JP5390965B2 - Fuel cell electrode catalyst and polymer electrolyte fuel cell using the same - Google Patents

Fuel cell electrode catalyst and polymer electrolyte fuel cell using the same Download PDF

Info

Publication number
JP5390965B2
JP5390965B2 JP2009159999A JP2009159999A JP5390965B2 JP 5390965 B2 JP5390965 B2 JP 5390965B2 JP 2009159999 A JP2009159999 A JP 2009159999A JP 2009159999 A JP2009159999 A JP 2009159999A JP 5390965 B2 JP5390965 B2 JP 5390965B2
Authority
JP
Japan
Prior art keywords
platinum
catalyst
fuel cell
niobium oxide
electrode catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009159999A
Other languages
Japanese (ja)
Other versions
JP2011014506A (en
Inventor
哲夫 永見
幹裕 片岡
達也 畑中
智寛 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Cataler Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Cataler Corp
Priority to JP2009159999A priority Critical patent/JP5390965B2/en
Publication of JP2011014506A publication Critical patent/JP2011014506A/en
Application granted granted Critical
Publication of JP5390965B2 publication Critical patent/JP5390965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池用電極触媒及びそれを用いた固体高分子型燃料電池に関する。   The present invention relates to a fuel cell electrode catalyst and a polymer electrolyte fuel cell using the same.

従来、高分子電解質型燃料電池における電極触媒のカソード及びアノード触媒には、白金又は白金合金等の貴金属をカーボンブラックに担持した触媒が用いられてきた。一般的に、白金担持カーボンブラック触媒(以下、Pt/C触媒とする)は、塩化白金酸水溶液に亜硫酸水素ナトリウムを加えた後、過酸化水素水と反応させ、生じた白金コロイドをカーボンブラックに担持させて、洗浄後、必要に応じて熱処理することにより調製される。高分子電解質型燃料電池の電極は、白金担持カーボンブラックを高分子電解質溶液に分散させてインクを調製し、そのインクをカーボンペーパーなどのガス拡散基材に塗布し、乾燥することにより作製される。高分子電解質膜を前記電極2枚で挟み、ホットプレスをすることにより電解質膜−電極接合体(MEA)が組立てられる。   Conventionally, a catalyst in which a noble metal such as platinum or a platinum alloy is supported on carbon black has been used as a cathode and an anode catalyst of an electrode catalyst in a polymer electrolyte fuel cell. In general, a platinum-supported carbon black catalyst (hereinafter referred to as a Pt / C catalyst) is prepared by adding sodium hydrogen sulfite to a chloroplatinic acid aqueous solution and then reacting it with hydrogen peroxide solution. It is prepared by carrying and heat-treating as necessary after washing. The electrode of a polymer electrolyte fuel cell is prepared by dispersing platinum-supported carbon black in a polymer electrolyte solution, preparing an ink, applying the ink to a gas diffusion substrate such as carbon paper, and drying. . An electrolyte membrane-electrode assembly (MEA) is assembled by sandwiching a polymer electrolyte membrane between the two electrodes and performing hot pressing.

ところで、白金は高価な貴金属であるため、アノード触媒及びカソード触媒ともに、少ない担持量で十分な性能を発揮させることが望まれている。しかし、現在のところ、1台あたりの自動車用燃料電池に必要とされる白金使用量は依然多く、将来、燃料電池車を普及させるためには白金使用量の大幅な低減が求められている。そのため、より少量の白金で触媒活性を高める検討がなされ、その結果、白金と種々の金属とからなる合金触媒等が開発されている。具体的には、CO被毒の回避を目的とした白金とルテニウム又はモリブデン等とからなる合金触媒が知られている。   By the way, since platinum is an expensive noble metal, it is desired that both the anode catalyst and the cathode catalyst exhibit sufficient performance with a small amount of support. However, at present, the amount of platinum used for each automobile fuel cell is still large, and in the future, a significant reduction in the amount of platinum used is required in order to popularize fuel cell vehicles. Therefore, studies have been made to increase the catalytic activity with a smaller amount of platinum. As a result, alloy catalysts composed of platinum and various metals have been developed. Specifically, an alloy catalyst made of platinum and ruthenium or molybdenum for the purpose of avoiding CO poisoning is known.

例えば、特許文献1には、白金−コバルト合金を触媒成分とする燃料電池用電極触媒の発明が開示されている。この発明は、触媒表面及び/又は触媒近傍に遷移金属−4窒化物構造(MN4構造)を配置して触媒の耐久性を向上させることができる。しかし、この電極触媒では白金や白金−コバルト合金の表面にOHが吸着して一時被毒することを原因とする触媒活性の劣化を解決できておらず、実用的な自動車用燃料電池にまでは至っていない。   For example, Patent Document 1 discloses an invention of a fuel cell electrode catalyst having a platinum-cobalt alloy as a catalyst component. In the present invention, the transition metal-4 nitride structure (MN4 structure) can be arranged on the catalyst surface and / or in the vicinity of the catalyst to improve the durability of the catalyst. However, this electrocatalyst has not solved the deterioration of catalytic activity caused by OH adsorbing on the surface of platinum or platinum-cobalt alloy and being temporarily poisoned. Not reached.

次に、カソード触媒において白金量が多くなる理由について述べる。カソード反応では反応中間体であるOHが白金表面に一時被毒し、これが反応を阻害する。被毒した白金は、還元されるまで反応することができず、このとき過電圧が発生するため電圧をロスしてしまう。これは、電流−電圧(IV)カーブにおいて低電流密度域で電圧が急速に落ち込む現象として観測される。それ故、所定の効率(燃費)を得るには最頻出電流密度において所定の電圧値を得る必要がある。この電圧値と白金量との間には実験的に70mV/decadeの関係が見出されている。すなわち、白金目付け量が1/10になると電圧値が70mV低下する関係となる。現在の触媒技術では前記所定の電圧値を得るためには白金量で補うしかないというのが現状である。これが白金量の多くなる理由である。   Next, the reason why the amount of platinum increases in the cathode catalyst will be described. In the cathode reaction, OH, which is a reaction intermediate, is temporarily poisoned on the platinum surface, which inhibits the reaction. The poisoned platinum cannot react until it is reduced. At this time, an overvoltage is generated, and the voltage is lost. This is observed as a phenomenon in which the voltage rapidly drops in the low current density region in the current-voltage (IV) curve. Therefore, to obtain a predetermined efficiency (fuel consumption), it is necessary to obtain a predetermined voltage value at the most frequent current density. A relationship of 70 mV / decade has been experimentally found between this voltage value and the amount of platinum. That is, when the amount of platinum is 1/10, the voltage value decreases by 70 mV. In the current catalyst technology, in order to obtain the predetermined voltage value, the amount of platinum can only be compensated. This is the reason why the amount of platinum increases.

カソード触媒の白金量を低減させるためには、白金の単位質量あたりの活性(質量活性)の向上が必要となる。1990年頃から白金をCo、Fe、Ni等遷移金属と合金化することによって、白金の質量活性を向上させる試みが行われてきた。これら白金合金触媒の性能向上メカニズムの研究により、白金合金触媒表面上で、OH吸着による一時被毒が緩和されることが明らかとなった。OHの吸着力は、OHと白金表面(フェルミレベル)の電子的相互作用によって決まる。一般に、白金表面の電子密度が高いほどOHとの相互作用が強くなり、強固な吸着となる。白金合金触媒は、合金化によって白金表面の電子密度が下がることでOHの吸着力を弱め、一時被毒を緩和できることが理論的及び実験的に証明されている。   In order to reduce the amount of platinum in the cathode catalyst, it is necessary to improve the activity per unit mass (mass activity) of platinum. Since around 1990, attempts have been made to improve the mass activity of platinum by alloying it with transition metals such as Co, Fe and Ni. Research on the performance improvement mechanism of these platinum alloy catalysts has revealed that temporary poisoning due to OH adsorption is mitigated on the platinum alloy catalyst surface. The adsorption power of OH is determined by the electronic interaction between OH and the platinum surface (Fermi level). In general, the higher the electron density on the platinum surface, the stronger the interaction with OH and the stronger the adsorption. It has been proved theoretically and experimentally that platinum alloy catalysts can reduce temporary poisoning by weakening OH adsorption power by lowering the electron density on the platinum surface by alloying.

現在では白金−コバルト合金のような白金合金触媒が実用段階に入っている。しかしながら、依然として白金合金触媒でのOHの一時被毒を原因とする過電圧は大きく、白金の質量活性を飛躍的に高めるには、OH被毒をさらに緩和する必要がある。また、合金触媒では合金成分がイオンとして溶出し、これが触媒層中アイオノマ中のプロトン伝導阻害を誘発することも指摘されている。   At present, a platinum alloy catalyst such as a platinum-cobalt alloy is in a practical stage. However, the overvoltage caused by the temporary poisoning of OH in the platinum alloy catalyst is still large, and it is necessary to further reduce the OH poisoning in order to dramatically increase the mass activity of platinum. It has also been pointed out that alloy components are eluted as ions in the alloy catalyst, which induces proton conduction inhibition in the ionomer in the catalyst layer.

触媒化学の分野では、1980年頃からSMSI(Strong Metal Support Interaction)に関する研究が始まっている。SMSIとは金属と担体の電子的相互作用によって触媒の活性・選択性向上など特異な機能を引き出す概念である。例えば、自動車用三元触媒のPt/CeO2が有する酸素吸放出能も、SMSIの一つである。このSMSIを利用した研究が燃料電池用電極触媒の分野でも進められている。 In the field of catalytic chemistry, research on SMSI (Strong Metal Support Interaction) has begun around 1980. SMSI is a concept that draws out unique functions such as improving the activity and selectivity of the catalyst through the electronic interaction between the metal and the support. For example, the oxygen absorption / release capability of Pt / CeO 2 which is a three-way catalyst for automobiles is one of SMSI. Research using SMSI is also underway in the field of fuel cell electrode catalysts.

特開2005−44659号公報JP 2005-44659 A

本発明者らは、触媒被毒を緩和し、またSMSI効果を引き出す目的で、様々な金属酸化物をPt/C触媒に添加した燃料電池触媒の開発を行ってきた。その結果、Pt/C触媒に酸化ニオブを担持させることによって低加湿条件下においても燃料電池の出力性能を向上させ得ることを見出し、その知見に基づいた発明を出願した(特願2009−5969号)。しかしながら、当該発明の低加湿出力性能は、実用レベルとしては十分とは言えず、さらなる向上が必要であるという課題が残されていた。   The present inventors have developed a fuel cell catalyst in which various metal oxides are added to a Pt / C catalyst for the purpose of alleviating catalyst poisoning and extracting the SMSI effect. As a result, it has been found that by supporting niobium oxide on a Pt / C catalyst, the output performance of the fuel cell can be improved even under low humidification conditions, and an invention based on that finding has been filed (Japanese Patent Application No. 2009-5969). ). However, the low humidification output performance of the present invention is not sufficient as a practical level, and there remains a problem that further improvement is necessary.

本発明は、前記課題を解決するために、低加湿条件下でより高い出力をもたらすPt/C触媒を開発し、その触媒を用いた高出力性能の燃料電池を提供することを目的とする。   In order to solve the above-described problems, an object of the present invention is to develop a Pt / C catalyst that provides higher output under low humidification conditions and to provide a fuel cell with high output performance using the catalyst.

本発明者らは前記課題を解決するために鋭意研究を重ねた結果、燃料電池用電極触媒において、燃料電池の出力性能を飛躍的に向上させることのできる酸化ニオブの組成範囲を見出した。本明細書は、当該知見に基づく以下の発明を包含する。
(1)白金又は白金合金及び酸化ニオブを含み、かつ酸化ニオブと白金又は白金合金中の白金とのモル比が0.005:1〜0.05:1である燃料電池用電極触媒。
(2)白金又は白金合金が担体に担持されている、前記(1)の燃料電池用電極触媒。
(3)担体がカーボンである、前記(2)の燃料電池用電極触媒。
(4)白金又は白金合金と酸化ニオブが合金化されていない、前記(1)〜(3)のいずれかの燃料電池用電極触媒。
(5)白金又は白金合金中の白金とのモル比が0.005〜0.05となるように酸化ニオブを白金又は白金合金を担持した担体に形成させて得られうる燃料電池用電極触媒。
(6)前記(1)〜(5)のいずれかの燃料電池用電極触媒を備えた固体高分子型燃料電池。
As a result of intensive studies in order to solve the above problems, the present inventors have found a composition range of niobium oxide capable of dramatically improving the output performance of the fuel cell in the fuel cell electrode catalyst. This specification includes the following inventions based on the findings.
(1) A fuel cell electrode catalyst comprising platinum or a platinum alloy and niobium oxide, wherein the molar ratio of niobium oxide to platinum in the platinum or platinum alloy is 0.005: 1 to 0.05: 1.
(2) The fuel cell electrode catalyst according to (1), wherein platinum or a platinum alloy is supported on a carrier.
(3) The fuel cell electrode catalyst according to (2), wherein the carrier is carbon.
(4) The electrode catalyst for a fuel cell according to any one of (1) to (3), wherein platinum or a platinum alloy and niobium oxide are not alloyed.
(5) An electrode catalyst for a fuel cell that can be obtained by forming niobium oxide on a support carrying platinum or a platinum alloy so that the molar ratio of platinum to platinum in the platinum or platinum alloy is 0.005 to 0.05.
(6) A polymer electrolyte fuel cell comprising the fuel cell electrode catalyst according to any one of (1) to (5).

本発明の燃料電池用電極触媒によれば、従来の燃料電池と比較して燃料電池の低加湿出力性能を飛躍的に向上させることができる。
本発明の固体高分子型燃料電池によれば、従来の燃料電池に比べて高い出力性能を提供することができる。
According to the electrode catalyst for a fuel cell of the present invention, the low humidification output performance of the fuel cell can be remarkably improved as compared with the conventional fuel cell.
According to the polymer electrolyte fuel cell of the present invention, it is possible to provide a higher output performance than the conventional fuel cell.

酸化ニオブを担持させたPt/C電極触媒における白金粒径及びCO吸着量との関係Relationship between platinum particle size and CO adsorption on Pt / C electrocatalyst supported niobium oxide 酸化ニオブを担持させたPt/C電極触媒を備えた燃料電池のMEAによる低加湿条件下での電圧性能Voltage performance under low humidification conditions by MEA of fuel cell with Pt / C electrocatalyst supported niobium oxide

1.燃料電池用電極触媒
本発明の一の実施形態は、燃料電池用電極触媒である。本発明の燃料電池用電極触媒は、白金又は白金合金及び酸化ニオブ(NbOx)を含み、かつ酸化ニオブと白金又は白金合金中の白金とのモル比が0.005:1〜0.05:1であることを特徴とする。以下、本発明の燃料電池用電極触媒について具体的に説明をする。
1. Fuel Cell Electrode Catalyst One embodiment of the present invention is a fuel cell electrode catalyst. The electrode catalyst for fuel cells of the present invention contains platinum or a platinum alloy and niobium oxide (NbOx), and the molar ratio of niobium oxide to platinum in the platinum or platinum alloy is 0.005: 1 to 0.05: 1. Features. Hereinafter, the fuel cell electrode catalyst of the present invention will be described in detail.

1−1.燃料電池用電極触媒の構成
本発明の燃料電池用電極触媒は、白金又は白金合金及び酸化ニオブを含む。また、白金又は白金合金を担持する担体を含むことができる。
1-1. Configuration of Fuel Cell Electrode Catalyst The fuel cell electrode catalyst of the present invention contains platinum or a platinum alloy and niobium oxide. Moreover, the support | carrier which carry | supports platinum or a platinum alloy can be included.

1−1−1.触媒成分
本発明の燃料電池用電極触媒における触媒成分は白金である。白金は高価な貴金属であり、アノード触媒、カソード触媒ともに、少ない担持量で十分な性能を発揮させることが好ましい。そこで、白金の触媒活性を損なうことなくその使用量を削減するために、白金と種々の遷移金属からなる白金合金を触媒成分として用いてもよい。前記遷移金属としては、ルテニウム(Ru)、モリブデン(Mo)、オスニウム(Os)、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)、鉄(Fe)、ニッケル(Ni)、チタン(Ti)、タングステン(W)、パラジウム(Pd)、レニウム(Re)、クロム(Cr)、マンガン(Mn)、タンタル(Ta)及び金(Au)から選択される一以上が挙げられる。
1-1-1. Catalyst component The catalyst component in the fuel cell electrode catalyst of the present invention is platinum. Platinum is an expensive noble metal, and it is preferable that both the anode catalyst and the cathode catalyst exhibit sufficient performance with a small amount of support. Therefore, in order to reduce the amount of platinum used without impairing the catalytic activity of platinum, platinum alloys made of platinum and various transition metals may be used as a catalyst component. Examples of the transition metal include ruthenium (Ru), molybdenum (Mo), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), iron (Fe), nickel (Ni), and titanium (Ti). , Tungsten (W), palladium (Pd), rhenium (Re), chromium (Cr), manganese (Mn), tantalum (Ta) and gold (Au).

白金又は白金合金の担持密度は、電極触媒の総重量に対する担持された白金又は白金合金の重量%で定義される。かかる担持密度は、白金の場合には、{白金重量/(白金重量+担体重量)}×100の計算式により算出される。また、白金合金の場合には、{(白金重量+遷移金属重量)/(白金重量+遷移金属重量+担体重量)}×100の計算式により算出される。本発明の燃料電池用電極触媒において、白金又は白金合金の担持密度は10〜60重量%であることが好ましい。   The supported density of platinum or platinum alloy is defined as the weight percentage of the supported platinum or platinum alloy based on the total weight of the electrode catalyst. In the case of platinum, the carrying density is calculated by the formula {platinum weight / (platinum weight + carrier weight)} × 100. In the case of a platinum alloy, it is calculated by a calculation formula of {(platinum weight + transition metal weight) / (platinum weight + transition metal weight + support weight)} × 100. In the fuel cell electrode catalyst of the present invention, the loading density of platinum or platinum alloy is preferably 10 to 60% by weight.

白金合金の組成は、担持された白金合金の総重量に対する白金及び/又は遷移金属の重量%で定義される。かかる組成は、{白金重量/(白金重量+遷移金属重量)}×100の計算式により算出される。本発明の燃料電池用電極触媒において、白金合金の組成は白金が90〜100重量%に対して遷移金属が0〜10重量%であることが好ましい。   The composition of the platinum alloy is defined as the weight percent of platinum and / or transition metal relative to the total weight of the supported platinum alloy. Such a composition is calculated by a calculation formula of {platinum weight / (platinum weight + transition metal weight)} × 100. In the fuel cell electrode catalyst of the present invention, the composition of the platinum alloy is preferably 90 to 100% by weight of platinum and 0 to 10% by weight of transition metal.

1−1−2.酸化ニオブ
酸化ニオブは、SMSI効果を引き出し、触媒被毒を緩和する目的で白金又は白金合金を含む電極触媒上に形成される。酸化ニオブを担持した前記電極触媒は、他の金属酸化物を担持したそれと比較して低加湿条件下での燃料電池性能、特に出力性能を向上させることができる。また、酸化ニオブは、触媒粒子、すなわち白金又は白金合金の粒径の増大を抑制することが可能である。さらに、酸化ニオブは、触媒粒子の表面又はその近傍に存在することで、COが触媒粒子の表面に吸着するのを抑制すると考えられる。結果として、酸化ニオブは、担持量依存的に触媒表面のCO吸着を抑制することができる。したがって、白金担持電極触媒に酸化ニオブを担持させることにより、H吸着に対する性能を損なうことなく、触媒成分中の白金又は白金表面へのCO吸着を選択的に軽減する効果を奏することが可能である。それ故、天然ガスなどを燃料とする改質器と組み合わせて使う燃料電池において、本発明の酸化ニオブを担持した電極触媒をアノード触媒として使用することにより、アノード反応に対する触媒活性を損なうことなくCO被毒による触媒活性の低下を選択的に軽減することが可能となる。本発明の燃料電池用電極触媒において酸化ニオブは、完全に酸化されたNb2O5 を意味する
なお、後述するように、本発明の燃料電池用電極触媒において、酸化ニオブは触媒成分である白金又は白金合金とは合金化されていない。
1-1-2. Niobium oxide Niobium oxide is formed on an electrode catalyst containing platinum or a platinum alloy for the purpose of extracting the SMSI effect and mitigating catalyst poisoning. The electrocatalyst carrying niobium oxide can improve the fuel cell performance, particularly the output performance, under low humidification conditions as compared with those carrying other metal oxides. In addition, niobium oxide can suppress an increase in the particle size of catalyst particles, that is, platinum or a platinum alloy. Furthermore, niobium oxide is considered to suppress the adsorption of CO to the surface of the catalyst particles by being present at or near the surface of the catalyst particles. As a result, niobium oxide can suppress CO adsorption on the catalyst surface depending on the loading amount. Therefore, by supporting niobium oxide on the platinum-supported electrode catalyst, it is possible to exert an effect of selectively reducing CO adsorption on platinum in the catalyst component or on the platinum surface without impairing the performance against H adsorption. . Therefore, in a fuel cell that is used in combination with a reformer that uses natural gas as a fuel, the electrode catalyst supporting niobium oxide of the present invention is used as an anode catalyst, so that CO activity is not impaired without impairing the catalytic activity for the anode reaction. It is possible to selectively reduce a decrease in catalyst activity due to poisoning . Niobium oxide Te fuel cell electrode catalyst odor of the present invention, means a N b 2 O 5 which is oxidized completely.
As will be described later, in the fuel cell electrode catalyst of the present invention, niobium oxide is not alloyed with platinum or a platinum alloy as a catalyst component.

本発明の燃料電池用電極触媒において、酸化ニオブと白金又は白金合金中の白金とのモル比は0.005:1〜0.05:1、好ましくは0.008:1〜0.04:1、より好ましくは0.01:1〜0.03:1である。本モル比の組成範囲内で酸化ニオブを担持する燃料電池用電極触媒は、低加湿条件下で燃料電池の出力性能を飛躍的に向上させることができる。   In the fuel cell electrode catalyst of the present invention, the molar ratio of niobium oxide to platinum or platinum in the platinum alloy is 0.005: 1 to 0.05: 1, preferably 0.008: 1 to 0.04: 1, more preferably 0.01: 1 to. 0.03: 1. The fuel cell electrode catalyst supporting niobium oxide within the composition ratio of this molar ratio can dramatically improve the output performance of the fuel cell under low humidification conditions.

酸化ニオブが、燃料電池用電極触媒において配置される位置・場所は、特に限定しない。例えば、(1)白金又は白金合金からなる触媒成分中に助触媒として含まれてもよく、(2)前記白金又は白金合金からなる触媒成分のコア材として含まれてもよく、(3)燃料電池用電極触媒中に添加剤として含まれてもよく、あるいは(4)担体表面及び/又は内部に含まれてもよい。白金又は白金合金からなる触媒成分中に助触媒として含まれるのが好ましい。   The position and place where niobium oxide is disposed in the electrode catalyst for fuel cells is not particularly limited. For example, (1) it may be included as a promoter in a catalyst component made of platinum or a platinum alloy, (2) it may be contained as a core material of the catalyst component made of platinum or a platinum alloy, and (3) fuel. It may be contained as an additive in the battery electrode catalyst, or (4) may be contained on the surface and / or inside of the support. It is preferably contained as a promoter in a catalyst component made of platinum or a platinum alloy.

本発明の燃料電池用電極触媒は、酸化ニオブに加えて、他の金属酸化物を含んでいてもよい。例えば、酸化ハフニウム、酸化タンタル、酸化チタン、酸化シリコン及び酸化スズから選択される一以上の遷移金属酸化物が挙げられる。   The fuel cell electrode catalyst of the present invention may contain other metal oxides in addition to niobium oxide. Examples thereof include one or more transition metal oxides selected from hafnium oxide, tantalum oxide, titanium oxide, silicon oxide, and tin oxide.

1−1−3.担体
本発明の燃料電池用電極触媒は、触媒成分である白金又は白金合金及び酸化ニオブを担持させるため担体を含むことが好ましい。本担体は、白金又は白金合金を直接的又は間接的に担持し、かつそれ自体が導電性を具備するものであれば特に限定されない。例えば、燃料電池用電極触媒に慣用されている様々な材料を使用することができる。好ましくは、カーボンである。カーボンブラックのように比表面積が大きい担体材料は特に好ましい。これは、より広い触媒担持面積を確保することで担持する触媒粒子の微小化が可能となり、その結果、触媒活性を向上させることができるからである。
1-1-3. Carrier The electrode catalyst for fuel cells of the present invention preferably contains a carrier for supporting platinum or a platinum alloy and niobium oxide as catalyst components. The carrier is not particularly limited as long as it supports platinum or a platinum alloy directly or indirectly and has conductivity itself. For example, various materials commonly used for fuel cell electrode catalysts can be used. Carbon is preferable. A carrier material having a large specific surface area such as carbon black is particularly preferred. This is because it is possible to miniaturize the catalyst particles to be supported by securing a wider catalyst support area, and as a result, the catalyst activity can be improved.

本発明の燃料電池用電極触媒において使用される担体は、電気抵抗率が0.05〜0.50Ωcmであることが好ましい。また、比表面積が30〜1500m2/gであることが好ましい。電気抵抗率はJIS K1469によって測定することができる。また、比表面積は、窒素BET吸着法によって測定することができる。好適な担体材料は、限定はしないが、例えば、カーボンブラック(例えば、Ketjen EC;ケチェンブラックインターナショナル製)、アセチレンブラック(ケチェンブラックインターナショナル製)、バルカンXC-72R(Cabot製)、デンカブラック(DENKA製)、ファーネスブラック、グラファイトのようなカーボン微粒子である。 The carrier used in the fuel cell electrode catalyst of the present invention preferably has an electrical resistivity of 0.05 to 0.50 Ωcm. Moreover, it is preferable that a specific surface area is 30-1500 m < 2 > / g. The electrical resistivity can be measured according to JIS K1469. The specific surface area can be measured by a nitrogen BET adsorption method. Suitable carrier materials include, but are not limited to, for example, carbon black (eg, Ketjen EC; made by Ketjen Black International), acetylene black (made by Ketjen Black International), Vulcan XC-72R (made by Cabot), Denka Black ( DENKA), furnace black, carbon fine particles such as graphite.

1−2.燃料電池用電極触媒の製造方法
本発明の燃料電池用電極触媒の製造方法は、白金又は白金合金からなる触媒粉末と酸化ニオブとが前記モル比で互いに接触した状態を形成し得る方法であれば、特に限定はしない。例えば、当業界で慣用される様々な方法を用いて、白金又は白金合金に酸化ニオブを担持させる方法でもよいし、酸化ニオブを担持した担体に白金又は白金合金を形成させる方法でもよいし、担体表面に白金又は白金合金を担持させ、その後さらに酸化ニオブを担持させる方法でもよいし、白金又は白金合金を担持した担体に酸化ニオブを形成させる方法でもよいし、又は担体表面に酸化ニオブを担持させ、その後さらに白金又は白金合金を担持させる方法でもよい。好ましくは、白金又は白金合金を担持した担体に酸化ニオブを形成させる方法、又は担体表面に白金又は白金合金を担持させ、その後さらに酸化ニオブを担持させる方法である。以下、担体表面に白金又は白金合金を担持させ、その後さらに酸化ニオブを担持させる方法について具体的に説明をする。
1-2. Method for Producing Fuel Cell Electrode Catalyst The method for producing a fuel cell electrode catalyst of the present invention is a method capable of forming a state in which catalyst powder made of platinum or a platinum alloy and niobium oxide are in contact with each other at the molar ratio. There is no particular limitation. For example, a method in which niobium oxide is supported on platinum or a platinum alloy using various methods commonly used in the industry may be used, or a method in which platinum or a platinum alloy is formed on a carrier supporting niobium oxide may be used. A method of supporting platinum or a platinum alloy on the surface and then further supporting niobium oxide, a method of forming niobium oxide on a support supporting platinum or a platinum alloy, or a method of supporting niobium oxide on the surface of the support is also possible. Then, a method of further supporting platinum or a platinum alloy may be used. Preferred is a method of forming niobium oxide on a support carrying platinum or a platinum alloy, or a method of carrying platinum or a platinum alloy on the support surface and then further supporting niobium oxide. Hereinafter, a method for supporting platinum or a platinum alloy on the surface of the carrier and then supporting niobium oxide will be described in detail.

本発明の燃料電池用電極触媒は、(1)白金担持工程、及び(2)酸化ニオブ担持工程を含む方法で製造することができる。
(1)白金担持工程
「白金担持工程」とは、担体上に白金又は白金合金からなる触媒成分を形成させて、白金又は白金合金を担持した担体(以下、白金/担体とする)を得る工程である。
The electrode catalyst for a fuel cell of the present invention can be produced by a method including (1) a platinum supporting step and (2) a niobium oxide supporting step.
(1) Platinum loading process The "platinum loading process" is a process in which a catalyst component made of platinum or a platinum alloy is formed on a carrier to obtain a carrier carrying platinum or a platinum alloy (hereinafter referred to as platinum / carrier). It is.

本工程は、白金/担体を形成できる当業界で慣用される様々な方法を利用することができる。例えば、本工程は、白金錯体と担体とを水中で接触させて混合物溶液とする工程(接触工程);前記混合物溶液にアンモニア等の塩基を加えて溶液をアルカリ性とし、白金錯体を不溶性の水酸化物として担体表面に析出させる工程(白金水酸化物析出工程);白金の水酸化物が析出した担体を回収する工程(担体回収工程);回収した担体を真空下で乾燥する工程(担体乾燥工程);並びに乾燥した担体を水素雰囲気下で熱還元して、白金が担体に担持された電極触媒粉末を得る工程(熱還元工程)を含む方法で構成されていてもよい。白金を担持した担体に遷移金属を合金化することによって、白金合金担体を得ることもできる。   This process can utilize various methods commonly used in the art that can form platinum / support. For example, in this step, a platinum complex and a carrier are brought into contact with water to form a mixture solution (contact step); a base such as ammonia is added to the mixture solution to make the solution alkaline, and the platinum complex is insoluble in hydroxylation. A step of precipitating as a product on the surface of the carrier (platinum hydroxide precipitation step); a step of recovering the carrier on which platinum hydroxide is deposited (carrier recovery step); a step of drying the recovered carrier under vacuum (carrier drying step) ); And a method comprising a step of thermally reducing the dried support in a hydrogen atmosphere to obtain an electrode catalyst powder in which platinum is supported on the support (thermal reduction step). A platinum alloy carrier can also be obtained by alloying a transition metal with a carrier carrying platinum.

(2)酸化ニオブ担持工程
「酸化ニオブ担持工程」とは、白金又は白金合金中の白金とのモル比が0.005〜0.05となるように、酸化ニオブを前記白金/担体上に担持させる工程である。
(2) Niobium oxide supporting step The "niobium oxide supporting step" is a step of supporting niobium oxide on the platinum / support so that the molar ratio of platinum to platinum in the platinum or platinum alloy is 0.005 to 0.05. .

本工程は、白金/担体上に酸化ニオブを担持できる当業界で慣用される様々な方法を利用することができる。例えば、本工程は、白金/担体とニオブ塩を、白金又は白金合金中の白金に対して酸化ニオブのモル比が0.005〜0.05となるように混合して、水中で接触させて混合物溶液とする工程(ニオブ接触工程);前記混合物溶液に塩基を加えた後、前記ニオブを不溶性の酸化ニオブとして白金/担体表面上に析出させる工程(酸化ニオブ析出工程);酸化ニオブが析出した白金/担体を回収する工程(回収工程);回収した前記酸化ニオブが析出した白金/担体を真空下で乾燥する工程(乾燥工程);並びに乾燥した前記白金/担体を不活性ガス雰囲気下で焼成して、酸化ニオブを担持した電極触媒を得る工程(焼成工程)を含む方法構成されていてもよい。前記焼成工程は、例えば、窒素ガス雰囲気下で300〜900℃にて30〜300分間焼成することで達成できる。   This process can utilize various methods commonly used in the art that can support niobium oxide on platinum / support. For example, in this step, platinum / carrier and niobium salt are mixed so that the molar ratio of niobium oxide to platinum in platinum or platinum alloy is 0.005 to 0.05, and contacted in water to obtain a mixture solution. Step (Niobium contact step): After adding a base to the mixture solution, depositing the niobium as insoluble niobium oxide on the platinum / carrier surface (niobium oxide precipitation step); A step of recovering (recovery step); a step of drying the platinum / carrier on which the recovered niobium oxide is deposited under vacuum (drying step); and baking the dried platinum / carrier under an inert gas atmosphere to oxidize A method including a step of obtaining an electrode catalyst supporting niobium (firing step) may be used. The firing step can be achieved, for example, by firing at 300 to 900 ° C. for 30 to 300 minutes in a nitrogen gas atmosphere.

2.固体高分子型燃料電池
本発明の一の実施形態は、前記本発明の燃料電池用電極触媒を備えた固体高分子型燃料電池である。
上述したように、本発明の白金又は白金合金中の白金に対して酸化ニオブを0.005〜0.05のモル比で含有する燃料電池用電極触媒は、低加湿条件下における燃料電池の出力性能を飛躍的に向上させることできる。したがって、本発明の燃料電池用電極触媒を備えた固体高分子型燃料電池は、燃料電池の実用化と普及に貢献することが可能となる。
2. Solid polymer fuel cell One embodiment of the present invention is a solid polymer fuel cell comprising the fuel cell electrode catalyst of the present invention.
As described above, the electrode catalyst for a fuel cell containing niobium oxide in a molar ratio of 0.005 to 0.05 with respect to platinum in the platinum or platinum alloy of the present invention dramatically improves the output performance of the fuel cell under low humidification conditions. Can be improved. Therefore, the polymer electrolyte fuel cell provided with the fuel cell electrode catalyst of the present invention can contribute to the practical use and spread of the fuel cell.

以下、実施例および比較例によって本発明をさらに詳細に説明する。
(酸化ニオブ/Pt/C触媒の調製)
<比較例>:Pt/C
市販カーボンKetjen EC(ケチェンブラックインターナショナル製)5gと白金塩4.2gを純水0.5Lに加えて分散させた(接触工程)。これにO.1Nアンモニア約100mLを添加してpHを約10として水酸化物を形成させ、カーボン上に析出させた(白金水酸化物析出工程)。この分散液をろ過し(担体回収工程)、得られた粉末を100℃で10時間真空乾燥させた(担体乾燥工程)。次に水素ガス中で200℃にて2時間保持して還元処理した後、窒素ガス中で700℃にて2時間保持して触媒粉末を得た(熱還元工程)。
ここで得られた触媒粉末は、酸化ニオブを含有しない対照触媒であって、Pt(45wt%)/C(700℃、2時間)で構成される。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
(Preparation of niobium oxide / Pt / C catalyst)
<Comparative example>: Pt / C
5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum salt were added to 0.5 L of pure water and dispersed (contact process). About 100 mL of O.1N ammonia was added thereto to form a hydroxide with a pH of about 10, and deposited on carbon (platinum hydroxide deposition step). This dispersion was filtered (carrier recovery step), and the obtained powder was vacuum-dried at 100 ° C. for 10 hours (carrier drying step). Next, it was reduced in hydrogen gas at 200 ° C. for 2 hours, and then held in nitrogen gas at 700 ° C. for 2 hours to obtain a catalyst powder (thermal reduction step).
The catalyst powder obtained here is a control catalyst containing no niobium oxide and is composed of Pt (45 wt%) / C (700 ° C., 2 hours).

<実施例1>
市販カーボンKe tjen EC(前述)5gと白金塩4.2gを純水0.5Lに加えて分散させた(接触工程)。これにO.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた(白金水酸化物析出工程)。この分散液をろ過し(担体回収工程)、得られた粉末を100℃で10時間真空乾燥させた(担体乾燥工程)。次に水素ガス中で200℃にて2時間保持して還元処理して触媒粉末を得た(熱還元工程)。
<Example 1>
5 g of commercially available carbon Ketjen EC (described above) and 4.2 g of platinum salt were added to 0.5 L of pure water and dispersed (contact process). To this, about 100 mL of 0.1N ammonia was added to adjust the pH to about 10, and a hydroxide was formed and deposited on carbon (platinum hydroxide precipitation step). This dispersion was filtered (carrier recovery step), and the obtained powder was vacuum-dried at 100 ° C. for 10 hours (carrier drying step). Next, it was reduced in hydrogen gas at 200 ° C. for 2 hours to obtain a catalyst powder (thermal reduction step).

上記触媒粉末と塩化ニオブ0.01gを純水0.5Lに加えて分散させた(ニオブ接触工程)。これに1Nアンモニアを滴下し、pHを6とし酸化ニオブを形成した(酸化ニオブ析出工程)。この分散液をろ過し(回収工程)、得られた粉末を100℃で10時間真空乾燥させた(乾燥工程)。次に窒素ガス中で700℃にて2時間保持して目的の触媒粉末を得た(焼成工程)。
ここで得られた触媒粉末は、酸化ニオブを白金に対して0.005のモル比で添加した触媒であって、Nb(0.1wt%)/Pt(45.0wt%)/C(700℃、2時間)で構成される。
The catalyst powder and 0.01 g of niobium chloride were added and dispersed in 0.5 L of pure water (niobium contact step). 1N ammonia was added dropwise thereto to adjust the pH to 6 to form niobium oxide (niobium oxide precipitation step). This dispersion was filtered (recovery step), and the obtained powder was vacuum-dried at 100 ° C. for 10 hours (drying step). Next, it was kept at 700 ° C. for 2 hours in nitrogen gas to obtain the desired catalyst powder (firing step).
The catalyst powder obtained here was a catalyst in which niobium oxide was added at a molar ratio of 0.005 to platinum, and Nb (0.1 wt%) / Pt (45.0 wt%) / C (700 ° C., 2 hours) Consists of.

<実施例2>
市販カーボンKetjen EC(前述)5gと白金塩4.2gを純水0.5Lに加えて分散させた(接触工程)。これにO.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた(白金水酸化物析出工程)。この分散液をろ過し(担体回収工程)、得られた粉末を100℃で10時間真空乾燥させた(担体乾燥工程)。次に水素ガス中で200℃、2時間保持して還元処理して触媒粉末を得た(熱還元工程)。
<Example 2>
5 g of commercially available carbon Ketjen EC (described above) and 4.2 g of platinum salt were added to 0.5 L of pure water and dispersed (contact process). To this, about 100 mL of 0.1N ammonia was added to adjust the pH to about 10, and a hydroxide was formed and deposited on carbon (platinum hydroxide precipitation step). This dispersion was filtered (carrier recovery step), and the obtained powder was vacuum-dried at 100 ° C. for 10 hours (carrier drying step). Next, it was reduced in hydrogen gas at 200 ° C. for 2 hours to obtain a catalyst powder (thermal reduction step).

上記触媒粉末と塩化ニオブ0.02gを純水0.5Lに加えて分散させた(ニオブ接触工程)。これに1Nアンモニアを滴下し、pHを6とし酸化ニオブを形成した(酸化ニオブ析出工程)。この分散液をろ過し(回収工程)、得られた粉末を100℃で10時間真空乾燥させた(乾燥工程)。次に窒素ガス中で700℃、2時間保持して目的の触媒粉末を得た(焼成工程)。
ここで得られた触媒粉末は、酸化ニオブを白金に対して0.01のモル比で添加した触媒であって、Nb(0.2wt%)/Pt(44.9wt%)/C(700℃、2時間)で構成される。
The catalyst powder and 0.02 g of niobium chloride were added and dispersed in 0.5 L of pure water (niobium contact step). 1N ammonia was added dropwise thereto to adjust the pH to 6 to form niobium oxide (niobium oxide precipitation step). This dispersion was filtered (recovery step), and the obtained powder was vacuum-dried at 100 ° C. for 10 hours (drying step). Next, the target catalyst powder was obtained by maintaining at 700 ° C. for 2 hours in nitrogen gas (firing step).
The catalyst powder obtained here was a catalyst in which niobium oxide was added at a molar ratio of 0.01 with respect to platinum, and Nb (0.2 wt%) / Pt (44.9 wt%) / C (700 ° C., 2 hours) Consists of.

<実施例3>
市販カーボンKetjen EC(前述)5gと白金塩4.2gを純水0.5Lに加えて分散させた(接触工程)。これにO.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた(白金水酸化物析出工程)。この分散液をろ過し(担体回収工程)、得られた粉末を100℃で10時間真空乾燥させた(担体乾燥工程)。次に水素ガス中で200℃、2時間保持して還元処理して触媒粉末を得た(熱還元工程)。
<Example 3>
5 g of commercially available carbon Ketjen EC (described above) and 4.2 g of platinum salt were added to 0.5 L of pure water and dispersed (contact process). To this, about 100 mL of 0.1N ammonia was added to adjust the pH to about 10, and a hydroxide was formed and deposited on carbon (platinum hydroxide precipitation step). This dispersion was filtered (carrier recovery step), and the obtained powder was vacuum-dried at 100 ° C. for 10 hours (carrier drying step). Next, it was reduced in hydrogen gas at 200 ° C. for 2 hours to obtain a catalyst powder (thermal reduction step).

上記触媒粉末と塩化ニオブ0.04gを純水0.5Lに加えて分散させた(ニオブ接触工程)。これに1Nアンモニアを滴下し、pHを6とし酸化ニオブを形成した(酸化ニオブ析出工程)。この分散液をろ過し(回収工程)、得られた粉末を100℃で10時間真空乾燥させた(乾燥工程)。次に窒素ガス中で700℃、2時間保持して目的の触媒粉末を得た(焼成工程)。
ここで得られた触媒粉末は、酸化ニオブを白金に対して0.02のモル比で添加した触媒であって、Nb(0.4wt%)/Pt(44.8wt%)/C(700℃、2時間)で構成される。
The catalyst powder and 0.04 g of niobium chloride were added and dispersed in 0.5 L of pure water (niobium contact step). 1N ammonia was added dropwise thereto to adjust the pH to 6 to form niobium oxide (niobium oxide precipitation step). This dispersion was filtered (recovery step), and the obtained powder was vacuum-dried at 100 ° C. for 10 hours (drying step). Next, the target catalyst powder was obtained by maintaining at 700 ° C. for 2 hours in nitrogen gas (firing step).
The catalyst powder obtained here was a catalyst in which niobium oxide was added at a molar ratio of 0.02 to platinum, and Nb (0.4 wt%) / Pt (44.8 wt%) / C (700 ° C., 2 hours) Consists of.

<実施例4>
市販カーボンKetjen EC(前述)5gと白金塩4.2gを純水0.5Lに加えて分散させた(接触工程)。これにO.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた(白金水酸化物析出工程)。この分散液をろ過し(担体回収工程)、得られた粉末を100℃で10時間真空乾燥させた(担体乾燥工程)。次に水素ガス中で200℃、2時間保持して還元処理して触媒粉末を得た(熱還元工程)。
<Example 4>
5 g of commercially available carbon Ketjen EC (described above) and 4.2 g of platinum salt were added to 0.5 L of pure water and dispersed (contact process). To this, about 100 mL of 0.1N ammonia was added to adjust the pH to about 10, and a hydroxide was formed and deposited on carbon (platinum hydroxide precipitation step). This dispersion was filtered (carrier recovery step), and the obtained powder was vacuum-dried at 100 ° C. for 10 hours (carrier drying step). Next, it was reduced in hydrogen gas at 200 ° C. for 2 hours to obtain a catalyst powder (thermal reduction step).

上記触媒粉末と塩化ニオブ0.1gを純水0.5Lに加えて分散させた(ニオブ接触工程)。これに1Nアンモニアを滴下し、pHを6とし酸化ニオブを形成した(酸化ニオブ析出工程)。この分散液をろ過し(回収工程)、得られた粉末を100℃で10時間真空乾燥させた(乾燥工程)。次に窒素ガス中で700℃、2時間保持して目的の触媒粉末を得た(焼成工程)。
ここで得られた触媒粉末は、酸化ニオブを白金に対して0.05のモル比で添加した触媒であって、Nb(1.1wt%)/Pt(44.4wt%)/C(700℃、2時間)で構成される。
The catalyst powder and 0.1 g of niobium chloride were added and dispersed in 0.5 L of pure water (niobium contact step). 1N ammonia was added dropwise thereto to adjust the pH to 6 to form niobium oxide (niobium oxide precipitation step). This dispersion was filtered (recovery step), and the obtained powder was vacuum-dried at 100 ° C. for 10 hours (drying step). Next, the target catalyst powder was obtained by maintaining at 700 ° C. for 2 hours in nitrogen gas (firing step).
The catalyst powder obtained here was a catalyst in which niobium oxide was added at a molar ratio of 0.05 with respect to platinum, and Nb (1.1 wt%) / Pt (44.4 wt%) / C (700 ° C., 2 hours) Consists of.

<実施例5>
市販カーボンKetjen EC(前述)5gと白金塩4.2gを純水0.5Lに加えて分散させた(接触工程)。これにO.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた(白金水酸化物析出工程)。この分散液をろ過し(担体回収工程)、得られた粉末を100℃で10時間真空乾燥させた(担体乾燥工程)。次に水素ガス中で200℃、2時間保持して還元処理して触媒粉末を得た(熱還元工程)。
<Example 5>
5 g of commercially available carbon Ketjen EC (described above) and 4.2 g of platinum salt were added to 0.5 L of pure water and dispersed (contact process). To this, about 100 mL of 0.1N ammonia was added to adjust the pH to about 10, and a hydroxide was formed and deposited on carbon (platinum hydroxide precipitation step). This dispersion was filtered (carrier recovery step), and the obtained powder was vacuum-dried at 100 ° C. for 10 hours (carrier drying step). Next, it was reduced in hydrogen gas at 200 ° C. for 2 hours to obtain a catalyst powder (thermal reduction step).

上記触媒粉末と塩化ニオブ0.2gを純水0.5Lに加えて分散させた(ニオブ接触工程)。これに1Nアンモニアを滴下し、pHを6とし酸化ニオブを形成した(酸化ニオブ析出工程)。この分散液をろ過し(回収工程)、得られた粉末を100℃で10時間真空乾燥させた(乾燥工程)。次に窒素ガス中で700℃、2時間保持して目的の触媒粉末を得た(焼成工程)。   The catalyst powder and 0.2 g of niobium chloride were added and dispersed in 0.5 L of pure water (niobium contact step). 1N ammonia was added dropwise thereto to adjust the pH to 6 to form niobium oxide (niobium oxide precipitation step). This dispersion was filtered (recovery step), and the obtained powder was vacuum-dried at 100 ° C. for 10 hours (drying step). Next, the target catalyst powder was obtained by maintaining at 700 ° C. for 2 hours in nitrogen gas (firing step).

ここで得られた触媒粉末は、酸化ニオブを白金に対して0.1のモル比で添加した触媒であって、Nb(2.0wt%)/Pt(43.7wt%)/C(700℃、2時間)で構成される。また、本触媒粉末は、特願2009−5969号に記載した実施例9の触媒粉末と同一の製造方法によって得られたものである。   The catalyst powder obtained here was a catalyst in which niobium oxide was added at a molar ratio of 0.1 to platinum, and Nb (2.0 wt%) / Pt (43.7 wt%) / C (700 ° C., 2 hours) Consists of. Moreover, this catalyst powder is obtained by the same manufacturing method as the catalyst powder of Example 9 described in Japanese Patent Application No. 2009-5969.

<実施例6>
市販カーボンKetjen EC(前述)5gと白金塩4.2gを純水0.5Lに加えて分散させた(接触工程)。これにO.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた(白金水酸化物析出工程)。この分散液をろ過し(担体回収工程)、得られた粉末を100℃で10時間真空乾燥させた(担体乾燥工程)。次に水素ガス中で200℃、2時間保持して還元処理して触媒粉末を得た(熱還元工程)。
<Example 6>
5 g of commercially available carbon Ketjen EC (described above) and 4.2 g of platinum salt were added to 0.5 L of pure water and dispersed (contact process). To this, about 100 mL of 0.1N ammonia was added to adjust the pH to about 10, and a hydroxide was formed and deposited on carbon (platinum hydroxide precipitation step). This dispersion was filtered (carrier recovery step), and the obtained powder was vacuum-dried at 100 ° C. for 10 hours (carrier drying step). Next, it was reduced in hydrogen gas at 200 ° C. for 2 hours to obtain a catalyst powder (thermal reduction step).

上記触媒粉末と塩化ニオブ0.4gを純水0.5Lに加えて分散させた(ニオブ接触工程)。これに1Nアンモニアを滴下し、pHを6とし酸化ニオブを形成した(酸化ニオブ析出工程)。この分散液をろ過し(回収工程)、得られた粉末を100℃で10時間真空乾燥させた(乾燥工程)。次に窒素ガス中で700℃、2時間保持して目的の触媒粉末を得た(焼成工程)。   The catalyst powder and 0.4 g of niobium chloride were added and dispersed in 0.5 L of pure water (niobium contact step). 1N ammonia was added dropwise thereto to adjust the pH to 6 to form niobium oxide (niobium oxide precipitation step). This dispersion was filtered (recovery step), and the obtained powder was vacuum-dried at 100 ° C. for 10 hours (drying step). Next, the target catalyst powder was obtained by maintaining at 700 ° C. for 2 hours in nitrogen gas (firing step).

ここで得られた触媒粉末は、酸化ニオブを白金に対して0.2のモル比で添加した触媒であって、Nb(4.2wt%)/Pt(42.7wt%)/C(700℃、2時間)で構成される。また、本触媒粉末は、特願2009−5969号に記載した実施例10の触媒粉末と同一の製造方法によって得られたものである。   The catalyst powder obtained here was a catalyst in which niobium oxide was added at a molar ratio of 0.2 with respect to platinum, and Nb (4.2 wt%) / Pt (42.7 wt%) / C (700 ° C., 2 hours) Consists of. Moreover, this catalyst powder was obtained by the same manufacturing method as the catalyst powder of Example 10 described in Japanese Patent Application No. 2009-5969.

(触媒物性の評価)
X線回析(X-ray diffraction:XRD)法により求めた白金粒径、及び公知のC0パルス法から求めたCO吸着量を図1に示す。本図からも明らかなように、前記比較例及び各実施例は、焼成工程における熱処理条件が同じであるため、白金の粒径は、ニオブ添加量とは無関係にほぼ一定である(図1;丸プロット)。一方、CO吸着量(図1;は、白金に対する酸化ニオブの添加量がモル比で0.005(実施例1)〜0.05(実施例4)のときに高く、特に0.01(実施例2)〜0.02(実施例3)のときは最大値を示した。前述のように白金粒径には変化がないため、白金に対して前記モル比の範囲内にある酸化ニオブは、白金の表面性上に何らかの影響を及ぼしていると考えられる。モル比0.02を超えるあたりからCO吸着量が徐々に低下するのは、白金粒子表面が酸化ニオブによって被覆されるためと考えられる。
(Evaluation of catalyst properties)
FIG. 1 shows the platinum particle diameter determined by the X-ray diffraction (XRD) method and the CO adsorption amount determined by the known C0 pulse method. As is clear from this figure, since the heat treatment conditions in the firing process are the same in the comparative example and each example, the particle size of platinum is almost constant regardless of the amount of niobium added (FIG. 1; (Circle plot). On the other hand, the amount of CO adsorption (FIG. 1; is high when the amount of niobium oxide added to platinum is 0.005 (Example 1) to 0.05 (Example 4) in terms of molar ratio, particularly 0.01 (Example 2) to 0.02 ( In Example 3), the maximum value was shown, because the platinum particle size did not change as described above, so that niobium oxide in the molar ratio range with respect to platinum is not suitable for the surface properties of platinum. The reason for the gradual decrease in the amount of CO adsorbed when the molar ratio exceeds 0.02 is thought to be because the surface of the platinum particles is coated with niobium oxide.

なお、触媒成分である白金は、酸化ニオブと合金化せず白金として存在していることを確認した。白金に対する酸化ニオブのモル比が0.005(実施例1)〜0.05(実施例4)のときにXRDから求めたPt格子定数は、それぞれ3.930Å(実施例1)、3.929Å(実施例2)、3.930Å(実施例3)、3.934Å(実施例4)であった。ここで、Pt/Cの格子定数は、3.926±0.05Åの範囲にある。仮に白金と酸化ニオブが白金−ニオブ合金を形成していた場合には白金よりも格子定数が小さくなることが予想される。したがって、上記実施例における触媒は、いずれも白金であって、添加した酸化ニオブとは合金化していないことが明らかになった。   It was confirmed that platinum as a catalyst component was present as platinum without being alloyed with niobium oxide. When the molar ratio of niobium oxide to platinum is 0.005 (Example 1) to 0.05 (Example 4), the Pt lattice constants determined from XRD are 3.930Å (Example 1) and 3.929Å (Example 2), respectively. They were 3.930 kg (Example 3) and 3.934 kg (Example 4). Here, the lattice constant of Pt / C is in the range of 3.926 ± 0.05. If platinum and niobium oxide form a platinum-niobium alloy, the lattice constant is expected to be smaller than that of platinum. Therefore, it was revealed that the catalysts in the above examples were all platinum and were not alloyed with the added niobium oxide.

(MEAによる燃料電池特性の評価)
比較例及び実施例1〜6によって得られた電極触媒について、MEA(電解質膜−電極接合体)評価により電圧性能を測定した。加湿条件は低加湿とした。この調整は、温度設定したバブラー内にガスを導入して水分吸収させることで行った。80℃に設定したバブラーを通過したときに対する相対湿度で約40%を低加湿条件とした。出力電圧は、1.0A/cm2における電圧を測定した値(出力点電圧)を測定した。
(Evaluation of fuel cell characteristics by MEA)
About the electrode catalyst obtained by the comparative example and Examples 1-6, voltage performance was measured by MEA (electrolyte membrane-electrode assembly) evaluation. The humidification condition was low humidification. This adjustment was performed by introducing gas into a temperature-set bubbler to absorb moisture. About 40% relative humidity when passing through a bubbler set at 80 ° C. was set as a low humidification condition. The output voltage was measured by measuring the voltage at 1.0 A / cm 2 (output point voltage).

結果を図2に示す。本発明者らは、特願2009−5969号において、酸化ニオブを白金に対するモル比で0.1(実施例9;本明細書実施例5に相当)、0.2(実施例10;本明細書実施例6に相当)、0.5(実施例11)及び1(実施例12)を添加した触媒(700℃、2時間)についてMEAによる燃料電池特性を検討した。その結果、酸化ニオブを添加していない比較例1に比べて、低加湿出力性能を向上できること示した。しかし、酸化ニオブを白金又は白金に対するモル比で0.005(実施例1:E1)〜0.05(実施例4:E4)の微小添加組成域で含有する燃料電池用電極触媒は、特願2009−5969号で確認した酸化ニオブ含有燃料電池用電極触媒の出力点電圧を大幅に上回ることが判明した。特に、実施例3(E3;酸化ニオブのモル比0.02)においては、実施例6(E6;酸化ニオブのモル比0.2)に対して130mV以上の性能向上が確認された。   The results are shown in FIG. In the Japanese Patent Application No. 2009-5969, the present inventors have used niobium oxide in a molar ratio with respect to platinum of 0.1 (Example 9; equivalent to Example 5 in the present specification), 0.2 (Example 10; Example 6 in the present specification). ), 0.5 (Example 11) and 1 (Example 12) added to the catalyst (700 ° C., 2 hours), the fuel cell characteristics by MEA were examined. As a result, it was shown that the low humidification output performance can be improved as compared with Comparative Example 1 in which niobium oxide was not added. However, an electrode catalyst for a fuel cell containing niobium oxide in a minute addition composition range of 0.005 (Example 1: E1) to 0.05 (Example 4: E4) in terms of molar ratio to platinum or platinum is disclosed in Japanese Patent Application No. 2009-5969. It was found that the output point voltage of the niobium oxide-containing fuel cell electrode catalyst confirmed in (1) was significantly higher. In particular, in Example 3 (E3; molar ratio of niobium oxide 0.02), an improvement in performance of 130 mV or more was confirmed with respect to Example 6 (E6; molar ratio of niobium oxide 0.2).

以上の結果から、白金又は白金合金中の白金に対して酸化ニオブを0.005〜0.05のモル比で添加することによって、低加湿条件下における燃料電池の出力性能を飛躍的に向上させることが可能である。   From the above results, it is possible to drastically improve the output performance of fuel cells under low humidification conditions by adding niobium oxide in a molar ratio of 0.005 to 0.05 to platinum in platinum or platinum alloy. is there.

C1:比較例
E1:実施例1
E2:実施例2
E3:実施例3
E4:実施例4
E5:実施例5
E6:実施例6
C1: Comparative example
E1: Example 1
E2: Example 2
E3: Example 3
E4: Example 4
E5: Example 5
E6: Example 6

Claims (6)

金及Nb 2 O 5 を含み、かつNb 2 O 5 と白金とのモル比がNb 2 O 5 :白金=0.005:1〜0.03:1である燃料電池用電極触媒。 Platinum及 beauty include Nb 2 O 5, and Nb 2 O 5 and the molar ratio of platinum is Nb 2 O 5: Platinum = 0.005: 1 to 0.03: fuel cell electrode catalyst is 1. 金が担体に担持されている、請求項1に記載の燃料電池用電極触媒。 Platinum is supported on a carrier, the electrode catalyst for a fuel cell according to claim 1. 担体がカーボンである、請求項2に記載の燃料電池用電極触媒。   The electrode catalyst for fuel cells according to claim 2, wherein the support is carbon. 金とNb 2 O 5 が合金化されていない、請求項1〜3のいずれか1項に記載の燃料電池用電極触媒。 Platinum and Nb 2 O 5 is not alloyed, fuel cell electrode catalyst according to any one of claims 1 to 3. Nb 2 O 5 金とのモル比がNb 2 O 5 :白金=0.005:10.03:1となるようにNb 2 O 5 を、白金を担持した担体に形成させて得られうる燃料電池用電極触媒。 Nb 2 O 5 and platinum with a molar ratio of Nb 2 O 5: Platinum = 0.005: 1 to 0.03: 1 and a Nb 2 O 5 such that, may be obtained by forming a platinum to collateral lifting the carrier Fuel cell electrode catalyst. 請求項1〜5のいずれか1項に記載の燃料電池用電極触媒を備えた固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising the fuel cell electrode catalyst according to any one of claims 1 to 5.
JP2009159999A 2009-07-06 2009-07-06 Fuel cell electrode catalyst and polymer electrolyte fuel cell using the same Active JP5390965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009159999A JP5390965B2 (en) 2009-07-06 2009-07-06 Fuel cell electrode catalyst and polymer electrolyte fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009159999A JP5390965B2 (en) 2009-07-06 2009-07-06 Fuel cell electrode catalyst and polymer electrolyte fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2011014506A JP2011014506A (en) 2011-01-20
JP5390965B2 true JP5390965B2 (en) 2014-01-15

Family

ID=43593175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009159999A Active JP5390965B2 (en) 2009-07-06 2009-07-06 Fuel cell electrode catalyst and polymer electrolyte fuel cell using the same

Country Status (1)

Country Link
JP (1) JP5390965B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252865A (en) * 2011-06-02 2012-12-20 Nippon Steel & Sumitomo Metal Electrode material and fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171647A (en) * 2007-01-10 2008-07-24 Toyota Motor Corp Catalyst for fuel cell, cathode for fuel cell, and solid polymer fuel cell equipped with the same
JP2009193956A (en) * 2008-01-16 2009-08-27 Toyota Motor Corp Electrode catalyst for fuel cell, and solid polymer fuel cell using the same

Also Published As

Publication number Publication date
JP2011014506A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
US8017548B2 (en) Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith
JP4713959B2 (en) Fuel cell supported catalyst and fuel cell
JP4971898B2 (en) Supported catalyst for fuel cell and method for producing the same, electrode for fuel cell including the supported catalyst, membrane electrode assembly including the electrode, and fuel cell including the membrane electrode assembly
JP4401059B2 (en) Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process
JP4575268B2 (en) Catalyst, electrode for fuel cell fuel electrode, and fuel cell
Chun et al. A synthesis of CO-tolerant Nb2O5-promoted Pt/C catalyst for direct methanol fuel cell; its physical and electrochemical characterization
JP5209474B2 (en) Electrode catalyst, method for producing electrode catalyst, and method for suppressing coarsening of catalyst particles
EP0838872A2 (en) Improved catalyst
US20120178018A1 (en) Catalyst with metal oxide doping for fuel cells
US20170200956A1 (en) Electrode catalyst for fuel cell and method of producing electrode catalyst for fuel cell
WO2009096356A1 (en) Fuel cell electrode catalyst, method for manufacturing the same, and solid polymer type fuel cell using the same
KR20120115559A (en) Process for producing a catalyst and catalyst
Zignani et al. Investigation of PtNi/C as methanol tolerant electrocatalyst for the oxygen reduction reaction
JP5489740B2 (en) Method for producing ternary electrode catalyst for fuel cell, and polymer electrolyte fuel cell using the same
JP4374036B2 (en) Polymer solid oxide fuel cell catalyst, membrane electrode assembly and fuel cell
JP2009193956A (en) Electrode catalyst for fuel cell, and solid polymer fuel cell using the same
EP2413407B1 (en) Electrode catalyst and method of preparing electrode catalyst for fuel cell, and membrane electrode assembly and fuel cell including same
JP2011014475A (en) Electrode catalyst for fuel cell, manufacturing method thereof, and solid polymer fuel cell
JP6460975B2 (en) Fuel cell electrode catalyst
JP2005005257A (en) Air electrode catalyst for fuel cell, and manufacturing method therefor
WO2009091025A1 (en) Electrode catalyst for fuel cell and solid polymer electrolyte fuel cell using the electrode catalyst
JP5390965B2 (en) Fuel cell electrode catalyst and polymer electrolyte fuel cell using the same
JP4958133B2 (en) Electrode catalyst for hydrogen electrode of low temperature fuel cell
US11596926B2 (en) Method for preparing ternary alloy catalyst with polydopamine coating and ternary alloy catalyst prepared thereby
JP2010027506A (en) Fuel cell electrode catalyst and its manufacturing method, and solid polymer fuel cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R151 Written notification of patent or utility model registration

Ref document number: 5390965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250