JP5392703B2 - Cu-based metallic glass alloy - Google Patents

Cu-based metallic glass alloy Download PDF

Info

Publication number
JP5392703B2
JP5392703B2 JP2009035967A JP2009035967A JP5392703B2 JP 5392703 B2 JP5392703 B2 JP 5392703B2 JP 2009035967 A JP2009035967 A JP 2009035967A JP 2009035967 A JP2009035967 A JP 2009035967A JP 5392703 B2 JP5392703 B2 JP 5392703B2
Authority
JP
Japan
Prior art keywords
alloy
metallic glass
based metallic
glass alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009035967A
Other languages
Japanese (ja)
Other versions
JP2010189724A (en
Inventor
偉 張
慶生 張
明久 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2009035967A priority Critical patent/JP5392703B2/en
Publication of JP2010189724A publication Critical patent/JP2010189724A/en
Application granted granted Critical
Publication of JP5392703B2 publication Critical patent/JP5392703B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はCu基金属ガラス合金に関し、さらに詳しくは、大きなガラス形成能を有し加工性及び機械的な性質に優れたCu−Ni−Zr−Ag−AlからなるCu基金属ガラス合金に関する。   The present invention relates to a Cu-based metallic glass alloy, and more particularly to a Cu-based metallic glass alloy composed of Cu—Ni—Zr—Ag—Al having a large glass forming ability and excellent workability and mechanical properties.

溶融状態の合金を急冷することにより、薄帯状、フィラメント状、粉粒体状など種々の形状を有する非晶質固体が得られることがよく知られている。この非晶質固体から、大きな急冷速度の得られる単ロール法、双ロール法、回転液中紡糸法、アトマイズ法などの種々の方法で薄帯を作製することができるので、これまでにもFe系、Ti系、Co系、Zr系、Cu系、Pd系又はNi系について多くの非晶質合金が開発され、優れた機械的性質、高い耐腐食性等の非晶質合金特有の性質が明らかにされてきた。   It is well known that amorphous solids having various shapes such as ribbons, filaments, and powders can be obtained by rapidly cooling a molten alloy. From this amorphous solid, a ribbon can be produced by various methods such as a single roll method, a twin roll method, a spinning in a rotating liquid method, and an atomizing method, which can obtain a rapid quenching speed. A lot of amorphous alloys have been developed for Ti, Ti, Co, Zr, Cu, Pd, or Ni, and have unique mechanical properties such as excellent mechanical properties and high corrosion resistance. It has been revealed.

非晶質合金は、ガラス転移を示し、過冷却液体領域(ΔTx)及び換算ガラス化温度(Tg/T)を有するため「金属ガラス合金」と呼ばれている。広い過冷却液体領域(ΔTx)及び大きな換算ガラス化温度(Tg/T)を有する金属ガラス合金は、結晶化に対する高い安定性を示して、大きな非晶質形成能を有することが知られており、従来の非晶質合金のように薄帯、ファイバー、微粉末に限らず、金型鋳造法により直径又は厚さがmmオーダーのバルク状非晶質合金材を作製することが可能である。 An amorphous alloy exhibits a glass transition and is called a “metallic glass alloy” because it has a supercooled liquid region (ΔTx) and a reduced vitrification temperature (Tg / T 1 ). Metallic glass alloys having a wide supercooled liquid region (ΔTx) and a large reduced vitrification temperature (Tg / T 1 ) are known to have high amorphous formation ability, exhibiting high stability against crystallization. In addition, it is not limited to ribbons, fibers, and fine powders as in conventional amorphous alloys, and it is possible to produce bulk amorphous alloys with a diameter or thickness on the order of mm by a die casting method. .

金属ガラス合金を加熱すると、結晶化する前に過冷却液体状態に転移し、急激な粘性低下を示すことが知られている。このような過冷却液体状態では、合金の粘性が低下しているために閉塞鍛造などの方法により任意形状の非晶質合金形成体を作製することが可能である。したがって、広い過冷却液体領域及び大きな換算ガラス化温度を有する金属ガラス合金は、優れた加工性を備えていると言える。   It is known that when a metallic glass alloy is heated, it transitions to a supercooled liquid state before crystallization, and exhibits a sharp viscosity drop. In such a supercooled liquid state, since the viscosity of the alloy is lowered, it is possible to produce an amorphous alloy formed body having an arbitrary shape by a method such as closed forging. Therefore, it can be said that the metal glass alloy having a wide supercooled liquid region and a large conversion vitrification temperature has excellent workability.

本発明と関連するCu基非晶質合金では、Cu−(Zr,RE,Ti)−(Al,Mg,Ni)等からなる3元合金系に関しての開発が行われてきた(特許文献1,2参照)。ここで、REは希土類元素である。これらのCu基非晶質合金は、主に単ロール液体急冷法により作製された薄帯状試料であった。   In the Cu-based amorphous alloy related to the present invention, development has been made on a ternary alloy system made of Cu- (Zr, RE, Ti)-(Al, Mg, Ni) or the like (Patent Document 1, 2). Here, RE is a rare earth element. These Cu-based amorphous alloys were thin strip samples produced mainly by a single roll liquid quenching method.

近年、実用的な使用を考慮した大形状のCu基金属ガラス合金、つまり非晶質形成能に優れたCu基金属ガラス合金に関しては、従来の3元合金系にさらに一つの元素を添加した4元合金系の研究が進んでいる。例えば、Cu45Zr42Alからなる4元合金系(非特許文献1)やCu44.25Zr36TiAg4.75からなる4元合金系(非特許文献2)によって、直径が10mmに達するCu基金属ガラス合金が得られることが報告されている。 In recent years, with regard to large-sized Cu-based metallic glass alloys that are considered for practical use, that is, Cu-based metallic glass alloys that are excellent in amorphous forming ability, an additional element is added to the conventional ternary alloy system. Research on former alloy systems is in progress. For example, a quaternary alloy system composed of Cu 45 Zr 42 Al 7 Y 5 (Non-patent Document 1) and a quaternary alloy system composed of Cu 44.25 Zr 36 Ti 5 Ag 4.75 (Non-patent Document 2) It has been reported that a Cu-based metallic glass alloy with a thickness of 10 mm can be obtained.

さらに、非晶質形成能に優れたCu基金属ガラス合金として、本発明者等によりCu42−xZr42+xAgAl(x=0,2,4,6,8)が報告され(非特許文献3)、特にCu36Zr42+xAgAlの組成を有するCu基金属ガラス合金の直径は25mmに達した(非特許文献4)。 Furthermore, Cu 42-x Zr 42 + x Ag 8 Al 8 (x = 0, 2, 4, 6, 8) was reported by the present inventors as a Cu-based metallic glass alloy having excellent amorphous forming ability (non-non-crystalline). Patent Document 3), in particular, the diameter of a Cu-based metallic glass alloy having a composition of Cu 36 Zr 42 + x Ag 8 Al 8 has reached 25 mm (Non-Patent Document 4).

特開平09−020968号公報Japanese Patent Laid-Open No. 09-020968 特開平11−061289号公報Japanese Patent Laid-Open No. 11-061289

D. H. Xu他2名, Phys. Rev. Lett., Vol.92, p.245504,2004D. H. Xu and 2 others, Phys. Rev. Lett., Vol.92, p.245504,2004 C. L. Dai他5名, Scr. Mater., Vol.54,pp.1403-1408,2006C. L. Dai and 5 others, Scr. Mater., Vol.54, pp.1403-1408,2006 Q. S. Zhang他2名, Scr. Mater., Vol.55, pp.711−713,2006Q. S. Zhang et al., Scr. Mater., Vol.55, pp.711-713,2006 Q. S. Zhang他2名, Mater. Trans., Vol.48, pp.629−631,2007Q. S. Zhang et al., Mater. Trans., Vol.48, pp.629-631,2007

従来の4元合金系であるCu−Zr−Ag−Al基金属ガラス合金は、高いガラス形成能を有し、強度が1850MPaと高く、耐腐食性を有しているが、さらなるガラス形成能が要求されている。   Cu-Zr-Ag-Al based metallic glass alloy, which is a conventional quaternary alloy system, has high glass forming ability, high strength of 1850 MPa, and corrosion resistance, but has further glass forming ability. It is requested.

本発明は上記課題に鑑み、大きな非晶質形成能を有し、優れた加工性、機械的性質、耐食性を兼ね備えたCu基金属ガラス合金としてCu−Ni−Zr−Ag−Al基金属ガラス合金を提供することを目的とする。   In view of the above problems, the present invention provides a Cu-Ni-Zr-Ag-Al-based metal glass alloy as a Cu-based metal glass alloy having a large amorphous forming ability and having excellent workability, mechanical properties, and corrosion resistance. The purpose is to provide.

本発明者らは、大きな非晶質形成能を有し、優れた加工性、機械的性質、耐食性を兼ね備えたCu−Zr−Ag−Al基金属ガラス合金について鋭意研究を行った結果、さらにNiを添加し5元合金系としたCu−Ni−Zr−Ag−Al基金属ガラス合金とすることによって、液体状態から急冷凝固させることで大きな非晶質形成能を有し、優れた加工性、機械的性質、耐食性を兼ね備えることを見出し、本発明を完成させるに至った。   As a result of earnest research on the Cu-Zr-Ag-Al base metal glass alloy having a large amorphous forming ability and having excellent workability, mechanical properties, and corrosion resistance, the present inventors have further obtained Ni. And a Cu-Ni-Zr-Ag-Al-based metallic glass alloy with a ternary alloy system, having a large amorphous forming ability by rapid solidification from a liquid state, excellent workability, The present inventors have found that it has both mechanical properties and corrosion resistance, and has completed the present invention.

すなわち、本発明の5元合金系としたCu−Ni−Zr−Ag−Al基金属ガラス合金は、Cu36−xNiZr48AgAl(xは原子%で、0<x≦10)で示される組成を有していることを特徴とする。 That is, the Cu—Ni—Zr—Ag—Al-based metallic glass alloy of the present invention is based on Cu 36-x Ni x Zr 48 Ag 8 Al 8 (x is atomic%, 0 <x ≦ 10 It has the composition shown by this.

本発明のCu−Ni−Zr−Ag−Al基金属ガラス合金のΔTx=Tx−Tg(ここで、Txは、結晶化開始温度、Tgはガラス転移温度を示す。)の式で表わされる過冷却液体領域の温度間隔ΔTxは、好ましくは、76K以上である。
Cu基金属ガラス合金の液相線温度(T)に対するガラス転移温度(Tg)の比で定義される換算ガラス化温度(Tg/T)は、好ましくは0.60以上である。
Cu基金属ガラス合金のガラス転移温度(Tg)と液相線温度(T)との和に対する結晶化開始温度(Tx)の比であるγ(γ=Tx/(Tg+T))は、好ましくは、0.417以上である。
Subcooling represented by the equation: ΔTx = Tx−Tg (where Tx is the crystallization start temperature and Tg is the glass transition temperature) of the Cu—Ni—Zr—Ag—Al based metallic glass alloy of the present invention. The temperature interval ΔTx of the liquid region is preferably 76K or more.
The conversion vitrification temperature (Tg / T 1 ) defined by the ratio of the glass transition temperature (Tg) to the liquidus temperature (T 1 ) of the Cu-based metallic glass alloy is preferably 0.60 or more.
Γ (γ = Tx / (Tg + T 1 )), which is the ratio of the crystallization start temperature (Tx) to the sum of the glass transition temperature (Tg) and the liquidus temperature (T 1 ) of the Cu-based metallic glass alloy, is preferably Is 0.417 or more.

本発明のCu−Ni−Zr−Ag−Al基金属ガラス合金は、76K以上の過冷却液体領域を示し、高強度及び高硬度の性質を有している。よって、本発明のCu−Ni−Zr−Ag−Al基金属ガラス合金は、直径が、20mm以上の棒状あるいは、厚さが20mm以上で非晶質相の体積比率が95%以上の板状にすることもできる。   The Cu—Ni—Zr—Ag—Al-based metallic glass alloy of the present invention exhibits a supercooled liquid region of 76K or higher and has properties of high strength and high hardness. Therefore, the Cu—Ni—Zr—Ag—Al-based metallic glass alloy of the present invention has a rod shape with a diameter of 20 mm or more, or a plate shape with a thickness ratio of 20 mm or more and an amorphous phase volume ratio of 95% or more. You can also

本発明の実施例で作製したCu32NiZr48AgAl基バルク金属ガラス合金のマスターインゴット外観を示す光学写真像である。The master ingot appearance of Cu 32 Ni 4 Zr 48 Ag 8 Al 8 groups bulk metallic glass alloys prepared in Example of the present invention is an optical photograph showing. 実施例により作製した直径30mmのCu32NiZr48AgAl基バルク金属ガラス合金の外観を示す光学写真像である。Is an optical photograph showing the appearance of a Cu 32 Ni 4 Zr 48 Ag 8 Al 8 groups bulk metallic glass alloy with a diameter of 30mm was manufactured according to Embodiment. 実施例により作製したZr48Cu36−xNiAgAl(x=0,2,4,6)合金の直径30mm鋳造バルク棒のXRD像を示す図である。Is a view showing an XRD image of 30mm diameter cast bulk rod Zr 48 Cu 36-x Ni x Ag 8 Al 8 (x = 0,2,4,6) alloys prepared by Examples. 実施例により作製した直径30mmのZr48Cu32NiAgAl棒のDSC曲線を示す図である。Illustrates the DSC curve of Zr 48 Cu 32 Ni 4 Ag 8 Al 8 rod having a diameter of 30mm was manufactured according to Embodiment. 実施例により作製したZr48Cu36−XNiAgAl溶融紡糸ガラス試料のDSC曲線を示す図である。It is a diagram showing the Zr 48 Cu 36-X Ni X Ag 8 Al 8 DSC curve of melt-spun glass sample prepared by Example. 実施例により作製したZr48Cu36−XNiAgAl合金のDTA曲線を示す図である。It is a diagram showing a DTA curve of Zr 48 Cu 36-X Ni X Ag 8 Al 8 alloy prepared by Examples.

以下、本発明の実施形態について説明する。
本発明の金属ガラス合金は、Cu36−xNiZr48AgAlの組成式で示される。ここで、xはNiの含量であり原子%(at%)で表わされ、0<x≦10の関係を満たす値である。
上記の組成Cu基金属ガラス合金の過冷却液体領域における結晶化開始温度Txとガラス転移温度Tgとの温度間隔ΔTx(=Tx−Tg)は76K以上から116K以下であり、液相線温度Tに対するガラス転移温度Tgの比(=Tg/T)で定義される換算ガラス化温度は0.60以上、詳しくは0.60〜0.61の範囲である。
このとき、Cu基金属ガラス合金において、ガラス転移温度Tgと液相線温度Tとの和に対する結晶化開始温度Txの比、即ちγ値(=Tx/(Tg+T))は、0.417〜0.440である。このγ値は、非晶質形成能と非晶質の安定性との総合的性質を示す数値である。
なお、以下の説明においては、Cu36−xNiZr48AgAlからなる組成のガラス合金をZr48Cu36−xNiAgAlのように表わすこともある。また組成割合を示さない場合にはCu−Ni−Zr−Ag−Al基金属ガラス合金、Zr−Cu−Ni−Ag−Al又は単にCu基金属ガラス合金と記載することもある。
Hereinafter, embodiments of the present invention will be described.
Glassy alloy of the present invention is represented by the composition formula of Cu 36-x Ni x Zr 48 Ag 8 Al 8. Here, x is the Ni content, expressed in atomic% (at%), and is a value satisfying the relationship of 0 <x ≦ 10.
The temperature interval ΔTx (= Tx−Tg) between the crystallization start temperature Tx and the glass transition temperature Tg in the supercooled liquid region of the composition Cu-based metallic glass alloy is 76K or more and 116K or less, and the liquidus temperature T 1. The conversion vitrification temperature defined by the ratio of the glass transition temperature Tg to (= Tg / T 1 ) is 0.60 or more, specifically 0.60 to 0.61.
At this time, in the Cu-based metallic glass alloy, the ratio of the crystallization start temperature Tx to the sum of the glass transition temperature Tg and the liquidus temperature T 1 , that is, the γ value (= Tx / (Tg + T 1 )) is 0.417. ~ 0.440. This γ value is a numerical value indicating the comprehensive properties of the amorphous forming ability and the amorphous stability.
In the following description, a glass alloy composed of Cu 36-x Ni x Zr 48 Ag 8 Al 8 may be represented as Zr 48 Cu 36-x Ni x Ag 8 Al 8 . When the composition ratio is not shown, it may be described as Cu—Ni—Zr—Ag—Al based metal glass alloy, Zr—Cu—Ni—Ag—Al, or simply Cu based metal glass alloy.

本発明におけるCu36−xNiZr48AgAlからなる組成のガラス合金の形状は、直径が20mm以上の棒状又は厚さが10mm以上で非晶質相の体積比率が95%以上の板状であってもよい。板状の金属ガラス合金の面積としては、例えば10cm×10cmが容易に得られる。この金属ガラス合金は、圧縮破断強度が1800MPa以上の優れた機械的性質を有している。 In the present invention, the shape of the glass alloy having a composition composed of Cu 36-x Ni x Zr 48 Ag 8 Al 8 is a rod shape having a diameter of 20 mm or more, or a thickness of 10 mm or more and an amorphous phase volume ratio of 95% or more. It may be plate-shaped. As the area of the plate-like metallic glass alloy, for example, 10 cm × 10 cm can be easily obtained. This metallic glass alloy has excellent mechanical properties with a compressive breaking strength of 1800 MPa or more.

ここで、「過冷却液体領域」とは結晶化に対する抵抗力、すなわち非晶質の安定性及び加工性を示すもので、本明細書では、毎分40Kの加熱速度で示差走査熱量分析(DSC:Differential Scanning Calorimetry)を行なうことで得られるガラス転移温度Tgと結晶化温度Txの差で定義される値である。
「換算ガラス化温度」とは非晶質形成能を示すもので、本出願では、ガラス転移温度Tgと合金液相線温度Tの比で定義されるものである。合金液相線温度Tは毎分20Kの加熱速度で示差熱量分析(DTA:Differential Thermal Analysis)を行なうことにより得られる値である。
Here, the “supercooled liquid region” refers to resistance to crystallization, that is, amorphous stability and workability. In this specification, differential scanning calorimetry (DSC) is performed at a heating rate of 40 K / min. : A value defined by the difference between the glass transition temperature Tg and the crystallization temperature Tx obtained by performing Differential Scanning Calorimetry.
“Equivalent vitrification temperature” refers to the ability to form an amorphous phase and is defined in this application as the ratio of the glass transition temperature Tg and the alloy liquidus temperature T 1 . The alloy liquidus temperature T 1 is a value obtained by performing differential thermal analysis (DTA) at a heating rate of 20 K / min.

本発明のCu基金属ガラス合金において、Cu、Zr、Ag、Alは本発明の合金の基幹となる元素群であり、特に非晶質を形成する基本となる元素であり、さらに第5の元素としてNiが添加されていることで、過冷却液体領域が広くなり、強度及び硬度が増大する。Niの添加割合は10原子%以下が好ましい。10原子%を超えると過冷却液体領域が狭くなり、非晶質形成能が低下するので好ましくない。Niの含量xが0<x≦10at%の範囲のときには、直径が約20mm以上の棒状の試料を作製することができる。   In the Cu-based metallic glass alloy of the present invention, Cu, Zr, Ag, and Al are a group of elements that form the basis of the alloy of the present invention, in particular, a basic element that forms amorphous, and a fifth element As Ni is added, the supercooled liquid region is widened, and the strength and hardness are increased. The addition ratio of Ni is preferably 10 atomic% or less. If it exceeds 10 atomic%, the supercooled liquid region becomes narrow and the amorphous forming ability is lowered, which is not preferable. When the Ni content x is in the range of 0 <x ≦ 10 at%, a rod-shaped sample having a diameter of about 20 mm or more can be produced.

Niの含量xを0<x≦4at%の範囲とすると、直径が20〜30mmの棒状の試料を作製することができる。例えば、Niの含量を2at%とした場合には、直径が30mmの棒状試料を得ることができる。この値は、Niを添加しない4元のCu36Zr48AgAlの場合に得られる最大直径25mmを上まわる直径である。 When the Ni content x is in the range of 0 <x ≦ 4 at%, a rod-shaped sample having a diameter of 20 to 30 mm can be produced. For example, when the Ni content is 2 at%, a rod-shaped sample having a diameter of 30 mm can be obtained. This value is a diameter that exceeds the maximum diameter of 25 mm obtained in the case of quaternary Cu 36 Zr 48 Ag 8 Al 8 without adding Ni.

以上のように、本発明のCu−Ni−Zr−Ag−Al基金属ガラス合金は、従来の4元合金系のCu−Zr−Ag−Al基金属ガラス合金と比べて、Niを添加することにより、特に、換算ガラス化温度(Tg/T)が0.60以上かつ、γ値が0.41以上であり、優れた加工性と非晶質形成能を有し、かつ優れた機械的性質を有する。 As described above, the Cu—Ni—Zr—Ag—Al-based metallic glass alloy of the present invention is added with Ni as compared to the conventional quaternary alloy-based Cu—Zr—Ag—Al-based metallic glass alloy. In particular, the conversion vitrification temperature (Tg / T 1 ) is 0.60 or more and the γ value is 0.41 or more, and has excellent workability and amorphous forming ability, and excellent mechanical properties. Has properties.

本発明のCu−Ni−Zr−Ag−Al基金属ガラス合金は、溶融状態から公知の単ロール法、双ロール法、回転液中紡糸法、アトマイズ法などの種々の方法で冷却固化させ、薄帯状、フィラメント状、粉粒体状の非晶質固体からなる板状とすることができる。   The Cu—Ni—Zr—Ag—Al-based metallic glass alloy of the present invention is cooled and solidified from a molten state by various methods such as a known single roll method, twin roll method, spinning in spinning liquid, and atomizing method. It can be in the form of a plate made of an amorphous solid in the form of a strip, filament, or granular material.

本発明のCu−Ni−Zr−Ag−Al基金属ガラス合金は大きな非晶質形成能を有するため、さらに溶融金属を金型に充填鋳造することにより任意の形状の金属ガラス合金を得ることもできる。例えば、代表的な金型鋳造法においては、合金を石英管中でアルゴン雰囲気中に溶融した後、溶融金属を例えば0.01〜0.3kg・f/cmの噴出圧で銅製などの金型内に充填凝固させることで鋳造体としての金属ガラス合金を得ることができる。さらに、ダイカストキャスティング法及びスクイズキャスティング法などの製造方法を適用することもできる。 Since the Cu-Ni-Zr-Ag-Al-based metallic glass alloy of the present invention has a large amorphous forming ability, it is also possible to obtain a metallic glass alloy of any shape by filling and casting molten metal into a mold. it can. For example, in a typical mold casting method, after melting an alloy in a quartz tube in an argon atmosphere, the molten metal is made of a metal such as copper with an ejection pressure of 0.01 to 0.3 kg · f / cm 2. A metallic glass alloy as a casting can be obtained by filling and solidifying the mold. Further, a manufacturing method such as a die casting method and a squeeze casting method can be applied.

本発明のCu36−xNiZr48AgAlは、その組成範囲において、直径が20mm〜30mmに及ぶ丸棒形状の金属ガラス合金が容易に得られる。金属元素より構成される合金は非晶質化することにより一般にその機械的性質が向上するが、本発明のCu−Ni−Zr−Ag−Al基金属ガラス合金は、塊状試料で1800MPaを超える圧縮破壊強度を持つものが容易に得られ、塑性変形も示した。 In the composition range of Cu 36-x Ni x Zr 48 Ag 8 Al 8 of the present invention, a round bar-shaped metallic glass alloy having a diameter of 20 mm to 30 mm can be easily obtained. An alloy composed of a metal element generally improves its mechanical properties by making it amorphous. However, the Cu-Ni-Zr-Ag-Al-based metallic glass alloy of the present invention is a compact sample with a compression exceeding 1800 MPa. Those with fracture strength were easily obtained, and also showed plastic deformation.

Zr48Cu36−xNiAgAl(x=0,2,4,6,8,10)の組成を持つ多成分合金インゴットを、高純度アルゴン雰囲気中で、純度各99.5%、99.99%、99.99%、99.99%及び99.99%のZr、Cu、Ni、Al及びAgの混合物を溶融して製造した。各インゴットは化学的不均一性を避けるために放電溶融器で四回溶融した。
放電炉によりインゴットを銅製炉内で再溶融し、次いで高純度アルゴン温度下で銅製鋳型に注入し、溶融紡糸によって断面0.02X1.2mmのリボン状試料を作った。なお、銅製鋳型は20乃至30mmの範囲の直径を持つ円筒状の窪みを内側に持つ。
A multi-component alloy ingot having a composition of Zr 48 Cu 36-x Ni x Ag 8 Al 8 (x = 0, 2, 4, 6, 8, 10) was purified in a high-purity argon atmosphere with a purity of 99.5% each. 99.99%, 99.99%, 99.99% and 99.99% of Zr, Cu, Ni, Al and Ag mixtures were produced by melting. Each ingot was melted four times in a discharge melter to avoid chemical heterogeneity.
The ingot was remelted in a copper furnace by a discharge furnace, then poured into a copper mold at a high purity argon temperature, and a ribbon-like sample having a cross section of 0.02 × 1.2 mm 2 was made by melt spinning. The copper mold has a cylindrical recess on the inside with a diameter in the range of 20 to 30 mm.

図1は、元素混合物の放電溶融によって作られた20gのZr48Cu32NiAgAlマスターインゴットの外観を示す光学写真像である。インゴットの表面は鏡面光沢を示す。
XRD及び光学試験はマスターインゴットが95%以上のガラス相と底面で1mmのミセル層から成ることを示した。これは過冷却液体中での結晶層成長が極めて緩慢であることを示している。
FIG. 1 is an optical photographic image showing the appearance of a 20 g Zr 48 Cu 32 Ni 4 Ag 8 Al 8 master ingot made by discharge melting of an element mixture. The surface of the ingot exhibits a specular gloss.
XRD and optical tests showed that the master ingot consisted of more than 95% glass phase and a 1 mm micelle layer at the bottom. This indicates that crystal layer growth in the supercooled liquid is extremely slow.

図2は、直径30mmのZr48Cu32NiAgAl鋳造合金棒の外形を示す光学写真像である。試料は良好な金属光沢を示し、その表面には明瞭な窪みは認められない。これはバルク試料製造中に明瞭な結晶化がないことを示している。 Figure 2 is an optical photograph showing the Zr 48 Cu 32 Ni 4 Ag 8 Al 8 outer shape of the cast alloy rod having a diameter of 30 mm. The sample exhibits a good metallic luster and no clear depressions are observed on its surface. This indicates that there is no clear crystallization during bulk sample production.

リボン状試料のCu−Kα源を用いるX線回折(XRD)を行った。また、ガラス転移及び結晶化に伴う熱安定性を示差走査熱量測定(DSC)により加熱速度0.67Ks−1の条件下で調べた。さらに、溶融挙動を加熱速度0.33Ks−1の示差熱分析(DTA)で調べた。 X-ray diffraction (XRD) using a Cu—Kα source of a ribbon-like sample was performed. Further, the thermal stability associated with glass transition and crystallization was examined by differential scanning calorimetry (DSC) under the condition of a heating rate of 0.67 Ks- 1 . Furthermore, the melting behavior was examined by differential thermal analysis (DTA) at a heating rate of 0.33 Ks- 1 .

図3にZr48Cu36−xNiAgAl(x=0,2,4,6)合金の直径30mm鋳造バルク棒のXRD像を示す。縦軸はX線回折強度(任意目盛)を示し、横軸は角度(°)、即ち、X線の原子面への入射角θの2倍に相当する角度を示している。XRD試験の検出領域はバルク試料断面の中央部であった。
Zr48Cu32NiAgAl棒の像は検出されるほどの鋭いブラッグピークを持たない一連の広い回折最大点のみから成ることが分り、これはこの30mm直径の試料がほぼ非晶質であることを示す。
比較のため、他の合金棒からのCuZr相を沈殿させた。しかし他の合金棒は部分的に結晶化されてはいても、XRD像の幅広い回折背景から見て、依然として極めて大きな非晶質部分を持つことがわかった。
Figure 3 shows the Zr 48 Cu 36-x Ni x Ag 8 Al 8 (x = 0,2,4,6) XRD image of 30mm diameter cast bulk rod of the alloy. The vertical axis represents the X-ray diffraction intensity (arbitrary scale), and the horizontal axis represents the angle (°), that is, an angle corresponding to twice the incident angle θ of the X-rays on the atomic plane. The detection region of the XRD test was the center of the bulk sample cross section.
Zr 48 Cu 32 Ni 4 Ag 8 image of Al 8 bar found to be composed of only a series of broad diffraction maxima that do not have sharp Bragg peaks of enough to be detected, which is approximately amorphous sample of this 30mm diameter Indicates that
For comparison, CuZr phases from other alloy bars were precipitated. However, even though other alloy rods were partially crystallized, it was found that they still have very large amorphous parts as seen from the wide diffraction background of XRD images.

表1は、ガラス転移温度(Tg)、結晶化開始温度(Tx)、液相線温度(T)、過冷却液体領域(ΔTx)、換算ガラス化温度(Trg=Tg/T)、γ値及び得られた棒状試料の最大直径dcを、纏めた表である。 Table 1 shows glass transition temperature (Tg), crystallization start temperature (Tx), liquidus temperature (T 1 ), supercooled liquid region (ΔTx), converted vitrification temperature (Trg = Tg / T 1 ), γ It is the table | surface which put together the value and the maximum diameter dc of the obtained rod-shaped sample.

過冷却液体領域における結晶化開始温度Txとガラス転移温度Tgとの温度間隔ΔTx(=Tx−Tg)は76K以上から116K以下であり、液相線温度Tに対するガラス転移温度Tgの比(=Tg/T)で定義される換算ガラス化温度は0.60以上、詳しくは0.60〜0.61の範囲である。
このとき、Cu基金属ガラス合金において、ガラス転移温度Tgと液相線温度Tとの和に対する結晶化開始温度Txの比、即ちγ値(=Tx/(Tg+T))は、0.417〜0.440である。このγ値は、非晶質形成能と非晶質の安定性との総合的性質を示す数値である。
The temperature interval ΔTx (= Tx−Tg) between the crystallization start temperature Tx and the glass transition temperature Tg in the supercooled liquid region is 76 K or more and 116 K or less, and the ratio of the glass transition temperature Tg to the liquidus temperature T 1 (= The conversion vitrification temperature defined by (Tg / T 1 ) is 0.60 or more, specifically 0.60 to 0.61.
At this time, in the Cu-based metallic glass alloy, the ratio of the crystallization start temperature Tx to the sum of the glass transition temperature Tg and the liquidus temperature T 1 , that is, the γ value (= Tx / (Tg + T 1 )) is 0.417. ~ 0.440. This γ value is a numerical value indicating the comprehensive properties of the amorphous forming ability and the amorphous stability.

また、Ni高含有量のZr48Cu28NiAgAl合金の臨界直径(d)がほぼ20mmであるが、Zr48Cu36−xNiAgAl(x=0,2,4,6)では20mm以上となっている。これ等の結果はZr48Cu36−xNiAgAl合金系が異常に高いガラス形成能を示すことを示唆している。 Although a critical diameter (d c) approximately 20mm of Zr 48 Cu 28 Ni 8 Ag 8 Al 8 alloy Ni high content, Zr 48 Cu 36-x Ni x Ag 8 Al 8 (x = 0,2 , 4, 6) is 20 mm or more. Result of this such Zr 48 Cu 36-x Ni x Ag 8 Al 8 alloy system is suggested to exhibit unusually high glass forming ability.

30mmのZr48Cu32NiAgAl棒の中央部に単一ガラス相が形成されることを確認するためにDSC分析を行なった。
図4は溶融紡糸金属ガラスリボンとの比較のために、直径30mmのZr48Cu32NiAgAl棒のDSC曲線を示す。DSC測定用資料は30mm棒の中央部から取った。
図4から明らかなように、リボン試料と同様に、バルク試料はガラス転移による吸熱反応と結晶化による発熱ピークとの交互の転移を示しており、これはXRD像から結論されたような本試料の鋳造ガラス構造を示している。
It was performed DSC analysis to confirm that a single glass phase is formed in the central portion of the Zr 48 Cu 32 Ni 4 Ag 8 Al 8 bar 30 mm.
FIG. 4 shows a DSC curve of a 30 mm diameter Zr 48 Cu 32 Ni 4 Ag 8 Al 8 bar for comparison with a melt-spun metallic glass ribbon. The DSC measurement material was taken from the center of a 30 mm rod.
As is clear from FIG. 4, like the ribbon sample, the bulk sample shows an alternating transition between the endothermic reaction due to the glass transition and the exothermic peak due to crystallization, which is the present sample as concluded from the XRD image. The cast glass structure is shown.

新規な五元合金の高いガラス形成能の理由を調べるために、Zr48Cu36−xNiAgAl金属ガラスの熱安定性と溶融挙動とをDSC及びDTAで調べた。 In order to investigate the reason for the high glass forming ability of the novel ternary alloy, the thermal stability and melting behavior of Zr 48 Cu 36-x Ni x Ag 8 Al 8 metallic glass were investigated by DSC and DTA.

図5はZr48Cu36−xNiAgAl溶融紡糸ガラス試料のDSC曲線を示す。全試料が過冷却液体状態へ、それから結晶化への明瞭なガラス転移を示している。
図5でガラス転移温度(Tg)及び結晶化開始温度(Tx)は矢印で示されている。TgはNi含量が増すとともに683から692Kまで単調に上昇する。逆に2%Ni添加でTxは791から799Kまで上昇し、それからNi含量が4から10%まで増加すると788から768Kまで低下している。
特にZr48Cu34NiAgAlは116KのΔTx(ΔTx=Tx−Tg)という極めて広い過冷却液体領域を持つ。
Figure 5 shows the Zr 48 Cu 36-x Ni x Ag 8 Al 8 DSC curve of melt-spun glass sample. All samples show a clear glass transition from supercooled liquid state to crystallization.
In FIG. 5, the glass transition temperature (Tg) and the crystallization start temperature (Tx) are indicated by arrows. Tg increases monotonically from 683 to 692K as the Ni content increases. Conversely, with the addition of 2% Ni, Tx increases from 791 to 799K, and then decreases from 788 to 768K as the Ni content increases from 4 to 10%.
In particular, Zr 48 Cu 34 Ni 2 Ag 8 Al 8 has an extremely wide supercooled liquid region of ΔTx (ΔTx = Tx−Tg) of 116K.

図6はZr48Cu36−xNiAgAl合金のDTA曲線を示し、その中で液化温度(T)が矢印で示されている。Ni含量が増えるにつれてNiの0から4%の範囲でTは1143から1129Kまで低下し、それからNi含量がさらに増加すると向上する。表1からもわかるように、Ni含量が2〜8の範囲では、Tは1133以下である。特に、一連のZr48Cu36−xNiAgAl合金中でZr48Cu32NiAgAlが最低のTである1129Kを示している。これは、合金の最高ガラス形成能と一致する。
しかし、Zr48Cu36−xNiAgAl合金に関してガラス形成能(またはd)とΔTx、Trg、またはγとの間の強い相関性は見られない。
FIG. 6 shows a DTA curve of a Zr 48 Cu 36-x Ni x Ag 8 Al 8 alloy, in which the liquefaction temperature (T l ) is indicated by an arrow. As the Ni content increases, T l decreases from 1143 to 1129 K in the range of 0 to 4% of Ni, and then improves as the Ni content further increases. As can be seen from Table 1, Tl is 1133 or less when the Ni content is in the range of 2-8. In particular, a series of Zr 48 Cu 36-x Ni x Ag 8 Al 8 Zr 48 Cu 32 Ni 4 Ag 8 Al 8 in the alloy indicates the 1129K is the lowest T l. This is consistent with the highest glass forming ability of the alloy.
However, there is no strong correlation between glass forming ability (or d c ) and ΔTx, Trg or γ for Zr 48 Cu 36-x Ni x Ag 8 Al 8 alloy.

以上、Zr48Cu36−xNiAgAl(0<x≦10)合金の特異なガラス形成能を示した。ここではNi−Ag元素対が大きな正の混合熱を持つ不溶系である。銅鋳造法によって、代表的Zr48Cu32NiAgAl合金に対して直径20mm以上、さらには30mm以上の鋳造ガラス棒が容易に得られる。 Above, Zr 48 Cu 36-x Ni x Ag 8 Al 8 (0 <x ≦ 10) demonstrated specific glass forming ability of the alloy. Here, the Ni—Ag element pair is an insoluble system having a large positive heat of mixing. By a copper casting method, a cast glass rod having a diameter of 20 mm or more, further 30 mm or more can be easily obtained with respect to a typical Zr 48 Cu 32 Ni 4 Ag 8 Al 8 alloy.

Zr48Cu32NiAgAl合金の優れたガラス形成能は低い液化温度に関連する。Ni添加によるガラス形成能の向上は化学的複雑性及び相溶性によるもののようであり、それは液体状態中でのより高密度の充填をもたらし、より高粘度とより低い原子移動性とをもたらす。この結果はBMG形成の設計のための元素選択に新しい観点を与えるものである。さらに著しく高いガラス形成能を持つバルク金属ガラスの創出は、バルク金属ガラスの応用分野の将来への展開を約束するものである。 Excellent glass-forming ability of Zr 48 Cu 32 Ni 4 Ag 8 Al 8 alloy is associated with a lower liquefaction temperature. The increase in glass-forming ability with Ni addition appears to be due to chemical complexity and compatibility, which results in higher density packing in the liquid state, resulting in higher viscosity and lower atom mobility. This result provides a new perspective on element selection for the design of BMG formation. In addition, the creation of bulk metallic glasses with significantly higher glass forming ability promises future development of bulk metallic glass applications.

本発明に係るCu−Ni−Zr−Ag−Al基金属ガラス合金は、強度と耐磨耗性と共に任意のバルク形状であることが要求される小型精密機器部品や、さらに耐食性も要求される配管等の材料に適用することができる。   The Cu—Ni—Zr—Ag—Al-based metallic glass alloy according to the present invention is a small precision instrument part that is required to have an arbitrary bulk shape as well as strength and wear resistance, and a pipe that is also required to have corrosion resistance. It can be applied to materials such as.

Claims (7)

Cu36ーxNiZr48AgAl(xは原子%で、0<x≦10)で示される組成を有する、Cu基金属ガラス合金。 Cu - based metallic glass alloy having a composition represented by Cu 36-x Ni x Zr 48 Ag 8 Al 8 (x is atomic%, 0 <x ≦ 10). 前記Cu基金属ガラス合金が、Cu34NiZr48AgAlである、請求項1に記載のCu基金属ガラス合金。 The Cu-based metallic glass alloy according to claim 1, wherein the Cu-based metallic glass alloy is Cu 34 Ni 2 Zr 48 Ag 8 Al 8 . 前記Cu基金属ガラス合金のΔTx=Tx−Tg(ここで、Txは、結晶化開始温度、Tgはガラス転移温度を示す。)の式で表わされる過冷却液体領域の温度間隔ΔTxが、76K以上である、請求項1に記載のCu基金属ガラス合金。   The temperature interval ΔTx of the supercooled liquid region represented by the equation of ΔTx = Tx−Tg (where Tx is the crystallization start temperature and Tg is the glass transition temperature) of the Cu-based metallic glass alloy is 76K or more. The Cu-based metallic glass alloy according to claim 1, wherein 前記Cu基金属ガラス合金の液相線温度(T)に対するガラス転移温度(Tg)の比で定義される換算ガラス化温度(Tg/T)は、0.60以上である、請求項1又は3に記載のCu基金属ガラス合金。 The conversion vitrification temperature (Tg / T 1 ) defined by the ratio of the glass transition temperature (Tg) to the liquidus temperature (T 1 ) of the Cu-based metallic glass alloy is 0.60 or more. Or Cu-based metallic glass alloy according to 3. 前記Cu基金属ガラス合金のガラス転移温度(Tg)と液相線温度(T)との和に対する結晶化開始温度(Tx)の比であるγ(γ=Tx/(Tg+T))が、0.417以上である、請求項1又は3に記載のCu基金属ガラス合金。 Γ (γ = Tx / (Tg + T 1 )), which is the ratio of the crystallization start temperature (Tx) to the sum of the glass transition temperature (Tg) and the liquidus temperature (T 1 ) of the Cu-based metallic glass alloy, The Cu-based metallic glass alloy according to claim 1 or 3, which is 0.417 or more. 前記Cu基金属ガラス合金が、Cu32NiZr48AgAlである、請求項1に記載のCu基金属ガラス合金。 The Cu-based metallic glass alloy according to claim 1, wherein the Cu-based metallic glass alloy is Cu 32 Ni 4 Zr 48 Ag 8 Al 8 . 前記Cu基金属ガラス合金は、液相線温度(T)が1133K以下である、請求項1に記載のCu基金属ガラス合金。 The Cu-based metallic glass alloy according to claim 1, wherein the Cu-based metallic glass alloy has a liquidus temperature (T 1 ) of 1133 K or less.
JP2009035967A 2009-02-18 2009-02-18 Cu-based metallic glass alloy Expired - Fee Related JP5392703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009035967A JP5392703B2 (en) 2009-02-18 2009-02-18 Cu-based metallic glass alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035967A JP5392703B2 (en) 2009-02-18 2009-02-18 Cu-based metallic glass alloy

Publications (2)

Publication Number Publication Date
JP2010189724A JP2010189724A (en) 2010-09-02
JP5392703B2 true JP5392703B2 (en) 2014-01-22

Family

ID=42816065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035967A Expired - Fee Related JP5392703B2 (en) 2009-02-18 2009-02-18 Cu-based metallic glass alloy

Country Status (1)

Country Link
JP (1) JP5392703B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104032240B (en) * 2014-03-05 2016-03-16 中国科学院金属研究所 A kind of Zr-Cu-Ni-Al-Ag-Y bulk amorphous alloy and its preparation method and application

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199318A (en) * 1995-01-25 1996-08-06 Res Dev Corp Of Japan Bar-shaped or cylindrical zirconium-base amorphous alloy cast and molded by metal mold and its production
JPH1171660A (en) * 1997-08-29 1999-03-16 Akihisa Inoue High strength amorphous alloy and its production
JP3808354B2 (en) * 2001-11-29 2006-08-09 Ykk株式会社 Toning method for zirconium-based amorphous alloys
JP4633580B2 (en) * 2005-08-31 2011-02-16 独立行政法人科学技術振興機構 Cu- (Hf, Zr) -Ag metallic glass alloy.
JP4618569B2 (en) * 2008-04-16 2011-01-26 独立行政法人科学技術振興機構 Cu-based metallic glass alloy

Also Published As

Publication number Publication date
JP2010189724A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
US8470103B2 (en) Method of making a Cu-base bulk amorphous alloy
JP4402015B2 (en) Single-phase amorphous alloy with excellent ductility
JP6089400B2 (en) Platinum-rich amorphous alloy
JP4128614B2 (en) Formation of metallic glass containing beryllium
JP3852809B2 (en) High strength and toughness Zr amorphous alloy
KR100784914B1 (en) Two Phase Metallic Glass Alloys with Multi-Pass Deformation Property
JP4633580B2 (en) Cu- (Hf, Zr) -Ag metallic glass alloy.
JP3860445B2 (en) Cu-Be based amorphous alloy
JP2004091868A (en) Cu-BASED AMORPHOUS ALLOY
Park et al. Mg-rich Mg–Ni–Gd ternary bulk metallic glasses with high compressive specific strength and ductility
Park et al. Bulk Glass Formation in Mg-Cu-Ag-Y-Gd Alloy
JP5685761B2 (en) Zr-based metallic glass alloy containing no Cu
JP3761737B2 (en) High specific strength Ti-based amorphous alloy
JP5392703B2 (en) Cu-based metallic glass alloy
JP2002332532A (en) HIGH YIELD STRESS Zr BASED AMORPHOUS ALLOY
JP4742268B2 (en) High-strength Co-based metallic glass alloy with excellent workability
Na et al. The effect of Ta addition on the glass forming ability and mechanical properties of Ni–Zr–Nb–Al metallic glass alloys
JP4618569B2 (en) Cu-based metallic glass alloy
Men et al. Effect of titanium on glass-forming ability of Cu-Zr-Al alloys
JP2007113062A (en) Cerium based metal glass alloy and method for producing the same
JP5321999B2 (en) Ni-based metallic glass alloy
JP2000345309A (en) HIGH STRENGTH AND HIGH CORROSION RESISTANCE Ni BASE AMORPHOUS ALLOY
JP3647281B2 (en) Ni-based amorphous alloy with wide supercooled liquid region
JP4694325B2 (en) Co-Fe soft magnetic metallic glass alloy
JP5561709B2 (en) Au-based metallic glass alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Ref document number: 5392703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees