JP5388294B2 - Method for producing optically active amino alcohol - Google Patents

Method for producing optically active amino alcohol Download PDF

Info

Publication number
JP5388294B2
JP5388294B2 JP2009244061A JP2009244061A JP5388294B2 JP 5388294 B2 JP5388294 B2 JP 5388294B2 JP 2009244061 A JP2009244061 A JP 2009244061A JP 2009244061 A JP2009244061 A JP 2009244061A JP 5388294 B2 JP5388294 B2 JP 5388294B2
Authority
JP
Japan
Prior art keywords
formula
group
compound represented
added
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009244061A
Other languages
Japanese (ja)
Other versions
JP2010215606A (en
Inventor
勇 椎名
健也 中田
圭輔 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2009244061A priority Critical patent/JP5388294B2/en
Publication of JP2010215606A publication Critical patent/JP2010215606A/en
Application granted granted Critical
Publication of JP5388294B2 publication Critical patent/JP5388294B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、光学活性アミノアルコールの製造方法に関し、より詳細には、末端アミノ基を有する光学活性1,2−アミノアルコールの製造方法に関する。   The present invention relates to a method for producing an optically active amino alcohol, and more particularly to a method for producing an optically active 1,2-amino alcohol having a terminal amino group.

光学活性1,2−アミノアルコールは、医薬品、キラルビルディングブロック、光学活性配位子、生化学研究試料等として幅広く利用される最も有用な有機分子の1つである。したがって、これらの化合物を迅速かつ簡便に供給する不斉合成法の開発は、非常に重要な研究課題である。   Optically active 1,2-aminoalcohol is one of the most useful organic molecules widely used as pharmaceuticals, chiral building blocks, optically active ligands, biochemical research samples and the like. Therefore, development of an asymmetric synthesis method for supplying these compounds quickly and easily is a very important research subject.

従来、末端水酸基を有する光学活性1,2−アミノアルコール(光学活性な2−アミノ−1−プロパノール型第1級アルコール)の製造方法としては、光学活性なアミノ酸を利用する方法が知られている。すなわち、光学活性な天然型構造を有する2−アミノ酸は入手が容易であるため、これら約20種類のカルボン酸の還元体である光学活性1,2−アミノアルコールを容易に得ることができる。
一方、末端アミノ基を有する光学活性1,2−アミノアルコール(光学活性な1−アミノ−2−プロパノール型第2級アルコール)の効率的な製造方法は少なく、有効な製造方法の確立が求められている。
Conventionally, as a method for producing optically active 1,2-aminoalcohol having a terminal hydroxyl group (optically active 2-amino-1-propanol type primary alcohol), a method using an optically active amino acid is known. . That is, since 2-amino acids having an optically active natural structure are easily available, optically active 1,2-aminoalcohols, which are reduced forms of about 20 types of carboxylic acids, can be easily obtained.
On the other hand, there are few efficient production methods of optically active 1,2-aminoalcohol having a terminal amino group (optically active 1-amino-2-propanol type secondary alcohol), and establishment of an effective production method is required. ing.

Tetrahedron:Asymmetry, 2003, 14, p.3297−3300Tetrahedron: Asymmetry, 2003, 14, p. 3297-3300 Org. Lett., 2004, 6, p.3973−3975Org. Lett. , 2004, 6, p. 3973-3975

これまで、末端アミノ基を有する光学活性1,2−アミノアルコールの製造方法としては、キラルなカルボン酸とのジアステレオマー塩形成による分割(非特許文献1)、あるいはラセミ型エポキシド/メソ型エポキシドのアンモノリシスによる不斉開環(非特許文献2)等が提案されている。   Until now, optically active 1,2-amino alcohols having terminal amino groups have been prepared by resolution by diastereomeric salt formation with a chiral carboxylic acid (Non-patent Document 1), or racemic epoxide / meso epoxide. Asymmetric ring opening by ammonolysis of (Non-patent Document 2) and the like have been proposed.

しかしながら、非特許文献1の方法は基質一般性が低いという課題があった。また、非特許文献2の方法は、(1)窒素求核剤がエポキシドに攻撃する際の位置選択性が低い、(2)生成したアミノアルコールが再びエポキシドと反応して第2級アミンを生成する副反応が起こり得る、(3)反応性が一般に低く、目的物の収率が不十分である、といった課題があった。   However, the method of Non-Patent Document 1 has a problem of low substrate generality. Further, the method of Non-Patent Document 2 is (1) low regioselectivity when the nitrogen nucleophile attacks the epoxide, (2) the produced amino alcohol reacts with the epoxide again to produce a secondary amine. (3) Reactivity is generally low and the yield of the target product is insufficient.

本発明は、このような課題に鑑みてなされたものであり、末端アミノ基を有する光学活性1,2−アミノアルコールのより実用的な製造方法を提供することを目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the more practical manufacturing method of the optically active 1, 2- amino alcohol which has a terminal amino group.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、アミノ基に変換可能なベンゾオキサゾールをC−1位に有するラセミのカルビノールを基質として速度論的光学分割を行い、得られた両エナンチオマーを適切に構造変換することで、末端アミノ基を有する光学活性1,2−アミノアルコールへと誘導可能であることを見出した。そして、そのような知見から基質を一般化することにより、本発明を完成するに至った。より具体的には、本発明は以下のとおりである。 The inventors of the present invention have made extensive studies to solve the above problems. As a result, performs a kinetic resolution the Karubino Le racemic having a convertible benzoxazole the amino group to the C-1 position as the substrate, the both enantiomers obtained by properly structure conversion, terminal amino groups It was found that it can be derived into an optically active 1,2-aminoalcohol having Then, the present invention has been completed by generalizing the substrate from such knowledge. More specifically, the present invention is as follows.

[1] 下記式(1)

Figure 0005388294
[式中、Rは一価の有機基を示し、Arは置換基を有していてもよいベンゼン環又はナフタレン環を示す。]
で表される化合物のオキサゾール部位を還元し、次いでアミノ基の保護基を脱保護することにより下記式(2)
Figure 0005388294
[式中、Rは上記式(1)と同じである。]
で表される化合物を得ることを特徴とする光学活性アミノアルコールの製造方法。 [1] The following formula (1)
Figure 0005388294
[Wherein, R 1 represents a monovalent organic group, and Ar represents a benzene ring or a naphthalene ring which may have a substituent. ]
In the following formula (2), the oxazole moiety of the compound represented by formula (1) is reduced and then the amino protecting group is deprotected.
Figure 0005388294
[Wherein, R 1 is the same as the above formula (1). ]
A process for producing an optically active amino alcohol, characterized in that a compound represented by the formula:

[2] 下記式(1)

Figure 0005388294
[式中、Rは一価の有機基を示し、Arは置換基を有していてもよいベンゼン環又はナフタレン環を示す。]
で表される化合物の水酸基を保護することにより下記式(3)
Figure 0005388294
[式中、Rは水酸基の保護基を示し、R、Arは上記式(1)と同じである。]
で表される化合物を調製し、次いでオキサゾール部位を還元することにより下記式(4)
Figure 0005388294
[式中、R、R、Arは上記式()と同じである。]
で表される化合物を調製し、次いでアミノ基の保護基を脱保護することにより下記式(5)
Figure 0005388294
[式中、R、Rは上記式()と同じである。]
で表される化合物を調製し、次いで水酸基の保護基を脱保護することにより下記式(2)
Figure 0005388294
[式中、Rは上記式(1)と同じである。]
で表される化合物を得ることを特徴とする光学活性アミノアルコールの製造方法。 [2] The following formula (1)
Figure 0005388294
[Wherein, R 1 represents a monovalent organic group, and Ar represents a benzene ring or a naphthalene ring which may have a substituent. ]
By protecting the hydroxyl group of the compound represented by formula (3)
Figure 0005388294
[Wherein R 2 represents a hydroxyl-protecting group, and R 1 and Ar are the same as those in the above formula (1). ]
The compound represented by the formula (4) is prepared by reducing the oxazole moiety:
Figure 0005388294
[Wherein, R 1 , R 2 and Ar are the same as those in the above formula ( 3 ). ]
And then deprotecting the protecting group of the amino group to produce a compound represented by the following formula (5):
Figure 0005388294
[Wherein, R 1 and R 2 are the same as those in the above formula ( 3 ). ]
And then deprotecting the protecting group of the hydroxyl group, thereby removing the following formula (2):
Figure 0005388294
[Wherein, R 1 is the same as the above formula (1). ]
A process for producing an optically active amino alcohol, characterized in that a compound represented by the formula:

[3] 下記式(6)

Figure 0005388294
[式中、R、Arは上記式(1)と同じである。]
で表されるラセミ体の化合物を速度論的光学分割することにより上記式(1)で表される化合物を調製することを特徴とする上記[1]又は[2]記載の光学活性アミノアルコールの製造方法。 [3] The following formula (6)
Figure 0005388294
[Wherein, R 1 and Ar are the same as those in the above formula (1). ]
The compound represented by the above formula (1) is prepared by kinetic optical resolution of the racemic compound represented by the above formula [1] or [2]: Production method.

本発明によれば、末端アミノ基を有する光学活性1,2−アミノアルコールをより実用的な方法で製造することができる。   According to the present invention, an optically active 1,2-aminoalcohol having a terminal amino group can be produced by a more practical method.

≪第1の実施形態≫
本発明の第1の実施形態では、下記式(1)

Figure 0005388294
[式中、Rは一価の有機基を示し、Arは置換基を有していてもよいベンゼン環又はナフタレン環を示す。]
で表される化合物のオキサゾール部位を還元し、次いでアミノ基の保護基を脱保護することにより下記式(2)
Figure 0005388294
[式中、Rは上記式(1)と同じである。]
で表される化合物を得る。 << First Embodiment >>
In the first embodiment of the present invention, the following formula (1)
Figure 0005388294
[Wherein, R 1 represents a monovalent organic group, and Ar represents a benzene ring or a naphthalene ring which may have a substituent. ]
In the following formula (2), the oxazole moiety of the compound represented by formula (1) is reduced and then the amino protecting group is deprotected.
Figure 0005388294
[Wherein, R 1 is the same as the above formula (1). ]
To obtain a compound represented by:

上記式(1)で表される化合物は光学活性な第2級アルコールであり、ラセミ体の第2級アルコールを後述の方法で速度論的光学分割することにより調製することができる。
上記式(1)中、Rは一価の有機基を示す。一価の有機基としては、特に限定されず、任意のものを用いることができる。具体的には、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、ヘテロアリール基、アリールアルキル基等が挙げられる。
The compound represented by the above formula (1) is an optically active secondary alcohol, and can be prepared by subjecting a racemic secondary alcohol to kinetic optical resolution by the method described later.
In the above formula (1), R 1 represents a monovalent organic group. The monovalent organic group is not particularly limited, and any one can be used. Specific examples include an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an aryl group, a heteroaryl group, and an arylalkyl group.

ここで、上記式(1)で表される化合物を後述の方法により調製する場合、Rとしては、不斉炭素原子に隣接する原子が飽和炭素原子であるものが好ましい。これにより、上記式(1)で表される化合物を高いエナンチオ過剰率ee及び高い反応速度比sで調製することができる。これは、不斉炭素原子に隣接する炭素原子の有する多重結合がエステル生成反応の立体選択性に寄与しているところ、不斉炭素原子の両隣の原子が不飽和炭素原子である場合には、立体選択性が低下するためである。
なお、Rのうち、不斉炭素原子に隣接する原子が3重結合により他の原子と結合している場合、この3重結合をコバルト錯体で保護することにより、立体選択性を高めることができる。コバルト錯体としては、一酸化炭素を配位子とするコバルト錯体、トリフェニルホスフィンを配位子とするコバルト錯体等が挙げられる。
Here, when the compound represented by the above formula (1) is prepared by the method described later, as R 1 , an atom adjacent to the asymmetric carbon atom is preferably a saturated carbon atom. Thereby, the compound represented by the above formula (1) can be prepared with a high enantio-excess ratio ee and a high reaction rate ratio s. This is because the multiple bond of the carbon atom adjacent to the asymmetric carbon atom contributes to the stereoselectivity of the ester formation reaction. When the atoms adjacent to the asymmetric carbon atom are unsaturated carbon atoms, This is because the stereoselectivity decreases.
In addition, when an atom adjacent to the asymmetric carbon atom in R 1 is bonded to another atom by a triple bond, the stereoselectivity can be improved by protecting the triple bond with a cobalt complex. it can. Examples of the cobalt complex include a cobalt complex having carbon monoxide as a ligand and a cobalt complex having triphenylphosphine as a ligand.

上記式(1)中、Arは置換基を有していてもよいベンゼン環又はナフタレン環を示す。Arの置換基としては、アルキル基、アルコキシ基、アリール基、ハロゲン原子等が挙げられる。   In said formula (1), Ar shows the benzene ring or naphthalene ring which may have a substituent. Examples of the substituent for Ar include an alkyl group, an alkoxy group, an aryl group, and a halogen atom.

上記式(1)で表される化合物のオキサゾール部位を還元するには、水素化アルミニウムリチウム、水素化ビス(2−メトキシエトキシ)アルミニウムナトリウム等の還元剤を好ましく用いることができる。還元剤の添加量は、特に限定されるものではないが、上記式(1)で表される化合物1当量に対して1〜5当量が用いられる。還元の際に用いる溶媒は、還元剤を不活化させないものであれば特に限定されない。具体的には、ジエチルエーテル、テトラヒドロフラン、クロロホルム等が挙げられる。   In order to reduce the oxazole moiety of the compound represented by the above formula (1), a reducing agent such as lithium aluminum hydride or sodium bis (2-methoxyethoxy) aluminum hydride can be preferably used. Although the addition amount of a reducing agent is not specifically limited, 1-5 equivalent is used with respect to 1 equivalent of compounds represented by the said Formula (1). The solvent used in the reduction is not particularly limited as long as it does not inactivate the reducing agent. Specific examples include diethyl ether, tetrahydrofuran, chloroform, and the like.

オキサゾール部位の還元後、アミノ基の保護基を脱保護するには、硝酸セリウム(IV)アンモニウム、2,3−ジクロロ−5,6−ジシアノ−p−ベンゾキノン等の酸化剤を好ましく用いることができる。酸化剤の添加量は、特に限定されるものではないが、上記式(1)で表される化合物1当量に対して1〜5当量が用いられる。脱保護の際に用いる溶媒は、酸化剤を不活化させないものであれば特に限定されない。具体的には、アセトニトリル、テトラヒドロフラン、メタノール等の水と混ざり合う溶媒が挙げられる。   In order to deprotect the protecting group of the amino group after reduction of the oxazole moiety, an oxidizing agent such as cerium (IV) ammonium nitrate, 2,3-dichloro-5,6-dicyano-p-benzoquinone can be preferably used. . Although the addition amount of an oxidizing agent is not specifically limited, 1-5 equivalent is used with respect to 1 equivalent of compounds represented by the said Formula (1). The solvent used for deprotection is not particularly limited as long as it does not inactivate the oxidizing agent. Specific examples include solvents that are mixed with water such as acetonitrile, tetrahydrofuran, and methanol.

このようにしてアミノ基の保護基を脱保護した後は、一般的な単離精製法を用いて、上記式(2)で表される化合物を単離すればよい。具体的には、処理液を塩基性にしてから目的の化合物を有機溶媒で抽出し、濃縮・クロマト精製・晶析等の一般的な精製法を組み合わせて単離することができる。   After deprotecting the amino-protecting group in this manner, the compound represented by the above formula (2) may be isolated using a general isolation and purification method. Specifically, after the treatment liquid is made basic, the target compound can be extracted with an organic solvent and isolated by combining general purification methods such as concentration, chromatographic purification, and crystallization.

以下、上記式(1)で表される化合物の調製方法について説明する。
上記式(1)で表される化合物は、本発明者らによる文献(I. Shiina, K. Nakata, Tetrahedron Lett., 2007, 48, p.8314)を参考に、下記式(6)で表されるラセミ体の化合物(上記式(1)で表される化合物のラセミ体)を速度論的光学分割することにより調製することができる。具体的には、下記式(6)で表されるラセミ体の化合物とカルボン酸とを、不斉エステル化触媒及びカルボン酸無水物の存在下で反応させ、ラセミ体の化合物のうち一方のエナンチオマーを選択的にエステル化することにより、他方のエナンチオマーとして得ることができる。

Figure 0005388294
[式中、R、Arは上記式(1)と同じである。] Hereinafter, a method for preparing the compound represented by the above formula (1) will be described.
The compound represented by the above formula (1) is represented by the following formula (6) with reference to the literature by the present inventors (I. Shiina, K. Nakata, Tetrahedron Lett., 2007, 48, p. 8314). Can be prepared by kinetic optical resolution of the racemic compound (racemate of the compound represented by the above formula (1)). Specifically, a racemic compound represented by the following formula (6) is reacted with a carboxylic acid in the presence of an asymmetric esterification catalyst and a carboxylic acid anhydride, and one of the enantiomers of the racemic compound is reacted. Can be obtained as the other enantiomer by selective esterification.
Figure 0005388294
[Wherein, R 1 and Ar are the same as those in the above formula (1). ]

上記カルボン酸としては、特に限定されず、任意のものを用いることができる。例えば、RCOOHで表されるカルボン酸において、Rがアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、ヘテロアリール基、アリールアルキル基等であるものが挙げられる。 It does not specifically limit as said carboxylic acid, Arbitrary things can be used. For example, in the carboxylic acid represented by R a COOH, those in which R a is an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an arylalkyl group, and the like can be mentioned. .

上記不斉エステル化触媒としては、下記式(a)〜(d)のいずれかで表されるものを好適に用いることができる。

Figure 0005388294
As said asymmetric esterification catalyst, what is represented by either of following formula (a)-(d) can be used conveniently.
Figure 0005388294

上記式(a)〜(d)中、Xは下記の置換基のいずれかを示す。Rはアルキル基、アシル基、シリル基等の保護基である。

Figure 0005388294
In the above formulas (a) to (d), X represents any of the following substituents. R b is a protecting group such as an alkyl group, an acyl group, and a silyl group.
Figure 0005388294

上記式(a)〜(d)で表される不斉エステル化触媒のうち、上記式(a)、(b)で表され、Xがフェニル基である触媒は、それぞれ(+)−テトラミソール、(−)−テトラミソールと称される。また、上記式(c)、(d)で表され、Xがフェニル基である触媒は、それぞれ(+)−ベンゾテトラミソール、(−)−ベンゾテトラミソールと称される。これらの触媒は、市販品として入手することもでき、Xで表される置換基を側鎖として有するアミノ酸を用いて合成することもできる。   Among the asymmetric esterification catalysts represented by the above formulas (a) to (d), the catalysts represented by the above formulas (a) and (b), wherein X is a phenyl group, are (+)-tetramisol, It is called (−)-tetramisole. The catalysts represented by the above formulas (c) and (d), wherein X is a phenyl group, are referred to as (+)-benzotetramisole and (-)-benzotetramisole, respectively. These catalysts can also be obtained as commercial products, and can also be synthesized using amino acids having a substituent represented by X as a side chain.

上記カルボン酸無水物は、脱水縮合剤として作用する。カルボン酸無水物としては、安息香酸、フェニル基にアルキル基、アルコキシ基、アミノ基、アルコキシアルキル基等の電子供与性基が結合した安息香酸、又はα位が4級炭素である多置換カルボン酸から得られるものが好ましく、安息香酸、炭素数1〜3のアルキル基又はアルコキシ基が結合した1〜3置換の安息香酸、ピバル酸、1−フェニル−1−シクロペンタンカルボン酸、2−メチル−2−フェニルプロピオン酸、又は2,2−ジフェニルプロピオン酸から得られるものがより好ましい。   The carboxylic acid anhydride acts as a dehydration condensation agent. Examples of the carboxylic acid anhydride include benzoic acid, benzoic acid in which an electron donating group such as an alkyl group, an alkoxy group, an amino group, and an alkoxyalkyl group is bonded to a phenyl group, or a polysubstituted carboxylic acid in which the α-position is a quaternary carbon. Are preferably obtained from benzoic acid, 1 to 3 substituted benzoic acid, pivalic acid, 1-phenyl-1-cyclopentanecarboxylic acid, 2-methyl- What is obtained from 2-phenylpropionic acid or 2,2-diphenylpropionic acid is more preferable.

上記式(1)で表される化合物の調製は、溶媒中に、上記式(6)で表される化合物、カルボン酸、不斉エステル化触媒、及びカルボン酸無水物を添加することによって行われる。溶媒としては、ジクロロメタン、クロロホルム等のハロゲン化アルキル類、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、tert−ブチルメチルエーテル、シクロペンチルメチルエーテル等のエーテル類、トルエン、クロロベンゼン、トリフルオロメチルベンゼン(ベンゾトリフルオライド)、ベンゼン等の芳香族化合物が挙げられる。また、反応進行に伴って生成するカルボン酸無水物由来の酸を中和するため、反応系内に塩基を添加することが好ましい。この塩基としては、求核性を有さない有機塩基(トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン)が好ましい。
溶媒中への添加順序は任意であるが、カルボン酸を含む溶液中に、カルボン酸無水物、塩基、不斉エステル化触媒、上記式(6)で表される化合物を順次加えることが好ましい。
The compound represented by the above formula (1) is prepared by adding the compound represented by the above formula (6), a carboxylic acid, an asymmetric esterification catalyst, and a carboxylic acid anhydride to a solvent. . Examples of the solvent include alkyl halides such as dichloromethane and chloroform, ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, and cyclopentyl methyl ether, toluene, chlorobenzene, trifluoromethylbenzene (benzotrifluoride), Aromatic compounds such as benzene can be mentioned. Moreover, in order to neutralize the acid derived from the carboxylic acid anhydride generated as the reaction proceeds, it is preferable to add a base to the reaction system. As this base, an organic base having no nucleophilicity (trimethylamine, triethylamine, diisopropylethylamine) is preferable.
The order of addition to the solvent is arbitrary, but it is preferable to sequentially add the carboxylic acid anhydride, the base, the asymmetric esterification catalyst, and the compound represented by the above formula (6) to the solution containing the carboxylic acid.

それぞれの添加量は、特に限定されるものではないが、上記式(6)で表される化合物1当量に対して、カルボン酸0.5〜0.75当量、不斉エステル化触媒1〜10モル%、カルボン酸無水物0.6〜1.2当量、塩基1.2〜2.4当量が用いられる。
反応温度は−23〜30℃が好ましく、反応時間は10分間〜48時間が好ましい。
Each addition amount is not particularly limited, but 0.5 to 0.75 equivalents of carboxylic acid and 1 to 10 of the asymmetric esterification catalyst with respect to 1 equivalent of the compound represented by the above formula (6). Mol%, carboxylic acid anhydride 0.6-1.2 equivalents, base 1.2-2.4 equivalents are used.
The reaction temperature is preferably −23 to 30 ° C., and the reaction time is preferably 10 minutes to 48 hours.

このようにして上記式(6)で表される化合物を速度論的光学分割した後は、必要に応じて上記式(1)で表される化合物の濃縮処理を行い、エナンチオ過剰率eeをさらに高めてもよい。具体的には、ヘキサン/酢酸エチル混合溶媒、石油エーテル/ジクロロメタン混合溶媒、あるいは石油エーテル/ジエチルエーテル混合溶媒より再結晶することで、光学的に純粋な化合物を得ることができる。   After the kinetic optical resolution of the compound represented by the above formula (6) in this way, the compound represented by the above formula (1) is concentrated as necessary to further increase the enantiomeric excess ee. May be raised. Specifically, an optically pure compound can be obtained by recrystallization from a hexane / ethyl acetate mixed solvent, petroleum ether / dichloromethane mixed solvent, or petroleum ether / diethyl ether mixed solvent.

≪第2の実施形態≫
本発明の第2の実施形態は、第1の実施形態で説明した製造方法の迂回ルートに相当する。この実施形態では、まず上記式(1)で表される化合物の水酸基を保護することにより下記式(3)

Figure 0005388294
[式中、Rは水酸基の保護基を示し、R、Arは上記式(1)と同じである。]
で表される化合物を調製する。 << Second Embodiment >>
The second embodiment of the present invention corresponds to the detour route of the manufacturing method described in the first embodiment. In this embodiment, first, by protecting the hydroxyl group of the compound represented by the formula (1), the following formula (3)
Figure 0005388294
[Wherein R 2 represents a hydroxyl-protecting group, and R 1 and Ar are the same as those in the above formula (1). ]
The compound represented by is prepared.

この水酸基の保護は、一般的な方法で行えばよい。保護基としては、ベンジル基、アルキル基、アセタール基、シリル基等が挙げられる。   The protection of the hydroxyl group may be performed by a general method. Examples of the protecting group include a benzyl group, an alkyl group, an acetal group, and a silyl group.

次いで上記式(3)で表される化合物のオキサゾール部位を還元することにより下記式(4)

Figure 0005388294
[式中、R、R、Arは上記式()と同じである。]
で表される化合物を調製し、次いでアミノ基の保護基を脱保護することにより下記式(5)
Figure 0005388294
[式中、R、Rは上記式()と同じである。]
で表される化合物を調製する。 Next, by reducing the oxazole moiety of the compound represented by the above formula (3), the following formula (4)
Figure 0005388294
[Wherein, R 1 , R 2 and Ar are the same as those in the above formula ( 3 ). ]
And then deprotecting the protecting group of the amino group to produce a compound represented by the following formula (5):
Figure 0005388294
[Wherein, R 1 and R 2 are the same as those in the above formula ( 3 ). ]
The compound represented by is prepared.

オキサゾール部位の還元やアミノ基の保護基の脱保護は、第1の実施形態と同様にして行うことができる。   Reduction of the oxazole moiety and deprotection of the amino protecting group can be carried out in the same manner as in the first embodiment.

次いで上記式(5)で表される化合物の水酸基の保護基を脱保護することにより上記式(2)で表される化合物を得る。この水酸基の脱保護は、一般的な方法で行えばよい。具体的には、パラジウムを触媒とした水素添加反応等を利用することができる。   Subsequently, the compound represented by the above formula (2) is obtained by deprotecting the hydroxyl-protecting group of the compound represented by the above formula (5). This hydroxyl group deprotection may be performed by a general method. Specifically, a hydrogenation reaction using palladium as a catalyst can be used.

このようにして水酸基の保護基を脱保護した後は、一般的な単離精製法を用いて、上記式(2)で表される化合物を単離すればよい。具体的には、処理液を塩基性にしてから目的の化合物を有機溶媒で抽出し、濃縮・クロマト精製・晶析等の一般的な精製法を組み合わせて単離することができる。   After deprotecting the hydroxyl-protecting group in this manner, the compound represented by the above formula (2) may be isolated using a general isolation and purification method. Specifically, after the treatment liquid is made basic, the target compound can be extracted with an organic solvent and isolated by combining general purification methods such as concentration, chromatographic purification, and crystallization.

なお、上記式(5)で表される化合物は水酸基が保護されたアミノアルコールであるが、アミノ基が保護されたアミノアルコールも容易に調製することができる。
具体的には、上記式(5)で表される化合物のアミノ基を保護することにより下記式(10)

Figure 0005388294
[式中、Rはアミノ基の保護基を示し、R、Rは上記式()と同じである。]
で表される化合物を調製し、次いで上記式(10)で表される化合物の水酸基の保護基を脱保護することにより下記式(11)
Figure 0005388294
[式中、R、Rは上記式(10)と同じである。]
で表される化合物を得ることができる。このアミノ基の保護は、一般的な方法で行えばよい。保護基としては、tert−ブトキシカルボニル基、ベンジルオキシカルボニル基等が挙げられる。水酸基の脱保護については上述と同様である。 In addition, although the compound represented by the said Formula (5) is an amino alcohol by which the hydroxyl group was protected, the amino alcohol by which the amino group was protected can also be prepared easily.
Specifically, by protecting the amino group of the compound represented by the above formula (5), the following formula (10)
Figure 0005388294
[Wherein, R 4 represents an amino-protecting group, and R 1 and R 2 are the same as those in the above formula ( 3 ). ]
And then deprotecting the protecting group for the hydroxyl group of the compound represented by the formula (10).
Figure 0005388294
[Wherein, R 1 and R 4 are the same as those in the above formula (10). ]
Can be obtained. The amino group may be protected by a general method. Examples of the protecting group include a tert-butoxycarbonyl group and a benzyloxycarbonyl group. The deprotection of the hydroxyl group is the same as described above.

以下、本発明の実施例を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below, but the scope of the present invention is not limited to these examples.

≪ラセミ体の第2級アルコールの速度論的光学分割(1)≫

Figure 0005388294
≪Kinetic optical resolution of racemic secondary alcohol (1) ≫
Figure 0005388294

上記反応式に示すように、ラセミ体の第2級アルコールを含むジクロロメタン溶液に対して、0.50当量の3−フェニルプロピオン酸、1.2当量のジイソプロピルエチルアミン、5モル%の(+)−ベンゾテトラミソール((+)−BTM)、及び0.60当量のカルボン酸無水物を室温で順次添加した。カルボン酸無水物としては、安息香酸無水物(BzO)、p−メトキシ安息香酸無水物(PMBA)、ピバル酸無水物(PivO)のいずれかを用いた。そして、反応混合液を室温で12時間反応させることにより、対応する光学活性なエステル及び未反応の第2級アルコールを得た。結果を表1に示す。 As shown in the above reaction formula, 0.50 equivalents of 3-phenylpropionic acid, 1.2 equivalents of diisopropylethylamine, 5 mol% of (+) − with respect to a dichloromethane solution containing a racemic secondary alcohol. Benzotetramisole ((+)-BTM) and 0.60 equivalents of carboxylic anhydride were added sequentially at room temperature. As the carboxylic anhydride, benzoic anhydride (Bz 2 O), p-methoxybenzoic anhydride (PMBA), or pivalic anhydride (Piv 2 O) was used. The reaction mixture was reacted at room temperature for 12 hours to obtain the corresponding optically active ester and unreacted secondary alcohol. The results are shown in Table 1.

なお、エナンチオ過剰率eeはキラルカラムによるHPLC分析法により決定した。また、反応速度比sは、Kaganらの方法(Top. Stereochem., 1988, 18, p.249−330)に従い、s=[ln(1−C)(1−生成物のee)]/[ln(1−C)(1+生成物のee)]として算出した。   The enantio excess ee was determined by HPLC analysis using a chiral column. The reaction rate ratio s is determined according to the method of Kagan et al. (Top. Stereochem., 1988, 18, p. 249-330). S = [ln (1-C) (1-ee of product)] / [ ln (1-C) (1 + product ee)].

Figure 0005388294
Figure 0005388294

表1から分かるように、上記反応式におけるArの種類、縮合位置やカルボン酸無水物の種類によらず、比較的高いエナンチオ過剰率ee及び反応速度比sで、ラセミ体の第2級アルコールを速度論的光学分割し、対応する光学活性なエステル及び未反応の第2級アルコールを得ることができた。   As can be seen from Table 1, regardless of the type of Ar, the condensation position or the type of carboxylic acid anhydride in the above reaction formula, the racemic secondary alcohol can be obtained with a relatively high enantiomeric excess ee and reaction rate ratio s. Kinetic optical resolution could be obtained to give the corresponding optically active ester and unreacted secondary alcohol.

以下、表1における光学分割方法、並びに光学活性なエステル及び第2級アルコールの物性値を示す。   Hereinafter, the optical resolution methods in Table 1 and the physical properties of optically active esters and secondary alcohols are shown.

<1−(ベンゾ[d]オキサゾル−2−イル)エタノールの速度論的光学分割(エントリー3)>
ラセミ体の1−(ベンゾ[d]オキサゾル−2−イル)エタノール(44.1mg,0.270mmol)のジクロロメタン溶液(1.40mL)に対して、3−フェニルプロピオン酸(20.4mg,0.135mmol)、ジイソプロピルエチルアミン(57.0μL,0.327mmol)、(+)−ベンゾテトラミソール(3.4mg,0.0135 mmol)、及びピバル酸無水物(33.0μL,0.162mmol)、を室温で順次加えた。反応混合液を室温で12時間撹拌した後、飽和重曹水で反応を停止した。酢酸エチルを加えて有機層を分取した後、水層を酢酸エチルで3回抽出した。有機層を混合した後、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲル薄層クロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/1)を用いて分取することにより、対応する光学活性なエステル(24.0mg,29%,88%ee)及び未反応の第2級アルコール(32.1mg,72%,38%ee)を得た。反応速度比sは21.8であった。
<Kinetic optical resolution of 1- (benzo [d] oxazol-2-yl) ethanol (entry 3)>
To a solution of racemic 1- (benzo [d] oxazol-2-yl) ethanol (44.1 mg, 0.270 mmol) in dichloromethane (1.40 mL), 3-phenylpropionic acid (20.4 mg,. 135 mmol), diisopropylethylamine (57.0 μL, 0.327 mmol), (+)-benzotetramisole (3.4 mg, 0.0135 mmol), and pivalic anhydride (33.0 μL, 0.162 mmol), Sequentially added at room temperature. The reaction mixture was stirred at room temperature for 12 hours and then quenched with saturated aqueous sodium hydrogen carbonate. Ethyl acetate was added to separate the organic layer, and the aqueous layer was extracted three times with ethyl acetate. The organic layers were mixed and then dried over anhydrous sodium sulfate. The solution is filtered and then concentrated under reduced pressure. The resulting mixture is fractionated using silica gel thin layer chromatography (developing solvent: hexane / ethyl acetate = 3/1) to give the corresponding optically active ester (24. 0 mg, 29%, 88% ee) and unreacted secondary alcohol (32.1 mg, 72%, 38% ee) were obtained. The reaction rate ratio s was 21.8.

[(R)−1−(ベンゾ[d]オキサゾル−2−イル)エチル 3−フェニルプロパノエート]
HPLC(CHIRALPAK OD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=30.0min(93.8%),t=36.5min(6.2%);
H NMR(CDCl):δ
7.72−7.62(m,1H,Ph),
7.50−7.40(m,1H,Ph),
7.35−7.06(m,7H,Ph),
6.04(q,J=6.6Hz,1H,1−H),
2.93(t,J=7.8Hz,2H,2’−H),
2.84−2.66(m,2H,3’−H),
1.65(d,J=6.6Hz,3H,2−H).
[(R) -1- (Benzo [d] oxazol-2-yl) ethyl 3-phenylpropanoate]
HPLC (CHIRALPAK OD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 30.0 min (93.8%), t R = 36.5 min (6.2 %);
1 H NMR (CDCl 3 ): δ
7.72-7.62 (m, 1H, Ph),
7.50-7.40 (m, 1H, Ph),
7.35-7.06 (m, 7H, Ph),
6.04 (q, J = 6.6 Hz, 1H, 1-H),
2.93 (t, J = 7.8 Hz, 2H, 2′−H),
2.84-2.66 (m, 2H, 3′-H),
1.65 (d, J = 6.6 Hz, 3H, 2-H).

[(S)−1−(ベンゾ[d]オキサゾル−2−イル)エタノール]
HPLC(CHIRALPAK IC,i−PrOH/hexane=1/100,flow rate=0.5mL/min):t=114.0min(69.0%),t=132.9min(31.0%).
[(S) -1- (Benzo [d] oxazol-2-yl) ethanol]
HPLC (CHIRALPAK IC, i-PrOH / hexane = 1/100, flow rate = 0.5 mL / min): t R = 114.0 min (69.0%), t R = 132.9 min (31.0%) .

<1−(ナフト[2,1−d]オキサゾル−2−イル)エタノールの速度論的光学分割(エントリー6)>
ラセミ体の1−(ナフト[2,1−d]オキサゾル−2−イル)エタノールを用いて、上述と同様にして速度論的光学分割を行った。
<Kinetic optical resolution of 1- (naphth [2,1-d] oxazol-2-yl) ethanol (entry 6)>
Kinetic optical resolution was performed in the same manner as described above using racemic 1- (naphth [2,1-d] oxazol-2-yl) ethanol.

[(R)−1−(ナフト[2,1−d]オキサゾル−2−イル)エチル 3−フェニルプロパノエート]
HPLC(CHIRALPAK AD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=36.0min(91.4%),t=44.3min(8.6%);
H NMR(CDCl):δ
8.10(d,J=8.0Hz,1H,Ph),
7.87(d,J=8.0Hz,1H,Ph),
7.69(dd,J=16,9.0Hz,2H,Ph),
7.56−7.49(m,1H,Ph),
7.48−7.41(m,1H,Ph),
7.22−7.00(m,5H,Ph),
6.15(q,J=7.0Hz,1H,1−H),
2.93(t,J=8.0Hz,2H,2’−H),
2.68(ddd,J=17,8.0,8.0Hz,2H,3’−H),
1.70(d,J=6.5Hz,3H,2−H).
[(R) -1- (Naphtho [2,1-d] oxazol-2-yl) ethyl 3-phenylpropanoate]
HPLC (CHIRALPAK AD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 36.0 min (91.4%), t R = 44.3 min (8.6 %);
1 H NMR (CDCl 3 ): δ
8.10 (d, J = 8.0 Hz, 1H, Ph),
7.87 (d, J = 8.0 Hz, 1H, Ph),
7.69 (dd, J = 16, 9.0 Hz, 2H, Ph),
7.56-7.49 (m, 1H, Ph),
7.48-7.41 (m, 1H, Ph),
7.22-7.00 (m, 5H, Ph),
6.15 (q, J = 7.0 Hz, 1H, 1-H),
2.93 (t, J = 8.0 Hz, 2H, 2′−H),
2.68 (ddd, J = 17, 8.0, 8.0 Hz, 2H, 3′-H),
1.70 (d, J = 6.5 Hz, 3H, 2-H).

[(S)−1−(ナフト[2,1−d]オキサゾル−2−イル)エタノール]
HPLC(CHIRALPAK AS−H,i−PrOH/hexane=1/50,flow rate=1.0mL/min):t=47.6min(79.0%),t=57.1min(21.0%).
[(S) -1- (Naphtho [2,1-d] oxazol-2-yl) ethanol]
HPLC (CHIRALPAK AS-H, i-PrOH / hexane = 1/50, flow rate = 1.0 mL / min): t R = 47.6 min (79.0%), t R = 57.1 min (21.0 %).

<1−(ナフト[2,3−d]オキサゾル−2−イル)エタノールの速度論的光学分割(エントリー9)>
ラセミ体の1−(ナフト[2,3−d]オキサゾル−2−イル)エタノールを用いて、上述と同様にして速度論的光学分割を行った。
<Kinetic optical resolution of 1- (naphtho [2,3-d] oxazol-2-yl) ethanol (entry 9)>
Kinetic optical resolution was performed in the same manner as described above using racemic 1- (naphth [2,3-d] oxazol-2-yl) ethanol.

[(R)−1−(ナフト[2,3−d]オキサゾル−2−イル)エチル 3−フェニルプロパノエート]
HPLC(CHIRALPAK AD−H,i−PrOH/hexane=1/9,flow rate=0.5mL/min):t=24.0min(92.8%),t=36.7min(7.2%);
H NMR(CDCl):δ
8.10(s,1H,Ph),
7.98−7.78(m,3H,Ph),
7.50−7.35(m,2H,Ph),
7.27−7.08(m,5H,Ph),
6.08(q,J=6.9Hz,1H,1−H),
2.95(t,J=7.8Hz,2H,2’−H),
2.81−2.62(m,2H,3’−H),
1.69(d,J=6.9Hz,3H,2−H).
[(R) -1- (Naphtho [2,3-d] oxazol-2-yl) ethyl 3-phenylpropanoate]
HPLC (CHIRALPAK AD-H, i-PrOH / hexane = 1/9, flow rate = 0.5 mL / min): t R = 24.0 min (92.8%), t R = 36.7 min (7.2) %);
1 H NMR (CDCl 3 ): δ
8.10 (s, 1H, Ph),
7.98-7.78 (m, 3H, Ph),
7.50-7.35 (m, 2H, Ph),
7.27-7.08 (m, 5H, Ph),
6.08 (q, J = 6.9 Hz, 1H, 1-H),
2.95 (t, J = 7.8 Hz, 2H, 2′−H),
2.81-2.62 (m, 2H, 3′-H),
1.69 (d, J = 6.9 Hz, 3H, 2-H).

[(S)−1−(ナフト[2,3−d]オキサゾル−2−イル)エタノール]
HPLC(CHIRALPAK AS−H,i−PrOH/hexane=1/20,flow rate=1.0mL/min):t=26.1min(26.5%),t=30.0min(73.5%).
[(S) -1- (Naphtho [2,3-d] oxazol-2-yl) ethanol]
HPLC (CHIRALPAK AS-H, i-PrOH / hexane = 1/20, flow rate = 1.0 mL / min): t R = 26.1 min (26.5%), t R = 30.0 min (73.5 %).

<1−(ナフト[1,2−d]オキサゾル−2−イル)エタノールの速度論的光学分割(エントリー12)>
ラセミ体の1−(ナフト[1,2−d]オキサゾル−2−イル)エタノールを用いて、上述と同様にして速度論的光学分割を行った。
<Kinetic optical resolution of 1- (naphth [1,2-d] oxazol-2-yl) ethanol (entry 12)>
Kinetic optical resolution was performed as described above using racemic 1- (naphtho [1,2-d] oxazol-2-yl) ethanol.

[(R)−1−(ナフト[1,2−d]オキサゾル−2−イル)エチル 3−フェニルプロパノエート]
HPLC(CHIRALPAK OJ−H,i−PrOH/hexane=1/4,flow rate=1.0mL/min):t=20.2min(6.7%),t=29.8min(93.3%);
H NMR(CDCl):δ
8.41(d,J=8.0Hz,1H,Ph),
7.87(d,J=8.5Hz,1H,Ph),
7.72(d,J=8.5Hz,1H,Ph),
7.63−7.53(m,2H,Ph),
7.46(t,J=7.5Hz,1H,Ph),
7.23−7.02(m,5H,Ph),
6.15(q,J=7.0Hz,1H,1−H),
2.93(t,J=8.0Hz,2H,2’−H),
2.68(ddd,J=17,8.0,8.0Hz,2H,3’−H),
1.71(d,J=7.0Hz,3H,2−H).
[(R) -1- (Naphtho [1,2-d] oxazol-2-yl) ethyl 3-phenylpropanoate]
HPLC (CHIRALPAK OJ-H, i-PrOH / hexane = 1/4, flow rate = 1.0 mL / min): t R = 20.2 min (6.7%), t R = 29.8 min (93.3) %);
1 H NMR (CDCl 3 ): δ
8.41 (d, J = 8.0 Hz, 1H, Ph),
7.87 (d, J = 8.5 Hz, 1H, Ph),
7.72 (d, J = 8.5 Hz, 1H, Ph),
7.63-7.53 (m, 2H, Ph),
7.46 (t, J = 7.5 Hz, 1H, Ph),
7.23-7.02 (m, 5H, Ph),
6.15 (q, J = 7.0 Hz, 1H, 1-H),
2.93 (t, J = 8.0 Hz, 2H, 2′−H),
2.68 (ddd, J = 17, 8.0, 8.0 Hz, 2H, 3′-H),
1.71 (d, J = 7.0 Hz, 3H, 2-H).

[(S)−1−(ナフト[1,2−d]オキサゾル−2−イル)エタノール]
HPLC(CHIRALPAK OD−H,i−PrOH/hexane=1/50,flow rate=1.0mL/min):t=47.0min(86.4%),t=72.4min(13.6%).
[(S) -1- (Naphtho [1,2-d] oxazol-2-yl) ethanol]
HPLC (CHIRALPAK OD-H, i-PrOH / hexane = 1/50, flow rate = 1.0 mL / min): t R = 47.0 min (86.4%), t R = 72.4 min (13.6) %).

以下、表1におけるラセミ体の第2級アルコールの調製方法及び物性値を示す。   The preparation methods and physical property values of the racemic secondary alcohols in Table 1 are shown below.

<1−(ベンゾ[d]オキサゾル−2−イル)エタノールの調製(エントリー1〜3)>

Figure 0005388294
<Preparation of 1- (benzo [d] oxazol-2-yl) ethanol (entries 1-3)>
Figure 0005388294

上記反応式に示すように、乳酸(純度90%)(2.00g,20.0mmol)及びアミノフェノール(2.29g,21.0mmol)を含むキシレン溶液(30.0mL)を165℃で14時間加熱還流した。室温まで冷却後、アルミナシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=2/1から開始し、途中でクロロホルム/メタノール=9/1に変更)を用いて分取し、次いで減圧蒸留することにより、対応する第2級アルコール(493mg,15%)を得た。物性値は以下のとおりである。   As shown in the above reaction formula, a xylene solution (30.0 mL) containing lactic acid (purity 90%) (2.00 g, 20.0 mmol) and aminophenol (2.29 g, 21.0 mmol) was added at 165 ° C. for 14 hours. Heated to reflux. After cooling to room temperature, fractionate using alumina silica gel column chromatography (developing solvent: start with hexane / ethyl acetate = 2/1, change to chloroform / methanol = 9/1 during the process), and then distill under reduced pressure Gave the corresponding secondary alcohol (493 mg, 15%). The physical property values are as follows.

H NMR(CDCl):δ
7.64−7.57(m,1H,Ph),
7.43−7.37(m,1H,Ph),
7.27−7.19(m,2H,Ph),
5.06(qd,J=6.5,6.3Hz,1H,1−H),
4.53(brs,1H,OH),
1.63(d,J=6.5Hz,3H,2−H).
1 H NMR (CDCl 3 ): δ
7.64-7.57 (m, 1H, Ph),
7.43-7.37 (m, 1H, Ph),
7.27-7.19 (m, 2H, Ph),
5.06 (qd, J = 6.5, 6.3 Hz, 1H, 1-H),
4.53 (brs, 1H, OH),
1.63 (d, J = 6.5 Hz, 3H, 2-H).

<1−(ナフト[2,1−d]オキサゾル−2−イル)エタノールの調製(エントリー4〜6)>

Figure 0005388294
<Preparation of 1- (naphth [2,1-d] oxazol-2-yl) ethanol (entries 4-6)>
Figure 0005388294

上記反応式に示すように、エントリー1〜3と同様にして、1−(ナフト[2,1−d]オキサゾル−2−イル)エタノールを調製した。物性値は以下のとおりである。   As shown in the above reaction formula, 1- (naphtho [2,1-d] oxazol-2-yl) ethanol was prepared in the same manner as in entries 1 to 3. The physical property values are as follows.

H NMR(CDCl):δ
8.09(d,J=8.1Hz,1H,Ph),
7.85(d,J=8.4Hz,1H,Ph),
7.74−7.36(m,4H,Ph),
5.17(qd,J=6.9,6.3Hz,1H,1−H),
4.18−3.85(m,1H,OH),
1.73(d,J=6.9Hz,3H,2−H).
1 H NMR (CDCl 3 ): δ
8.09 (d, J = 8.1 Hz, 1H, Ph),
7.85 (d, J = 8.4 Hz, 1H, Ph),
7.74-7.36 (m, 4H, Ph),
5.17 (qd, J = 6.9, 6.3 Hz, 1H, 1-H),
4.18-3.85 (m, 1H, OH),
1.73 (d, J = 6.9 Hz, 3H, 2-H).

<1−(ナフト[2,3−d]オキサゾル−2−イル)エタノールの調製(エントリー7〜9)>

Figure 0005388294
<Preparation of 1- (naphtho [2,3-d] oxazol-2-yl) ethanol (entries 7-9)>
Figure 0005388294

上記反応式に示すように、エントリー1〜3と同様にして、1−(ナフト[2,3−d]オキサゾル−2−イル)エタノールを調製した。物性値は以下のとおりである。   As shown in the above reaction formula, 1- (naphtho [2,3-d] oxazol-2-yl) ethanol was prepared in the same manner as in entries 1 to 3. The physical property values are as follows.

H NMR(CDCl):δ
8.07(s,1H,Ph),
7.98−7.77(m,3H,Ph),
7.51−7.35(m,2H,Ph),
5.25−5.00(m,1H,1−H),
3.51−3.25(m,1H,OH),
1.70(d,J=6.9Hz,3H,2−H).
1 H NMR (CDCl 3 ): δ
8.07 (s, 1H, Ph),
7.98-7.77 (m, 3H, Ph),
7.51-7.35 (m, 2H, Ph),
5.25-5.00 (m, 1H, 1-H),
3.51-3.25 (m, 1H, OH),
1.70 (d, J = 6.9 Hz, 3H, 2-H).

<1−(ナフト[1,2−d]オキサゾル−2−イル)エタノールの調製(エントリー10〜12)>

Figure 0005388294
<Preparation of 1- (naphtho [1,2-d] oxazol-2-yl) ethanol (entries 10-12)>
Figure 0005388294

上記反応式に示すように、エントリー1〜3と同様にして、1−(ナフト[1,2−d]オキサゾル−2−イル)エタノールを調製した。物性値は以下のとおりである。   As shown in the above reaction formula, 1- (naphtho [1,2-d] oxazol-2-yl) ethanol was prepared in the same manner as in entries 1 to 3. The physical property values are as follows.

H NMR(CDCl):δ
8.48(dt,J=8.4,0.6Hz,1H,Ph),
7.95(d,J=8.4Hz,1H,Ph),
7.77(d,J=9.0Hz,1H,Ph),
7.72−7.57(m,2H,Ph),
7.53(ddd,J=8.0,6.9,1.5Hz,1H,Ph),
5.26(qd,J=6.6,6.0Hz,1H,1−H).
4.18−3.82(m,1H,OH),
1.79(d,J=6.6Hz,3H,2−H).
1 H NMR (CDCl 3 ): δ
8.48 (dt, J = 8.4, 0.6 Hz, 1H, Ph),
7.95 (d, J = 8.4 Hz, 1H, Ph),
7.77 (d, J = 9.0 Hz, 1H, Ph),
7.72-7.57 (m, 2H, Ph),
7.53 (ddd, J = 8.0, 6.9, 1.5 Hz, 1H, Ph),
5.26 (qd, J = 6.6, 6.0 Hz, 1H, 1-H).
4.18-3.82 (m, 1H, OH),
1.79 (d, J = 6.6 Hz, 3H, 2-H).

≪ラセミ体の第2級アルコールの速度論的光学分割(2)≫

Figure 0005388294
≪Kinetic optical resolution of racemic secondary alcohol (2) ≫
Figure 0005388294

上記反応式に示すように、0.50当量の3−フェニルプロピオン酸を含むジクロロメタン溶液に対して、0.60当量のカルボン酸無水物、1.2当量のジイソプロピルエチルアミン、5モル%の(+)−ベンゾテトラミソール((+)−BTM)、及びラセミ体の第2級アルコールを室温で順次加えた。そして、反応混合液を室温で12時間反応させることにより、対応する光学活性なエステル及び未反応の第2級アルコールを得た。結果を表2に示す。   As shown in the above reaction formula, 0.60 equivalent of carboxylic anhydride, 1.2 equivalent of diisopropylethylamine, 5 mol% of (+) with respect to a dichloromethane solution containing 0.50 equivalent of 3-phenylpropionic acid. ) -Benzotetramisole ((+)-BTM) and a racemic secondary alcohol were added sequentially at room temperature. The reaction mixture was reacted at room temperature for 12 hours to obtain the corresponding optically active ester and unreacted secondary alcohol. The results are shown in Table 2.

Figure 0005388294
Figure 0005388294

表2から分かるように、上記反応式におけるRの種類によらず、比較的高いエナンチオ過剰率ee及び反応速度比sで、ラセミ体の第2級アルコールを速度論的光学分割し、対応する光学活性なエステル及び未反応の第2級アルコールを得ることができた。 As can be seen from Table 2, regardless of the type of R 5 in the above reaction scheme, the racemic secondary alcohol was subjected to kinetic optical resolution with a relatively high enantioexcess ee and reaction rate ratio s, and the corresponding An optically active ester and an unreacted secondary alcohol could be obtained.

以下、表2における速度論的光学分割方法、並びに光学活性なエステル及び第2級アルコールの物性値を示す。   Hereinafter, the kinetic optical resolution method in Table 2 and the physical properties of optically active esters and secondary alcohols are shown.

<1−(ナフト[1,2−d]オキサゾル−2−イル)−3−フェニルプロパン−1−オールの速度論的光学分割(エントリー14)>
3−フェニルプロピオン酸(15.1mg,0.100mmol)のジクロロメタン溶液(1.0mL)に対して、ピバル酸無水物(24.0μL,0.180mmol)、ジイソプロピルエチルアミン(42.0μL,0.241mmol)、(+)−ベンゾテトラミソール(2.5mg,9.91μmol)、及び1−(ナフト[1,2−d]オキサゾル−2−イル)−3−フェニルプロパン−1−オール(60.7mg,0.200mmol)を室温で順次加えた。反応混合液を室温で12時間撹拌した後、飽和重曹水で反応を停止した。酢酸エチルを加えて有機層を分取した後、水層を酢酸エチルで2回抽出した。有機層を混合した後、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲル薄層クロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=4/1)を用いて分取することにより、対応する光学活性なエステル(38.8mg,45%,86%ee)及び未反応の第2級アルコール(33.5mg,55%,75%ee)を得た。反応速度比sは29.8であった。
<Kinetic optical resolution of 1- (naphth [1,2-d] oxazol-2-yl) -3-phenylpropan-1-ol (entry 14)>
Pivalic anhydride (24.0 μL, 0.180 mmol), diisopropylethylamine (42.0 μL, 0.241 mmol) against 3-phenylpropionic acid (15.1 mg, 0.100 mmol) in dichloromethane (1.0 mL) ), (+)-Benzotetramisol (2.5 mg, 9.91 μmol), and 1- (naphth [1,2-d] oxazol-2-yl) -3-phenylpropan-1-ol (60. 7 mg, 0.200 mmol) was added sequentially at room temperature. The reaction mixture was stirred at room temperature for 12 hours and then quenched with saturated aqueous sodium hydrogen carbonate. Ethyl acetate was added to separate the organic layer, and the aqueous layer was extracted twice with ethyl acetate. The organic layers were mixed and then dried over anhydrous sodium sulfate. The solution is filtered and then concentrated under reduced pressure, and the resulting mixture is fractionated using silica gel thin layer chromatography (developing solvent: hexane / ethyl acetate = 4/1) to give the corresponding optically active ester (38. 8 mg, 45%, 86% ee) and unreacted secondary alcohol (33.5 mg, 55%, 75% ee) were obtained. The reaction rate ratio s was 29.8.

[(R)−1−(ナフト[1,2−d]オキサゾル−2−イル)−3−フェニルプロピル 3−フェニルプロパノエート]
HPLC(CHIRALPAK AS−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=24.1min(7.1%),t=28.3min(92.9%);
H NMR(CDCl):δ
8.41(d,J=8.5Hz,1H,Ph),
7.86(d,J=8.5Hz,1H,Ph),
7.70(d,J=9.5Hz,1H,Ph),
7.60−7.52(m,2H,Ph),
7.48−7.38(m,1H,Ph),
7.23−7.00(m,10H,Ph),
6.03(t,J=7.0Hz,1H,1−H),
2.92(t,J=8.0Hz,2H,2’−H),
2.76−2.57(m,2H,2,3’−H),
2.39(dd,J=15,7.5Hz,2H,3−H).
[(R) -1- (Naphtho [1,2-d] oxazol-2-yl) -3-phenylpropyl 3-phenylpropanoate]
HPLC (CHIRALPAK AS-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 24.1 min (7.1%), t R = 28.3 min (92.9) %);
1 H NMR (CDCl 3 ): δ
8.41 (d, J = 8.5 Hz, 1H, Ph),
7.86 (d, J = 8.5 Hz, 1H, Ph),
7.70 (d, J = 9.5 Hz, 1H, Ph),
7.60-7.52 (m, 2H, Ph),
7.48-7.38 (m, 1H, Ph),
7.23-7.00 (m, 10H, Ph),
6.03 (t, J = 7.0 Hz, 1H, 1-H),
2.92 (t, J = 8.0 Hz, 2H, 2′−H),
2.76-2.57 (m, 2H, 2, 3′-H),
2.39 (dd, J = 15, 7.5 Hz, 2H, 3-H).

[(S)−1−(ナフト[1,2−d]オキサゾル−2−イル)−3−フェニルプロパン−1−オール]
HPLC(CHIRALPAK OD−H,i−PrOH/hexane=1/9,flow rate=0.5mL/min):t=28.9min(87.8%),t=37.6min(12.3%).
[(S) -1- (Naphtho [1,2-d] oxazol-2-yl) -3-phenylpropan-1-ol]
HPLC (CHIRALPAK OD-H, i-PrOH / hexane = 1/9, flow rate = 0.5 mL / min): t R = 28.9 min (87.8%), t R = 37.6 min (12.3) %).

<2−メチル−1−(ナフト[1,2−d]オキサゾル−2−イル)プロパン−1−オールの速度論的光学分割(エントリー15)>
ラセミ体の2−メチル−1−(ナフト[1,2−d]オキサゾル−2−イル)プロパン−1−オールを用いて、上述と同様にして速度論的光学分割を行った。
<Kinetic optical resolution of 2-methyl-1- (naphtho [1,2-d] oxazol-2-yl) propan-1-ol (entry 15)>
Kinetic optical resolution was performed in the same manner as described above using racemic 2-methyl-1- (naphtho [1,2-d] oxazol-2-yl) propan-1-ol.

[(R)−2−メチル−1−(ナフト[1,2−d]オキサゾル−2−イル)プロピル 3−フェニルプロパノエート]
HPLC(CHIRALPAK AS−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=16.3min(8.7%),t=28.0min(91.3%);
H NMR(CDCl):δ
8.43(d,J=8.4Hz,1H,Ph),
7.88(d,J=8.1Hz,1H,Ph),
7.73(d,J=9.0Hz,1H,Ph),
7.65−7.53(m,2H,Ph),
7.52−7.42(m,1H,Ph),
7.23−7.03(m,5H,Ph),
5.77(d,J=6.9Hz,1H,1−H),
2.94(t,J=7.8Hz,2H,2’−H),
2.82−2.65(m,2H,3’−H),
2.43(qd,J=6.8,6.8Hz,1H,2−H),
0.98(d,J=6.8Hz,3H,3−H),
0.91(d,J=6.8Hz,3H,3−H).
[(R) -2-Methyl-1- (naphtho [1,2-d] oxazol-2-yl) propyl 3-phenylpropanoate]
HPLC (CHIRALPAK AS-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 16.3 min (8.7%), t R = 28.0 min (91.3 %);
1 H NMR (CDCl 3 ): δ
8.43 (d, J = 8.4 Hz, 1H, Ph),
7.88 (d, J = 8.1 Hz, 1H, Ph),
7.73 (d, J = 9.0 Hz, 1H, Ph),
7.65-7.53 (m, 2H, Ph),
7.52-7.42 (m, 1H, Ph),
7.23-7.03 (m, 5H, Ph),
5.77 (d, J = 6.9 Hz, 1H, 1-H),
2.94 (t, J = 7.8 Hz, 2H, 2′−H),
2.82-2.65 (m, 2H, 3′-H),
2.43 (qd, J = 6.8, 6.8 Hz, 1H, 2-H),
0.98 (d, J = 6.8 Hz, 3H, 3-H),
0.91 (d, J = 6.8 Hz, 3H, 3-H).

[(S)−2−メチル−1−(ナフト[1,2−d]オキサゾル−2−イル)プロパン−1−オール]
HPLC(CHIRALPAK OD−H,i−PrOH/hexane=1/20,flow rate=0.5mL/min):t=29.8min(85.5%),t=38.4min(14.5%).
[(S) -2-Methyl-1- (naphtho [1,2-d] oxazol-2-yl) propan-1-ol]
HPLC (CHIRALPAK OD-H, i-PrOH / hexane = 1/20, flow rate = 0.5 mL / min): t R = 29.8 min (85.5%), t R = 38.4 min (14.5 %).

<2,2−ジメチル−1−(ナフト[1,2−d]オキサゾル−2−イル)プロパン−1−オールの速度論的光学分割(エントリー16)>
ラセミ体の2,2−ジメチル−1−(ナフト[1,2−d]オキサゾル−2−イル)プロパン−1−オールを用いて、上述と同様にして速度論的光学分割を行った。
<Kinetic optical resolution of 2,2-dimethyl-1- (naphtho [1,2-d] oxazol-2-yl) propan-1-ol (entry 16)>
Kinetic optical resolution was performed in the same manner as described above using racemic 2,2-dimethyl-1- (naphtho [1,2-d] oxazol-2-yl) propan-1-ol.

[(R)−2,2−ジメチル−1−(ナフト[1,2−d]オキサゾル−2−イル)プロピル 3−フェニルプロパノエート]
HPLC(CHIRALPAK AS−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=13.5min(6.0%),t=18.5min(94.0%);
H NMR(CDCl):δ
8.47(dd,J=8.7,0.6Hz,1H,Ph),
7.94(d,J=8.1Hz,1H,Ph),
7.73(d,J=9.0Hz,1H,Ph),
7.66−7.54(m,2H,Ph),
7.53−7.43(m,1H,Ph),
7.25−7.04(m,5H,Ph),
5.70(s,1H,1−H),
3.02−2.88(m,2H,2’−H),
2.85−2.65(m,2H,3’−H),
1.04(s,9H,Bu)
[(R) -2,2-dimethyl-1- (naphtho [1,2-d] oxazol-2-yl) propyl 3-phenylpropanoate]
HPLC (CHIRALPAK AS-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 13.5 min (6.0%), t R = 18.5 min (94.0) %);
1 H NMR (CDCl 3 ): δ
8.47 (dd, J = 8.7, 0.6 Hz, 1H, Ph),
7.94 (d, J = 8.1 Hz, 1H, Ph),
7.73 (d, J = 9.0 Hz, 1H, Ph),
7.66-7.54 (m, 2H, Ph),
7.53-7.43 (m, 1H, Ph),
7.25-7.04 (m, 5H, Ph),
5.70 (s, 1H, 1-H),
3.02-2.88 (m, 2H, 2′-H),
2.85-2.65 (m, 2H, 3′-H),
1.04 (s, 9H, t Bu)

[(S)−2,2−ジメチル−1−(ナフト[1,2−d]オキサゾル−2−イル)プロパン−1−オール]
HPLC(CHIRALPAK OD−H,i−PrOH/hexane=1/20,flow rate=0.5mL/min):t=27.8min(86.6%),t=34.9min(13.4%).
[(S) -2,2-dimethyl-1- (naphtho [1,2-d] oxazol-2-yl) propan-1-ol]
HPLC (CHIRALPAK OD-H, i-PrOH / hexane = 1/20, flow rate = 0.5 mL / min): t R = 27.8 min (86.6%), t R = 34.9 min (13.4) %).

<1−(ナフト[1,2−d]オキサゾル−2−イル)ブチ−3−エン−1−オールの速度論的光学分割(エントリー17)>
ラセミ体の1−(ナフト[1,2−d]オキサゾル−2−イル)ブチ−3−エン−1−オールを用いて、上述と同様にして速度論的光学分割を行った。
<Kinetic optical resolution of 1- (naphth [1,2-d] oxazol-2-yl) but-3-en-1-ol (entry 17)>
Using racemic 1- (naphth [1,2-d] oxazol-2-yl) but-3-en-1-ol, kinetic optical resolution was performed as described above.

[(R)−1−(ナフト[1,2−d]オキサゾル−2−イル)ブチ−3−エニル 3−フェニルプロパノエート]
HPLC(CHIRALPAK AS−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=21.9min(9.7%),t=38.4min(90.3%);
H NMR(CDCl):δ
8.42(d,J=8.5Hz,1H,Ph),
7.87(d,J=8.5Hz,1H,Ph),
7.72(d,J=9.0Hz,1H,Ph),
7.62−7.53(m,2H,Ph),
7.46−7.43(m,1H,Ph),
7.20−7.05(m,5H,Ph),
6.10(t,J=7.0Hz,1H,1−H),
5.71(tdd,J=8.5,14.0,10.0Hz,1H,3−H),
5.84(d,J=14.0Hz,1H,4−H),
5.01(d,J=10.0Hz,1H,4−H),
2.99−2.76(m,4H,2,2’−H),
2.74−2.62(m,2H,3’−H).
[(R) -1- (Naphtho [1,2-d] oxazol-2-yl) but-3-enyl 3-phenylpropanoate]
HPLC (CHIRALPAK AS-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 21.9 min (9.7%), t R = 38.4 min (90.3 %);
1 H NMR (CDCl 3 ): δ
8.42 (d, J = 8.5 Hz, 1H, Ph),
7.87 (d, J = 8.5 Hz, 1H, Ph),
7.72 (d, J = 9.0 Hz, 1H, Ph),
7.62-7.53 (m, 2H, Ph),
7.46-7.43 (m, 1H, Ph),
7.20-7.05 (m, 5H, Ph),
6.10 (t, J = 7.0 Hz, 1H, 1-H),
5.71 (tdd, J = 8.5, 14.0, 10.0 Hz, 1H, 3-H),
5.84 (d, J = 14.0 Hz, 1H, 4-H),
5.01 (d, J = 10.0 Hz, 1H, 4-H),
2.99-2.76 (m, 4H, 2, 2'-H),
2.74-2.62 (m, 2H, 3′-H).

[(S)−1−(ナフト[1,2−d]オキサゾル−2−イル)ブチ−3−エン−1−オール]
HPLC(CHIRALPAK OD−H,i−PrOH/hexane=1/9,flow rate=0.5mL/min):t=17.1min(86.4%),t=21.2min(13.6%).
[(S) -1- (Naphtho [1,2-d] oxazol-2-yl) but-3-en-1-ol]
HPLC (CHIRALPAK OD-H, i-PrOH / hexane = 1/9, flow rate = 0.5 mL / min): t R = 17.1 min (86.4%), t R = 21.2 min (13.6) %).

<1−(ナフト[1,2−d]オキサゾル−2−イル)ヘプト−2−イン−1−オール コバルト化錯体の速度論的光学分割(エントリー18)>
ラセミ体の1−(ナフト[1,2−d]オキサゾル−2−イル)ヘプト−2−イン−1−オールのコバルト化錯体を用いて、上述と同様にして速度論的光学分割を行った。
<Kinetic optical resolution of 1- (naphth [1,2-d] oxazol-2-yl) hept-2-yn-1-ol cobaltated complex (entry 18)>
Kinetic optical resolution was performed in the same manner as described above, using a cobaltated complex of racemic 1- (naphth [1,2-d] oxazol-2-yl) hept-2-yn-1-ol. .

[(S)−1−(ナフト[1,2−d]オキサゾル−2−イル)ヘプト−2−イニル 3−フェニルプロパノエート コバルト化錯体]
H NMR(CDCl):δ
8.48(d,J=8.0Hz,1H,Ph),
8.08−7.00(m,11H,1−H,Ph),
3.18−2.72(m,6H,4,2’,3’−H),
1.80−1.33(m,4H,5,6−H),
0.92(brs,3H,7−H).
[(S) -1- (Naphtho [1,2-d] oxazol-2-yl) hept-2-ynyl 3-phenylpropanoate cobaltated complex]
1 H NMR (CDCl 3 ): δ
8.48 (d, J = 8.0 Hz, 1H, Ph),
8.08-7.00 (m, 11H, 1-H, Ph),
3.18-2.72 (m, 6H, 4, 2 ', 3'-H),
1.80-1.33 (m, 4H, 5, 6-H),
0.92 (brs, 3H, 7-H).

[(R)−1−(ナフト[1,2−d]オキサゾル−2−イル)ヘプト−2−イン−1−オール コバルト化錯体]
HPLC(CHIRALPAK IC,i−PrOH/hexane=1/100,flow rate=0.5mL/min):t=19.8min(47.7%),t=76.4min(52.3%).
[(R) -1- (Naphtho [1,2-d] oxazol-2-yl) hept-2-in-1-ol cobaltated complex]
HPLC (CHIRALPAK IC, i-PrOH / hexane = 1/100, flow rate = 0.5 mL / min): t R = 19.8 min (47.7%), t R = 76.4 min (52.3%) .

得られたコバルト錯体化第2級アルコールは、以下のようにして脱錯体化した。
すなわち、コバルト錯体化第2級アルコール(47.8mg,0.0685mmol)のアセトン溶液(1.4mL)に対して、硝酸セリウム(IV)アンモニウム(188mg,0.343mmol)を0℃で加えた。反応混合液を0℃で1時間撹拌し、水を0℃で加えて反応を停止した。酢酸エチルを加えて有機層を分取した後、水層を酢酸エチルで2回抽出した。有機層を混合した後、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲル薄層クロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=10/1)を用いて分取することにより、対応するアルコール(27.2mg,97%,88%ee)を得た。物性値は以下のとおりである。
The obtained cobalt complexed secondary alcohol was decomplexed as follows.
That is, cerium (IV) ammonium nitrate (188 mg, 0.343 mmol) was added at 0 ° C. to an acetone solution (1.4 mL) of cobalt complexed secondary alcohol (47.8 mg, 0.0685 mmol). The reaction mixture was stirred at 0 ° C. for 1 hour, and water was added at 0 ° C. to stop the reaction. Ethyl acetate was added to separate the organic layer, and the aqueous layer was extracted twice with ethyl acetate. The organic layers were mixed and then dried over anhydrous sodium sulfate. The solution was filtered and then concentrated under reduced pressure, and the resulting mixture was separated using silica gel thin layer chromatography (developing solvent: hexane / ethyl acetate = 10/1) to give the corresponding alcohol (27.2 mg, 97 %, 88% ee). The physical property values are as follows.

HPLC(CHIRALPAK OD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=34.4min(6.1%),t=54.2min(93.9%). HPLC (CHIRALPAK OD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 34.4 min (6.1%), t R = 54.2 min (93.9) %).

以下、表2におけるラセミ体の第2級アルコールの調製方法及び物性値を示す。   The preparation methods and physical property values of racemic secondary alcohols in Table 2 are shown below.

<1−(ナフト[1,2−d]オキサゾル−2−イル)−3−フェニルプロパン−1−オールの調製(エントリー14)>

Figure 0005388294
<Preparation of 1- (naphth [1,2-d] oxazol-2-yl) -3-phenylpropan-1-ol (entry 14)>
Figure 0005388294

まず上記反応式に示すように、1−アミノ−2−ナフトール塩酸塩(4.92g,25.0mmol)のジメチルホルムアミド溶液(25.0mL)に対して、オルトギ酸トリメチル(3.30mL,30.2mmol)及びp−トルエンスルホン酸一水和物(23.8mg,0.125mmol)を0℃で加えた。反応混合液を室温で17.5時間撹拌した後、0℃で水を加えて反応を停止した。ジクロロメタンを加えて有機層を分取した後、水層をジクロロメタンで2回抽出した。有機層を混合し、水及び飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=5/1)を用いて分取することにより、対応するナフトオキサゾール(3.83g,91%)を得た。物性値は以下のとおりである。   First, as shown in the above reaction formula, trimethyl orthoformate (3.30 mL, 30.30 mL) with respect to a dimethylformamide solution (25.0 mL) of 1-amino-2-naphthol hydrochloride (4.92 g, 25.0 mmol). 2 mmol) and p-toluenesulfonic acid monohydrate (23.8 mg, 0.125 mmol) were added at 0 ° C. The reaction mixture was stirred at room temperature for 17.5 hours, and water was added at 0 ° C. to stop the reaction. Dichloromethane was added to separate the organic layer, and then the aqueous layer was extracted twice with dichloromethane. The organic layers were mixed, washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solution was filtered and concentrated under reduced pressure, and the resulting mixture was fractionated using silica gel column chromatography (developing solvent: hexane / ethyl acetate = 5/1) to give the corresponding naphthoxazole (3.83 g, 91). %). The physical property values are as follows.

H NMR(CDCl):δ
8.53(d,J=8.1Hz,1H,Ph),
8.23(s,1H,2−H)
7.96(d,J=8.1Hz,1H,Ph),
7.82(d,J=9.0Hz,1H,Ph),
7.76−7.63(m,2H,Ph),
7.55(ddd,J=8.3,6.9,1.3Hz,1H,Ph).
1 H NMR (CDCl 3 ): δ
8.53 (d, J = 8.1 Hz, 1H, Ph),
8.23 (s, 1H, 2-H)
7.96 (d, J = 8.1 Hz, 1H, Ph),
7.82 (d, J = 9.0 Hz, 1H, Ph),
7.76-7.63 (m, 2H, Ph),
7.55 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H, Ph).

Figure 0005388294
Figure 0005388294

次いで上記反応式に示すように、マグネシウム(58.4mg,2.40mmol)のテトラヒドロフラン溶液(10.0mL)に対して、1,2−ジブロモエタン(0.070mL,0.812mmol)を室温で加えた。反応混合液に0℃でテトラヒドロフラン(20.0mL)及びn−ブチルリチウムのヘキサン溶液(2.64M,1.82mL,4.80mmol)を加えた。反応混合液を0℃で1時間撹拌した後、ナフト[1,2−d]オキサゾール(814mg,4.81mmol)のテトラヒドロフラン溶液(4.0mL)を加えた。反応混合液を0℃で1時間撹拌した後、3−フェニルプロピオンアルデヒド(0.633mL,4.81mmol)を加えた。反応混合液を0℃で15.5時間撹拌した後、0℃で飽和塩化アンモニウム水溶液を加えて反応を停止し、酢酸エチルを加えて有機層を分取した後、水層を酢酸エチルで2回抽出した。有機層を混合した後、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=9/1)を用いて分取することにより、対応する第2級アルコール(432mg,44%)を得た。物性値は以下のとおりである。   Next, as shown in the above reaction formula, 1,2-dibromoethane (0.070 mL, 0.812 mmol) was added to a tetrahydrofuran solution (10.0 mL) of magnesium (58.4 mg, 2.40 mmol) at room temperature. It was. Tetrahydrofuran (20.0 mL) and n-butyllithium in hexane (2.64 M, 1.82 mL, 4.80 mmol) were added to the reaction mixture at 0 ° C. The reaction mixture was stirred at 0 ° C. for 1 hour, and then a tetrahydrofuran solution (4.0 mL) of naphtho [1,2-d] oxazole (814 mg, 4.81 mmol) was added. After the reaction mixture was stirred at 0 ° C. for 1 hour, 3-phenylpropionaldehyde (0.633 mL, 4.81 mmol) was added. After stirring the reaction mixture at 0 ° C. for 15.5 hours, the reaction was stopped by adding a saturated aqueous ammonium chloride solution at 0 ° C., and ethyl acetate was added to separate the organic layer. Extracted once. The organic layers were mixed and then dried over anhydrous sodium sulfate. The solution was filtered and concentrated under reduced pressure, and the resulting mixture was fractionated using silica gel column chromatography (developing solvent: hexane / ethyl acetate = 9/1) to give the corresponding secondary alcohol (432 mg, 44 %). The physical property values are as follows.

H NMR(CDCl):δ
8.50(d,J=8.4Hz,1H,Ph),
7.95(d,J=8.1Hz,1H,Ph),
7.76(d,J=9.0Hz,1H,Ph),
7.70−7.48(m,3H,Ph),
7.37−7.13(m,5H,Ph),
5.12(t,J=6.3Hz,1H,1−H),
4.39(brs,1H,OH),
3.02−2.77(m,2H,2−H),
2.55−2.30(m,2H,3−H).
1 H NMR (CDCl 3 ): δ
8.50 (d, J = 8.4 Hz, 1H, Ph),
7.95 (d, J = 8.1 Hz, 1H, Ph),
7.76 (d, J = 9.0 Hz, 1H, Ph),
7.70-7.48 (m, 3H, Ph),
7.37-7.13 (m, 5H, Ph),
5.12 (t, J = 6.3 Hz, 1H, 1-H),
4.39 (brs, 1H, OH),
3.02-2.77 (m, 2H, 2-H),
2.55-2.30 (m, 2H, 3-H).

<2−メチル−1−(ナフト[1,2−d]オキサゾル−2−イル)プロパン−1−オールの調製(エントリー15)>

Figure 0005388294
<Preparation of 2-methyl-1- (naphtho [1,2-d] oxazol-2-yl) propan-1-ol (entry 15)>
Figure 0005388294

まず上記反応式に示すように、シュウ酸ジメチル(25.0g,0.212mol)及び五塩化リン(48.5g,0.233mol)の混合物を135℃で32時間撹拌した後、室温に冷却した。反応混合液から副成した塩化ホスホリルを加熱減圧下(40℃,12mmHg)で除去することにより、対応する塩化物の粗製体を得た。   First, as shown in the above reaction formula, a mixture of dimethyl oxalate (25.0 g, 0.212 mol) and phosphorus pentachloride (48.5 g, 0.233 mol) was stirred at 135 ° C. for 32 hours and then cooled to room temperature. . By removing phosphoryl chloride by-produced from the reaction mixture under reduced pressure (40 ° C., 12 mmHg), a corresponding crude product of chloride was obtained.

Figure 0005388294
Figure 0005388294

次いで上記反応式に示すように、粗製体のメチル2,2−ジクロロ−2−メトキシアセテートのジエチルエーテル溶液(100mL)に対して、0℃でメタノール(30.0mL)、次いでピリジン(30.0 mL)をそれぞれ30分間かけて滴下した。反応混合液を室温で15.5時間撹拌した後、さらに45℃で6.5時間撹拌した。反応混合液を室温に冷却した後、セライト濾過し、得られた混合液を3N硫酸で洗浄し、ジエチルエーテルを加えて有機層を分取した後、水層をジエチルエーテルで3回抽出した。有機層を混合した後、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物を減圧蒸留(18mmHg,70℃)することにより、対応するメチルトリメトキシアセテート(19.4g,56%)を得た。   Next, as shown in the above reaction formula, methanol (30.0 mL) and then pyridine (30.0 mL) were added at 0 ° C. to a crude ether solution (100 mL) of methyl 2,2-dichloro-2-methoxyacetate. mL) was added dropwise over 30 minutes each. The reaction mixture was stirred at room temperature for 15.5 hours, and further stirred at 45 ° C. for 6.5 hours. The reaction mixture was cooled to room temperature, filtered through Celite, the resulting mixture was washed with 3N sulfuric acid, diethyl ether was added to separate the organic layer, and the aqueous layer was extracted three times with diethyl ether. The organic layers were mixed and then dried over anhydrous sodium sulfate. The solution was filtered and concentrated under reduced pressure, and the resulting mixture was distilled under reduced pressure (18 mmHg, 70 ° C.) to obtain the corresponding methyltrimethoxyacetate (19.4 g, 56%).

Figure 0005388294
Figure 0005388294

次いで上記反応式に示すように、1−アミノ−2−ナフトール塩酸塩(2.51g,12.8mmol)のジメチルホルムアミド溶液(10.0mL)に対して、メチルトリメトキシアセテート(3.23g,19.2mmol)のジメチルホルムアミド溶液(2.80mL)、及びp−トルエンスルホン酸一水和物(48.5mg,0.255mmol)を室温で加えた。反応混合液を50℃で4.5時間撹拌した後、0℃で水を加えて反応を停止した。酢酸エチルを加えて有機層を分取した後、水層を酢酸エチルで2回抽出した。有機層を混合し、水及び飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=9/1)を用いて分取することにより、対応するナフトオキサゾールのメチルエステル(1.88g,65%)を得た。物性値は以下のとおりである。   Next, as shown in the above reaction formula, methyltrimethoxyacetate (3.23 g, 19) was added to a dimethylformamide solution (10.0 mL) of 1-amino-2-naphthol hydrochloride (2.51 g, 12.8 mmol). .2 mmol) in dimethylformamide (2.80 mL) and p-toluenesulfonic acid monohydrate (48.5 mg, 0.255 mmol) were added at room temperature. The reaction mixture was stirred at 50 ° C. for 4.5 hours, and water was added at 0 ° C. to stop the reaction. Ethyl acetate was added to separate the organic layer, and the aqueous layer was extracted twice with ethyl acetate. The organic layers were mixed, washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solution was filtered and then concentrated under reduced pressure. The resulting mixture was fractionated using silica gel column chromatography (developing solvent: hexane / ethyl acetate = 9/1) to give the corresponding methyl ester of naphthoxazole (1. 88 g, 65%). The physical property values are as follows.

H NMR(CDCl):δ
8.60(d,J=8.1Hz,1H,Ph),
8.05−7.85(m,2H,Ph),
7.82−7.51(m,3H,Ph),
4.12(s,3H,Me).
1 H NMR (CDCl 3 ): δ
8.60 (d, J = 8.1 Hz, 1H, Ph),
8.05-7.85 (m, 2H, Ph),
7.82-7.51 (m, 3H, Ph),
4.12 (s, 3H, Me).

Figure 0005388294
Figure 0005388294

次いで上記反応式に示すように、メチルナフト[1,2−d]オキサゾル−2−カルボキシレート(2.44g,10.7mmol)のジクロロメタン溶液(71.7mL)に対して、水素化ジイソブチルアルミニウムのジクロロメタン溶液(1.0M,11.8mL,11.8mmol)を−78℃で10分間かけて滴下した。反応混合液を−78℃で10分間撹拌した後、−45℃で5.5時間撹拌した。この間、原料の消失を確認するまで水素化ジイソブチルアルミニウムのジクロロメタン溶液(1.0M,5.40mL,5.40mmol)をさらに加えた。反応混合液にメタノールを加えて反応を停止し、飽和酒石酸ナトリウムカリウム水溶液及びジクロロメタンを加えて室温に昇温し、有機層を分取した後、水層をジクロロメタンで3回抽出した。有機層を混合した後、無水硫酸マグネシウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=10/1)を用いて分取することにより、対応するアルデヒド(1.37g,65%)を得た。物性値は以下のとおりである。   Next, as shown in the above reaction formula, a solution of methylnaphtho [1,2-d] oxazol-2-carboxylate (2.44 g, 10.7 mmol) in dichloromethane (71.7 mL) was mixed with diisobutylaluminum hydride in dichloromethane. The solution (1.0 M, 11.8 mL, 11.8 mmol) was added dropwise at −78 ° C. over 10 minutes. The reaction mixture was stirred at −78 ° C. for 10 minutes and then stirred at −45 ° C. for 5.5 hours. During this time, a dichloromethane solution of diisobutylaluminum hydride (1.0 M, 5.40 mL, 5.40 mmol) was further added until the disappearance of the raw materials was confirmed. Methanol was added to the reaction mixture to stop the reaction, a saturated aqueous sodium potassium tartrate solution and dichloromethane were added, the temperature was raised to room temperature, the organic layer was separated, and the aqueous layer was extracted three times with dichloromethane. The organic layers were mixed and then dried over anhydrous magnesium sulfate. The solution was filtered and then concentrated under reduced pressure, and the resulting mixture was fractionated using silica gel column chromatography (developing solvent: hexane / ethyl acetate = 10/1) to give the corresponding aldehyde (1.37 g, 65%). ) The physical property values are as follows.

H NMR(CDCl):δ
9.64(s,1H,CHO)
8.70(dd,J=8.1,0.6Hz,1H,Ph),
7.63(d,J=8.4Hz,1H,Ph),
7.54−7.37(m,2H,Ph),
7.32(ddd,J=8.1,7.1,1.3Hz,1H,Ph),
7.16(d,J=9.0Hz,1H,Ph).
1 H NMR (CDCl 3 ): δ
9.64 (s, 1H, CHO)
8.70 (dd, J = 8.1, 0.6 Hz, 1H, Ph),
7.63 (d, J = 8.4 Hz, 1H, Ph),
7.54-7.37 (m, 2H, Ph),
7.32 (ddd, J = 8.1, 7.1, 1.3 Hz, 1H, Ph),
7.16 (d, J = 9.0 Hz, 1H, Ph).

Figure 0005388294
Figure 0005388294

塩化セリウム七水和物(3.76g,10.1mmol)を90℃で1時間、次いで140℃で2時間減圧(<0.4mmHg)乾燥し、0℃に冷却後、テトラヒドロフラン(33.7mL)を加えて19時間室温で撹拌したものを無水塩化セリウムのテトラヒドロフラン溶液として用いた。上記反応式に示すように、この無水塩化セリウム(2.49g,10.1mmol)のテトラヒドロフラン溶液(33.7mL)に対して、イソプロピルマグネシウムクロライドのジエチルエーテル溶液(2.0M,5.00mL,10.0mmol)を−78℃で加えた。反応混合液を−78℃で1時間撹拌した後、ナフト[1,2−d]オキサゾル−2−カルボアルデヒド(664mg,3.37mmol)を加えた。反応混合液を−78℃で4時間撹拌した後、10%酢酸水溶液を−78℃で加えて、室温まで昇温して反応を停止した。酢酸エチルを加えて有機層を分取した後、水層を酢酸エチルで2回抽出した。有機層を混合し、飽和重曹水及び飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=9/1)を用いて分取することにより、対応する第2級アルコール(230mg,28%)を得た。さらに、石油エーテル/ジクロロメタン混合溶媒(3/1)より再結晶を行い、第2級アルコール(149mg,18%)を得た。物性値は以下のとおりである。   Cerium chloride heptahydrate (3.76 g, 10.1 mmol) was dried under reduced pressure (<0.4 mmHg) at 90 ° C. for 1 hour, then at 140 ° C. for 2 hours, cooled to 0 ° C., and then tetrahydrofuran (33.7 mL). And stirred for 19 hours at room temperature was used as a tetrahydrofuran solution of anhydrous cerium chloride. As shown in the above reaction formula, a solution of anhydrous cerium chloride (2.49 g, 10.1 mmol) in tetrahydrofuran (33.7 mL) was added to a diethyl ether solution of isopropylmagnesium chloride (2.0 M, 5.00 mL, 10 mL). 0.0 mmol) was added at -78 ° C. The reaction mixture was stirred at −78 ° C. for 1 hour, after which naphtho [1,2-d] oxazol-2-carbaldehyde (664 mg, 3.37 mmol) was added. The reaction mixture was stirred at -78 ° C for 4 hours, 10% aqueous acetic acid solution was added at -78 ° C, and the temperature was raised to room temperature to stop the reaction. Ethyl acetate was added to separate the organic layer, and the aqueous layer was extracted twice with ethyl acetate. The organic layers were mixed, washed with saturated aqueous sodium hydrogen carbonate and saturated brine, and then dried over anhydrous sodium sulfate. The solution was filtered and concentrated under reduced pressure, and the resulting mixture was fractionated using silica gel column chromatography (developing solvent: hexane / ethyl acetate = 9/1) to give the corresponding secondary alcohol (230 mg, 28 %). Furthermore, recrystallization was performed from a petroleum ether / dichloromethane mixed solvent (3/1) to obtain a secondary alcohol (149 mg, 18%). The physical property values are as follows.

H NMR(CDCl):δ
8.41(d,J=8.0Hz,1H,Ph),
7.88(d,J=8.0Hz,1H,Ph),
7.71(d,J=9.0Hz,1H,Ph),
7.63−7.53(m,2H,Ph),
7.51−7.42(m,1H,Ph),
4.77(d,J=4.0Hz,1H,1−H),
2.94(brs,1H,OH),
2.40−2.20(m,1H,2−H),
0.99(d,J=7.0Hz,3H,3−H),
0.98(d,J=7.0Hz,3H,3−H).
1 H NMR (CDCl 3 ): δ
8.41 (d, J = 8.0 Hz, 1H, Ph),
7.88 (d, J = 8.0 Hz, 1H, Ph),
7.71 (d, J = 9.0 Hz, 1H, Ph),
7.63-7.53 (m, 2H, Ph),
7.51-7.42 (m, 1H, Ph),
4.77 (d, J = 4.0 Hz, 1H, 1-H),
2.94 (brs, 1H, OH),
2.40-2.20 (m, 1H, 2-H),
0.99 (d, J = 7.0 Hz, 3H, 3-H),
0.98 (d, J = 7.0 Hz, 3H, 3-H).

<2,2−ジメチル−1−(ナフト[1,2−d]オキサゾル−2−イル)プロパン−1−オールの調製(エントリー16)>

Figure 0005388294
<Preparation of 2,2-dimethyl-1- (naphtho [1,2-d] oxazol-2-yl) propan-1-ol (entry 16)>
Figure 0005388294

塩化セリウム七水和物(5.67g,15.2mmol)を90℃で1時間、次いで140℃で2時間減圧(0.3mmHg)乾燥し、0℃に冷却後、テトラヒドロフラン(50.7mL)を加えて13時間室温で撹拌したものを無水塩化セリウムのテトラヒドロフラン溶液として用いた。上記反応式に示すように、この無水塩化セリウム(3.75g,15.2mmol)のテトラヒドロフラン溶液(50.7mL)に対して、t−ブチルリチウムのn−ペンタン溶液(1.59M,9.60mL,15.3mmol)を−78℃で加えた。反応混合液を−78℃で5時間撹拌した後、ナフト[1,2−d]オキサゾル−2−カルボアルデヒド(1.00g,5.67mmol)を加えた。反応混合液を−78℃で3時間撹拌した後、10%酢酸水溶液を−78℃で加えて、室温まで昇温して反応を停止した。酢酸エチルを加えて有機層を分取した後、水層を酢酸エチルで2回抽出した。有機層を混合し、飽和重曹水及び飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=9/1)次いでシリカゲル薄層クロマトグラフィー(展開溶媒:クロロホルム/メタノール=50/1)を用いて分取することにより、対応する第2級アルコール(391mg、30%)を得た。さらに、石油エーテル/ジクロロメタン混合溶媒(3/2)より再結晶を行い、第2級アルコール(307mg,24%)を得た。物性値は以下のとおりである。   Cerium chloride heptahydrate (5.67 g, 15.2 mmol) was dried under reduced pressure (0.3 mmHg) at 90 ° C. for 1 hour and then at 140 ° C. for 2 hours. After cooling to 0 ° C., tetrahydrofuran (50.7 mL) was added. In addition, what was stirred at room temperature for 13 hours was used as a tetrahydrofuran solution of anhydrous cerium chloride. As shown in the above reaction formula, a solution of anhydrous cerium chloride (3.75 g, 15.2 mmol) in tetrahydrofuran (50.7 mL) was added to an n-pentane solution of t-butyllithium (1.59 M, 9.60 mL). , 15.3 mmol) was added at -78 ° C. After the reaction mixture was stirred at −78 ° C. for 5 hours, naphtho [1,2-d] oxazol-2-carbaldehyde (1.00 g, 5.67 mmol) was added. The reaction mixture was stirred at -78 ° C for 3 hours, 10% aqueous acetic acid solution was added at -78 ° C, and the temperature was raised to room temperature to stop the reaction. Ethyl acetate was added to separate the organic layer, and the aqueous layer was extracted twice with ethyl acetate. The organic layers were mixed, washed with saturated aqueous sodium hydrogen carbonate and saturated brine, and then dried over anhydrous sodium sulfate. The solution was filtered and concentrated under reduced pressure. The resulting mixture was subjected to silica gel column chromatography (developing solvent: hexane / ethyl acetate = 9/1) and then silica gel thin layer chromatography (developing solvent: chloroform / methanol = 50/1). To give the corresponding secondary alcohol (391 mg, 30%). Further, recrystallization was performed from a petroleum ether / dichloromethane mixed solvent (3/2) to obtain a secondary alcohol (307 mg, 24%). The physical property values are as follows.

H NMR(CDCl):δ
8.47−8.38(m,1H,Ph),
7.90(d,J=8.1Hz,1H,Ph),
7.73(d,J=8.7Hz,1H,Ph),
7.67−7.54(m,2H,Ph),
7.47(ddd,J=8.2,6.9,1.3Hz,1H,Ph),
7.67−7.41(m,3H,Ph),
4.64(s,1H,1−H),
1.60(brs,1H,OH),
1.03(s,9H,Bu)
1 H NMR (CDCl 3 ): δ
8.47-8.38 (m, 1H, Ph),
7.90 (d, J = 8.1 Hz, 1H, Ph),
7.73 (d, J = 8.7 Hz, 1H, Ph),
7.67-7.54 (m, 2H, Ph),
7.47 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H, Ph),
7.67-7.41 (m, 3H, Ph),
4.64 (s, 1H, 1-H),
1.60 (brs, 1H, OH),
1.03 (s, 9H, t Bu)

<1−(ナフト[1,2−d]オキサゾル−2−イル)ブチ−3−エン−1−オールの調製(エントリー17)>

Figure 0005388294
<Preparation of 1- (naphtho [1,2-d] oxazol-2-yl) but-3-en-1-ol (entry 17)>
Figure 0005388294

塩化セリウム七水和物(1.90g,5.10mmol)を90℃で1時間、次いで140℃で2時間減圧(0.6mmHg)乾燥し、0℃に冷却後、テトラヒドロフラン(25.5mL)を加えて12時間室温で撹拌したものを無水塩化セリウムのテトラヒドロフラン溶液として用いた。上記反応式に示すように、この無水塩化セリウム(1.26g,5.10mmol)のテトラヒドロフラン溶液(25.5mL)に対して、アリルマグネシウムブロマイドのジエチルエーテル溶液(1.0M,5.10mL,5.10mmol)を−78℃で加えた。反応混合液を−78℃で1時間撹拌した後、ナフト[1,2−d]オキサゾル−2−カルボアルデヒド(503mg,2.55mmol)を加えた。反応混合液を−78℃で1時間撹拌した後、10%酢酸水溶液を−78℃で加えて反応を停止した。ジエチルエーテルを加えて有機層を分取した後、水層を酢酸エチルで2回抽出した。有機層を混合し、飽和重曹水及び飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=5/1)を用いて粗精製し、次いでシリカゲル薄層クロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/1)を用いて分取することにより、対応する第2級アルコール(284mg,47%)を得た。さらに、石油エーテル/ジクロロメタン混合溶媒(1/1)より再結晶を行い、第2級アルコール(150mg,25%)を得た。物性値は以下のとおりである。   Cerium chloride heptahydrate (1.90 g, 5.10 mmol) was dried under reduced pressure (0.6 mmHg) at 90 ° C. for 1 hour and then at 140 ° C. for 2 hours. After cooling to 0 ° C., tetrahydrofuran (25.5 mL) was added. In addition, what was stirred at room temperature for 12 hours was used as a tetrahydrofuran solution of anhydrous cerium chloride. As shown in the above reaction formula, a solution of anhydrous cerium chloride (1.26 g, 5.10 mmol) in tetrahydrofuran (25.5 mL) was mixed with allylmagnesium bromide in diethyl ether (1.0 M, 5.10 mL, 5 .10 mmol) was added at -78 ° C. After the reaction mixture was stirred at −78 ° C. for 1 hour, naphtho [1,2-d] oxazol-2-carbaldehyde (503 mg, 2.55 mmol) was added. The reaction mixture was stirred at −78 ° C. for 1 hour, and 10% aqueous acetic acid solution was added at −78 ° C. to stop the reaction. Diethyl ether was added to separate the organic layer, and the aqueous layer was extracted twice with ethyl acetate. The organic layers were mixed, washed with saturated aqueous sodium hydrogen carbonate and saturated brine, and then dried over anhydrous sodium sulfate. The solution was filtered and then concentrated under reduced pressure. The resulting mixture was roughly purified using silica gel column chromatography (developing solvent: hexane / ethyl acetate = 5/1) and then silica gel thin layer chromatography (developing solvent: hexane / The corresponding secondary alcohol (284 mg, 47%) was obtained by fractionation using ethyl acetate = 3/1). Furthermore, recrystallization was performed from a petroleum ether / dichloromethane mixed solvent (1/1) to obtain a secondary alcohol (150 mg, 25%). The physical property values are as follows.

H NMR(CDCl):δ
8.49(td,J=8.1,0.6Hz,1H,Ph),
7.97(d,J=8.1Hz,1H,Ph),
7.80(d,J=9.0Hz,1H,Ph),
7.75−7.62(m,2H,Ph),
7.55(ddd,J=8.3,6.9,1.4Hz,1H,Ph),
5.91(tdd,J=8.6,14.1,9.9Hz,1H,3−H),
5.37−5.06(m,3H,1,4−H),
3.02−2.75(m,2H,2−H),
1.69(brs,1H,OH).
1 H NMR (CDCl 3 ): δ
8.49 (td, J = 8.1, 0.6 Hz, 1H, Ph),
7.97 (d, J = 8.1 Hz, 1H, Ph),
7.80 (d, J = 9.0 Hz, 1H, Ph),
7.75-7.62 (m, 2H, Ph),
7.55 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H, Ph),
5.91 (tdd, J = 8.6, 14.1, 9.9 Hz, 1H, 3-H),
5.37-5.06 (m, 3H, 1, 4-H),
3.02-2.75 (m, 2H, 2-H),
1.69 (brs, 1H, OH).

<1−(ナフト[1,2−d]オキサゾル−2−イル)ヘプト−2−イン−1−オール コバルト化錯体の調製(エントリー18)>

Figure 0005388294
<Preparation of 1- (naphth [1,2-d] oxazol-2-yl) hept-2-yn-1-ol cobaltated complex (entry 18)>
Figure 0005388294

塩化セリウム七水和物(2.36g,6.34mmol)を90℃で1時間、次いで140℃で2時間減圧(<0.4mmHg)乾燥し、0℃に冷却後、テトラヒドロフラン(15.0mL)を加えて12時間室温で撹拌したものを無水塩化セリウムのテトラヒドロフラン溶液として用いた。まず上記反応式に示すように、1−ヘキシン(0.723mL,6.34mmol)のテトラヒドロフラン溶液(16.7mL)に対して、n−ブチルリチウムのヘキサン溶液(2.64M,2.40mL,6.34mmol)を−78℃で加えた。反応混合液を−78℃で1.5時間撹拌した後、−78℃に冷却した無水塩化セリウム(1.56g,6.34mmol)のテトラヒドロフラン溶液(15.0mL)中に加えた。反応混合液を−78℃で1.5時間撹拌した後、ナフト[1,2−d]オキサゾル−2−カルボアルデヒド(625mg,3.17mmol)を加えた。反応混合液を−78℃で2.5時間撹拌した後、10%酢酸水溶液を−78℃で加えて、室温まで昇温して反応を停止した。ジエチルエーテルを加えて有機層を分取した後、水層をジエチルエーテルで2回抽出した。有機層を混合し、飽和重曹水及び飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=9/1)を用いて分取することにより、対応する第2級アルコール(801mg,91%)を得た。さらに、石油エーテル/ジエチルエーテル混合溶媒(3/1)より再結晶を行い、第2級アルコール(688mg,78%)を得た。物性値は以下のとおりである。   Cerium chloride heptahydrate (2.36 g, 6.34 mmol) was dried under reduced pressure (<0.4 mmHg) at 90 ° C. for 1 hour and then at 140 ° C. for 2 hours, cooled to 0 ° C., and then tetrahydrofuran (15.0 mL) And stirred for 12 hours at room temperature was used as a tetrahydrofuran solution of anhydrous cerium chloride. First, as shown in the above reaction formula, 1-hexyne (0.723 mL, 6.34 mmol) in tetrahydrofuran solution (16.7 mL), n-butyllithium in hexane solution (2.64 M, 2.40 mL, 6 .34 mmol) was added at -78 ° C. The reaction mixture was stirred at −78 ° C. for 1.5 hours, and then added to a tetrahydrofuran solution (15.0 mL) of anhydrous cerium chloride (1.56 g, 6.34 mmol) cooled to −78 ° C. The reaction mixture was stirred at −78 ° C. for 1.5 hours, after which naphtho [1,2-d] oxazol-2-carbaldehyde (625 mg, 3.17 mmol) was added. The reaction mixture was stirred at -78 ° C for 2.5 hours, 10% aqueous acetic acid solution was added at -78 ° C, and the temperature was raised to room temperature to stop the reaction. Diethyl ether was added to separate the organic layer, and the aqueous layer was extracted twice with diethyl ether. The organic layers were mixed, washed with saturated aqueous sodium hydrogen carbonate and saturated brine, and then dried over anhydrous sodium sulfate. The solution was filtered and then concentrated under reduced pressure. The resulting mixture was fractionated using silica gel column chromatography (developing solvent: hexane / ethyl acetate = 9/1) to give the corresponding secondary alcohol (801 mg, 91 %). Further, recrystallization was performed from a petroleum ether / diethyl ether mixed solvent (3/1) to obtain a secondary alcohol (688 mg, 78%). The physical property values are as follows.

H NMR(CDCl):δ
8.53(d,J=8.4Hz,1H,Ph),
7.96(d,J=8.1Hz,1H,Ph),
7.82(d,J=9.0Hz,1H,Ph),
7.74−7.62(m,2H,Ph),
7.55(ddd,J=8.1,6.9,1.5Hz,1H,Ph),
5.92−5.82(m,1H,1−H),
2.90(brs,1H,OH),
2.32−2.13(m,2H,4−H),
1.57−1.28(m,4H,5,6−H),
0.97−0.79(m,3H,7−H).
1 H NMR (CDCl 3 ): δ
8.53 (d, J = 8.4 Hz, 1H, Ph),
7.96 (d, J = 8.1 Hz, 1H, Ph),
7.82 (d, J = 9.0 Hz, 1H, Ph),
7.74-7.62 (m, 2H, Ph),
7.55 (ddd, J = 8.1, 6.9, 1.5 Hz, 1H, Ph),
5.92-5.82 (m, 1H, 1-H),
2.90 (brs, 1H, OH),
2.3-2.13 (m, 2H, 4-H),
1.57-1.28 (m, 4H, 5, 6-H),
0.97-0.79 (m, 3H, 7-H).

Figure 0005388294
Figure 0005388294

次いで上記反応式に示すように、1−(ナフト[1,2−d]オキサゾル−2−イル)ヘプト−2−イン−1−オール(40.0mg,0.143mmol)のジクロロメタン溶液(1.40mL)に対して、コバルトオクタカルボニル(53.9mg,0.158mmol)を室温で加えた。反応混合液を室温で1時間撹拌した後に減圧濃縮し、シリカゲル薄層クロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=7/1)を用いて分取することにより、対応するコバルト錯体化第2級アルコール(79.3mg,98%)を得た。物性値は以下のとおりである。   Next, as shown in the above reaction formula, 1- (naphth [1,2-d] oxazol-2-yl) hept-2-in-1-ol (40.0 mg, 0.143 mmol) in dichloromethane solution (1. 40 mL), cobalt octacarbonyl (53.9 mg, 0.158 mmol) was added at room temperature. The reaction mixture was stirred at room temperature for 1 hour, concentrated under reduced pressure, and fractionated using silica gel thin layer chromatography (developing solvent: hexane / ethyl acetate = 7/1) to give the corresponding cobalt complexation secondary class. Alcohol (79.3 mg, 98%) was obtained. The physical property values are as follows.

H NMR(CDCl):δ
8.40(d,J=7.8Hz,1H,Ph),
7.87(d,J=8.1Hz,1H,Ph),
7.70(d,J=9.0Hz,1H,Ph),
7.64−7.35(m,3H,Ph),
6.18(d,J=5.7Hz,1H,1−H),
3.97(brs,1H,OH),
2.82(dd,J=9.0,7.5Hz,2H,4−H),
1.72−1.28(m,4H,5,6−H),
0.87(t,J=7.2Hz,3H,7−H).
1 H NMR (CDCl 3 ): δ
8.40 (d, J = 7.8 Hz, 1H, Ph),
7.87 (d, J = 8.1 Hz, 1H, Ph),
7.70 (d, J = 9.0 Hz, 1H, Ph),
7.64-7.35 (m, 3H, Ph),
6.18 (d, J = 5.7 Hz, 1H, 1-H),
3.97 (brs, 1H, OH),
2.82 (dd, J = 9.0, 7.5 Hz, 2H, 4-H),
1.72-1.28 (m, 4H, 5, 6-H),
0.87 (t, J = 7.2 Hz, 3H, 7-H).

≪光学活性アミノアルコールの製造(1)≫

Figure 0005388294
≪Production of optically active amino alcohol (1) ≫
Figure 0005388294

上記反応式に示すように、光学活性な1−(ナフト[1,2−d]オキサゾル−2−イル)−3−フェニルプロパン−1−オール(34.9mg,0.0887mmol)のテトラヒドロフラン溶液(0.440mL)に対して、水素化アルミニウムリチウム(10.1mg,0.266mmol)を0℃で加えた。反応混合液を室温で2時間撹拌し、0℃で水を加えて反応を停止した。反応混合液をセライト濾過し、減圧濃縮することにより、粗製体の第2級アミンを得た。
引き続き、得られた粗製体の第2級アミンのテトラヒドロフラン/水(1.80mL/0.35mL)の混合溶液に対して、硝酸セリウム(IV)アンモニウム(146mg,0.266mmol)を0℃で加えた。反応混合液を0℃で30分間撹拌し、さらに硝酸セリウム(IV)アンモニウム(49.0mg,0.0894mmol)を0℃で加え、1時間撹拌した後、反応混合液に水、炭酸カリウム、及び亜硫酸ナトリウムを加えて水層のpHを8以上に調整し、反応を停止した。セライト濾過を行い、ジクロロメタンを加えて有機層を分取した後、水層をジクロロメタンで2回抽出した。有機層を混合し、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲル薄層クロマトグラフィー(展開溶媒:アンモニア水抽出によりアンモニアを飽和させたクロロホルム/メタノール=20/1)を用いて分取することにより、対応する光学活性アミノアルコール(6.4mg,44%)を得た。物性値は以下のとおりである。
As shown in the above reaction formula, a solution of optically active 1- (naphth [1,2-d] oxazol-2-yl) -3-phenylpropan-1-ol (34.9 mg, 0.0887 mmol) in tetrahydrofuran ( 0.440 mL) was added lithium aluminum hydride (10.1 mg, 0.266 mmol) at 0 ° C. The reaction mixture was stirred at room temperature for 2 hours, and water was added at 0 ° C. to stop the reaction. The reaction mixture was filtered through Celite and concentrated under reduced pressure to obtain a crude secondary amine.
Subsequently, cerium (IV) ammonium nitrate (146 mg, 0.266 mmol) was added at 0 ° C. to a mixed solution of the obtained crude secondary amine in tetrahydrofuran / water (1.80 mL / 0.35 mL). It was. The reaction mixture was stirred at 0 ° C. for 30 minutes, and further cerium (IV) ammonium nitrate (49.0 mg, 0.0894 mmol) was added at 0 ° C. and stirred for 1 hour, and then water, potassium carbonate, and water were added to the reaction mixture. Sodium sulfite was added to adjust the pH of the aqueous layer to 8 or more, and the reaction was stopped. Celite filtration was performed, dichloromethane was added to separate the organic layer, and then the aqueous layer was extracted twice with dichloromethane. The organic layers were mixed and dried over anhydrous sodium sulfate. The solution was filtered and then concentrated under reduced pressure, and the resulting mixture was fractionated using silica gel thin layer chromatography (developing solvent: chloroform / methanol saturated with ammonia by extraction with aqueous ammonia = 20/1). An optically active amino alcohol (6.4 mg, 44%) was obtained. The physical property values are as follows.

[α] 27=−0.15(c 1.00,MeOH);
H NMR(CDCl):δ
7.50−6.95(m,5H,Ph),
3.71(brs,1H,2−H)
3.05−2.37(m,4H,1,4−H),
2.10−1.46(m,5H,3−H,NH,OH).
[Α] D 27 = −0.15 (c 1.00, MeOH);
1 H NMR (CDCl 3 ): δ
7.50-6.95 (m, 5H, Ph),
3.71 (brs, 1H, 2-H)
3.05-2.37 (m, 4H, 1, 4-H),
2.10-1.46 (m, 5H, 3- H, NH 2, OH).

≪光学活性アミノアルコールの製造(2)≫

Figure 0005388294
≪Production of optically active amino alcohol (2) ≫
Figure 0005388294

まず上記反応式に示すように、光学活性な1−(ナフト[1,2−d]オキサゾル−2−イル)−3−フェニルプロパン−1−オール(16.7mg,0.0551mmol)のジクロロメタン溶液0.550mL)に対して、臭化ベンジル(19.6μL,0.170mmol)、酸化銀(I)(38.3mg,0.165mmol)、及びテトラブチルアンモニウムアイオダイド(2.0mg,5.4μmol)を室温で順次加えた。反応混合物を室温で11時間撹拌し、溶液をセライト濾過した後に減圧濃縮し、得られた混合物をシリカゲル薄層クロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=9/1)を用いて分取することにより、対応するベンジルエーテル(19.8mg,91%)を得た。物性値は以下のとおりである。   First, as shown in the above reaction formula, a solution of optically active 1- (naphth [1,2-d] oxazol-2-yl) -3-phenylpropan-1-ol (16.7 mg, 0.0551 mmol) in dichloromethane. 0.550 mL), benzyl bromide (19.6 μL, 0.170 mmol), silver (I) oxide (38.3 mg, 0.165 mmol), and tetrabutylammonium iodide (2.0 mg, 5.4 μmol). ) At room temperature. The reaction mixture is stirred at room temperature for 11 hours, the solution is filtered through Celite, and concentrated under reduced pressure. The resulting mixture is fractionated using silica gel thin layer chromatography (developing solvent: hexane / ethyl acetate = 9/1). Gave the corresponding benzyl ether (19.8 mg, 91%). The physical property values are as follows.

HPLC(CHIRALPAK OD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=19.2min(>99.9%),t=23.9min(<0.1%).
H NMR(C):δ
8.51(d,J=8.0Hz,1H,Ph),
7.39(d,J=8.0Hz,1H,Ph),
7.16−6.94(m,6H,Ph),
6.89−6.67(m,8H,Ph),
4.46(dd,J=8.0,5.0Hz,1H,1−H),
4.10(d,J=12Hz,1H,Bn),
4.05(d,J=12Hz,1H,Bn),
2.47(ddd,J=13.9,9.0,5.5Hz,1H,3−H),
2.40−2.28(m,1H,3−H),
2.27−2.16(m,1H,2−H),
2.05−1.93(m,1H,2−H).
HPLC (CHIRALPAK OD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 19.2 min (> 99.9%), t R = 23.9 min (<0 .1%).
1 H NMR (C 6 D 6 ): δ
8.51 (d, J = 8.0 Hz, 1H, Ph),
7.39 (d, J = 8.0 Hz, 1H, Ph),
7.16-6.94 (m, 6H, Ph),
6.89-6.67 (m, 8H, Ph),
4.46 (dd, J = 8.0, 5.0 Hz, 1H, 1-H),
4.10 (d, J = 12 Hz, 1H, Bn),
4.05 (d, J = 12 Hz, 1H, Bn),
2.47 (ddd, J = 13.9, 9.0, 5.5 Hz, 1H, 3-H),
2.40-2.28 (m, 1H, 3-H),
2.27-2.16 (m, 1H, 2-H),
2.05-1.93 (m, 1H, 2-H).

Figure 0005388294
Figure 0005388294

次いで上記反応式に示すように、光学活性なベンジルエーテル(26.7mg,0.0679mmol)のテトラヒドロフラン溶液(1.40mL)に対して、水素化アルミニウムリチウム(7.7mg,0.203mmol)を0℃で加えた。反応混合液を50℃で2時間撹拌し、0℃で水を加えて反応を停止した。反応混合液をセライト濾過した後、減圧濃縮を行い、得られた混合物をシリカゲル薄層クロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=4/1)を用いて分取することにより、対応する第2級アミン(25.3mg,94%)を得た。物性値は以下のとおりである。   Next, as shown in the above reaction formula, lithium aluminum hydride (7.7 mg, 0.203 mmol) was added to a tetrahydrofuran solution (1.40 mL) of optically active benzyl ether (26.7 mg, 0.0679 mmol). Added at ° C. The reaction mixture was stirred at 50 ° C. for 2 hours, and water was added at 0 ° C. to stop the reaction. The reaction mixture was filtered through Celite and then concentrated under reduced pressure. The obtained mixture was fractionated using silica gel thin layer chromatography (developing solvent: hexane / ethyl acetate = 4/1) to give the corresponding second A tertiary amine (25.3 mg, 94%) was obtained. The physical property values are as follows.

H NMR(C):δ
7.42−7.26(m,2H,Ph),
7.20−6.62(m,16H,Ph,OH,NH),
4.04(s,2H,Bn),
3.03−2.77(m,1H,2−H),
2.53(d,J=5.1Hz,2H,1−H),
2.14(t,J=7.8Hz,2H,4−H),
1.58−1.20(m,2H,3−H).
1 H NMR (C 6 D 6 ): δ
7.42-7.26 (m, 2H, Ph),
7.20-6.62 (m, 16H, Ph, OH, NH),
4.04 (s, 2H, Bn),
3.03-2.77 (m, 1H, 2-H),
2.53 (d, J = 5.1 Hz, 2H, 1-H),
2.14 (t, J = 7.8 Hz, 2H, 4-H),
1.58-1.20 (m, 2H, 3-H).

Figure 0005388294
Figure 0005388294

次いで上記反応式に示すように、光学活性な第2級アミン(59.6mg,0.150mmol)のアセトニトリル溶液(3.0mL)に対して、硝酸セリウム(IV)アンモニウム(247mg,0.450mmol)の水溶液(0.60mL)を0℃で10分間かけて加えた。反応混合液を室温で30分間撹拌し、反応混合液に水、炭酸カリウム、及び亜硫酸ナトリウムを加えて水層のpHを8以上に調整し、反応を停止した。溶液をセライト濾過した後、ジクロロメタンを加えて有機層を分取し、水層をジクロロメタンで2回抽出した。有機層を混合した後、亜硫酸ナトリウム水溶液及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲル薄層クロマトグラフィー(展開溶媒:アンモニア水抽出によりアンモニアを飽和させたクロロホルム/メタノール=50/1)を用いて分取することにより、対応する第1級アミン(33.3mg,87%)を得た。物性値は以下のとおりである。   Next, as shown in the above reaction formula, cerium (IV) ammonium nitrate (247 mg, 0.450 mmol) was added to an acetonitrile solution (3.0 mL) of an optically active secondary amine (59.6 mg, 0.150 mmol). Was added at 0 ° C. over 10 minutes. The reaction mixture was stirred at room temperature for 30 minutes, water, potassium carbonate, and sodium sulfite were added to the reaction mixture to adjust the pH of the aqueous layer to 8 or more, and the reaction was stopped. The solution was filtered through Celite, dichloromethane was added to separate the organic layer, and the aqueous layer was extracted twice with dichloromethane. The organic layers were mixed, washed with an aqueous sodium sulfite solution and saturated brine, and dried over anhydrous sodium sulfate. The solution was filtered and then concentrated under reduced pressure, and the resulting mixture was fractionated using silica gel thin layer chromatography (developing solvent: chloroform / methanol saturated with ammonia by extraction with aqueous ammonia = 50/1). To give a primary amine (33.3 mg, 87%). The physical property values are as follows.

H NMR(C):δ
7.10−6.70(m,10H,Ph),
4.03(s,2H,Bn),
2.95−2.77(m,1H,2−H),
2.50−2.15(m,4H,1,4−H),
1.65−1.28(m,2H,3−H),
0.63(brs,2H,NH).
1 H NMR (C 6 D 6 ): δ
7.10-6.70 (m, 10H, Ph),
4.03 (s, 2H, Bn),
2.95-2.77 (m, 1H, 2-H),
2.50-2.15 (m, 4H, 1, 4-H),
1.65-1.28 (m, 2H, 3-H),
0.63 (brs, 2H, NH 2 ).

Figure 0005388294
Figure 0005388294

次いで上記反応式に示すように、光学活性な第1級アミン(36.4mg,0.143mmol)のメタノール/酢酸(1.40mL/1.40mL)の混合溶液に対して、10%パラジウム炭素(75.9mg,0.0713mmol)を室温で加えた。反応混合物を室温で水素雰囲気のもと10時間撹拌した後、セライト濾過し、減圧濃縮することにより、対応する光学活性アミノアルコール(23.6mg,100%)を得た。   Next, as shown in the above reaction formula, 10% palladium on carbon (14.0 mL / 1.40 mL) in a mixed solution of optically active primary amine (36.4 mg, 0.143 mmol) in methanol / acetic acid (1.40 mL / 1.40 mL) 75.9 mg, 0.0713 mmol) was added at room temperature. The reaction mixture was stirred at room temperature under a hydrogen atmosphere for 10 hours, filtered through Celite, and concentrated under reduced pressure to obtain the corresponding optically active amino alcohol (23.6 mg, 100%).

Claims (3)

下記式(1)
Figure 0005388294
[式中、Rは一価の有機基を示し、Arは置換基を有していてもよいベンゼン環又はナフタレン環を示す。]
で表される化合物のオキサゾール部位を還元し、次いでアミノ基の保護基を脱保護することにより下記式(2)
Figure 0005388294
[式中、Rは前記式(1)と同じである。]
で表される化合物を得ることを特徴とする光学活性アミノアルコールの製造方法。
Following formula (1)
Figure 0005388294
[Wherein, R 1 represents a monovalent organic group, and Ar represents a benzene ring or a naphthalene ring which may have a substituent. ]
In the following formula (2), the oxazole moiety of the compound represented by formula (1) is reduced and then the amino protecting group is deprotected.
Figure 0005388294
[Wherein, R 1 is the same as the formula (1). ]
A process for producing an optically active amino alcohol, characterized in that a compound represented by the formula:
下記式(1)
Figure 0005388294
[式中、Rは一価の有機基を示し、Arは置換基を有していてもよいベンゼン環又はナフタレン環を示す。]
で表される化合物の水酸基を保護することにより下記式(3)
Figure 0005388294
[式中、Rは水酸基の保護基を示し、R、Arは前記式(1)と同じである。]
で表される化合物を調製し、次いでオキサゾール部位を還元することにより下記式(4)
Figure 0005388294
[式中、R、R、Arは前記式()と同じである。]
で表される化合物を調製し、次いでアミノ基の保護基を脱保護することにより下記式(5)
Figure 0005388294
[式中、R、Rは前記式()と同じである。]
で表される化合物を調製し、次いで水酸基の保護基を脱保護することにより下記式(2)
Figure 0005388294
[式中、Rは前記式(1)と同じである。]
で表される化合物を得ることを特徴とする光学活性アミノアルコールの製造方法。
Following formula (1)
Figure 0005388294
[Wherein, R 1 represents a monovalent organic group, and Ar represents a benzene ring or a naphthalene ring which may have a substituent. ]
By protecting the hydroxyl group of the compound represented by formula (3)
Figure 0005388294
[Wherein R 2 represents a hydroxyl-protecting group, and R 1 and Ar are the same as those in the formula (1). ]
The compound represented by the formula (4) is prepared by reducing the oxazole moiety:
Figure 0005388294
[Wherein, R 1 , R 2 and Ar are the same as those in the above formula ( 3 ). ]
And then deprotecting the protecting group of the amino group to produce a compound represented by the following formula (5):
Figure 0005388294
[Wherein, R 1 and R 2 are the same as those in the formula ( 3 ). ]
And then deprotecting the protecting group of the hydroxyl group, thereby removing the following formula (2):
Figure 0005388294
[Wherein, R 1 is the same as the formula (1). ]
A process for producing an optically active amino alcohol, characterized in that a compound represented by the formula:
下記式(6)
Figure 0005388294
[式中、R、Arは前記式(1)と同じである。]
で表されるラセミ体の化合物を速度論的光学分割することにより前記式(1)で表される化合物を調製することを特徴とする請求項1又は2記載の光学活性アミノアルコールの製造方法。
Following formula (6)
Figure 0005388294
[Wherein, R 1 and Ar are the same as those in the formula (1). ]
3. The method for producing an optically active amino alcohol according to claim 1, wherein the compound represented by the formula (1) is prepared by kinetic optical resolution of the racemic compound represented by formula (1):
JP2009244061A 2009-10-23 2009-10-23 Method for producing optically active amino alcohol Expired - Fee Related JP5388294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009244061A JP5388294B2 (en) 2009-10-23 2009-10-23 Method for producing optically active amino alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009244061A JP5388294B2 (en) 2009-10-23 2009-10-23 Method for producing optically active amino alcohol

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009059850 Division 2009-03-12 2009-03-12

Publications (2)

Publication Number Publication Date
JP2010215606A JP2010215606A (en) 2010-09-30
JP5388294B2 true JP5388294B2 (en) 2014-01-15

Family

ID=42974840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009244061A Expired - Fee Related JP5388294B2 (en) 2009-10-23 2009-10-23 Method for producing optically active amino alcohol

Country Status (1)

Country Link
JP (1) JP5388294B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756557B1 (en) * 1996-11-29 1999-02-05 Univ Rouen PROCESS FOR SPLITTING 1-AMINO-ALCAN-2-OL COMPOUNDS
WO2001044165A1 (en) * 1999-12-16 2001-06-21 Dainippon Pharmaceutical Co., Ltd. Processes for producing (aminomethyl)trifluorocarbinol derivatives
JP4288311B2 (en) * 2002-10-18 2009-07-01 高砂香料工業株式会社 Method for producing optically active amino alcohol
JP4216635B2 (en) * 2003-05-01 2009-01-28 株式会社マルハニチロ水産 Nitrogen-containing compound, production method and use thereof
JP2007031344A (en) * 2005-07-27 2007-02-08 Japan Science & Technology Agency METHOD FOR PRODUCING OPTICALLY ACTIVE beta-AMINO-ALCOHOL COMPOUND AND CATALYST

Also Published As

Publication number Publication date
JP2010215606A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
CA2549431C (en) Optically active quaternary ammonium salt having axial asymmetry and process for producing .alpha.-amino acid and derivative thereof with the same
JP7398436B2 (en) Methyl 6-(2,4-dichlorophenyl)-5-[4-[(3S)-1-(3-fluoropropyl)pyrrolidin-3-yl]oxyphenyl]-8,9-dihydro-7H-benzo[7 ] Annelene-2-carboxylate salt and method for producing the same
JP6054935B2 (en) Intermediates for the synthesis of benzoindene prostaglandins and their preparation
CZ20022255A3 (en) Process for preparing tolterodine and analogs thereof as well as intermediates prepared thereby
CN104230978B (en) Ezetimibe prepare intermediate and preparation method thereof
JP5435656B2 (en) Method for producing optically active ester and method for producing optically active carboxylic acid
Zhao et al. Enantioselective Michael addition of 3-aryloxindoles to a vinyl bisphosphonate ester catalyzed by a cinchona alkaloid derived thiourea catalyst
JPWO2008140074A1 (en) Method for producing optically active carboxylic acid ester
JP2009096791A (en) Method for producing amino acid
JP5388294B2 (en) Method for producing optically active amino alcohol
EP3599234B1 (en) Stereoselective process
KR102323561B1 (en) Aminoalcohol-boron-binol complexes and a method for preparing optically active aminoalcohol derivatives using the same
JP4474861B2 (en) Optically active quaternary ammonium salt, process for producing the same, and process for producing optically active α-amino acid derivative using the same
JP2011068587A (en) New aminoalcohol derivative salt, asymmetric organic molecule catalyst having aminoalcohol derivative salt structure and method for producing optically active compound with the asymmetric organic molecule catalyst
JP2010030992A (en) Method for producing optically active amine compound
JP4956614B2 (en) Novel process for producing 3-amino-5-fluoro-4-dialkoxypentanoic acid ester
JP2005104895A (en) Method for preparing optically active amino alcohol compound
JP3243980B2 (en) Method for producing 3-oxy-5-oxo-6-heptenoic acid derivative
JP4617643B2 (en) Fluorine-containing optically active quaternary ammonium salt, method for producing the same, and method for producing optically active α-amino acid derivative using the same
JP4982732B2 (en) Binaphthyl derivative and method for producing the same
JP4215687B2 (en) Process for producing optically active β-hydroxy-α-amino acid derivative
JP3243979B2 (en) Optically active 3-oxy-5-oxo-6-heptenoic acid derivative and method for producing the same
JP2005145833A (en) Method for producing syn-1,3-diol compound
KR20130003905A (en) Method for preparation of chiral alpha-hydroxy phosphonate derivatives
JP2004099524A (en) Method for producing enolate compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131004

R150 Certificate of patent or registration of utility model

Ref document number: 5388294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees