JP5392014B2 - Sliding contact part having sliding contact part of single crystal silicon carbide and workpiece support device using the same - Google Patents

Sliding contact part having sliding contact part of single crystal silicon carbide and workpiece support device using the same Download PDF

Info

Publication number
JP5392014B2
JP5392014B2 JP2009254340A JP2009254340A JP5392014B2 JP 5392014 B2 JP5392014 B2 JP 5392014B2 JP 2009254340 A JP2009254340 A JP 2009254340A JP 2009254340 A JP2009254340 A JP 2009254340A JP 5392014 B2 JP5392014 B2 JP 5392014B2
Authority
JP
Japan
Prior art keywords
sliding contact
contact part
silicon carbide
single crystal
crystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009254340A
Other languages
Japanese (ja)
Other versions
JP2011098408A (en
Inventor
慎吾 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Choukou Co Ltd
Original Assignee
Nakamura Choukou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Choukou Co Ltd filed Critical Nakamura Choukou Co Ltd
Priority to JP2009254340A priority Critical patent/JP5392014B2/en
Publication of JP2011098408A publication Critical patent/JP2011098408A/en
Application granted granted Critical
Publication of JP5392014B2 publication Critical patent/JP5392014B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

本発明は、単結晶炭化珪素の摺接部を備えた摺接部品及びそれを用いた加工物支持装置に係わり、更に詳しくは軸受部品等の機械構造体を回転自在に支持して研削加工や超仕上加工を行うための加工物支持装置に用いる単結晶炭化珪素の摺接部を備えた摺接部品及びそれを用いた加工物支持装置に関するものである。   The present invention relates to a sliding part having a sliding part of single crystal silicon carbide and a workpiece support device using the sliding part. More specifically, the present invention relates to a grinding machine that rotatably supports a mechanical structure such as a bearing part. The present invention relates to a slidable contact part having a slidable contact portion of single crystal silicon carbide used in a workpiece support device for performing super finishing, and a workpiece support device using the same.

研削盤や仕上盤等を用いて軸受部品等の機械構造体の研削加工や超仕上加工を行う際には、金属その他の加工物を摺接支持する加工物支持装置が多く用いられている。例えば、特許文献1,2に示すように、加工物の軸方向両端を回転駆動機構にて回転可能に保持するとともに、加工物の回転対称形加工部分の周面を一対の摺接部品(シュー)に摺接させて支持した状態で、加工部分の周面に研削工具や研磨工具を押し当てて、加工物を研削加工や研磨加工するための加工物支持装置が開示されている。   When performing grinding or superfinishing of a mechanical structure such as a bearing part using a grinding machine or a finishing machine, a workpiece support device that slidably supports metal or other workpieces is often used. For example, as shown in Patent Documents 1 and 2, both ends in the axial direction of the workpiece are rotatably held by a rotation drive mechanism, and the peripheral surface of the rotationally symmetric processed portion of the workpiece is paired with a pair of sliding contact parts (shoe A workpiece support device for grinding and polishing a workpiece by pressing a grinding tool or a polishing tool against the peripheral surface of the processing portion in a state where the workpiece is slidably contacted with the workpiece is disclosed.

通常、前記摺接部品には、研削工具や研磨工具から遊離した砥粒に晒されるので、砥粒と同等かそれ以上の硬さを有する超硬合金や多結晶ダイヤモンド等の耐摩耗材料が使用されており、加工物支持装置の台金に固定されて加工物を支持している。しかし、超硬合金や多結晶ダイヤモンドの粒度の影響で加工物の表面にシューマークと呼ばれる接触痕が生じることがある。シューマークは、加工製品の機能を阻害するものではないが、製品の外観が損なわれるので、多くの場合、ラッピング等の追加工で対処している。   Normally, the sliding parts are exposed to abrasive grains released from grinding tools and polishing tools, so wear-resistant materials such as cemented carbides and polycrystalline diamonds with hardness equal to or higher than that of abrasive grains are used. It is fixed to the base metal of the workpiece support device and supports the workpiece. However, contact marks called shoe marks may occur on the surface of the workpiece due to the influence of the particle size of the cemented carbide or polycrystalline diamond. Although the shoe mark does not impede the function of the processed product, the appearance of the product is impaired, so in many cases, it is dealt with by additional processing such as lapping.

この改善策として、特許文献3には、摺接型の加工物支持装置において、シューマークの発生を防止するために、摺接部品の摺接部を樹脂で形成する点が開示されている。しかし、摺接部品の摺接部を樹脂で形成した場合、該樹脂部分は砥粒やクーラントに晒され、また摩擦熱により高温になるため、耐久性は犠牲になる。   As an improvement measure, Patent Document 3 discloses that a sliding contact part of a sliding contact part is formed of resin in a sliding contact type workpiece support device in order to prevent generation of shoe marks. However, when the sliding contact part of the sliding contact part is formed of resin, the resin part is exposed to abrasive grains and coolant and becomes high temperature by frictional heat, so that durability is sacrificed.

尚、特許文献4には、摺接部品を玉軸受で構成し、加工物の周面を玉軸受の外輪で支持する加工物支持装置も開示されている。この場合、加工物と玉軸受の外輪の間に砥粒を噛み込み、外輪が損傷するのを抑制するために、外輪をアルミナ、ジルコニア、炭化珪素等のセラミックスで形成する点が記載されている。   Patent Document 4 also discloses a workpiece support device in which a sliding contact part is constituted by a ball bearing and a peripheral surface of the workpiece is supported by an outer ring of the ball bearing. In this case, it is described that the outer ring is formed of ceramics such as alumina, zirconia, silicon carbide and the like in order to prevent abrasive grains from being caught between the workpiece and the outer ring of the ball bearing. .

特開2003−117813号公報Japanese Patent Laid-Open No. 2003-117813 特開2005−014189号公報JP-A-2005-014189 特開2007−167996号公報JP 2007-167996 A 特開2008−023624号公報JP 2008-023624 A

従来の摺接部品の耐摩耗材料として超硬合金や多結晶ダイヤモンドを使用した場合、摺接部品の耐久性は確保されるが、シューマークの発生は避けられない。一方、シューマークの発生を防止するために、摺接部品の摺接部を樹脂で形成した場合、耐久性が乏しくなり、摺接部の摩耗によって精度を維持できなくなるといった課題がある。また、摺接部品を玉軸受で構成した場合、研削工具や研磨工具から遊離した砥粒を含むスラリーが軸受内部に侵入して回転を阻害するといった問題を有し、それを防止するためにはシール機能を付加すると高価なものになる。   When a cemented carbide or polycrystalline diamond is used as a wear resistant material for conventional sliding contact parts, the durability of the sliding contact parts is ensured, but the occurrence of shoe marks is inevitable. On the other hand, in order to prevent the occurrence of shoe marks, when the sliding contact part of the sliding contact part is formed of resin, there is a problem that durability becomes poor and accuracy cannot be maintained due to wear of the sliding contact part. In addition, when the sliding contact part is constituted by a ball bearing, there is a problem that the slurry containing abrasive grains released from the grinding tool or the polishing tool enters the inside of the bearing and inhibits rotation, and in order to prevent it, If a sealing function is added, it becomes expensive.

そこで、本発明が前述の状況に鑑み、解決しようとするところは、軸受部品等の機械構造体を回転自在に支持して研削加工や超仕上加工を行うための加工物支持装置に用いる摺接部品において、加工物の周面を摺接支持する簡単な構造とし、耐摩耗性、耐熱性に優れて耐久性を備えるとともに、加工物の表面にシューマークが発生しない単結晶炭化珪素の摺接部を備えた摺接部品を提供し、併せてこの摺接部品を用いた加工物支持装置を提供する点にある。   Therefore, in view of the above-mentioned situation, the present invention intends to solve a sliding contact used in a workpiece support device for rotatably supporting a mechanical structure such as a bearing component to perform grinding or superfinishing. The parts have a simple structure that slidably supports the peripheral surface of the workpiece, and has excellent wear resistance, heat resistance, durability, and sliding contact of single crystal silicon carbide that does not generate shoe marks on the surface of the workpiece. A sliding contact part provided with a portion is provided, and a workpiece support device using the sliding contact part is also provided.

本発明は、前述の課題解決のために、加工物の周面を摺接部品で回転自在に摺接支持し、研削加工や超仕上加工を行うための加工物支持装置に用いる摺接部品であって、少なくとも前記加工物と接触する部位に単結晶炭化珪素からなる摺接体を設けたことを特徴とする単結晶炭化珪素の摺接部を備えた摺接部品を構成した。   In order to solve the above-mentioned problems, the present invention provides a sliding contact part used in a workpiece support device for rotating and supporting a peripheral surface of a workpiece in a freely rotating manner by a sliding contact part and performing grinding or superfinishing. A sliding contact part having a sliding contact portion made of single crystal silicon carbide is provided, wherein a sliding contact body made of single crystal silicon carbide is provided at least at a site in contact with the workpiece.

具体的には、金属製の摺接部品本体の先端部に、単結晶炭化珪素からなる摺接体を接合若しくは埋設してなることが好ましい。   Specifically, it is preferable that a sliding contact body made of single-crystal silicon carbide is bonded or embedded at the tip of the metal sliding contact part main body.

更に、前記摺接体の表面を六方晶又は立方晶の単結晶炭化珪素の結晶面の一つとしてなることがより好ましい。最も好ましいのは、前記単結晶炭化珪素の結晶面がSi面である。   Furthermore, it is more preferable that the surface of the sliding contact body is one of crystal faces of hexagonal or cubic single crystal silicon carbide. Most preferably, the crystal plane of the single crystal silicon carbide is a Si plane.

そして、前述の単結晶炭化珪素の摺接部を備えた摺接部品を用いて加工物支持装置を構成した。   And the workpiece support apparatus was comprised using the sliding contact component provided with the sliding contact part of the above-mentioned single crystal silicon carbide.

以上にしてなる本発明の単結晶炭化珪素の摺接部を備えた摺接部品及びそれを用いた加工物支持装置によれば、摺接部品の摺接部材料として、粒度の影響が無い単結晶炭化珪素を用いることにより、加工物の表面にシューマークを生じさせずに研削加工や超仕上加工を行うことができる。また、単結晶炭化珪素は、放熱性能にも優れるため、摺接部の蓄熱影響を最小限にすることが可能で、蓄熱されないため、加工液の化学的変質を低減することができる。また、単結晶炭化珪素は、素材の硬度にも優れるため、摩耗が少なく、加工物支持装置の精度維持にも有効である。   According to the sliding contact part having the single crystal silicon carbide sliding contact part of the present invention and the workpiece support device using the same, the material of the sliding contact part of the sliding contact part is not affected by the particle size. By using crystalline silicon carbide, it is possible to perform grinding and superfinishing without producing shoe marks on the surface of the workpiece. Moreover, since single crystal silicon carbide is also excellent in heat dissipation performance, it is possible to minimize the heat storage effect at the sliding contact portion, and since heat is not stored, chemical alteration of the working fluid can be reduced. In addition, since single crystal silicon carbide is excellent in the hardness of the material, it is less worn and effective in maintaining the accuracy of the workpiece support device.

そして、加工物と接触する摺接部品の一部に単結晶炭化珪素からなる摺接体を設けることにより、高価な単結晶炭化珪素の使用量を少なくすることができ、比較的安価に提供できる。具体的には、金属製の前記摺接部品本体の先端部に、単結晶炭化珪素からなる摺接体を接合若しくは埋設することで、必要な部位のみに摺接体を設けることができ、また加工が難しい単結晶炭化珪素を単純な平板形状に加工するだけで済むので、簡単に作製することができる。尚、摺接体の表面を加工物の曲率に応じた曲面に加工することも可能である。   Then, by providing a sliding contact body made of single crystal silicon carbide on a part of the sliding contact part that comes into contact with the workpiece, the amount of expensive single crystal silicon carbide used can be reduced and can be provided relatively inexpensively. . Specifically, a sliding contact body made of single-crystal silicon carbide can be bonded or embedded at the tip of the metal sliding contact part main body, so that the sliding contact body can be provided only at a necessary site. Since it is only necessary to process single crystal silicon carbide which is difficult to process into a simple flat plate shape, it can be easily manufactured. In addition, it is also possible to process the surface of a sliding contact body into the curved surface according to the curvature of a workpiece.

更に、前記摺接体の表面を六方晶又は立方晶の単結晶炭化珪素の結晶面の一つとすれば、摺接体の表面の平坦度に優れ、特に結晶面がSi面であると、原子密度が緻密な表面が得られるので、耐摩耗性の向上を図ることができる。   Furthermore, if the surface of the sliding contact body is one of the crystal planes of hexagonal or cubic single crystal silicon carbide, the surface flatness of the sliding contact body is excellent. Since a dense surface is obtained, the wear resistance can be improved.

本発明に係る摺接部品を用いて構成した加工物支持装置の実施形態を示す簡略概念図である。It is a simplified conceptual diagram which shows embodiment of the workpiece support apparatus comprised using the sliding contact part which concerns on this invention. 本発明に係る摺接部品の実施形態を示し、(a)は摺接部品本体の一部に一つの摺接体を埋設した構造の断面図、(b)は摺接部品本体の一部に二つの摺接体を埋設した構造の断面図である。1 shows an embodiment of a sliding contact part according to the present invention, (a) is a sectional view of a structure in which one sliding contact body is embedded in a part of the sliding contact part body, and (b) is a part of the sliding contact part body. It is sectional drawing of the structure where two sliding contact bodies were embed | buried. 本発明に係る摺接部品の他の実施形態を示し、(a)は摺接部品本体の先端部に摺接体を接合した構造の断面図、(b)は摺接部品本体の先細先端部に摺接体を接合した構造の断面図である。2 shows another embodiment of the sliding contact part according to the present invention, in which (a) is a cross-sectional view of a structure in which a sliding contact body is joined to a distal end part of the sliding contact part main body, and (b) is a tapered leading end part of the sliding contact part main body It is sectional drawing of the structure which joined the sliding contact body to. 本発明に係る摺接部品の更に他の実施形態を示し、(a)はVブロック状の摺接部品本体の両傾斜面に平板状の摺接体を接合した構造の断面図、(b)はVブロック状の摺接部品本体の両傾斜面に加工物の曲率に応じた曲面を形成した摺接体を接合した構造の断面図である。FIG. 6 shows still another embodiment of the sliding contact part according to the present invention, in which (a) is a cross-sectional view of a structure in which a flat sliding contact body is joined to both inclined surfaces of a V-block-shaped sliding contact part main body; These are sectional drawings of the structure which joined the sliding contact body which formed the curved surface according to the curvature of the workpiece to the both inclined surfaces of the V-block-shaped sliding contact part main body. 円柱状ベアリングにおける表面の観察領域とシューマークの関係を示す説明用写真である。It is an explanatory photograph showing the relationship between the observation area of the surface and the shoe mark in the cylindrical bearing. 円柱状ベアリングの表面観察結果を示しであり、(a)は従来のWC製摺接部品を用いて研削加工した後の表面顕微鏡写真、(b)は本発明のSiC製摺接部品を用いて研削加工した後の表面顕微鏡写真、(c)は本発明のSiC製摺接部品を用いて研削加工し、更にラッピング仕上げを行った後の表面顕微鏡写真をそれぞれ示している。It is the surface observation result of a cylindrical bearing, (a) is a surface micrograph after grinding using the conventional WC sliding contact part, (b) is using the SiC sliding contact part of this invention. Surface micrographs after grinding and (c) show surface micrographs after grinding using the SiC sliding contact part of the present invention and further lapping finishing, respectively.

次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。図1は、本発明に係る加工物支持装置の概念図であり、摺接部品1を一対のホルダー2,2にそれぞれ取付け、該摺接部品1,1で回転対称形の加工物Wの外周面を摺接支持し、該加工物Wの軸方向両端を回転駆動機構(図示せず)にて保持して回転させながら、加工物Wの外周面に研削工具3等の適宜な工具を押し当てて研削加工を行うものである。ここで、前記摺接部品1は、少なくとも前記加工物Wと接触する部位に単結晶炭化珪素(SiC)からなる摺接体4を設けた構造である。尚、加工物Wは、回転駆動機構で強制的に回転させなくても、研削工具3等と接触することにより自転するようにすることもある。   Next, the present invention will be described in more detail based on the embodiments shown in the accompanying drawings. FIG. 1 is a conceptual diagram of a workpiece support apparatus according to the present invention, in which a sliding contact part 1 is attached to a pair of holders 2 and 2, and the outer periphery of a rotationally symmetrical workpiece W is attached to the sliding contact part 1 and 1. A suitable tool such as the grinding tool 3 is pushed onto the outer peripheral surface of the workpiece W while the surface is slidably supported and rotated while holding both ends of the workpiece W in the axial direction with a rotation drive mechanism (not shown). It is applied to perform grinding. Here, the sliding contact part 1 has a structure in which a sliding contact body 4 made of single crystal silicon carbide (SiC) is provided at least at a site in contact with the workpiece W. Note that the workpiece W may rotate by contact with the grinding tool 3 or the like without being forcibly rotated by the rotation drive mechanism.

また、円筒状又はリング状の加工物Wの内周面を加工する場合にも、前記同様に一対の摺接部品1,1で加工物Wの外周面を摺接支持し、研削工具3を加工物Wの内周面に押し当てて研削加工することが可能である。   Further, when the inner peripheral surface of the cylindrical or ring-shaped workpiece W is processed, the outer peripheral surface of the workpiece W is slidably supported by the pair of sliding contact parts 1 and 1 as described above, and the grinding tool 3 is It is possible to grind by pressing against the inner peripheral surface of the workpiece W.

加工物Wは、玉軸受や、流体軸受を構成するベアリングや外輪、内輪といった小型機械部品や、クランクシャフトの軸部といったやや大型の機械構造体まで対象としている。また、研削工具3の代わりにラッピング基布を先端に設けた研磨工具を用いることにより、超仕上加工を行うことができる。前記研削工具3や研磨工具は、円盤状又は円柱状等の回転する構造のものであっても良い。   The workpiece W is intended for ball bearings, small mechanical parts such as bearings, outer rings, and inner rings that form fluid bearings, and slightly larger mechanical structures such as crankshaft shafts. In addition, superfinishing can be performed by using a polishing tool provided with a lapping base cloth at the tip instead of the grinding tool 3. The grinding tool 3 and the polishing tool may be of a disk-shaped or cylindrical structure that rotates.

ここで、前記加工物支持装置では、一対の摺接部品1,1を用いて加工物Wを摺接支持したが、一つの摺接部品1、あるいは3つ以上の摺接部品1,…を用いて支持することも可能である。本発明では、加工物支持装置の具体的構造については限定されない。   Here, in the workpiece support device, the workpiece W is slidably supported by using a pair of sliding contact parts 1, 1, but one sliding contact part 1, or three or more sliding contact parts 1,. It can also be used and supported. In the present invention, the specific structure of the workpiece support device is not limited.

更に詳しくは、前記摺接部品1は、図2及び図3に示すように、金属製の摺接部品本体5の先端部に、単結晶炭化珪素からなる摺接体4を接合若しくは埋設して作製した。前記摺接部品本体5の材料として、一般的なスチールの他に、超硬合金を用いることができる。前記摺接体4は、加工が容易なように平板形状若しくはブロック形状としている。尚、摺接部品本体5の材料として、金属以外に強度と耐久性に優れたPEEK等のエンジニアリングプラスチックを用いることも可能である。   More specifically, as shown in FIGS. 2 and 3, the sliding contact part 1 has a sliding contact body 4 made of single crystal silicon carbide joined or embedded at the tip of a metal sliding contact part main body 5. Produced. As a material of the sliding contact part main body 5, a cemented carbide can be used in addition to general steel. The sliding contact body 4 has a flat plate shape or a block shape so as to be easily processed. In addition, it is also possible to use engineering plastics, such as PEEK excellent in intensity | strength and durability other than a metal, as a material of the sliding contact component main body 5. FIG.

図2に示した摺接部品1は、金属製の摺接部品本体5の先端部に摺接体4を埋設したものである。図2(a)に示した摺接部品1は、摺接部品本体5の先端部を平面6に形成し、該平面6の一部に一つの摺接体4を埋設して固定した構造であり、摺接体4の表面は摺接部品本体5の先端部に露出している。図2(b)に示した摺接部品1は、摺接部品本体5の先端部を対象とする加工物Wの曲率に合わせてV字形凹面7に形成し、該V字形凹面7の各面に二つの摺接体4,4を埋設して固定した構造であり、摺接体4の表面は摺接部品本体5の先端部に露出している。   The sliding contact component 1 shown in FIG. 2 is obtained by embedding a sliding contact body 4 at the tip of a metal sliding contact component main body 5. The sliding contact component 1 shown in FIG. 2A has a structure in which the tip of the sliding contact component main body 5 is formed on a flat surface 6 and one sliding contact member 4 is embedded and fixed in a part of the flat surface 6. Yes, the surface of the sliding contact body 4 is exposed at the tip of the sliding contact component body 5. The sliding contact part 1 shown in FIG. 2 (b) is formed on the V-shaped concave surface 7 in accordance with the curvature of the workpiece W intended for the tip of the sliding contact part main body 5, and each surface of the V-shaped concave surface 7. The two sliding contacts 4 and 4 are embedded and fixed, and the surface of the sliding contact 4 is exposed at the tip of the sliding component main body 5.

図3に示した摺接部品1は、金属製の摺接部品本体5の先端部に摺接体4を接合したものである。図3(a)に示した摺接部品1は、摺接部品本体5の先端部を平面6に形成し、該平面6に一枚の摺接体4を接合して固定した構造である。図3(b)に示した摺接部品1は、摺接部品本体5の先端部を先細の台形状に形成し、その先端の平面6に一枚の摺接体4を接合して固定した構造である。   The sliding contact part 1 shown in FIG. 3 is obtained by joining a sliding contact body 4 to the tip of a metal sliding contact part main body 5. The sliding contact component 1 shown in FIG. 3A has a structure in which the tip end portion of the sliding contact component main body 5 is formed on a flat surface 6 and a single sliding contact member 4 is joined and fixed to the flat surface 6. The sliding contact component 1 shown in FIG. 3B is formed by forming the tip of the sliding contact component main body 5 into a tapered trapezoidal shape, and a single sliding contact 4 is joined and fixed to the flat surface 6 at the tip. Structure.

図4に示した実施形態は、加工物Wを一つの摺接部品1で支持できるようにしたものである。図4(a)は、Vブロック状の摺接部品本体5の両傾斜面8,8に、表面が平面9の平板状の摺接体4,4をそれぞれ接合した構造である。図4(b)は、Vブロック状の摺接部品本体5の両傾斜面8,8に加工物Wの曲率に応じた曲面10を形成した摺接体4,4をそれぞれ接合した構造である。   In the embodiment shown in FIG. 4, the workpiece W can be supported by one sliding contact part 1. FIG. 4A shows a structure in which flat sliding contact bodies 4 and 4 having a flat surface 9 are joined to both inclined surfaces 8 and 8 of the sliding contact component main body 5 having a V block shape. FIG. 4B shows a structure in which sliding contact bodies 4 and 4 each having a curved surface 10 corresponding to the curvature of the workpiece W are joined to both inclined surfaces 8 and 8 of the V-block shaped sliding contact body 5. .

更に、前記摺接体4の表面を六方晶又は立方晶の単結晶炭化珪素の結晶面の一つとすることが好ましい。最も好ましいのは、単結晶炭化珪素の結晶面をSi面とし、このSi面を前記摺接体4の表面とするのである。   Furthermore, it is preferable that the surface of the sliding contact body 4 is one of the crystal faces of hexagonal or cubic single crystal silicon carbide. Most preferably, the crystal plane of the single crystal silicon carbide is the Si plane, and this Si plane is the surface of the sliding contact body 4.

単結晶炭化珪素は、第3周期14族の珪素(Si)原子及び14族第2周期の炭素(C)原子からなる二元化合物であり、Si(又はC)原子のまわりに最近接の4個のC(又はSi)原子がそれぞれsp3混成軌道で共有結合した正四面体構造を基本構造としている。この基本構造の組み合わせによって、6H形、4H形等の結晶構造の変化が現れる。当該基本構造は、Si原子がC原子よりも原子半径が大きいために原子間距離は若干異なるが、ダイヤモンド単結晶の基本構造において、C原子の正四面体構造の中心に位置するC原子をSi原子に置き換えた構造と同じであり、Si原子とC原子は、ダイヤモンド単結晶のC原子同士の原子間距離に近い距離で緻密に配列されている。このため、SiC単結晶はダイヤモンド単結晶に近い高硬度と強靭性の性質を持つのである。 Single-crystal silicon carbide is a binary compound composed of silicon (Si) atoms in the third periodic group 14 and carbon (C) atoms in the second periodic group 14, and the nearest 4 around the Si (or C) atoms. The basic structure is a regular tetrahedral structure in which C (or Si) atoms are each covalently bonded by sp 3 hybrid orbitals. By this combination of basic structures, changes in crystal structures such as 6H type and 4H type appear. In the basic structure, the interatomic distance is slightly different because the Si atom has a larger atomic radius than the C atom. It is the same as the structure replaced with atoms, and Si atoms and C atoms are densely arranged at a distance close to the interatomic distance between C atoms of the diamond single crystal. For this reason, the SiC single crystal has properties of high hardness and toughness similar to a diamond single crystal.

単結晶炭化珪素には、多様な結晶多形(ポリタイプ)が存在するが、半導体デバイス分野で利用され、量産が可能である六方晶の単結晶炭化珪素(4H−SiC、6H−SiC等)と、立方晶の単結晶炭化珪素(3C−SiC)が代表的である。一般的に、単結晶には異方性があるため、用いる結晶面(結晶方向)によって性質が異なる。   There are various crystal polymorphs (polytypes) in single crystal silicon carbide, but hexagonal single crystal silicon carbide (4H-SiC, 6H-SiC, etc.) that is used in the field of semiconductor devices and can be mass-produced. Cubic single crystal silicon carbide (3C—SiC) is typical. In general, since single crystals have anisotropy, the properties differ depending on the crystal plane (crystal direction) used.

立方晶の単結晶炭化珪素は、[111]軸の方向に沿って、炭素原子Cの配列された層とケイ素原子Siの配列された層とが、交互に配置されている。そして、この層同士の結合は、Si層とC層の各原子それぞれが3本のダングリングボンドによって隣り合う層の3つの原子と結合されている結合部と、Si層とC層の各原子それぞれが1本のダングリングボンドによって隣り合う層の1つの原子と結合されている結合部とが交互に繰り返されている。結合部の1本のダングリングボンドによる結合は、結合部の3本のダングリングボンドによる結合に比べて非常に弱く、ウエハの劈開など結晶を分割する際には常にこの弱い結合部が切断されることになる。これにより、(111)面と平行な方向に切断されて、(111)面が表面に現れ、常に一方の面がSi原子の層が現れる、いわゆるSi面となり、他方の(−1−1−1)面はC原子の層が現れる、いわゆるC面となる。   In the cubic single crystal silicon carbide, layers in which carbon atoms C are arranged and layers in which silicon atoms Si are arranged are alternately arranged along the direction of the [111] axis. The bonds between the layers are as follows. Each atom in the Si layer and the C layer is bonded to three atoms in the adjacent layer by three dangling bonds, and each atom in the Si layer and the C layer. Bonding portions that are bonded to one atom of an adjacent layer by one dangling bond are alternately repeated. Bonding by one dangling bond at the joint is much weaker than bonding by three dangling bonds at the joint, and this weak joint is always cut when the crystal is divided, such as when the wafer is cleaved. Will be. As a result, the film is cut in a direction parallel to the (111) plane, the (111) plane appears on the surface, and one surface always becomes a so-called Si surface in which a layer of Si atoms appears, and the other (-1-1- 1) The plane is a so-called C plane in which a layer of C atoms appears.

同様に、六方晶の単結晶炭化珪素を、弱い結合部で切断すると、表面に(0001)Si面又は(000−1)C面が現れる。   Similarly, when hexagonal single crystal silicon carbide is cut at a weak bond, a (0001) Si plane or a (000-1) C plane appears on the surface.

一般的に、単結晶炭化珪素基板のC面は、機械研磨、CMP研磨及びガスクラスターイオンビームの照射、のいずれにおいてもSi面に比べてエッチング速度が高く、加工性が高いことが知られている。また、C面のC原子間距離よりもSi面のSi原子間距離が短く、Si面の方がより緻密であると言うこともできる。これらの事実により、Si面はC面より耐摩耗性に優れていると結論でき、本発明では前記摺接体4の表面を(111)Si面あるいは(0001)Si面とするのである。因みに、半導体デバイス用のSiCウエハでは、表面粗さがRa:1nm以下になっており、平坦度は極めて高い。本発明において、加工物Wの表面にシューマークを発生させないためには、摺接体4の表面粗さを加工物Wの要求される表面粗さ以下、おおむねRa:10nm以下にすれば足りる。   In general, the C surface of a single crystal silicon carbide substrate is known to have a higher etching rate and higher workability than a Si surface in any of mechanical polishing, CMP polishing, and gas cluster ion beam irradiation. Yes. It can also be said that the Si surface distance is shorter than the C surface C atom distance, and the Si surface is denser. From these facts, it can be concluded that the Si surface is more excellent in wear resistance than the C surface, and in the present invention, the surface of the sliding contact body 4 is a (111) Si surface or a (0001) Si surface. Incidentally, in the SiC wafer for semiconductor devices, the surface roughness is Ra: 1 nm or less, and the flatness is extremely high. In the present invention, in order not to generate shoe marks on the surface of the workpiece W, it is sufficient that the surface roughness of the sliding contact body 4 is less than or equal to the required surface roughness of the workpiece W, generally Ra: 10 nm or less.

本発明の摺接部品と従来の摺接部品を用いて、実際に加工物を研削加工した結果を比較する。加工物として、円柱状ベアリングを選んだ。ベアリングの材質は、SUJ2V(高炭素クロム軸受鋼)であり、熱処理はHQHT(焼入れ焼き戻し)とし、表面硬度はHRC60(−1,+2)である。ベアリングの形状は、φ28mm(±0.005)×20mmLである。従来の摺接部品はWC(超硬合金)製である。   A result of actually grinding a workpiece using the sliding contact part of the present invention and the conventional sliding contact part will be compared. A cylindrical bearing was selected as the workpiece. The material of the bearing is SUJ2V (high carbon chromium bearing steel), the heat treatment is HQHT (quenching and tempering), and the surface hardness is HRC60 (-1, +2). The shape of the bearing is φ28 mm (± 0.005) × 20 mmL. Conventional sliding parts are made of WC (Cemented Carbide).

ベアリング表面の観察には、非接触三次元画像測定器(OGP(Optical Gaging Products,Inc,)社製のSmart Scope ZIP250E)を用いた。照明装置はLEDランプ2灯であり、測定倍率は37.7である。   For observation of the bearing surface, a non-contact three-dimensional image measuring device (Smart Scope ZIP250E manufactured by OGP (Optical Gaging Products, Inc.)) was used. The lighting device is two LED lamps, and the measurement magnification is 37.7.

図5に円柱状ベアリングにおける表面の観察領域とシューマークの関係を示している。図6は円柱状ベアリングの表面観察結果を示し、各顕微鏡写真は紙面上下方向がベアリングの周方向に対応し、写真の上下部は曲面のため焦点が合わずにぼけている。図6(a)は、従来のWC製摺接部品を用いて研削加工した後の表面顕微鏡写真であり、中央部の約2/3の領域にシューマークが現れている。要するに、シューマークとは摺接部品の接触する範囲が、接触しない範囲と違う光り方をする痕跡の事で、写真では黒っぽい部分がそれに相当する。但し、シューマークの存在はベアリングの精度に影響するものでないが、美観を損なうので不良品となる。   FIG. 5 shows the relationship between the surface observation region and the shoe mark in the cylindrical bearing. FIG. 6 shows the result of surface observation of a cylindrical bearing. In each micrograph, the vertical direction on the paper corresponds to the circumferential direction of the bearing, and the upper and lower parts of the photo are curved and are out of focus because they are curved. FIG. 6A is a surface micrograph after grinding using a conventional WC sliding contact part, and a shoe mark appears in an area of about 2/3 of the central portion. In short, the shoe mark is a trace in which the area where the sliding contact part contacts is different from the area where it does not contact, and the black part corresponds to that. However, the presence of the shoe mark does not affect the accuracy of the bearing, but it deteriorates the aesthetic appearance and becomes a defective product.

それに対して、本発明の摺接部品を用いた場合、シューマークは生じない。図6(b)は、本発明のSiC製摺接部品を用いて研削加工した後の表面顕微鏡写真であり、写真の左右にわたり一様な表面となっており、摺接部品が接触した部分を見分けることができない。また、図6(c)は、本発明のSiC製摺接部品を用いて研削加工し、更にラッピング仕上げを行った後の表面顕微鏡写真を示しているが、見た目にはラッピング仕上げによる顕著な変化はない。つまり、本発明の摺接部品を用いれば、従来のようにシューマークを除去するために行っていたラッピング仕上げは不要であることを意味している。   On the other hand, when the sliding contact part of the present invention is used, no shoe mark is generated. FIG. 6 (b) is a surface photomicrograph after grinding using the SiC sliding contact part of the present invention, which is a uniform surface across the left and right of the photograph, and shows the portion where the sliding contact part is in contact. I can't tell. FIG. 6 (c) shows a surface micrograph after grinding using the SiC sliding contact part of the present invention and further lapping finishing. There is no. In other words, if the sliding contact part of the present invention is used, it means that the lapping finish that has been performed for removing the shoe mark as in the prior art is unnecessary.

1 摺接部品
2 ホルダー
3 研削工具
4 摺接体
5 摺接部品本体
6 平面
7 V字形凹面
8 傾斜面
9 平面
10 曲面
W 加工物
DESCRIPTION OF SYMBOLS 1 Sliding contact part 2 Holder 3 Grinding tool 4 Sliding contact body 5 Sliding contact part main body 6 Plane 7 V-shaped concave surface 8 Inclined surface 9 Plane 10 Curved surface W Workpiece

Claims (5)

加工物の周面を摺接部品で回転自在に摺接支持し、研削加工や超仕上加工を行うための加工物支持装置に用いる摺接部品であって、少なくとも前記加工物と接触する部位に単結晶炭化珪素からなる摺接体を設けたことを特徴とする単結晶炭化珪素の摺接部を備えた摺接部品。   A sliding contact part that is used in a workpiece support device for rotating and slidingly supporting the peripheral surface of a workpiece with a sliding contact part and performing grinding and superfinishing, and at least at a portion that contacts the workpiece A sliding contact part comprising a sliding contact part of single crystal silicon carbide, wherein a sliding contact body made of single crystal silicon carbide is provided. 金属製の摺接部品本体の先端部に、単結晶炭化珪素からなる摺接体を接合若しくは埋設してなる請求項1記載の単結晶炭化珪素の摺接部を備えた摺接部品。   The sliding contact part provided with the sliding contact part of the single crystal silicon carbide according to claim 1, wherein a sliding contact body made of single crystal silicon carbide is joined or embedded at the tip of the metal sliding contact part main body. 前記摺接体の表面を六方晶又は立方晶の単結晶炭化珪素の結晶面の一つとしてなる請求項1又は2記載の単結晶炭化珪素の摺接部を備えた摺接部品。   3. The sliding component having a single crystal silicon carbide sliding contact portion according to claim 1, wherein the surface of the sliding contact body is one of crystal faces of hexagonal or cubic single crystal silicon carbide. 前記単結晶炭化珪素の結晶面がSi面である請求項3記載の単結晶炭化珪素の摺接部を備えた摺接部品。   The slidable contact part provided with the slidable contact portion of the single crystal silicon carbide according to claim 3, wherein the crystal plane of the single crystal silicon carbide is a Si surface. 前記請求項1〜4何れかに記載の摺接部品を用いた加工物支持装置。
The workpiece support apparatus using the sliding contact component in any one of the said Claims 1-4.
JP2009254340A 2009-11-05 2009-11-05 Sliding contact part having sliding contact part of single crystal silicon carbide and workpiece support device using the same Expired - Fee Related JP5392014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009254340A JP5392014B2 (en) 2009-11-05 2009-11-05 Sliding contact part having sliding contact part of single crystal silicon carbide and workpiece support device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009254340A JP5392014B2 (en) 2009-11-05 2009-11-05 Sliding contact part having sliding contact part of single crystal silicon carbide and workpiece support device using the same

Publications (2)

Publication Number Publication Date
JP2011098408A JP2011098408A (en) 2011-05-19
JP5392014B2 true JP5392014B2 (en) 2014-01-22

Family

ID=44190018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009254340A Expired - Fee Related JP5392014B2 (en) 2009-11-05 2009-11-05 Sliding contact part having sliding contact part of single crystal silicon carbide and workpiece support device using the same

Country Status (1)

Country Link
JP (1) JP5392014B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3674034B1 (en) 2017-11-16 2021-11-17 NSK Ltd. Workpiece support device, machining device, machining method, bearing manufacturing method, vehicle manufacturing method, and mechanical device manufacturing method
CN108757742A (en) * 2018-08-06 2018-11-06 哈尔滨轴承集团公司 A method of improving middle-size and small-size bearing no marking fulcrum
CN114310511B (en) * 2022-01-12 2022-10-18 江苏益芯半导体有限公司 Tumbling mill for wafer processing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588555U (en) * 1981-07-09 1983-01-20 株式会社 東京ダイヤモンド工具製作所 Workrest of centerless grinder
JPS61141060U (en) * 1985-02-20 1986-09-01
JPH0645304Y2 (en) * 1988-02-22 1994-11-24 東芝タンガロイ株式会社 Work rest and V block
JPH0362757U (en) * 1989-10-18 1991-06-19
DE102007031512B4 (en) * 2007-07-06 2013-01-31 Erwin Junker Maschinenfabrik Gmbh Method for supporting and dynamically centering a rotating workpiece

Also Published As

Publication number Publication date
JP2011098408A (en) 2011-05-19

Similar Documents

Publication Publication Date Title
JP5406890B2 (en) Method and trimming device for trimming two working layers
Stephenson et al. Ultra-precision grinding of hard steels
Yin et al. Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining
CN111630213B (en) Seed crystal for growing single crystal 4H-SiC and processing method thereof
TWI289094B (en) Wafer clamping device for a double side grinder
JP5514843B2 (en) Method for providing a flat processing layer on each of two processing disks of a double-sided processing apparatus
Chou et al. Experimental investigation on cubic boron nitride turning of hardened AISI 52100 steel
WO2013166375A1 (en) Tool for use with dual-sided chemical mechanical planarization pad conditioner
JP5392014B2 (en) Sliding contact part having sliding contact part of single crystal silicon carbide and workpiece support device using the same
WO2006001340A1 (en) Both-side polishing carrier and production method therefor
Doi et al. Advances in CMP polishing technologies
Uddin et al. Performance of single crystal diamond tools in ductile mode cutting of silicon
Zhang et al. Amorphization and C segregation based surface generation of reaction-bonded SiC/Si composites under micro-grinding
Yoon et al. Effect of the magnetic pole arrangement on the surface roughness of STS 304 by magnetic abrasive machining
JP6746128B2 (en) Cutter wheel
US10953513B2 (en) Method for deterministic finishing of a chuck surface
Evans et al. Rapidly renewable lap: theory and practice
KR102379910B1 (en) Grinding wheel of surface processing for workpiece and method of truing or dressing the wheel
Baksa et al. INFLUENCE OF CUTTING CONDITIONS ON THE SURFACE QUALITY AND GRINDING WHEEL WEAR DURING CYLINDRICAL GRINDING OF INCONEL 718.
JP2006281320A (en) General purpose machining system
Ichida Wheel life and cutting-edge wear in mirror-grinding using a coarse-grained CBN wheel treated by microdressing
JP5007527B2 (en) Wafer manufacturing method
Yamaguchi et al. Study on lapping and constant-pressure grinding of single-crystal SiC
Yamaguchi et al. Development of diamond-like carbon fibre wheel
TW202404742A (en) Method of dressing a polishing pad, method of polishing a silicon wafer, method of manufacting a silicon wafer, and a decive of polishing a silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120918

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees