 200 m/min.、
切り込み: 0.25 mm、
送り: 0.15 mm/rev.、
切削時間: 6 分、
の条件での焼入れ軸受鋼の湿式断続高速切削加工試験(通常の切削速度は180m/min.)、
[切削条件C]
被削材:JIS・SKD61(硬さ:HRC61)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 240 m/min.、
切り込み: 0.20 mm、
送り: 0.17 mm/rev.、
切削時間: 4 分、
の条件での焼入れ合金工具鋼の湿式断続高速切削加工試験(通常の切削速度は170m/min.)。
そして、上記の各切削加工試験における被削材の仕上げ面精度について、JIS・B0601−1994に従い、Rz(μm)を測定した。
この測定結果を表5に示す。
なお、比較例1〜10については、切削時間終了後、切削条件A、Bは、被削材の仕上げ面精度(Rz(μm))が4.5μmから、また、切削条件Cは、5.5μmから外れてしまっていたため、上記所定の基準値を超えたときの切削時間を寿命(分)と判断し、表5には、比較例1〜10の寿命(分を記載した。
Next, the above-mentioned various coated cBN-based sintered tools are all screwed to the tip of the tool steel tool with a fixing jig, and the present invention 1-10 and Comparative Examples 1-10 are as follows. A high-speed intermittent cutting test was performed under the cutting conditions A to C shown in FIG.
[Cutting conditions A]
Work material: JIS SCM420 (Hardness: HRC60) lengthwise equidistantly 4 round bars with vertical grooves,
Cutting speed: 270 m / min. ,
Cutting depth: 0.15 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 6 minutes,
Wet intermittent high-speed cutting test of carburized and quenched alloy steel under the conditions of (normal cutting speed is 180 m / min.),
[Cutting conditions B]
Work material: JIS / SUJ2 (Hardness: HRC60) lengthwise equidistant four round grooved round bars,
Cutting speed: 200 m / min. ,
Cutting depth: 0.25 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 6 minutes,
Wet intermittent high speed cutting test of hardened bearing steel under the conditions of (normal cutting speed is 180 m / min.),
[Cutting conditions C]
Work material: JIS · SKD61 (Hardness: HRC61) lengthwise equidistant four round grooved round bars,
Cutting speed: 240 m / min. ,
Cutting depth: 0.20 mm,
Feed: 0.17 mm / rev. ,
Cutting time: 4 minutes,
Wet intermittent high-speed cutting test of a hardened alloy tool steel under the conditions (normal cutting speed is 170 m / min.).
And Rz (micrometer) was measured according to JIS * B0601-1994 about the finishing surface precision of the work material in each said cutting test.
The measurement results are shown in Table 5.
In Comparative Examples 1 to 10, after finishing the cutting time, the cutting conditions A and B have a finished surface accuracy (Rz (μm)) of the work material of 4.5 μm. Since it deviated from 5 μm, the cutting time when the predetermined reference value was exceeded was determined as the life (minutes), and Table 5 shows the life (minutes) of Comparative Examples 1 to 10.

Figure 0005402521
Figure 0005402521

表3〜5に示される結果から、
この発明の被覆cBN基焼結工具は、cBN工具基体の表面近傍(深さ1μm以内の領域)に下部層((Ti,Si)N層)の組成とほぼ同一の組成を有するバインダー相が形成され、cBN工具基体と下部層との付着強度が大であり、かつ、クラック伝播を抑制することができるため、耐チッピング性、耐欠損性、耐剥離性にすぐれ、仕上げ面精度も向上しているのに対して、比較例の被覆cBN基焼結工具は、大きな発熱を伴い、かつ、切刃に対して断続的・衝撃的負荷が作用する高硬度被削材の高速断続切削加工においては、チッピング、欠損、剥離等の異常損傷を発生しやすく、また、被削材の仕上げ面精度も劣り、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 3-5,
In the coated cBN-based sintered tool of the present invention, a binder phase having a composition almost identical to the composition of the lower layer ((Ti, Si) N layer) is formed near the surface of the cBN tool base (area within 1 μm depth). In addition, since the adhesion strength between the cBN tool base and the lower layer is large and crack propagation can be suppressed, the chipping resistance, chipping resistance, and peeling resistance are excellent, and the finished surface accuracy is improved. On the other hand, the coated cBN-based sintered tool of the comparative example has a large heat generation, and in the high-speed intermittent cutting of a high-hardness work material in which an intermittent / impact load acts on the cutting edge. It is clear that abnormal damage such as chipping, chipping and peeling is likely to occur, and the finished surface accuracy of the work material is inferior, and the service life is reached in a relatively short time.

上述のように、この発明の被覆cBN基焼結工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に合金工具鋼や軸受け鋼の焼入れ材などの高硬度被削材の高速断続切削であっても、前記硬質被覆層がすぐれた耐チッピング性、耐欠損性、耐剥離性、耐クラック伝播性を発揮し、また、被削材の仕上げ面精度の低下を招くことなく、長期に亘って安定した切削性能を発揮するものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cBN-based sintered tool of the present invention has high hardness such as hardened material of alloy tool steel and bearing steel, as well as cutting under normal cutting conditions such as various steels and cast iron. Even in high-speed intermittent cutting of work materials, the hard coating layer exhibits excellent chipping resistance, chipping resistance, peeling resistance, and crack propagation resistance, and also reduces the accuracy of the finished surface of the work material. It can provide stable cutting performance over a long period of time without causing any damage, and can sufficiently satisfy the high performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction. It is.

Claims (1)

立方晶窒化ほう素基超高圧焼結材料からなる工具基体の表面に、下部層と上部層からなる硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
(a)上記立方晶窒化ほう素基超高圧焼結材料は、バインダー相であるTiNを20〜50vol%含有し、
(b)上記立方晶窒化ほう素基超高圧焼結材料からなる工具基体の表面から1μm以内の深さ領域において、上記バインダー相は0.1〜5原子%のSiを含有し、
(c)上記立方晶窒化ほう素基超高圧焼結材料からなる工具基体表面上には、
組成式:(Ti1−XSi)N
で表した場合、X=0.001〜0.05(但し、Xは原子比)を満足するTiとSiの複合窒化物からなる下部層が蒸着形成され、
(d)上記下部層の上には、Tiの窒化物、Tiの炭窒化物、および、TiとAlの複合窒化物の何れかからなる上部層が0.5〜5μmの平均層厚で蒸着形成されていることを特徴とする表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。
In a surface-coated cubic boron nitride-based ultrahigh-pressure sintered material cutting tool in which a hard coating layer consisting of a lower layer and an upper layer is vapor-deposited on the surface of a tool substrate made of cubic boron nitride-based ultrahigh-pressure sintered material ,
(A) The cubic boron nitride-based ultra-high pressure sintered material contains 20-50 vol% of TiN as a binder phase,
(B) In the depth region within 1 μm from the surface of the tool base made of the cubic boron nitride-based ultrahigh pressure sintered material, the binder phase contains 0.1 to 5 atomic% of Si,
(C) On the surface of the tool base made of the cubic boron nitride-based ultrahigh pressure sintered material,
Composition formula: (Ti 1-X Si X ) N
The lower layer made of a composite nitride of Ti and Si satisfying X = 0.001 to 0.05 (where X is an atomic ratio) is formed by vapor deposition,
(D) On the lower layer, an upper layer made of any one of Ti nitride, Ti carbonitride, and Ti and Al composite nitride is deposited with an average thickness of 0.5 to 5 μm. A surface-coated cubic boron nitride-based ultra-high pressure sintered material cutting tool characterized by being formed.
JP2009242278A 2009-10-21 2009-10-21 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material Expired - Fee Related JP5402521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009242278A JP5402521B2 (en) 2009-10-21 2009-10-21 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009242278A JP5402521B2 (en) 2009-10-21 2009-10-21 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material

Publications (2)

Publication Number Publication Date
JP2011088240A JP2011088240A (en) 2011-05-06
JP5402521B2 true JP5402521B2 (en) 2014-01-29

Family

ID=44106976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009242278A Expired - Fee Related JP5402521B2 (en) 2009-10-21 2009-10-21 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material

Country Status (1)

Country Link
JP (1) JP5402521B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126913A (en) * 2000-10-25 2002-05-08 Toshiba Tungaloy Co Ltd High adhesion hard film-covered tool and its manufacturing method
JP3996809B2 (en) * 2002-07-11 2007-10-24 住友電工ハードメタル株式会社 Coated cutting tool
JP3971338B2 (en) * 2003-04-30 2007-09-05 株式会社神戸製鋼所 Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same
JP4191663B2 (en) * 2004-09-13 2008-12-03 住友電工ハードメタル株式会社 Composite high hardness material for tools
JP4770284B2 (en) * 2005-06-20 2011-09-14 三菱マテリアル株式会社 Cutting tips made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent wear resistance in high-speed intermittent cutting of high-hardness steel

Also Published As

Publication number Publication date
JP2011088240A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5005262B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent surface finish accuracy over a long period of time in high-speed cutting of hardened steel
JP4985919B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that provides excellent long-term surface accuracy in high-speed cutting of hardened steel
JP5402507B2 (en) Surface coated cutting tool
JP5223743B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP2008254159A (en) Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material
JP2007152544A (en) Surface coated cutting tool which is made of cubic boron nitride base ultra high pressure sintered material and has hard coated layer showing excellent wear resistance in high speed cutting of high hardness steel
JP4807575B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4883473B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP4985914B2 (en) Cutting tool made of super-high pressure sintered material with surface-coated cubic boron nitride based on excellent finish surface accuracy
JP4883472B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP5402521B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP2008302439A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
JP5321360B2 (en) Surface coated cutting tool
JP5402155B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP4883479B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel
JP2010284759A (en) Surface coated cutting tool
JP4883477B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel
JP4883471B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP2008018505A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut
JP4748445B2 (en) Cutting tool made of super-high-pressure sintered material with surface-coated cubic boron nitride that exhibits excellent chipping resistance with a hard coating layer in intermittent cutting of high-hardness steel
JP5321356B2 (en) Surface coated cutting tool
JP4748446B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials
JP4883474B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP5472678B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP2008302438A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5402521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees