JP5387815B2 - Cubic boron nitride coating composite - Google Patents

Cubic boron nitride coating composite Download PDF

Info

Publication number
JP5387815B2
JP5387815B2 JP2008273051A JP2008273051A JP5387815B2 JP 5387815 B2 JP5387815 B2 JP 5387815B2 JP 2008273051 A JP2008273051 A JP 2008273051A JP 2008273051 A JP2008273051 A JP 2008273051A JP 5387815 B2 JP5387815 B2 JP 5387815B2
Authority
JP
Japan
Prior art keywords
coating film
boron nitride
cubic boron
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008273051A
Other languages
Japanese (ja)
Other versions
JP2010099916A (en
Inventor
精一郎 松本
君元 堤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
National Institute for Materials Science
Original Assignee
Kyushu University NUC
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, National Institute for Materials Science filed Critical Kyushu University NUC
Priority to JP2008273051A priority Critical patent/JP5387815B2/en
Publication of JP2010099916A publication Critical patent/JP2010099916A/en
Application granted granted Critical
Publication of JP5387815B2 publication Critical patent/JP5387815B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、耐摩耗性、低摩擦性、耐熱性、熱伝導性、電気絶縁性等に優れた複合材料に関するもので、より具体的には、切削工具、耐摩耗性治具、高熱伝導性基板、耐熱高絶縁性コーティング、高温電子材料等に応用可能な立方晶窒化ホウ素被覆膜複合材料に関するものである。   The present invention relates to a composite material having excellent wear resistance, low friction, heat resistance, thermal conductivity, electrical insulation, and the like. More specifically, the present invention relates to a cutting tool, an abrasion resistant jig, and a high thermal conductivity. The present invention relates to a cubic boron nitride coating film composite material that can be applied to substrates, heat-resistant and high-insulating coatings, high-temperature electronic materials, and the like.

立方晶窒化ホウ素(以下、c−BNともいう。)は、その高い、硬度、耐摩耗性、しゅう動性、熱伝導性、電気絶縁性のため、難削材研削や高速切削のためのコーティング材、またヒートシンクや耐熱高絶縁性コーティングとしても永年期待されてきた。   Cubic boron nitride (hereinafter also referred to as c-BN) is a coating for grinding difficult-to-cut materials and high-speed cutting because of its high hardness, wear resistance, sliding property, thermal conductivity, and electrical insulation. It has been expected for many years as a material, as a heat sink and as a heat-resistant and highly insulating coating.

しかし、従来のc−BN膜をコーティングする方法は、強いイオンボンバードを用いるため、膜内の内部応力が大きく金属やセラミック等の基体との密着力が十分でなく、密着性の充分な1μm以上の膜を得ることは困難であった。また、そのc−BN被覆膜は強いイオン衝撃を用いて作成するため結晶性が悪く、ラマンピークは観察されず、X線回折でのc−BNのピークもブロードであった。   However, the conventional method of coating a c-BN film uses strong ion bombardment, so the internal stress in the film is large and the adhesion with a substrate such as metal or ceramic is not sufficient, and the adhesion is 1 μm or more. It was difficult to obtain a film. Moreover, since the c-BN coating film was formed using strong ion bombardment, the crystallinity was poor, the Raman peak was not observed, and the c-BN peak in X-ray diffraction was also broad.

この密着性を改善するために、c−BN被覆膜と基体との間に、中間層を介在させる方法も以下の文献のように種々提案されてきた。   In order to improve this adhesion, various methods for interposing an intermediate layer between the c-BN coating film and the substrate have been proposed as in the following documents.

特に、特許文献1〜5、7、10には、本発明と同じく、周期律表の第4、第5族金属或いはSi、Alとその窒化物、ホウ化物或いはホウ窒化物を中間層として用いている場合がある。
特許第3679046号公報/第1層(第4族、第5族、第6族金属、Si)−(C、N、O)、第2層Ti−(C、N、O)+数ナノ〜数十ナノのBN 特開平2004−338041号公報/第1層窒化チタン、第2層Ti−B−N、第3層c−BN(10−70mol%)、厚さ0.5〜1.5μm 特開平10−204618号公報/第1層Ti、第2層TiBx(X=1.5〜2)、第3層TiyBzN1−z(Y=0.6〜1.5、Z=0.05〜0.4)、第4層c−BN 特開平8−165558号公報/第1層Zr、Hf、V、Ta、Nb、Cr、Mo、Wのホウ化物、炭化ホウ素及びそれらの相互固溶体、第2層c−BN又は硬質窒化ホウ素 特開平4−246164号公報/第1層窒化チタン、第2層窒化チタン+窒化ホウ素、第3層c−BN 特開平4−168263号公報/第1層金属、(第2層金属間化合物、)第3層BrichBN(B/N>1.5)、第4層c−BN 特開平4−147682号公報/第1層チタンアルミニウム複窒化物、或いはチタン第4族第5族金属複窒化物、第2層c−BN 特開平4−124283号公報/第1層基体のホウ化処理によるホウ化物、第2層窒化ホウ素 特開平3−260054号公報/第1層チタン、第2層傾斜組成構造ホウ素−窒素化合物、第3層c−BN 特許公報3−13305号公報/第1層Ti及びHfの炭化物、窒化物、炭窒化物、炭酸化物、酸化アルミニウムの1種の単層或いは2種以上の複層(0.5〜5μm)、第2層0.3〜4原子%Ti固溶c−BN M.Keunecke, E. Wiemann, K.Weigel, S.T. Park, K. Bewilogua, Thin Solid Films 515,967 (2006). S.F.Wong, C.W. Ong, G.K.H. Pang, Q.Li, W.M. Lau, Diamond and Related Materials 13 (2004) 1632.
In particular, in Patent Documents 1 to 5, 7, and 10, as in the present invention, metals of Groups 4 and 5 of the periodic table or Si, Al and nitrides thereof, borides or boronitrides are used as intermediate layers. There may be.
Patent No. 3679046 / First layer (Group 4, Group 5, Group 6 metal, Si)-(C, N, O), second layer Ti- (C, N, O) + several nano- Tens of nano BN JP-A-2004-338041 / first layer titanium nitride, second layer Ti—BN, third layer c-BN (10-70 mol%), thickness 0.5 to 1.5 μm JP-A-10-204618 / first layer Ti, second layer TiBx (X = 1.5 to 2), third layer TiyBzN1-z (Y = 0.6 to 1.5, Z = 0.05 to 0.4), the fourth layer c-BN JP-A-8-165558 / first layer Zr, Hf, V, Ta, Nb, Cr, Mo, W boride, boron carbide and their mutual solid solution, second layer c-BN or hard boron nitride JP-A-4-246164 / first layer titanium nitride, second layer titanium nitride + boron nitride, third layer c-BN JP-A-4-168263 / first layer metal, (second layer intermetallic compound), third layer BrichBN (B / N> 1.5), fourth layer c-BN JP-A-4-147682 / first layer titanium aluminum double nitride, or titanium group 4 and group 5 metal double nitride, second layer c-BN Japanese Patent Application Laid-Open No. 4-124283 / Boride obtained by boriding the first layer substrate, second layer boron nitride JP-A-3-260054 / First layer titanium, second layer gradient composition structure boron-nitrogen compound, third layer c-BN Patent Publication No. 3-13305 / First layer Ti and Hf carbide, nitride, carbonitride, carbonate, aluminum oxide one single layer or two or more types (0.5-5 μm), Second layer 0.3-4 atomic% Ti solid solution c-BN M. Keunecke, E. Wiemann, K. Weigel, ST Park, K. Bewilogua, Thin Solid Films 515,967 (2006). SFWong, CW Ong, GKH Pang, Q.Li, WM Lau, Diamond and Related Materials 13 (2004) 1632.

しかし、これらのいずれの方法でも、従来の結晶性の良くないc−BNの作成法を用いているため、基体との密着性は十分でなく、またそのc−BNとしての特性は良くなく、実用に供せられるc−BN被覆膜材料は現在まで開発されていない。   However, in any of these methods, since the conventional method for producing c-BN having poor crystallinity is used, the adhesion with the substrate is not sufficient, and the characteristics as c-BN are not good. A c-BN coating material for practical use has not been developed so far.

また、非特許文献1はTiN或いはTiAlNを中間層としているが、さらにその上層の炭化ホウ素、B−C−Nの傾斜組成層をも中間層としており、またc−BN被覆膜の厚みは1.2μmにとどまっている。非特許文献1において、その複合素材の機械的性質を評価しているが、これらの構造・膜厚のため、工具としての実用化までには至っていない。   Further, Non-Patent Document 1 uses TiN or TiAlN as an intermediate layer, but further includes an upper layer of boron carbide and a gradient composition layer of B—C—N as an intermediate layer, and the thickness of the c-BN coating film is as follows. It remains at 1.2 μm. Non-Patent Document 1 evaluates the mechanical properties of the composite material, but due to these structures and film thicknesses, it has not been put into practical use as a tool.

非特許文献2は、本発明に用いられる第4族金属のひとつであるZrを炭化タングステン基体上にコートし、さらにc−BN膜を被覆後、全体をより高温でアニールすることにより、c−BN被覆膜と基体との間にZrの窒化物、ホウ化物が生成し、密着性が向上すると報告している。しかしながら、c−BN被覆膜の作成法は、従来法であるイオンアシストの物理的蒸着法であり、結晶性が悪く、残留応力は高いと推定される。また、そのc−BN層は72nmの厚さに過ぎず、この厚さでは密着性の評価には不十分であり、またそれより厚い密着性のよい表面膜が作成できるかどうか不明である。   Non-Patent Document 2 discloses that by coating Zr, which is one of the Group 4 metals used in the present invention, on a tungsten carbide substrate, and further coating the c-BN film, the whole is annealed at a higher temperature, whereby c- It has been reported that nitrides and borides of Zr are formed between the BN coating film and the substrate, thereby improving the adhesion. However, the preparation method of the c-BN coating film is an ion-assisted physical vapor deposition method that is a conventional method, and is estimated to have poor crystallinity and high residual stress. Further, the c-BN layer is only 72 nm thick, and this thickness is insufficient for evaluation of adhesion, and it is unclear whether a thicker surface film with better adhesion can be produced.

本発明者らは、フッ素を含むガス系からの作成法で、低残留応力で高結晶性のc−BN被覆膜の作成に成功している(非特許文献3)。このc−BN被覆膜の高結晶性は、明瞭なc−BNの特性ラマン散乱ピーク及びシャープなc−BNのX線回折ピークが観察されることで示されている。この作成法による膜は厚く作ることができるため、それまで正しく評価できなかったc−BN膜の硬度や弾性率が、5ミクロンのc−BN膜を用いて初めて正しく求められ、それぞれ70GPa、800GPaと高圧合成のc−BNに近い値が得られている(非特許文献4)。これらのバルクの結晶に近い値は現在まで他に報告されていない。しかしながら、この方法によるc−BN膜もSi基体以外では基体との密着性を良くする方法が永年見つからず、応用への障害となっていた。
S.Matsumoto and W.J. Zhang, Japanese Journal of Applied Physics 39, L442 (2000). C.Y.Chan, W.J. Zhang,, S. Matsumotob, I. Bello, S.T. Lee, Journal of Crystal Growth247 (2003) 438, “A nanoindentation study of thick cBNfilms prepared bychemical vapor deposition”.
The present inventors have succeeded in producing a highly crystalline c-BN coating film with a low residual stress by a production method from a gas system containing fluorine (Non-patent Document 3). The high crystallinity of this c-BN coating film is shown by the observation of a clear characteristic Raman scattering peak of c-BN and a sharp x-ray diffraction peak of c-BN. Since the film by this preparation method can be made thick, the hardness and elastic modulus of the c-BN film, which could not be correctly evaluated until now, are correctly obtained for the first time using the c-BN film of 5 microns, and 70 GPa and 800 GPa, respectively. And a value close to c-BN of high-pressure synthesis is obtained (Non-patent Document 4). No other values have been reported to date for these bulk crystals. However, a c-BN film formed by this method has not been found for many years except for a Si substrate, and has been an obstacle to application.
S. Matsumoto and WJ Zhang, Japanese Journal of Applied Physics 39, L442 (2000). CYChan, WJ Zhang ,, S. Matsumotob, I. Bello, ST Lee, Journal of Crystal Growth247 (2003) 438, “A nanoindentation study of thick cBNfilms prepared by chemical vapor deposition”.

そこで、本発明は、このような実情に鑑み、金属やセラミックスの基体との良好な密着性を持ち、耐摩耗性、低摩擦性、耐熱性、熱伝導性、電気絶縁性等に優れた複合材料に関するもので、より具体的には、切削工具、耐摩耗性治具、高熱伝導性基板、耐熱高絶縁性コーティング、高温電子材料等に応用可能なc−BN被覆膜を有する立方晶窒化ホウ素被覆膜複合材料を得ること目的とした。   Therefore, in view of such circumstances, the present invention has a good adhesion to a metal or ceramic substrate and is excellent in wear resistance, low friction, heat resistance, thermal conductivity, electrical insulation, etc. More specifically, it relates to materials, and more specifically, cubic nitriding having a c-BN coating film applicable to cutting tools, wear-resistant jigs, high heat conductive substrates, heat resistant high insulation coatings, high temperature electronic materials, etc. The purpose was to obtain a boron-coated membrane composite.

本発明者らは鋭意研究の結果、第4族、第5族金属板上に、フッ素を含む系からの低残留応力で高結晶性のc−BN膜を被覆した場合、c−BN被覆膜の密着性が非常によいことを発見した。この場合、基体とc−BN被覆膜の間には、基体を構成する金属の窒化物、ホウ化物、或いはホウ窒化物が中間層として存在していることが明らかになった。さらに研究を進めて、第4族、第5族以外の金属、合金、サーメット、或いはセラミックス基体であっても、基体とc−BNの両方に親和性をもつ第4族及び第5族の金属、或いはそれらの金属窒化物、ホウ化物或いはホウ窒化物からなる中間層を介在させることによって、密着性の良好なc−BN被覆膜複合材料を得ることができることを発見してこの発明とした。   As a result of intensive studies, the present inventors have found that when a highly crystalline c-BN film is coated on a Group 4 or 5 metal plate with a low residual stress from a system containing fluorine, a c-BN coating is obtained. It was discovered that the adhesion of the film was very good. In this case, it became clear that a metal nitride, boride, or boronitride constituting the substrate exists as an intermediate layer between the substrate and the c-BN coating film. In further research, even if it is a metal, alloy, cermet, or ceramic substrate other than Group 4 or Group 5, Group 4 and Group 5 metals that have affinity for both the substrate and c-BN Alternatively, the present invention has been made by discovering that a c-BN coating film composite material with good adhesion can be obtained by interposing an intermediate layer made of such metal nitride, boride or boronitride. .

すなわち、第1には、基体表面に立方晶窒化ホウ素を主成分とする表面膜を被覆した複合材料において、該基体と該立方晶窒化ホウ素被覆膜の間に、第4族金属(Ti、Zr、Hf)、第5族金属(V、Nb、Ta)、それらの金属の窒化物、ホウ化物或いはホウ窒化物のうちの1種以上の成分よりなる層を1層以上、中間層として形成された立方晶窒化ホウ素被覆複合材料であって、該立方晶窒化ホウ素を主成分とする表面膜の立方晶窒化ホウ素の光学的縦波(TO)モードのフォノンによるラマン散乱、光学的横波(LO)モードのフォノンによるラマン散乱のいずれか一方或いは両方の半値幅が50cm−1以下のピークを示すか、或いは、薄膜X線回折で、表面膜が立方晶窒化ホウ素の(111)、(200)、(220)、(311)の内のいずれか1つの反射ピークの2θの半値幅が、それぞれ、1.5、2.5、2.5、3度以下であることを特徴とする立方晶窒化ホウ素被覆膜複合材料の構成とした。 That is, firstly, in the composite material in which the surface of the base is coated with a surface film mainly composed of cubic boron nitride, a Group 4 metal (Ti, Zr, Hf), Group 5 metals (V, Nb, Ta), nitrides of these metals, borides or one or more layers of boronitrides are formed as one or more layers as an intermediate layer A cubic boron nitride-coated composite material comprising a surface boron-based cubic boron nitride as a main component, and cubic longitudinal scattering (TO) mode Raman scattering by optical longitudinal wave (TO) mode phonons, optical transverse waves (LO) ) A mode in which one or both of Raman scattering by mode phonons shows a peak of 50 cm −1 or less, or thin film X-ray diffraction shows that the surface film is cubic boron nitride (111), (200) , (220), (31 1) The half-width of 2θ of any one of the reflection peaks is 1.5, 2.5, 2.5, or 3 degrees or less, respectively, and the cubic boron nitride coating film composite The material composition was adopted.

前記ラマン散乱の半値幅は、c−BNの結晶性がさらに良い場合は30cm−1以下となる。一方、前記薄膜X線解析の前記半値幅は、c−BNの結晶性がさらに良い場合は、それぞれ、1、1.5、1.5、2度以下となる。 The full width at half maximum of the Raman scattering is 30 cm −1 or less when the crystallinity of c-BN is better. On the other hand, the half width of the thin film X-ray analysis is 1, 1.5, 1.5, 2 degrees or less, respectively, when the crystallinity of c-BN is better.

この中間層はたとえば金属、金属窒化物、金属ホウ化物、或いは金属ホウ窒化物の単独相でもよく、それらの相の混合物でも良い。或いは2種以上の金属或いは合金の、金属窒化物、金属ホウ化物、或いは金属ホウ窒化物の混合物であってもよい。さらに、これらの金属、合金が金属窒化物、金属ホウ化物、或いは金属ホウ窒化物と混ざった層であってもよい。さらに、相構造或いは組成の異なる層を2層以上重ねて、中間層とすることができる。なお、この中間層に、中間層中の窒素、ホウ素全原子数に対し、炭素、酸素が、各々10at%以下、合計20at%以下の比率で混入されていても、本発明の中間層として用いることができる。   This intermediate layer may be, for example, a single phase of metal, metal nitride, metal boride, or metal boronitride, or a mixture of these phases. Alternatively, a metal nitride, a metal boride, or a mixture of metal boronitrides of two or more metals or alloys may be used. Furthermore, a layer in which these metals and alloys are mixed with metal nitride, metal boride, or metal boronitride may be used. Furthermore, two or more layers having different phase structures or compositions can be stacked to form an intermediate layer. Even if carbon and oxygen are mixed in this intermediate layer at a ratio of 10 at% or less and a total of 20 at% or less with respect to the total number of nitrogen and boron atoms in the intermediate layer, they are used as the intermediate layer of the present invention. be able to.

また、この中間層形成において、第4族金属、第5族金属ともに、窒素と親和性のよいB、Al、Siを加えることもできる。また、窒化物、ホウ化物を形成し易いランタナイド元素を加えることもできる。さらに比較的、窒化物、ホウ化物を形成し易い、Cr、Mo、Wを加えることもできる。   In addition, in this intermediate layer formation, B, Al, and Si having a good affinity for nitrogen can be added to both the Group 4 metal and the Group 5 metal. A lanthanide element that easily forms nitrides and borides can also be added. Furthermore, Cr, Mo, and W which can form nitrides and borides relatively easily can also be added.

本発明の立方晶窒化ホウ素を主成分とする表面膜の厚さは、0.1〜20μm範囲で可能で、或いはそれ以上の厚さにも積層することが可能である。0.1μmの厚さでも、時間をかけて測定すれば上記の明瞭なラマンピーク或いはX線回折ピークを得ることができるが、短時間の測定で前記ピークを得るためには厚さ0.5μm以上が望ましい。中間層の1層の厚さは0.02〜10μmが適当である。   The thickness of the surface film mainly composed of cubic boron nitride of the present invention can be in the range of 0.1 to 20 μm, or can be laminated to a thickness larger than that. Even if the thickness is 0.1 μm, the above-mentioned clear Raman peak or X-ray diffraction peak can be obtained by measuring over time. To obtain the peak in a short time, the thickness is 0.5 μm. The above is desirable. The thickness of one layer of the intermediate layer is suitably 0.02 to 10 μm.

中間層は、基体に金属、合金、それらの窒化物、ホウ化物、或いはホウ窒化物を、蒸着、スパッタリング、イオンビーム蒸着法、アークイオンプレーティング法等の物理蒸着法(PVD)或いはMOCVD、プラズマCVD法等の化学的堆積法(CVD)によって形成することできる。   The intermediate layer is formed by depositing metal, alloy, nitride, boride or boronitride on the substrate, physical vapor deposition (PVD) such as vapor deposition, sputtering, ion beam vapor deposition, arc ion plating, or MOCVD, plasma. It can be formed by chemical deposition (CVD) such as CVD.

金属、合金、或いはそれらの金属、合金の窒化物、ホウ化物、或いはホウ窒化物の中間層は、立方晶窒化ホウ素被覆膜層作成装置以外の装置において事前に被覆しておくこともできるし、立方晶窒化ホウ素被覆膜層作成装置において、立方晶窒化ホウ素被覆膜作成前に被覆することができる。また、それらの金属、合金の被覆層を立方晶窒化ホウ素被覆膜作成中に窒化、ホウ化、或いはホウ窒化することにより中間層とすることをもできる。その際、金属或いは合金層を完全に変化させず残しておくことができる。この場合、金属は独立した薄膜層或いは窒化物、ホウ化物、或いはホウ窒化物と混ざった中間層とすることができる。   Metals, alloys, or nitrides, borides, or boronitride intermediate layers of these metals, alloys, or intermediate layers of boronitrides can be coated in advance in an apparatus other than the cubic boron nitride coating film layer forming apparatus. In the cubic boron nitride coating film layer forming apparatus, coating can be performed before the cubic boron nitride coating film is formed. Further, these metal and alloy coating layers can be made into an intermediate layer by nitriding, boriding, or boriding during the formation of the cubic boron nitride coating film. At that time, the metal or alloy layer can be left unchanged. In this case, the metal can be an independent thin film layer or an intermediate layer mixed with nitride, boride, or boronitride.

第4族金属、第5族金属のいずれか、或いはそれらのいずれかの1種を含む合金を基体とする場合には、あらかじめ中間層を被覆せずに、立方晶窒化ホウ素被覆膜作成中に基体を窒化、ホウ化或いはホウ窒化することにより、中間層とすることができる。   When using a group 4 metal, a group 5 metal, or an alloy containing one of them as a base, a cubic boron nitride coating film is being prepared without previously coating the intermediate layer. The intermediate layer can be formed by nitriding, boriding or boriding the substrate.

本発明である立方晶窒化ホウ素被覆膜複合材料1の概念を図1、2に示す。図1は、基体2とc―BN被覆膜(表面膜)4との間に中間層が一層の場合で、中間層3としては例えば、チタンの窒化物、ホウ化物、ホウ窒化物の混合相を用いることができる。c−BN層被覆膜は請求項1或いは請求項2に記述した結晶性の良いc−BN被覆膜である。   The concept of the cubic boron nitride coating film composite material 1 according to the present invention is shown in FIGS. FIG. 1 shows a case where the intermediate layer is a single layer between the substrate 2 and the c-BN coating film (surface film) 4. As the intermediate layer 3, for example, a mixture of nitride, boride and boronitride of titanium is used. Phases can be used. The c-BN layer coating film is a c-BN coating film having good crystallinity described in claim 1 or claim 2.

図2は、基体2とc―BN被覆膜4との間に中間層が二層の場合で、例えば第1層の中間層3にチタン金属、第2層の中間層3aにチタンの窒化物、ホウ化物、ホウ窒化物の混合相を、或いは第1層の中間層3にチタンの窒化物、第2層の中間層3aにチタンの窒化物、ホウ化物、ホウ窒化物の混合相を用いることができる。この場合もc−BN層被覆膜は請求項1或いは請求項2に記述した結晶性の良いc−BN被覆膜である。   FIG. 2 shows a case where the intermediate layer has two layers between the substrate 2 and the c-BN coating film 4. For example, titanium metal is nitrided in the first intermediate layer 3 and titanium is nitrided in the second intermediate layer 3a. A mixed phase of oxide, boride, and boronitride, or titanium nitride in the first intermediate layer 3 and titanium nitride, boride, and boronitride mixed phase in the second intermediate layer 3a. Can be used. Also in this case, the c-BN layer coating film is the c-BN coating film having good crystallinity described in claim 1 or claim 2.

基体2としては、金属、合金、金属炭化物等のサーメット、窒化珪素や窒化アルミニウム等のセラミックスを用いることができる。本発明によれば、中間層3、3aの効果により、以前はsp結合による、六方晶窒化ホウ素(h−BN)、乱層構造窒化ホウ素(t−BN)或いは非晶質窒化ホウ素(a−BN)が析出しやすく、c−BNのコーティングが困難であった鉄族元素、鉄族元素を含む合金や、鉄族元素含有超硬合金等上にも密着性のよいc−BNを被覆することができることとなる。 As the substrate 2, cermets such as metals, alloys and metal carbides, and ceramics such as silicon nitride and aluminum nitride can be used. According to the present invention, due to the effect of the intermediate layer 3, 3a, by previously sp 2 bond, hexagonal boron nitride (h-BN), turbostratic boron nitride (t-BN) or amorphous boron nitride (a -BN) is easily deposited, and c-BN is difficult to coat with iron group elements, alloys containing iron group elements, iron group element-containing cemented carbides, etc. Will be able to.

本発明者らは以前に高結晶性のc−BN膜の作成法について開示したが(非特許文献3)、その方法を本中間層3、3a上の堆積に適するよう応用することによって、本発明のc−BNを主成分とする表面膜を作成できることとなった。すなわち、発明1から2に記載の結晶性のよいc−BN被覆膜は、ホウ素源、窒素源及びフッ素源を含むガス種を含む気相からプラズマを用いて基体上に析出させることを特徴としている。   The present inventors have previously disclosed a method for producing a highly crystalline c-BN film (Non-Patent Document 3). By applying this method to be suitable for deposition on the intermediate layers 3 and 3a, the present invention has been disclosed. The surface film which has c-BN of the invention as a main component can be prepared. That is, the c-BN coating film having good crystallinity described in the inventions 1 and 2 is characterized in that it is deposited on a substrate using a plasma from a gas phase containing a gas species including a boron source, a nitrogen source and a fluorine source. It is said.

本発明のc−BN被覆膜の作成法は、非特許文献2に詳しく記しているが、簡単に記述すると、ジボラン、三フッ化ホウ素等のホウ素源、窒素、アンモニア等の窒素源、及び三フッ化ホウ素、フッ素、フッ化水素等のフッ素源を気相中に供給し、気相をプラズマ化により活性化し、立方晶窒化ホウ素を基体上へ析出させる。反応とプラズマの制御のために水素、希ガスのうちどちらか単独を或いは両方を加えることができる。反応容器壁或いは反応容器内に設置した参照電極に対し、基体にバイアス電圧をかける。プラズマの種類としては、プラズマジェット、マイクロ波プラズマ、誘導結合型プラズマ、電子サイクロトロン共鳴プラズマなどのさまざまな高密度プラズマを利用できる。10−6Paの低圧から数気圧の高い圧力までのプラズマが利用でき、熱プラズマでも非平衡低温プラズマでも可能である。基体バイアスには直流、交流、高周波、或いはそれらの重積、或いはそれらをパルス化した電源のいずれでも用いうる。最適なバイアス電圧は、ガス圧、ガス組成、基体温度等により異なるが、0〜−150V程度、プラズマの種類によっては0〜+100V程度の正のバイアスを用いることも可能である。 The method for producing the c-BN coating film of the present invention is described in detail in Non-Patent Document 2, but briefly described, a boron source such as diborane and boron trifluoride, a nitrogen source such as nitrogen and ammonia, and A fluorine source such as boron trifluoride, fluorine, or hydrogen fluoride is supplied into the gas phase, the gas phase is activated by plasma formation, and cubic boron nitride is deposited on the substrate. One or both of hydrogen and a rare gas can be added for reaction and plasma control. A bias voltage is applied to the substrate with respect to the reaction vessel wall or a reference electrode installed in the reaction vessel. As the type of plasma, various high-density plasmas such as plasma jet, microwave plasma, inductively coupled plasma, and electron cyclotron resonance plasma can be used. Plasma from a low pressure of 10 −6 Pa to a high pressure of several atmospheres can be used, and can be either thermal plasma or non-equilibrium low-temperature plasma. As the substrate bias, any of direct current, alternating current, high frequency, a stack of them, or a power source obtained by pulsing them can be used. The optimum bias voltage varies depending on the gas pressure, gas composition, substrate temperature, etc., but a positive bias of about 0 to −150 V or about 0 to +100 V can be used depending on the type of plasma.

本発明者らは更に鋭意研究した結果、上記中間層3、3aを被覆した上にさらに当該方法のc−BN被覆膜4を付ける際に、ガス組成、基体2の温度、プラズマ電力、バイアス等の条件を注意深く制御することにより、付着力のよいc−BN被覆膜ができることを発見し、本発明を成した。   As a result of further diligent research, the present inventors have found that when the c-BN coating film 4 of the method is further applied on the intermediate layers 3 and 3a, the gas composition, the temperature of the substrate 2, the plasma power, the bias By carefully controlling such conditions, it was discovered that a c-BN coating film with good adhesion could be formed, and the present invention was made.

その結果、上記構成を実現し、それにより従来Si以外の基体上には、限られた場合にしか1μm以上の膜厚のc−BN被覆膜は作成できなかったが、多くの種類の基体上に密着性がよく、c−BNを主成分とする表面膜をコーティングすることができるようになった。   As a result, the above-described configuration was realized, and as a result, a c-BN coating film having a film thickness of 1 μm or more could only be formed on a substrate other than Si. Adhesiveness was good on the top, and it became possible to coat a surface film mainly composed of c-BN.

さらに、これらのc−BN被覆膜は明瞭なラマン散乱ピークとシャープなX線回析ピークを示すほど結晶性がよく、また高硬度等のc−BN本来の物性を持っている。これらの密着性、厚さ、結晶性、物性を持つc−BN被覆膜複合体は従来にはなかったものである。   Furthermore, these c-BN coating films have good crystallinity so that a clear Raman scattering peak and a sharp X-ray diffraction peak are exhibited, and have the original physical properties of c-BN such as high hardness. A c-BN coating film composite having such adhesion, thickness, crystallinity, and physical properties has never existed in the past.

また、中間層3、3aをコートした後、c−BN被覆膜成膜前に水素中でアニール処理をすると、c−BN被覆膜の残留応力を減らし、密着性を向上させることができることを見出した。水素中の加熱は水素ガス雰囲気中での加熱でも、水素プラズマ雰囲気中での加熱でも有効である。この理由は明らかではないが、中間層3、3a中の酸化物の除去、中間層3、3aの組成変化、中間層3、3aの基体への拡散促進、中間層3、3aの格子の緩和等が考えられる。アニール温度、時間は、基体の種類、中間層の種類によって異なるが、500〜1200℃(50℃単位、以下同じ。)、1/6〜1時間が有効である。また、それら雰囲気に希ガス(He、Ne、Ar、Kr、Xe)を混合することもできる。   In addition, if the annealing process is performed in hydrogen after coating the intermediate layers 3 and 3a and before forming the c-BN coating film, the residual stress of the c-BN coating film can be reduced and the adhesion can be improved. I found. Heating in hydrogen is effective both in a hydrogen gas atmosphere or in a hydrogen plasma atmosphere. Although the reason for this is not clear, removal of oxide in the intermediate layers 3 and 3a, change in composition of the intermediate layers 3 and 3a, promotion of diffusion of the intermediate layers 3 and 3a into the substrate, relaxation of the lattice of the intermediate layers 3 and 3a Etc. are considered. Although the annealing temperature and time vary depending on the type of the substrate and the type of the intermediate layer, 500 to 1200 ° C. (50 ° C. unit, the same shall apply hereinafter) and 1/6 to 1 hour are effective. Further, a rare gas (He, Ne, Ar, Kr, Xe) can be mixed in the atmosphere.

この発明でのc−BN被覆膜の密着性のよい理由は次のように考えられる。第一に、フッ素を含むガス系から作成されたc−BN被覆膜は、作成時の基体上へのイオン衝撃が小さく、残留応力が0.5〜2GPaと従来法の10〜20GPaに比べて小さく、膜が壊れにくいことである。   The reason why the c-BN coating film has good adhesion in this invention is considered as follows. First, the c-BN coating film prepared from a gas system containing fluorine has a small ion impact on the substrate at the time of preparation, and the residual stress is 0.5 to 2 GPa, which is 10 to 20 GPa of the conventional method. It is small and the membrane is difficult to break.

第二に、中間層に用いる、第4族金属、第5族金属、Al及びSiは窒化物、ホウ化物を形成し易く、さらにこれらの窒化物、ホウ化物は、例えば、Zrの場合、ZrNx、ZrBxと表した場合、x=0.2〜2の多種類の相が存在することに示されるように、これらの金属、金属窒化物、ホウ化物、ホウ窒化物とBNが接した場合は、金属とB、Nは相互に拡散しやすく、密着しやすくなるためと思われる。これらのc−BN被覆膜の低い残留応力とc−BNに親和性のある中間層を用いる両方の効果が相乗的に作用して、密着性のよいc−BN被覆が可能になったと考えられる。第4族金属、第5族金属、Al及びSiが窒化物、ホウ化物を形成し易いことは、例えば次の文献等に記されている。
エス・エス・キバリソフ、ユ・ヴェ・レヴィンスキー著、高融点金属の窒化、日ソ通信社、1974年、P37の表3中の生成熱の値。 ゲ・ヴェ・サムソノフ、イ・エム・ヴィニッキー著、高融点化合物便覧、日ソ通信社、1976年、P138−189の表中の生成反応熱の値。
Secondly, the Group 4 metal, Group 5 metal, Al and Si used for the intermediate layer easily form nitrides and borides, and these nitrides and borides are, for example, ZrNx in the case of Zr. When ZrBx is expressed, it is shown that there are many kinds of phases of x = 0.2 to 2, when these metals, metal nitrides, borides, and BN are in contact with BN It seems that metal, B, and N are easily diffused to each other and are easily adhered to each other. It is thought that both the low residual stress of these c-BN coating films and the effect of using an intermediate layer having an affinity for c-BN act synergistically to enable c-BN coating with good adhesion. It is done. The fact that Group 4 metals, Group 5 metals, Al, and Si easily form nitrides and borides is described in, for example, the following documents.
Values of heat of formation in Table 3 of S.S. Kivarisov, Yu We Levinsky, Nitriding of refractory metals, Nisso News Agency, 1974, P37. Values of heat of reaction in the table of Ge We Samsonov, EM Vinnicky, Handbook of High Melting Point Compounds, Nisso News Agency, 1976, P138-189.

この発明によるc−BN被覆膜は密着性がよいため、膜厚を厚くすることができ、また結晶性が高いためc−BN本来の特性が現れ、硬度等の機械的強度が大きくなると考えられる。   The c-BN coating film according to the present invention has a good adhesion, so that the film thickness can be increased, and since the crystallinity is high, the original characteristics of c-BN appear and the mechanical strength such as hardness increases. It is done.

本発明の立方晶窒化ホウ素被覆膜複合材料は、基体との密着性がよくまたc−BNの優れた特性を示すので、旋削、切削用のチップ、ドリル、エンドミル等の耐摩耗工具材料や、ポンプ、圧縮機等の軸受けやシール部の対耐磨耗摺動材料として用いることができる。また、高熱伝導性基板、耐熱高絶縁性コーティング、高温電子材料等に用いることができると期待される。   The cubic boron nitride coating film composite material of the present invention has good adhesion to the substrate and exhibits the excellent properties of c-BN, so that wear-resistant tool materials such as turning, cutting tips, drills, end mills, etc. It can be used as a wear-resistant sliding material for bearings and seals of pumps and compressors. It is also expected that it can be used for high thermal conductive substrates, heat resistant and highly insulating coatings, high temperature electronic materials and the like.

本発明の立方晶窒化ホウ素被覆膜複合材料は、基体と、前記基体表面上に形成された周期律表の第4族金属(Ti、Zr、Hf)、第5族金属(V、Nb、Ta)、前記第4族金属及び第5族金属の窒化物又はホウ化物或いはホウ窒化物の内から選ばれるいずれか1種以上の成分よりなる中間層と、前記中間層の表面に被膜した立方晶窒化ホウ素を主成分とする表面膜とから形成される立方晶窒化ホウ素被覆膜複合材料であって、前記表面膜の立方晶窒化ホウ素の光学的縦波モードのフォノンによるラマン散乱又は光学的横波モードのフォノンによるラマン散乱のいずれか一方の半値幅が、50cm−1以下のピークを示すもの、c−BNの結晶性がさらに良い場合は、30cm−1以下であるもの、若しくは、薄膜X線回折で、前記表面膜の立方晶窒化ホウ素の(111)、(200)、(220)、(311)の内のいずれか1の反射ピークの2θの半値幅が、それぞれ1.5、2.5、2.5、3度以下となるもの、c−BNの結晶性がさらに良い場合は、それぞれ、1、1.5、1.5、2度以下となるものである。なお、上記上限を超える場合は、結晶性が悪いため、硬度、熱伝導度、電気抵抗等の物性において、c−BN本来の優れた特性を示さなくなる。 The cubic boron nitride coating film composite material of the present invention comprises a base, a Group 4 metal (Ti, Zr, Hf) and a Group 5 metal (V, Nb, Vf) of the periodic table formed on the surface of the base. Ta), an intermediate layer composed of at least one component selected from the group 4 metal and group 5 metal nitrides or borides or boronitrides, and a cube coated on the surface of the intermediate layer Cubic boron nitride coating film composite material formed from a surface film mainly composed of crystalline boron nitride, and Raman scattering by optical longitudinal wave mode phonon of the cubic boron nitride of the surface film or optical When the half width of either one of the Raman scattering by the phonon in the transverse wave mode shows a peak of 50 cm −1 or less, or when the crystallinity of c-BN is better, it is 30 cm −1 or less, or the thin film X Line diffraction, the surface The half-value width of 2θ of the reflection peak of any one of (111), (200), (220), and (311) of cubic boron nitride is 1.5, 2.5, 2.5, When it becomes 3 degrees or less and when the crystallinity of c-BN is better, it becomes 1, 1.5, 1.5, 2 degrees or less, respectively. In addition, when exceeding the said upper limit, since crystallinity is bad, in the physical properties, such as hardness, thermal conductivity, and electrical resistance, c-BN original excellent characteristics will not be shown.

これらの第4族金属、第5族金属に窒素と親和性のよいB、Al、Siを加えることもできる。また、窒化物、ホウ化物を形成し易いランタナイド元素を加えることもできる。さらに比較的、窒化物、ホウ化物を形成し易い、Cr、Mo、Wを加えることもできる。これら元素の添加は、中間層の、結晶粒のサイズ、熱膨張率、弾性率等の制御を容易にし、基体と中間層の密着性の向上および中間層とc−BN被覆膜を合わせた被覆層全体の機械的強度の向上や弾性率等の調節を行うことができる。   B, Al, and Si having a good affinity for nitrogen can be added to these Group 4 metals and Group 5 metals. A lanthanide element that easily forms nitrides and borides can also be added. Furthermore, Cr, Mo, and W which can form nitrides and borides relatively easily can also be added. The addition of these elements facilitates control of the crystal size, thermal expansion coefficient, elastic modulus, etc. of the intermediate layer, improves adhesion between the substrate and the intermediate layer, and combines the intermediate layer with the c-BN coating film. The mechanical strength of the entire coating layer can be improved and the elastic modulus can be adjusted.

さらに、これらの添加元素の添加量は、添加元素の総量において、40at%以下、好ましくは30at%以下、より好ましくは20at%以下とする。これら元素の添加が過剰であると本発明の中間層に用いる第4族金属、第5族金属の、c−BN被覆膜への拡散の低下に起因する親和性の低下が起こり、c−BN被覆膜の中間層への、ひいては基体への密着性が低下する。   Furthermore, the addition amount of these additive elements is 40 at% or less, preferably 30 at% or less, more preferably 20 at% or less in the total amount of the additive elements. If these elements are added excessively, the affinity of the Group 4 metal and Group 5 metal used in the intermediate layer of the present invention will decrease due to the decrease in diffusion into the c-BN coating film. Adhesiveness to the intermediate layer of the BN coating film and thus to the substrate is lowered.

本発明の立方晶窒化ホウ素被覆膜複合材料は、前記立方晶窒化ホウ素を生成するにあたり、ホウ素源、窒素源及びフッ素源を含むガスのプラズマを用いて、前記基体上に析出させたもの、さらに、前記中間層を、立方晶窒化ホウ素を主成分とする表面膜作成中に、前記基体の窒化、ホウ化又はホウ窒化、或いは前記基体に被覆した金属又は合金を窒化、ホウ化又はホウ窒化することにより作成したもの、或いは前記基体表面に中間層を形成後、水素ガス或いは水素プラズマ中で基体及び中間層をアニール処理し、立方晶窒化ホウ素を主成分とする表面膜を前記中間層上に被覆したものでもある。なお、ホウ素源、窒素源及びフッ素源を含むガスのプラズマを用いて、前記基体上に析出させたものは、非特許文献3に記載された公知の方法による。   The cubic boron nitride coating film composite material according to the present invention is produced by depositing the cubic boron nitride on the substrate using a plasma of a gas containing a boron source, a nitrogen source, and a fluorine source in producing the cubic boron nitride. Further, the intermediate layer is nitrided, borated, or boronitrided on the substrate, or the metal or alloy coated on the substrate is nitrided, borated, or boronitrided during the creation of a surface film mainly composed of cubic boron nitride. After the intermediate layer is formed on the surface of the substrate, the substrate and the intermediate layer are annealed in hydrogen gas or hydrogen plasma, and a surface film mainly composed of cubic boron nitride is formed on the intermediate layer. Also coated. In addition, what was deposited on the said base | substrate using the plasma of the gas containing a boron source, a nitrogen source, and a fluorine source is based on the well-known method described in the nonpatent literature 3.

また、これら立方晶窒化ホウ素被覆膜複合材料の代表的な用途としては、これを素材として形成された耐摩耗材料、耐摩耗工具が上げられるが、その他にも下記産業上の利用可能性に記載した各種の用途に用いることができる。以下、実施例をもって、本発明を具体的に説明する。   In addition, typical applications of these cubic boron nitride coating film composite materials include wear-resistant materials and wear-resistant tools formed from these materials, but in addition to the following industrial applicability: It can be used for the various applications described. Hereinafter, the present invention will be specifically described with reference to examples.

本作成法は非特許文献2において開示したフッ素を含むガス系からのプラズマジェットCVD法を用いる方法である。タングステン上にスパッター法でジルコニウムを約7μmコートしたのち、50mTorrの水素プラズマ中で700℃で1/2時間アニールした。   This preparation method uses the plasma jet CVD method disclosed in Non-Patent Document 2 from a gas system containing fluorine. After about 7 μm of zirconium was coated on tungsten by sputtering, annealing was performed at 700 ° C. for 1/2 hour in a hydrogen plasma of 50 mTorr.

その後c−BN被覆膜作成膜装置に移し、Ar:20slm、N:1slm、H:5sccmを流し、8kWのDCアーク放電によりプラズマを発生させ、10%BF/He:30sccmを流し、直流バイアス電源により−85Vの直流バイアスを基体にかけ、基体温度1050℃にて、50Torr下の1/3時間の合成により、タングステン基体上に剥がれていない立方晶窒化ホウ素被覆膜が得られた。 Thereafter, the film was transferred to a c-BN coating film forming apparatus, Ar: 20 slm, N 2 : 1 slm, H 2 : 5 sccm was flown, plasma was generated by DC arc discharge of 8 kW, and 10% BF 3 / He: 30 sccm was flowed. A cubic boron nitride coating film not peeled on the tungsten substrate was obtained by applying a DC bias of −85 V to the substrate with a DC bias power source and synthesizing the substrate at a temperature of 1050 ° C. for 1/3 hour at 50 Torr. .

この方法により得られた立方晶窒化ホウ素被覆複合材料の表面膜側からの薄膜X線回折図(銅ターゲット)、表面膜のラマンスペクトルを、それぞれ、図3、図4に示す。   The thin film X-ray diffraction diagram (copper target) from the surface film side of the cubic boron nitride-coated composite material obtained by this method and the Raman spectrum of the surface film are shown in FIGS. 3 and 4, respectively.

図3にはc−BN、窒化ジルコニウム、ホウ化ジルコニウム、ホウ窒化ジルコニウムのピークが現れており、最表面層はc−BNで、窒化ジルコニウム、ホウ化ジルコニウム、ホウ窒化ジルコニウムが基体とc−BN被覆膜との中間層となっている。   In FIG. 3, peaks of c-BN, zirconium nitride, zirconium boride, and zirconium boronitride appear, and the outermost surface layer is c-BN. Zirconium nitride, zirconium boride, and zirconium boronitride are formed on the base and c-BN. It is an intermediate layer with the coating film.

c−BN被腹膜の厚みはおよそ4μmである。c−BNのX線回折ピークの2θの半値幅は(111)、(200)、(220)のピークについて、それぞれ、0.49、0.61、0.64度である。ただし、(220)ピークには弱いZrN、ZrBのピークが重なっている。(311)ピークはZrN、ZrBのピークが重なっていて半値幅は求めていない。 The thickness of the c-BN peritoneum is approximately 4 μm. The half width of 2θ of the X-ray diffraction peak of c-BN is 0.49, 0.61, and 0.64 degrees for the peaks of (111), (200), and (220), respectively. However, weak (Zr 2 N, ZrB 2 ) peaks overlap with (220) peak. (311) The peaks of Zr 2 N and ZrB 2 overlap, and the half width is not determined.

図4のラマンスペクトルにおいて、c−BNのTO及びLOモードのピークはそれぞれ、29.4、18.0cm−1であり、結晶性のよいc−BNであることがわかる。X線回折においては2θ=26度付近に現れ、またラマンスペクトルにおいては1360cm−1付近に現れるh−BNやt−BNのピークはc−BNのピークに比べ非常に弱い。c−BN被覆膜のX線の(111)ピーク位置(43.33度)のバルクc−BN結晶のそれ(43.35度)からのシフトからc−BN被覆膜の面内圧縮応力を求めると約0.5GPaとなり、フッ素を用いない従来合成法で一般的な10〜20GPa(非特許文献7)と比べ非常に低いことがわかる。
G.C.A.M.Janssen, Thin Solid Films 515 (2007)6654-6664の第7節(P6661).
In the Raman spectrum of FIG. 4, the TO and LO mode peaks of c-BN are 29.4 and 18.0 cm −1 , respectively, indicating that the c-BN has good crystallinity. In X-ray diffraction, the peak of h-BN and t-BN appearing near 2θ = 26 degrees and the vicinity of 1360 cm −1 in the Raman spectrum is very weak compared to the peak of c-BN. From the shift of the (111) peak position (43.33 degrees) of the X-ray of the c-BN coating film from that of the bulk c-BN crystal (43.35 degrees), the in-plane compressive stress of the c-BN coating film Is about 0.5 GPa, which is very low compared to 10-20 GPa (non-patent document 7) which is general in the conventional synthesis method using no fluorine.
GCAMJanssen, Thin Solid Films 515 (2007) 6654-6664, Section 7 (P6661).

このc−BN被覆膜は6ヶ月経っても剥離せず、この膜をステンレス製の尖ったピンセットで強く引っかいたところ、ピンセットが削られてc−BN被覆膜に融着したが、c−BN被覆膜は剥離しなかった。   The c-BN coating film did not peel off even after 6 months, and when this film was strongly scratched with pointed stainless steel tweezers, the tweezers were shaved and fused to the c-BN coating film. -The BN coating film did not peel off.

このc−BN被覆膜は十分な硬さと基体との密着力をもっている。AE(Acoustic emission)付スクラッチ試験機によるスクラッチ試験でも密着性が良く、マイクロビッカスース硬度計による硬度測定でも十分な硬度を示した(表1参照)。   This c-BN coating film has sufficient hardness and adhesion to the substrate. Adhesion was good even in a scratch test using an AE (Acoustic Emission) scratch tester, and sufficient hardness was shown by a hardness measurement using a micro-bickus hardness tester (see Table 1).

(比較例1)
中間層を形成せず、タングステン基体上に実施例1と同様の条件でコートしたBN膜は大気中に取り出しと同時にはがれてしまった。
(Comparative Example 1)
The BN film coated on the tungsten substrate under the same conditions as in Example 1 without forming the intermediate layer was peeled off into the atmosphere at the same time.

6%Co含有の炭化タングステン基体に3μm厚のチタニウム(Ti)膜を蒸着法によりコートし、アークジェットプラズマCVD装置において、Ar:20slm、N:1slm、H:5sccm、BF/He(10%):30sccmのガス流を用いて、50Torrのガス圧下、アーク電力7kW、基体温度950℃、13.56MHzの高周波の自己バイアス電圧−60Vにて、1/6時間反応させ、c−BN被覆膜を得た。 A 6 μm Co-containing tungsten carbide substrate was coated with a 3 μm thick titanium (Ti) film by a vapor deposition method, and in an arc jet plasma CVD apparatus, Ar: 20 slm, N 2 : 1 slm, H 2 : 5 sccm, BF 3 / He ( 10%): Using a gas flow of 30 sccm, the reaction was carried out for 1/6 hour under a gas pressure of 50 Torr, an arc power of 7 kW, a substrate temperature of 950 ° C., a high frequency self-bias voltage of −60 V of 13.56 MHz, and c-BN. A coating film was obtained.

この被覆膜のX線回折図(銅ターゲット)、ラマンスペクトルをそれぞれ図5、図6に示す。図5より、c−BNとTiNのピークが主として現れており、c−BNの(111)、(200)、(220)、(311)の反射の半値幅は、それぞれ、1.2、1.6、1.8、2.6度である。(111)ピークは重なっているTiNのピークを分離して求めた。   The X-ray diffraction pattern (copper target) and Raman spectrum of this coating film are shown in FIGS. 5 and 6, respectively. From FIG. 5, c-BN and TiN peaks mainly appear, and the half widths of reflection of c-BN at (111), (200), (220), and (311) are 1.2, 1 and 1, respectively. .6, 1.8, 2.6 degrees. The (111) peak was obtained by separating the overlapping TiN peaks.

図6より、ラマン散乱ピークの半値幅はTO、LO各モードについて、45.0cm−1、24.1cm−1である。これらによりこの膜は結晶性のよいc−BN被覆膜であることがわかる。X線回折においてはt−BNのピークが弱く見られるが、ラマンスペクトルにおいてはc−BNのピークに比べてh−BNやt−BNのピークは非常に弱い。c−BN被覆膜の平均膜厚はIR吸収スペクトルの干渉フリンジより、2μmであった。 From FIG. 6, the half-width of the Raman scattering peak TO, for LO modes, 45.0Cm -1, is 24.1 cm -1. These show that this film is a c-BN coating film with good crystallinity. In X-ray diffraction, the t-BN peak is weak, but in the Raman spectrum, the h-BN and t-BN peaks are much weaker than the c-BN peak. The average film thickness of the c-BN coating film was 2 μm from the interference fringe of the IR absorption spectrum.

なお、c−BN被覆膜のX線の(111)ピーク位置(43.27度)のバルクc−BN結晶のそれ(43.35度)からのシフトからc−BN被覆膜の面内圧縮応力を求めると約1.7GPaとなり、この場合も従来合成法の10〜20GPaと比べて低いことがわかる。   It should be noted that the in-plane of the c-BN coating film from the shift of the (111) peak position (43.27 degrees) of the c-BN coating film from that of the bulk c-BN crystal (43.35 degrees). When the compressive stress is determined, it is about 1.7 GPa, which is also lower than 10-20 GPa of the conventional synthesis method.

このc−BN被覆膜は6ヶ月経っても剥離しておらず、この膜をステンレス製の尖ったピンセットで強く引っかいたところ、ピンセットが削られてc−BN被覆膜に融着したが、c−BN被覆膜は剥離しなかった。   The c-BN coating film did not peel off even after 6 months, and when the film was strongly scratched with stainless steel tweezers, the tweezers were shaved and fused to the c-BN coating film. The c-BN coating film did not peel off.

このc−BN被覆膜も十分な硬さと基体との密着力をもっている。AE付スクラッチ試験機によるスクラッチ試験でも密着性が良く、マイクロビッカスース硬度計(加重20g)による硬度測定でも十分な硬度を示した(表1参照)。   This c-BN coating film also has sufficient hardness and adhesion to the substrate. Adhesion was good even in a scratch test using an AE scratch tester, and a sufficient hardness was shown by a hardness measurement using a micro-bickus hardness tester (20 g load) (see Table 1).

(比較例2)
中間層なしで6%Co含有の炭化タングステン基体に実施例2と同様の条件でコートしたBN膜はc−BNよりsp結合のBN成分が優勢に形成され、また剥がれ易かった。
(Comparative Example 2)
A BN film coated on a tungsten carbide substrate containing 6% Co without an intermediate layer under the same conditions as in Example 2 had a BN component with sp 2 bonds formed more dominantly than c-BN, and was more easily peeled off.

6%Co含有の炭化タングステン基体に3μm厚のジルコニウム(Zr)膜をスパッター法によりコート後、300mTorrの水素中800℃にて1/2時間アニール後、アークジェットプラズマCVD装置において、Ar:20slm、N:1slm、H:5sccm、BF/He(10%):30sccmのガス流を用いて、50Torrのガス圧下、アーク電力7kW、基体温度950℃、13.56MHzの高周波の自己バイアス電圧−60Vにて、1/6時間反応させ、c−BN被覆膜を得た。 After a 3 μm-thick zirconium (Zr) film is coated on a tungsten carbide substrate containing 6% Co by a sputtering method, annealing is performed at 800 ° C. for 1/2 hour in 300 mTorr of hydrogen, and in an arc jet plasma CVD apparatus, Ar: 20 slm, N 2 : 1 slm, H 2 : 5 sccm, BF 3 / He (10%): 30 sccm gas pressure, 50 Torr gas pressure, arc power 7 kW, substrate temperature 950 ° C., high frequency self-bias voltage of 13.56 MHz The reaction was carried out at -60 V for 1/6 hour to obtain a c-BN coating film.

この被覆膜のX線回折図(銅ターゲット)、図7に示す。図7より、c−BNとZrNのピークが主として現れており、c−BNの(111)、(200)、(220)、(311)の反射の半値幅は、それぞれ、0.89、1.2、1.4、1.95度である。これによりこの膜は結晶性のよいc−BN被覆膜であることがわかる。c−BN被覆膜の平均膜厚はIR吸収スペクトルの干渉フリンジより、2μmであった。   An X-ray diffraction pattern (copper target) of this coating film is shown in FIG. From FIG. 7, c-BN and ZrN peaks mainly appear, and the half widths of reflection of c-BN at (111), (200), (220), and (311) are 0.89, 1 and 1, respectively. .2, 1.4, 1.95 degrees. This shows that this film is a c-BN coating film with good crystallinity. The average film thickness of the c-BN coating film was 2 μm from the interference fringe of the IR absorption spectrum.

なお、c−BN被覆膜のX線の(111)ピーク位置(43.33度)のバルクc−BN結晶のそれ(43.35度)からのシフトからc−BN被覆膜の面内圧縮応力を求めると約0.5GPaとなり、この場合も従来合成法の10〜20GPaと比べて低いことがわかる。   It should be noted that the in-plane of the c-BN coating film from the shift of the (111) peak position (43.33 degrees) of the c-BN coating film from that of the bulk c-BN crystal (43.35 degrees). When the compressive stress is obtained, it is about 0.5 GPa, which is also lower than 10-20 GPa of the conventional synthesis method.

このc−BN被覆膜は6ヶ月経っても剥離しておらず、この膜をステンレス製の尖ったピンセットで強く引っかいたところ、ピンセットが削られてc−BN被覆膜に融着したが、c−BN被覆膜は剥離しなかった。   The c-BN coating film did not peel off even after 6 months, and when the film was strongly scratched with stainless steel tweezers, the tweezers were shaved and fused to the c-BN coating film. The c-BN coating film did not peel off.

このc−BN被覆膜も十分な硬さと基体との密着力をもっている。AE付スクラッチ試験機によるスクラッチ試験でも密着性が良く、マイクロビッカスース硬度計による硬度測定でも十分な硬度を示した(表1参照)。   This c-BN coating film also has sufficient hardness and adhesion to the substrate. Adhesion was good even in a scratch test using an AE scratch tester, and a sufficient hardness was shown even in a hardness measurement using a micro-bickus hardness tester (see Table 1).

基体に中間層であるZrをコートした後の水素中アニール処理を行わない他は、実施例3と同様の条件で中間層上にc−BN被覆膜をコートした。その結果、X線回折でc−BNの(111)、(200)の反射の半値幅は、それぞれ、1.1、1.4度であった。なお、(220)、(311)については測定していない。本実施例によるc−BN被覆膜の残留応力の計算値は、(111)ピークのシフトから1.3GPaで、水素アニール処理した場合の残留応力より大きかったものの、本実施例によるc−BN被覆膜も、十分本発明の目的にかなう硬質な被覆膜であった(表1参照)。   A c-BN coating film was coated on the intermediate layer under the same conditions as in Example 3 except that the annealing in hydrogen after coating Zr as the intermediate layer on the substrate was not performed. As a result, the half widths of reflection of c-BN (111) and (200) by X-ray diffraction were 1.1 and 1.4 degrees, respectively. Note that (220) and (311) are not measured. The calculated value of the residual stress of the c-BN coating film according to this example is 1.3 GPa from the shift of the (111) peak, which is larger than the residual stress in the case of the hydrogen annealing treatment, but the c-BN according to this example. The coating film was also a hard coating film that sufficiently fulfilled the object of the present invention (see Table 1).

本実施例は中間層をコートせずにc−BN成膜中に基体表面層を窒化及びホウ化して窒化物、ホウ化物の中間層とした例である。1mm厚のチタン板を基体としてc−BN被覆膜作成膜装置にセットし、Ar:20slm、N:1.5slm、H:5sccmを流し、8kWのDCアーク放電によりプラズマを発生させ、10%BF/Ar:30sccmを流し、直流バイアス電源により−85Vの直流バイアスを基体にかけ、基体温度1050℃にて、50Torr下の1/3時間の合成により、基体上に剥がれていない立方晶窒化ホウ素被覆膜が得られた。 In this example, the substrate surface layer is nitrided and borated during c-BN film formation without coating the intermediate layer, thereby forming an intermediate layer of nitride or boride. A titanium plate with a thickness of 1 mm is set as a substrate in a c-BN coating film forming film apparatus, Ar: 20 slm, N 2 : 1.5 slm, H 2 : 5 sccm is flown, and plasma is generated by DC arc discharge of 8 kW. 10% BF 3 / Ar: 30 sccm was passed, a DC bias of −85 V was applied to the substrate by a DC bias power source, and the cubic crystal was not peeled off on the substrate by synthesis for 1/3 hour under 50 Torr at a substrate temperature of 1050 ° C. A boron nitride coating film was obtained.

この方法により得られた立方晶窒化ホウ素の薄膜X線回折図(銅ターゲット)、ラマンスペクトルを、それぞれ、図8、図9に示す。図8にはc−BN、窒化チタン、ホウ化チタンのピークが現れており、最表面層はc−BNで、窒化チタン、ホウ化チタンが基体とc−BN被覆膜との中間層となっている。c−BN層被覆膜の厚みはおよそ4μmである。c−BNのX線回折ピークの2θの半値幅は(111)、(200)、(220)、(311)のピークについて、それぞれ、0.58、0.75、0.90、1.4度である。   The thin film X-ray diffraction diagram (copper target) and Raman spectrum of cubic boron nitride obtained by this method are shown in FIGS. 8 and 9, respectively. In FIG. 8, peaks of c-BN, titanium nitride, and titanium boride appear, the outermost surface layer is c-BN, and titanium nitride and titanium boride are intermediate layers between the substrate and the c-BN coating film. It has become. The thickness of the c-BN layer coating film is approximately 4 μm. The half width of 2θ of the X-ray diffraction peak of c-BN is 0.58, 0.75, 0.90, 1.4 for the peaks of (111), (200), (220), and (311), respectively. Degree.

図9のラマンスペクトルにおいて、c−BNのTO及びLOモードのピークはそれぞれ、29.9、14.9cm−1であり、結晶性のよいc−BNであることがわかる。c−BN被覆膜のX線の(111)ピーク位置(43.30度)のバルクc−BN結晶のそれ(43.35度)からのシフトからc−BN被覆膜の面内圧縮応力を求めると約1.2GPaとなり、フッ素を用いない従来合成法で一般的な10〜20GPa(非特許文献6)と比べ非常に低いことがわかる。 In the Raman spectrum of FIG. 9, the c-BN TO and LO mode peaks are 29.9 and 14.9 cm −1 , respectively, indicating that the c-BN has good crystallinity. From the shift of the (111) peak position (43.30 degrees) of the X-ray of the c-BN coating film from that of the bulk c-BN crystal (43.35 degrees), the in-plane compressive stress of the c-BN coating film Is about 1.2 GPa, which is very low compared to 10-20 GPa (non-patent document 6) that is general in the conventional synthesis method using no fluorine.

このc−BN被覆膜は5年経っても剥離せず、この膜をステンレス製の尖ったピンセットで強く引っかいたところ、ピンセットが削られてc−BN被覆膜に融着したが、c−BN被覆膜は剥離しなかった。   The c-BN coating film did not peel off even after 5 years, and when this film was strongly scratched with pointed tweezers made of stainless steel, the tweezers were shaved and fused to the c-BN coating film. -The BN coating film did not peel off.

このc−BN被覆膜は十分な硬さと基体との密着力をもっている。AE付スクラッチ試験機によるスクラッチ試験でも密着性が良く、ナノインデンターとマイクロビッカスース硬度計による硬度測定でも十分な硬度を示した(表1参照)。   This c-BN coating film has sufficient hardness and adhesion to the substrate. Adhesion was good even in a scratch test using an AE scratch tester, and a sufficient hardness was shown even in a hardness measurement using a nanoindenter and a micro-bickus hardness tester (see Table 1).

Figure 0005387815
Figure 0005387815

本発明である立方晶窒化ホウ素被覆膜複合材料は、高結晶性と高膜厚、基体との高密着性のc−BN被覆膜複合体で、高硬度、高耐磨耗性、高耐熱性、高熱伝導度を用いる切削工具、研削工具、ドリル等のコーティングへ、耐摩耗性コーティングに有効である。さらに、高絶縁性、高耐電圧、高耐熱耐酸化性、高熱伝導であるため、高温電子材料素子等への幅広い応用が期待される。   The cubic boron nitride coating film composite material according to the present invention is a c-BN coating film composite having a high crystallinity, a high film thickness, and a high adhesion to a substrate, and has a high hardness, a high wear resistance, a high Effective for wear-resistant coatings for cutting tools, grinding tools, drills, and other coatings that use heat resistance and high thermal conductivity. Furthermore, since it has high insulation, high withstand voltage, high heat and oxidation resistance, and high thermal conductivity, it is expected to be widely applied to high-temperature electronic material elements.

基体上の中間層の上にc−BN膜を被覆した本発明である立方晶窒化ホウ素被覆膜複合材料の断面模式図である。It is a cross-sectional schematic diagram of the cubic boron nitride coating film composite material which is this invention which coat | covered the c-BN film | membrane on the intermediate | middle layer on a base | substrate. 基体上の2層の中間層の上にc−BN膜を被覆した本発明である立方晶窒化ホウ素被覆膜複合材料の断面模式図である。It is a cross-sectional schematic diagram of a cubic boron nitride coating film composite material according to the present invention in which a c-BN film is coated on two intermediate layers on a substrate. 実施例1で作成したジルコニウムのホウ化物、窒化物、ホウ窒化物を中間層とする立方晶窒化ホウ素被覆複合材料の表面膜側からの薄膜X線回折図である。1 is a thin film X-ray diffraction pattern from the surface film side of a cubic boron nitride-coated composite material having zirconium boride, nitride and boronitride as an intermediate layer prepared in Example 1. FIG. 実施例1で作成したジルコニウムのホウ化物、窒化物、ホウ窒化物を中間層とする立方晶窒化ホウ素被覆複合材料の表面膜のラマンスペクトルである。2 is a Raman spectrum of a surface film of a cubic boron nitride-coated composite material having an intermediate layer of zirconium boride, nitride and boronitride prepared in Example 1. FIG. 実施例2で得られたチタンの窒化物を中間層とする立方晶窒化ホウ素被覆複合材料の表面膜側からの薄膜X線回折図である。4 is a thin film X-ray diffraction diagram from the surface film side of a cubic boron nitride-coated composite material using titanium nitride obtained in Example 2 as an intermediate layer. FIG. 実施例2で得られたチタンの窒化物を中間層とする立方晶窒化ホウ素被覆複合材料の表面膜のラマンスペクトルである。4 is a Raman spectrum of a surface film of a cubic boron nitride-coated composite material having the titanium nitride obtained in Example 2 as an intermediate layer. 実施例3で得られたジルコニウムの窒化物を中間層とする立方晶窒化ホウ素被覆複合材料の表面膜側からの薄膜X線回折図である。FIG. 4 is a thin film X-ray diffraction diagram from the surface film side of a cubic boron nitride-coated composite material having an intermediate layer of zirconium nitride obtained in Example 3. 実施例5で作成したチタンのホウ化物、窒化物を中間層とする立方晶窒化ホウ素被覆複合材料の表面膜側からの薄膜X線回折図である。6 is a thin film X-ray diffraction diagram from the surface film side of a cubic boron nitride-coated composite material having titanium boride and nitride as an intermediate layer prepared in Example 5. FIG. 実施例5で作成したチタンのホウ化物、窒化物を中間層とする立方晶窒化ホウ素被覆複合材料の表面膜のラマンスペクトルである。6 is a Raman spectrum of a surface film of a cubic boron nitride-coated composite material having titanium boride and nitride as an intermediate layer prepared in Example 5. FIG.

符号の説明Explanation of symbols

1 立方晶窒化ホウ素被覆膜複合材料
2 基体
3 中間層
3a 第2中間層
4 c−BN被覆膜(表面膜)
DESCRIPTION OF SYMBOLS 1 Cubic boron nitride coating film composite material 2 Base | substrate 3 Intermediate | middle layer 3a 2nd intermediate | middle layer 4 c-BN coating film (surface film)

Claims (2)

基体と、前記基体表面上に形成された周期律表の第4族金属(Ti、Zr、Hf)、第5族金属(V、Nb、Ta)、前記第4族金属及び第5族金属の窒化物又はホウ化物或いはホウ窒化物の内から選ばれるいずれか1種以上の成分よりなる中間層と、前記基体表面に中間層を形成後、水素ガス或いは水素プラズマ中で基体及び中間層をアニール処理し、前記中間層の表面に被膜した立方晶窒化ホウ素を主成分とする表面膜とから形成される立方晶窒化ホウ素被覆膜複合材料であって、
前記表面膜の立方晶窒化ホウ素の光学的縦波モードのフォノンによるラマン散乱又は光学的横波モードのフォノンによるラマン散乱のいずれか一方の半値幅が、50cm−1以下のピークを示すか、
或いは、
薄膜X線回折で、前記表面膜の立方晶窒化ホウ素の(111)、(200)、(220)、(311)の内のいずれか1の反射ピークの2θの半値幅が、それぞれ1.5、2.5、2.5、3度以下であることを特徴とする
立方晶窒化ホウ素被覆膜複合材料。
A base, a Group 4 metal (Ti, Zr, Hf), a Group 5 metal (V, Nb, Ta) of the periodic table formed on the surface of the base, the Group 4 metal and the Group 5 metal. An intermediate layer composed of at least one component selected from nitride, boride or boronitride, and an intermediate layer formed on the surface of the substrate, and then anneal the substrate and the intermediate layer in hydrogen gas or hydrogen plasma A cubic boron nitride coating film composite material formed from a surface film mainly composed of cubic boron nitride that is processed and coated on the surface of the intermediate layer,
The half width of either the Raman scattering by phonons in the optical longitudinal wave mode or the phonons in the optical transverse wave mode of the cubic boron nitride of the surface film shows a peak of 50 cm −1 or less,
Or
In thin film X-ray diffraction, the half-width of 2θ of the reflection peak of any one of (111), (200), (220), and (311) of cubic boron nitride of the surface film is 1.5 respectively. 2.5, 2.5, 3 degrees or less, cubic boron nitride coating film composite material
前記立方晶窒化ホウ素を、ホウ素源、窒素源及びフッ素源を含むガスのプラズマを用いて、前記基体上に析出させたことを特徴とする請求項1に記載の立方晶窒化ホウ素被覆膜複合材料。   2. The cubic boron nitride coating film composite according to claim 1, wherein the cubic boron nitride is deposited on the substrate using a plasma of a gas containing a boron source, a nitrogen source and a fluorine source. material.
JP2008273051A 2008-10-23 2008-10-23 Cubic boron nitride coating composite Expired - Fee Related JP5387815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008273051A JP5387815B2 (en) 2008-10-23 2008-10-23 Cubic boron nitride coating composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008273051A JP5387815B2 (en) 2008-10-23 2008-10-23 Cubic boron nitride coating composite

Publications (2)

Publication Number Publication Date
JP2010099916A JP2010099916A (en) 2010-05-06
JP5387815B2 true JP5387815B2 (en) 2014-01-15

Family

ID=42290989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008273051A Expired - Fee Related JP5387815B2 (en) 2008-10-23 2008-10-23 Cubic boron nitride coating composite

Country Status (1)

Country Link
JP (1) JP5387815B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5945162B2 (en) * 2012-05-31 2016-07-05 三菱マテリアル株式会社 Surface coated cutting tool
JP5943713B2 (en) * 2012-05-31 2016-07-05 三菱マテリアル株式会社 Surface coated cutting tool
KR20140085762A (en) * 2012-12-27 2014-07-08 재단법인 포항산업과학연구원 Method for forming hard coating
JP6337733B2 (en) * 2014-10-10 2018-06-06 新日鐵住金株式会社 Carbide tool
CN107532458A (en) * 2015-02-28 2018-01-02 第六元素(英国)有限公司 Superhard construction and its manufacture method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03260054A (en) * 1990-03-09 1991-11-20 Masao Murakawa Cubic bn coated member having superior exfoliation resistance and its production
JPH04120265A (en) * 1990-05-16 1992-04-21 Mitsubishi Heavy Ind Ltd Boron nitride coated member
JPH04124283A (en) * 1990-09-17 1992-04-24 Sumitomo Electric Ind Ltd Coating method with boron nitride film
JPH04246164A (en) * 1991-01-30 1992-09-02 Mitsubishi Heavy Ind Ltd Method for forming cubic boron nitride film
JP2964669B2 (en) * 1991-03-08 1999-10-18 住友電気工業株式会社 Boron nitride coated hard material
JP3605634B2 (en) * 1999-12-27 2004-12-22 独立行政法人物質・材料研究機構 Vapor phase synthesis of cubic boron nitride
JP3884378B2 (en) * 2002-12-27 2007-02-21 株式会社神戸製鋼所 Hard film with excellent adhesion
JP2004338041A (en) * 2003-05-15 2004-12-02 Ngk Spark Plug Co Ltd Cutting insert and tool unit

Also Published As

Publication number Publication date
JP2010099916A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP4205546B2 (en) Method for producing a laminated film having excellent wear resistance, heat resistance and adhesion to a substrate
JP5725466B2 (en) Coating system having at least one mixed oxide mixed crystal coating
JP2004058270A (en) Cutting tool insert
JP5192810B2 (en) Laminated composite material with cubic boron nitride
JP4427271B2 (en) Alumina protective film and method for producing the same
JP5190971B2 (en) Coating, cutting tool, and manufacturing method of coating
JP5387815B2 (en) Cubic boron nitride coating composite
JP7445595B2 (en) Al-Cr based ceramic coating with increased thermal stability
Gaydaychuk et al. Influence of Al-Si-N interlayer on residual stress of CVD diamond coatings
JPH06173009A (en) Coated cemented carbide excellent in wear resistance and its production
JP4155641B2 (en) Abrasion resistant coating, method for producing the same, and abrasion resistant member
JP2825521B2 (en) Hard material protective layer for strongly loaded substrates and its preparation
CN114945708B (en) PVD coated cemented carbide cutting tool with improved coating adhesion
JP2006192543A (en) Surface-coated cutting tool and its manufacturing method
JP3971293B2 (en) Laminated film excellent in wear resistance and heat resistance, production method thereof, and multilayer film coated tool excellent in wear resistance and heat resistance
JP2006192531A (en) Surface-coated cutting tool and its manufacturing method
JP2007196364A (en) Surface-coated cutting tool and its manufacturing method
JP2969291B2 (en) Abrasion resistant member and method of manufacturing the same
JP2004169076A (en) Hard film
JP5669107B2 (en) Cubic boron nitride coating method and material obtained thereby
JP2014014895A (en) Surface coated cutting tool
JP5614405B2 (en) Hard film coated tool and manufacturing method thereof
JP4388152B2 (en) Thin film laminate covering member
WO2010084982A1 (en) Member coated with hard film and jig for forming
JP3249278B2 (en) Tool cover

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130924

R150 Certificate of patent or registration of utility model

Ref document number: 5387815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees