JP5382792B2 - Method for simultaneously measuring primary and secondary photosensitivity anisotropy in optical second-order nonlinear thin film, apparatus for executing the method, and program for causing computer to execute the method - Google Patents

Method for simultaneously measuring primary and secondary photosensitivity anisotropy in optical second-order nonlinear thin film, apparatus for executing the method, and program for causing computer to execute the method Download PDF

Info

Publication number
JP5382792B2
JP5382792B2 JP2009188069A JP2009188069A JP5382792B2 JP 5382792 B2 JP5382792 B2 JP 5382792B2 JP 2009188069 A JP2009188069 A JP 2009188069A JP 2009188069 A JP2009188069 A JP 2009188069A JP 5382792 B2 JP5382792 B2 JP 5382792B2
Authority
JP
Japan
Prior art keywords
ratio
optical
thin film
curve
nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009188069A
Other languages
Japanese (ja)
Other versions
JP2011038949A (en
Inventor
高史 佐々
達夫 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2009188069A priority Critical patent/JP5382792B2/en
Publication of JP2011038949A publication Critical patent/JP2011038949A/en
Application granted granted Critical
Publication of JP5382792B2 publication Critical patent/JP5382792B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、光2次非線形薄膜(光2次非線形性を有する薄膜)の感受率異方性を表す光学物性値である非線形光学定数成分の比(d-ratio)と複屈折率(Δn)を実験的に同時に決定する方法、当該方法を実行する装置及び当該方法をコンピュータに実行させるプログラムに関する。なお、光2次非線形性の代表例には、例えば電気光学(EO)効果がある。また、光2次非線形性薄膜の代表例には、例えば光2次非線形色素を含む高分子等の有機アモルファス材料によって作製される薄膜試料がある。   The present invention relates to a ratio (d-ratio) of a nonlinear optical constant component, which is an optical property value representing the susceptibility anisotropy of an optical secondary nonlinear thin film (thin film having optical secondary nonlinearity), and a birefringence index (Δn). The present invention relates to a method for experimentally determining simultaneously, an apparatus for executing the method, and a program for causing a computer to execute the method. A typical example of optical second-order nonlinearity is, for example, an electro-optic (EO) effect. A representative example of the optical second-order nonlinear thin film is a thin-film sample made of an organic amorphous material such as a polymer containing an optical second-order nonlinear dye.

測定試料の光学物性値である非線形光学定数成分の比(d-ratio)と複屈折率(Δn)を実験的に同時に決定できる手法として、測定試料について測定された光第2高調波のメーカーフリンジ曲線(SH−MF曲線)を解析する方法が知られている。   As a technique that can simultaneously determine experimentally the ratio (d-ratio) and birefringence index (Δn) of the nonlinear optical constant component, which is the optical property value of the measurement sample, the manufacturer's fringe of the optical second harmonic measured for the measurement sample A method of analyzing a curve (SH-MF curve) is known.

ここで、光第2高調波(SH波)は、光2次非線形性を有する試料に波長λのレーザー光(基本波と呼ぶ)を照射した場合に発生する波長λ/2を有する光波(レーザー光)のことをいう。例えば1μmの赤外波長のレーザー光を照射した場合に発生する波長0.5μmの緑色の光波をいう。   Here, the optical second harmonic (SH wave) is a light wave (laser) having a wavelength λ / 2 generated when a laser beam having a wavelength λ (referred to as a fundamental wave) is irradiated onto a sample having optical second-order nonlinearity. (Light). For example, it refers to a green light wave having a wavelength of 0.5 μm that is generated when laser light having an infrared wavelength of 1 μm is irradiated.

他方、メーカーフリンジ曲線は、試料中を伝搬する基本波の光路長を連続的に変化させた場合に、高調波の測定強度が光干渉によって大→小→大→小…と周期的に変化する様子をプロットした曲線をいう。因みに、試料中を伝搬する基本波の光路長は、測定試料に対する入射角に応じて連続的に変えることができる。この曲線のうち基本波の入射角とSH波の強度との間に出現する周期的な変化をプロットした曲線を特にSH−MF曲線という。   On the other hand, when the optical path length of the fundamental wave propagating in the sample is continuously changed, the manufacturer's fringe curve periodically changes the measured intensity of harmonics from large to small to large to small due to optical interference. A curve that plots the situation. Incidentally, the optical path length of the fundamental wave propagating in the sample can be continuously changed according to the incident angle with respect to the measurement sample. Of these curves, a curve in which a periodic change appearing between the incident angle of the fundamental wave and the intensity of the SH wave is plotted is particularly referred to as an SH-MF curve.

SH−MF曲線は、前述した二つの光学物性値によって、その振幅と周期が独立に変化するため、各変化量を解析することにより対応する光学物性値を求めることができる。   Since the amplitude and period of the SH-MF curve change independently depending on the two optical property values described above, the corresponding optical property value can be obtained by analyzing each change amount.

ただし、SH−MF曲線の振幅変化と周期変化に基づく光学物性値の解析は、測定試料が十分に厚い(光路長が長い)場合に限られており、測定可能な試料に制限があった。実際、測定試料が十分な厚みを有していない場合、SH−MF曲線に周期的な変化が出現しない。その理由は、基本波の入射角を可変するために測定試料を回転させても、十分に広い範囲で基本波の光路長を変化させることができず、周期シフト量を読み出すことができないためと考えられる。従って、有機アモルファス材料のように、ほとんどが薄膜としてしか利用できない試料の場合には、従来手法を利用することができなかった。   However, the analysis of the optical property value based on the amplitude change and the period change of the SH-MF curve is limited to the case where the measurement sample is sufficiently thick (the optical path length is long), and the measurable sample is limited. Actually, when the measurement sample does not have a sufficient thickness, no periodic change appears in the SH-MF curve. The reason is that even if the measurement sample is rotated to vary the incident angle of the fundamental wave, the optical path length of the fundamental wave cannot be changed in a sufficiently wide range, and the period shift amount cannot be read out. Conceivable. Therefore, in the case of a sample that can be used only as a thin film, such as an organic amorphous material, the conventional method cannot be used.

そこで、本発明は、光2次非線形性薄膜の1次及び2次光感受率の異方性を実験的に同時に測定できる手法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method capable of experimentally measuring the anisotropy of the primary and secondary photosensitivities of the optical second-order nonlinear thin film simultaneously.

本発明者は、鋭意検討の結果、1つの測定試料に2種類の光を照射することで実験的に測定される2種類のSH−MF曲線の比(SH−MF比曲線)を使用することにより、上記課題を解決できることを見出し、本発明に至った。すなわち、本発明者は、SH−MF曲線の振幅変化と周期変化にそれぞれ対応する変化が、SH−MF比曲線の異なる入射角範囲に独立に出現することを見出した。そこで、本発明では、SH−MF比曲線に対応する理論関数式の2つの未知パラメータのそれぞれを対応する入射角範囲について独立に近似演算処理を実行することにより、SH−MF比曲線に近似する理論関数式を与える2つの未知パラメータを個別に決定する手法を提供する。   As a result of intensive studies, the inventor uses a ratio of two types of SH-MF curves (SH-MF ratio curve) measured experimentally by irradiating two types of light on one measurement sample. Thus, the inventors have found that the above problems can be solved, and have reached the present invention. That is, the present inventor has found that changes corresponding to the amplitude change and period change of the SH-MF curve appear independently in different incident angle ranges of the SH-MF ratio curve. Therefore, in the present invention, approximation processing is approximated to the SH-MF ratio curve by independently performing approximation processing for the incident angle range corresponding to each of the two unknown parameters of the theoretical function equation corresponding to the SH-MF ratio curve. A method for individually determining two unknown parameters that give a theoretical function formula is provided.

本発明により、従来手法では、実験的に同時に測定できなかった光2次非線形性薄膜の2つの光学物性値を、同一測定試料に対する実験により同時に求めることができる。   According to the present invention, the two optical property values of the optical second-order nonlinear thin film, which could not be measured experimentally at the same time in the conventional method, can be simultaneously obtained by experiments on the same measurement sample.

測定試料の構造例と基本波レーザー光の入射角を説明する図。The figure explaining the structural example of a measurement sample, and the incident angle of a fundamental wave laser beam. 測定装置の全体構成例を説明する図。The figure explaining the example of whole structure of a measuring device. 複屈折率の決定原理を説明する図。The figure explaining the determination principle of a birefringence. 非線形光学定数比の決定原理を説明する図。The figure explaining the determination principle of a nonlinear optical constant ratio. 光学物性値の解析手順を説明する図。The figure explaining the analysis procedure of an optical property value.

以下、図面に基づいて、本発明の実施の形態を説明する。なお、後述する装置構成や処理動作の内容は一例であり、実施の形態と既知の技術との組み合わせや置換により他の実施の形態を実現することもできる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the content of the apparatus configuration and processing operation to be described later is merely an example, and other embodiments can be realized by combining or replacing the embodiments with known techniques.

(1)測定試料の構造例
以下の実施例では、光2次非線形性薄膜が、有機薄膜(例えば有機アモルファス薄膜)である場合について説明する。図1に、この実施例で使用する測定試料10の構造例を示す。測定試料10の基本構造は、ガラスその他の透明基板11の表面に、有機アモルファス薄膜層12を堆積させた構造である。
(1) Structural Example of Measurement Sample In the following example, the case where the optical second-order nonlinear thin film is an organic thin film (for example, an organic amorphous thin film) will be described. FIG. 1 shows an example of the structure of a measurement sample 10 used in this embodiment. The basic structure of the measurement sample 10 is a structure in which an organic amorphous thin film layer 12 is deposited on the surface of a transparent substrate 11 such as glass.

ところで、後述する(3)項に示すような単純化した理論関数式を用いて有機アモルファス薄膜層12の光学物性値を解析又は測定するには、有機アモルファス薄膜層12の厚みが予め定められた範囲に作製されていることが求められる。要求される厚みについては後述する(3)項において説明する。この他、有機アモルファス材料に光2次非線形性を付与するには、一般的に、薄膜内で光2次非線形色素を配向させる必要がある。配向処理方法としては、電界配向誘起法が最も一般的である。多くの場合、透明基板11に対して垂直な方向に分子が配列される。   By the way, in order to analyze or measure the optical property value of the organic amorphous thin film layer 12 using a simplified theoretical function equation as described in the item (3) described later, the thickness of the organic amorphous thin film layer 12 is determined in advance. It is required to be made in the range. The required thickness will be described in (3) below. In addition, in order to impart optical second-order nonlinearity to the organic amorphous material, it is generally necessary to orient the second-order nonlinear dye in the thin film. As the alignment processing method, the electric field alignment induction method is the most common. In many cases, molecules are arranged in a direction perpendicular to the transparent substrate 11.

ただし、有機アモルファス薄膜層12にレーザー光を直接入射させる場合、入射角θが0°の付近でMF曲線をきれいに測定できないことがある。その原因の一つに、有機薄膜で発生したSH波が、有機アモルファス薄膜層12と空気との境界部分で反射することが考えられる。そこで、図1の場合には、有機アモルファス薄膜層12の表面に有機アモルファス薄膜層12と同様の屈折率を有し、かつ、使用するレーザー波長に比べて十分大きな厚みを有する透明層(透明バッファー層)13を付与する構造を採用する。なお、透明層13は、平行平板状に形成したものを使用する。   However, when the laser light is directly incident on the organic amorphous thin film layer 12, the MF curve may not be accurately measured when the incident angle θ is around 0 °. One possible cause is that SH waves generated in the organic thin film are reflected at the boundary between the organic amorphous thin film layer 12 and air. Therefore, in the case of FIG. 1, a transparent layer (transparent buffer) having a refractive index similar to that of the organic amorphous thin film layer 12 on the surface of the organic amorphous thin film layer 12 and a thickness sufficiently larger than the laser wavelength to be used. Layer) 13 is used. In addition, the transparent layer 13 uses what was formed in the parallel plate shape.

この場合、透明層13は、有機アモルファス薄膜層12と完全に密着する必要があり、有機アモルファス薄膜層12に接していない側の面(層表面)は、光学的に平坦になるように形成されている必要がある。このような構造は、例えば光学シリコーン等のやわらかい材料をシート状に加工し、それを有機アモルファス薄膜層12の表面に貼り付けることで実現できる。透明層13の表面の平坦性が十分でない場合には、更にその上にガラスその他の透明な基板を完全に密着させて固定することが望ましい。   In this case, the transparent layer 13 needs to be completely in close contact with the organic amorphous thin film layer 12, and the surface (layer surface) that is not in contact with the organic amorphous thin film layer 12 is formed to be optically flat. Need to be. Such a structure can be realized by, for example, processing a soft material such as optical silicone into a sheet shape and attaching it to the surface of the organic amorphous thin film layer 12. In the case where the flatness of the surface of the transparent layer 13 is not sufficient, it is desirable that a glass or other transparent substrate is further completely adhered and fixed thereon.

(2)測定装置の全体構成例
透明基板11上に堆積された光2次非線形性を有する有機アモルファス薄膜層12は、ほとんどの場合、光学軸を透明基板11に対して垂直とする空間対称性を有している。このような特性を有する測定試料の場合、一般に、基本波レーザー光の二つの偏光(p偏光とs偏光)を用いることにより、各偏光に対応する2種類のSH−MF曲線Ipp及びIspを測定することができる。すなわち、p偏光に対応するSH−MF曲線Ippとs偏光に対応するSH−MF曲線Ispを測定することができる。
(2) Example of Overall Configuration of Measuring Device In most cases, the organic amorphous thin film layer 12 having optical second-order nonlinearity deposited on the transparent substrate 11 is spatially symmetrical with the optical axis perpendicular to the transparent substrate 11. have. In the case of a measurement sample having such characteristics, in general, two types of SH-MF curves I pp and I sp corresponding to each polarization are obtained by using two polarizations (p polarization and s polarization) of the fundamental laser beam. Can be measured. That is, it is possible to measure the SH-MF curve I sp corresponding to SH-MF curve I pp and s-polarized light corresponding to the p-polarized light.

図2に、測定試料の光学物性値である非線形光学定数比(d-ratio)と複屈折率(Δn)の測定に使用する測定装置100の構成例を示す。測定装置100は、SH−MF曲線測定光学系110と、物性値測定部120で構成される。   FIG. 2 shows a configuration example of the measuring apparatus 100 used for measuring the nonlinear optical constant ratio (d-ratio) and the birefringence index (Δn), which are optical property values of the measurement sample. The measuring apparatus 100 includes an SH-MF curve measuring optical system 110 and a physical property value measuring unit 120.

SH−MF曲線測定光学系110は、s偏光とp偏光に対応するSH−MF曲線を実測するために使用される装置である。この実施例の場合、SH−MF曲線測定光学系110は、基本波レーザー源111、波長板112、SH波カットフィルター113、回転ステージ114、基本波カットフィルター115、検光子116、光電子倍増管117で構成する。   The SH-MF curve measurement optical system 110 is an apparatus used to actually measure SH-MF curves corresponding to s-polarized light and p-polarized light. In this embodiment, the SH-MF curve measuring optical system 110 includes a fundamental wave laser source 111, a wave plate 112, an SH wave cut filter 113, a rotation stage 114, a fundamental wave cut filter 115, an analyzer 116, and a photomultiplier tube 117. Consists of.

波長板112は、基本波レーザー光の偏光方向(p方向又はs方向)の選択に使用される光学素子の一つである。s偏光に対応するSH−MF曲線を実測する場合に、波長板112は、s偏光を選択的に透過するように制御され、p偏光に対応するSH−MF曲線を実測する場合、波長板112は、p偏光を選択的に透過するように制御される。波長板112の偏光方向の選択は、外部の制御装置(例えば物性値測定部120)が用いられる。   The wave plate 112 is one of optical elements used for selecting the polarization direction (p direction or s direction) of the fundamental laser beam. When actually measuring the SH-MF curve corresponding to the s-polarized light, the wave plate 112 is controlled to selectively transmit the s-polarized light. When measuring the SH-MF curve corresponding to the p-polarized light, the wave plate 112 is used. Is controlled to selectively transmit p-polarized light. For selection of the polarization direction of the wave plate 112, an external control device (for example, the physical property value measuring unit 120) is used.

SH波カットフィルター113は、測定試料10に入射する基本波レーザー光(偏光)からSH波成分を除去する光学フィルターである。   The SH wave cut filter 113 is an optical filter that removes an SH wave component from the fundamental wave laser light (polarized light) incident on the measurement sample 10.

回転ステージ114は、測定試料10を取り付けた状態で回転駆動される可動機構である。この実施例の場合、回転ステージ114の回転角と測定試料10に対する基本波レーザー光の入射角θとが一致するように、測定試料10と回転ステージ114との取り付け位置と回転角が調整されている。このため、回転ステージ114の回転角の検出を通じ、基本波レーザー光の測定試料10に対する入射角θを検出することができる。回転ステージ114の回転は、外部の制御装置(例えば物性値測定部120)により制御される。   The rotary stage 114 is a movable mechanism that is rotationally driven with the measurement sample 10 attached. In this embodiment, the mounting position and the rotation angle of the measurement sample 10 and the rotation stage 114 are adjusted so that the rotation angle of the rotation stage 114 and the incident angle θ of the fundamental laser beam with respect to the measurement sample 10 coincide. Yes. Therefore, the incident angle θ of the fundamental laser beam with respect to the measurement sample 10 can be detected through detection of the rotation angle of the rotary stage 114. The rotation of the rotary stage 114 is controlled by an external control device (for example, the physical property value measuring unit 120).

一般に、回転ステージ114は、事前に定めた一定の範囲内で回動駆動される。この実施例では、入射角θが−70°から+70°の範囲で回転駆動されるものとする。なお、入射角θとは、測定試料10の法線面と基本波レーザーの光の入射方向との間に形成される角度をいう。従って、入射角θが0°とは、測定試料10の法線面と基本波レーザーの光の入射方向とが一致することをいう。因みに、SH−MF曲線を高精度で測定するためには、回転ステージ114の回転角の刻みは0.5°以下であることが好ましい。測定試料10に入射した基本波レーザー光は、有機アモルファス薄膜層12においてSH波を発生する。   In general, the rotary stage 114 is rotationally driven within a predetermined range. In this embodiment, it is assumed that the incident angle θ is rotationally driven in the range of −70 ° to + 70 °. Note that the incident angle θ is an angle formed between the normal surface of the measurement sample 10 and the incident direction of the light of the fundamental laser. Accordingly, an incident angle θ of 0 ° means that the normal plane of the measurement sample 10 coincides with the incident direction of the fundamental laser beam. Incidentally, in order to measure the SH-MF curve with high accuracy, the step of the rotation angle of the rotary stage 114 is preferably 0.5 ° or less. The fundamental laser light incident on the measurement sample 10 generates an SH wave in the organic amorphous thin film layer 12.

基本波カットフィルター115は、測定試料10の透過光に含まれる基本波レーザー光成分を除去する光学フィルターである。   The fundamental wave cut filter 115 is an optical filter that removes a fundamental wave laser beam component contained in the transmitted light of the measurement sample 10.

検光子116は、測定試料10で発生されるSH波のうちp偏光成分だけを選択的に透過する光学素子である。   The analyzer 116 is an optical element that selectively transmits only the p-polarized component of the SH wave generated in the measurement sample 10.

光電子増倍管117は、検光子116を通過したSH波の強度を測定する受光素子である。   The photomultiplier tube 117 is a light receiving element that measures the intensity of the SH wave that has passed through the analyzer 116.

一方の物性測定部120は、SH−MF曲線測定光学系110によって実験的に測定される測定データに基づいて、測定試料10の光学物性値(特に、複屈折率(Δn)と非線形光学定数比(d-ratio))を測定する装置である。この実施例の場合、物性測定部120は、実測データ格納部121、SH−MF比曲線生成部122、未知パラメータ決定部123、パラメータ出力部124で構成される。   One physical property measuring unit 120 is based on the measurement data experimentally measured by the SH-MF curve measuring optical system 110, and the optical physical property value (especially, the birefringence index (Δn) and the nonlinear optical constant ratio). (D-ratio)). In this embodiment, the physical property measurement unit 120 includes an actual measurement data storage unit 121, an SH-MF ratio curve generation unit 122, an unknown parameter determination unit 123, and a parameter output unit 124.

なお、物性測定部120を構成する各処理部は、ハードウェアのみによっても、ソフトウェアのみによっても、ハードウェアとソフトウェアの混合構成によっても実現することができる。この実施例の場合、物性測定部120の各処理部は、コンピュータ上で実行されるプログラムを通じて実現されるものとする。従って、実施例における物性測定部120は、コンピュータの基本構造である算術論理ユニット、制御回路、記憶部、入出力装置等で構成されている。勿論、光学物性値の解析に使用されるプログラムは、記憶部に格納されている。   Note that each processing unit constituting the physical property measuring unit 120 can be realized only by hardware, only by software, or by a mixed configuration of hardware and software. In the case of this embodiment, each processing unit of the physical property measurement unit 120 is realized through a program executed on a computer. Therefore, the physical property measuring unit 120 in the embodiment includes an arithmetic logic unit, a control circuit, a storage unit, an input / output device, and the like, which are the basic structure of a computer. Of course, the program used for the analysis of the optical property value is stored in the storage unit.

実測データ格納部121は、光電子増倍管117を通じて測定された光強度(測定データ)と基本波レーザー光の入射角θの対応関係を記憶部に格納する処理部である。この実測データ格納部121は、前述した外部の制御装置としても機能する。すなわち、波長板112における偏光方向の選択や回転ステージ114における回転角の制御にも使用される。実測データ格納部121には、入射角θの可変範囲について測定されたs偏光に対応するSH−MF曲線の測定データIsp(θ)とp偏光に対応するSH−MF曲線の測定データIpp(θ)が格納される。 The actual measurement data storage unit 121 is a processing unit that stores the correspondence between the light intensity (measurement data) measured through the photomultiplier tube 117 and the incident angle θ of the fundamental laser beam in the storage unit. The actual measurement data storage unit 121 also functions as the external control device described above. That is, it is also used for selecting the polarization direction in the wave plate 112 and controlling the rotation angle in the rotary stage 114. The measured data storage unit 121 stores the measured data I sp (θ) of the SH-MF curve corresponding to the s-polarized light measured for the variable range of the incident angle θ and the measured data I pp of the SH-MF curve corresponding to the p-polarized light. (Θ) is stored.

SH−MF比曲線生成部122は、2つのSH−MF曲線の各入射角θに対応する測定データ間の比を算出し、SH−MF比曲線を生成する処理部である。この実施例の場合、入射角θに対応するSH−MF比曲線を次式で定義する。
ratio(θ)=Ipp(θ)/Isp(θ) (1)
The SH-MF ratio curve generation unit 122 is a processing unit that calculates a ratio between measurement data corresponding to each incident angle θ of two SH-MF curves and generates an SH-MF ratio curve. In this embodiment, the SH-MF ratio curve corresponding to the incident angle θ is defined by the following equation.
I ratio (θ) = I pp (θ) / I sp (θ) (1)

未知パラメータ決定部123は、実測データに基づいて算出されたSH−MF比曲線に、対応する理論関数式を近似させる複屈折率(Δn)と非線形光学定数比(d-ratio)を決定する処理を、既知の近似演算処理を通じて実現する処理部である。近似演算処理には、例えば最小二乗法を使用する。ここでの近似演算処理量を低減するための理論関数式の簡略化手法と、複屈折率(Δn)と非線形光学定数比(d-ratio)を決定する際の具体的な処理条件については後述する。   The unknown parameter determination unit 123 determines a birefringence index (Δn) and a nonlinear optical constant ratio (d-ratio) that approximate the corresponding theoretical function equation to the SH-MF ratio curve calculated based on the actual measurement data. Is a processing unit that realizes through a known approximate calculation process. For example, the least square method is used for the approximate calculation process. The theoretical function formula simplification method for reducing the approximate calculation processing amount here and specific processing conditions for determining the birefringence (Δn) and the nonlinear optical constant ratio (d-ratio) will be described later. To do.

パラメータ出力部124は、近似演算処理を通じて決定された複屈折率(Δn)と非線形光学定数比(d-ratio)を測定結果として外部に出力する処理部である。パラメータ出力部124は、例えばディスプレイや印刷装置などの出力装置に対して測定結果を出力する。また、パラメータ出力部124は、インターネットやイントラネットを通じて物性値測定部120に接続されたネットワーク装置に対して測定結果を出力する機能を搭載する。   The parameter output unit 124 is a processing unit that outputs the birefringence (Δn) and the nonlinear optical constant ratio (d-ratio) determined through the approximate calculation process to the outside as measurement results. The parameter output unit 124 outputs the measurement result to an output device such as a display or a printing device. The parameter output unit 124 has a function of outputting measurement results to a network device connected to the physical property value measurement unit 120 through the Internet or an intranet.

(3)SH−MF比曲線に対応する理論関数式
まず、理論関数式を示す上で必要になる定数を定義する。なお、ここでの定義は、測定試料10が図1に示す構造(すなわち、透明基板11、有機アモルファス薄膜層12、透明層13)を有する場合を想定する。また、基本波レーザー光は波長lを有し、入射角θで透明層13に入射するものとする。以下の説明では、「基本波レーザー光」を「基本波」ともいう。
(3) Theoretical function formula corresponding to the SH-MF ratio curve First, constants necessary for showing the theoretical function formula are defined. The definition here assumes that the measurement sample 10 has the structure shown in FIG. 1 (that is, the transparent substrate 11, the organic amorphous thin film layer 12, and the transparent layer 13). Further, it is assumed that the fundamental laser beam has a wavelength l and enters the transparent layer 13 at an incident angle θ. In the following description, “fundamental laser light” is also referred to as “fundamental wave”.

さらに、透明層13は等方媒質であり、基本波に対して屈折率n1cを有するものとする。また、光2次非線形効果を有する有機アモルファス薄膜層12は、配向処理前の等方媒質の屈折率として、基本波に対してn 0を有し、SH波に対してn1 0+Δn12 0を有するものとする。また、配向処理後の有機アモルファス薄膜層12は、基本波に対して常光屈折率n1oと異常光屈折率n1e、発生するSH波に対して常光屈折率n2oと異常光屈折率n2eを有するものとする。このとき、求めるべき複屈折率Δnを、基本波とSH波に対してそれぞれΔn1とΔn2と定義すれば、以下のようになる。 Further, the transparent layer 13 is an isotropic medium and has a refractive index n 1c with respect to the fundamental wave. Further, the organic amorphous thin film layer 12 having the second-order nonlinear effect has n 1 0 for the fundamental wave and n 1 0 + Δn 12 for the SH wave as the refractive index of the isotropic medium before the orientation treatment. It shall have 0 . Further, the organic amorphous thin film layer 12 after the orientation treatment has an ordinary light refractive index n 1o and an extraordinary light refractive index n 1e with respect to the fundamental wave, and an ordinary light refractive index n 2o and an extraordinary light refractive index n 2e with respect to the generated SH wave. It shall have. At this time, if the birefringence Δn to be obtained is defined as Δn 1 and Δn 2 for the fundamental wave and the SH wave, respectively, the following is obtained.

Δn1 =n1e−n1o (2)
Δn2 =n2e−n2o (3)
ただし、両者は波長依存を示す定数mによって、以下に示す関係式によって結びつけることができる。
Δn 1 = n 1e -n 1o (2)
Δn 2 = n 2e −n 2o (3)
However, both can be linked by the following relational expression by a constant m indicating wavelength dependence.

Δn2 =m・Δn1 (4)
ここで、Δn12 0、Δn1、mについては、光吸収のない波長域ではほぼ全ての有機アモルファス材料を網羅する以下の範囲を考える。
Δn 2 = m · Δn 1 (4)
Here, regarding Δn 12 0 , Δn 1 , and m, the following ranges that cover almost all organic amorphous materials in the wavelength region without light absorption are considered.

0<Δn12 0<0.1 (5)
0<Δn1<0.1 (6)
2<m<4 (7)
配向処理前の屈折率n1 0については、ここでは代表値である1.7のみを考える。実際には、光吸収のない波長域では、ほぼ全ての有機アモルファス材料のそれは1.6〜1.8の範囲に分布するが、以下で導かれる結論は変わらない。
0 <Δn 12 0 <0.1 (5)
0 <Δn 1 <0.1 (6)
2 <m <4 (7)
Regarding the refractive index n 1 0 before the alignment treatment, only a representative value of 1.7 is considered here. In practice, in the wavelength region where there is no light absorption, that of almost all organic amorphous materials is distributed in the range of 1.6 to 1.8, but the conclusion drawn below remains unchanged.

電気光学(EO)効果を有する薄膜の光2次非線形定数テンソルについては、以下の典型的な成分を考える。   For the optical second-order nonlinear constant tensor of a thin film having an electro-optic (EO) effect, consider the following typical components.

ただしd31=d32=d24=d15 Where d 31 = d 32 = d 24 = d 15

このとき、求めるべき非線形光学定数比は一種類となりd33/d31で与えられる。この比d33/d31が、特許請求の範囲における非線形光学定数比(d-ratio)に対応する。 At this time, the nonlinear optical constant ratio to be obtained is one type and is given by d 33 / d 31 . This ratio d 33 / d 31 corresponds to the nonlinear optical constant ratio (d-ratio) in the claims.

さて、前述したパラメータをもつ光2次非線形効果を有する薄膜(この実施例では、有機アモルファス薄層)に対するSH−MF曲線(Ipp(θ)とIsp(θ))の理論関数式は既に明らかになっている(例えば論文J. Opt. Soc. Am. B 12 (1995) 416を参照。)。それらを引用すれば、SH−MF比曲線に対する理論関数式は、以下のように整理できる。 Now, the theoretical function equation of the SH-MF curve (I pp (θ) and I sp (θ)) for the thin film having the above-mentioned parameters and having the optical second-order nonlinear effect (in this embodiment, an organic amorphous thin layer) has already been obtained. (See, for example, the paper J. Opt. Soc. Am. B 12 (1995) 416). If they are cited, the theoretical function formula for the SH-MF ratio curve can be arranged as follows.

ここで、(9)式の右辺第1項は、実効非線形光学定数比であり、次の(10)式で与えられる。   Here, the first term on the right side of the equation (9) is an effective nonlinear optical constant ratio, which is given by the following equation (10).

ただし、θ1 p2 pとγ1 p2 pは、次式で表すことができる。 However, θ 1 p , θ 2 p and γ 1 p , γ 2 p can be expressed by the following equations.

なお、θ1 p,θ2 pは、それぞれp偏光基本波,p偏光SH波の伝搬角((11)式)であり、γ1 p,γ2 pは、それぞれp偏光基本波,p偏光SH波に対するウォークオフ角((12)式)である。(10)式〜(12)式より(9)式の右辺第1項は、求めるべき複屈折Δnと非線形光学定数比(d-ratio)の両者を含むことが分かる。 Θ 1 p and θ 2 p are the propagation angles of the p-polarized fundamental wave and the p-polarized SH wave (equation (11)), respectively, and γ 1 p and γ 2 p are the p-polarized fundamental wave and the p-polarized light, respectively. It is a walk-off angle (equation (12)) with respect to the SH wave. From Expressions (10) to (12), it is understood that the first term on the right side of Expression (9) includes both the birefringence Δn to be obtained and the nonlinear optical constant ratio (d-ratio).

さらに、(9)式の右辺第2項は、光2次非線形効果を有する薄膜(この実施例では、有機アモルファス薄膜層12)に至る基本波の透過率の比である。前述の通り、透過層13と有機アモルファス薄膜層12の屈折率がほぼ同じと仮定するときは、次式で表すことができる。   Further, the second term on the right side of the equation (9) is the ratio of the transmittance of the fundamental wave that reaches the thin film having the optical second-order nonlinear effect (in this embodiment, the organic amorphous thin film layer 12). As described above, when it is assumed that the refractive indexes of the transmission layer 13 and the organic amorphous thin film layer 12 are substantially the same, they can be expressed by the following equation.

すなわち、(9)式の右辺第2項は、透過層13の屈折率と基本波の入射角θのみで記述できる。
さらに、(9)式の右辺第3項は、屈折率よりなる係数項である。
That is, the second term on the right side of the equation (9) can be described only by the refractive index of the transmissive layer 13 and the incident angle θ of the fundamental wave.
Furthermore, the third term on the right side of equation (9) is a coefficient term consisting of a refractive index.

n11 p),n11 s)は、それぞれ入射角θ1 p,θ1 sで伝搬する基本波が感じる屈折率、n22 p),n21 p),n21 s)はそれぞれ角度θ2 p,θ1 p,θ1 sで伝搬するSH波が感じる屈折率を示す。 n 11 p ) and n 11 s ) are the refractive indices felt by the fundamental waves propagating at the incident angles θ 1 p and θ 1 s , respectively, n 22 p ) and n 21 p ) and n 21 s ) indicate the refractive indices felt by SH waves propagating at angles θ 2 p , θ 1 p , and θ 1 s , respectively.

さらに、(9)式の右辺第4項は、基本波(非線形分極波)とSH波の位相ずれに関する項である。   Furthermore, the fourth term on the right side of the equation (9) is a term relating to the phase shift between the fundamental wave (nonlinear polarization wave) and the SH wave.

上記第3項と第4項は、光学的異方性媒質に特有に現れる項であり、異方性が大きくなるほど1からずれた値をもつ。   The third term and the fourth term are terms that appear peculiar to the optically anisotropic medium, and have values deviating from 1 as the anisotropy increases.

このように、SH−MF比曲線に対する理論関数式((9)式〜(15)式)は、一般に煩雑な形をもつ。しかしながら、これから示すように、第3項のA(θ)と第4項のB(θ)については、ある条件化では、異方性媒質であっても共にほぼ1(定数)とみなすことが可能となる。   As described above, the theoretical function formulas (formulas (9) to (15)) for the SH-MF ratio curve generally have a complicated form. However, as will be shown below, the third term A (θ) and the fourth term B (θ) can be regarded as approximately 1 (constant) for both anisotropic media under certain conditions. It becomes possible.

先ず、第3項のA(θ)について考える。(14)式からA(θ)の値の変化に支配的に寄与するn21 s),n21 p),n22 p)に着目する。これらの変数は、いずれもθ,m,Δn1,Δn12 0に比例して大きくなる。しかし、この関係を考慮すると、設定条件では、n21 p)とn22 p)の値はn21 s)に対して最大でもそれぞれ0.2%と0.6%ずれるだけであることが分かる。従って、A(θ)は1に対して1%よりはるかに小さなずれしか示さないため、最終的に定数1とみなしてよい。 First, consider the third term A (θ). Focusing on n 21 s ), n 21 p ), and n 22 p ) that contributes predominantly to changes in the value of A (θ) from Eq. (14). These variables are all theta, m, [Delta] n 1, increases in proportion to [Delta] n 12 0. However, considering this relationship, the setting condition, n 21 p) and the value of n 2 2 p) is 0.2%, respectively at most with respect to n 2 (θ 1 s) 0 . It can be seen that it is only 6% off. Therefore, since A (θ) shows a deviation much smaller than 1% with respect to 1, it may be finally regarded as a constant 1.

次に、第4項のB(θ)について考える。B(θ)の大きさは、λ/L,θ,Δn1,Δn12 0については比例関係にあるものの、mについては逆比例の関係にある。この関係を考慮すると、設定条件では、1からの最大のずれはλ/L=1のとき13%となる。このB(θ)のずれは、以下の項目で示す方法で算出する物性値に対しては5%程度のずれとなる。この程度のずれは本実験での測定誤差として一般的である。このため、厚さが基本波レーザー光の波長と同じ値(λ/L=1)よりも小さな光2次非線形効果を有する薄膜(この実施例では、有機アモルファス薄膜)を使うことで、A(θ)とB(θ)の両者を定数1として実質的にみてよいことになる。 Next, consider B (θ) in the fourth term. The size of the B (theta) is, lambda / L, theta, for Δn 1, Δn 12 0 Although a proportional relationship, for m is inversely proportional. Considering this relationship, the maximum deviation from 1 is 13% when λ / L = 1. This deviation of B (θ) is a deviation of about 5% with respect to the physical property values calculated by the method shown in the following items. This degree of deviation is a common measurement error in this experiment. Therefore, by using a thin film having an optical second-order nonlinear effect whose thickness is smaller than the same value as the wavelength of the fundamental laser beam (λ / L = 1) (in this embodiment, an organic amorphous thin film), A ( Both θ) and B (θ) can be substantially viewed as a constant 1.

以上より、厚さが基本波レーザー光の波長と同じ値よりも小さな光2次非線形効果を有する薄膜を用いると、(9)式は近似的に簡略化された次式で表すことができる。   As described above, when a thin film having an optical second-order nonlinear effect whose thickness is smaller than the same value as the wavelength of the fundamental laser beam is used, the equation (9) can be expressed by the following simplified equation.

前述したように、(16)式では、右辺第1項のみが求めたい非線形光学定数比d33/d31と複屈折率Δn1,Δn2を含んでいる。更にその記述式((10)式〜(12)式)については、θが0°付近では、次式が成立する。 As described above, the equation (16) includes the nonlinear optical constant ratio d 33 / d 31 and the birefringence indices Δn 1 and Δn 2 that are desired to be obtained only in the first term on the right side. Further, for the descriptive formulas (formulas (10) to (12)), the following formula is established when θ is around 0 °.

すなわち、入射角θが0°付近の値は複屈折率を含む屈折率のみで記述できることが分かる。このことから、入射角θが0oの近傍付近のSH−MF比の値から複屈折率Δnを求めることができる。図3に、複屈折率Δnの可変制御によって理論関数式の形状に現れる変化のイメージを示す。なお、図3の横軸は入射角θであり、縦軸はSH−MF比である。 That is, it can be seen that the value where the incident angle θ is around 0 ° can be described only by the refractive index including the birefringence. From this, the birefringence index Δn can be obtained from the SH-MF ratio value near the vicinity of the incident angle θ of 0 ° . FIG. 3 shows an image of a change appearing in the shape of the theoretical function equation by variable control of the birefringence index Δn. In FIG. 3, the horizontal axis represents the incident angle θ, and the vertical axis represents the SH-MF ratio.

図3より分かるように、複屈折率Δnの変化に伴うSH−MF比の振幅変化は、入射角θが0°付近で最大となり、入射角θが大きくなるほどSH−MF比の振幅変化は小さくなる。このため、入射角θが0°の近辺において、実験測定値であるSH−MF比曲線と理論関数式との近似演算処理を実行し、実験測定値のSH−MF比曲線に最も近似する理論関数式を与える複屈折率Δnを決定すれば、測定試料10の複屈折率Δnを測定できたことになる。   As can be seen from FIG. 3, the amplitude change of the SH-MF ratio accompanying the change of the birefringence index Δn becomes maximum when the incident angle θ is around 0 °, and the amplitude change of the SH-MF ratio becomes smaller as the incident angle θ becomes larger. Become. For this reason, in the vicinity of the incident angle θ of 0 °, an approximate calculation process of the SH-MF ratio curve that is an experimental measurement value and a theoretical function formula is executed, and the theory that most closely approximates the SH-MF ratio curve of the experimental measurement value. If the birefringence index Δn giving the functional expression is determined, the birefringence index Δn of the measurement sample 10 can be measured.

一方で、(10)式より、非線形光学定数比d33/d31の影響は、入射角θが大きいほど大きく現れることが分かる。図4に、非線形光学定数比d33/d31の可変制御によって理論関数式の形状に現れる変化のイメージを示す。なお、図4の横軸は入射角θであり、縦軸はSH−MF比である。 On the other hand, from the equation (10), it can be seen that the influence of the nonlinear optical constant ratio d 33 / d 31 becomes larger as the incident angle θ increases. FIG. 4 shows an image of a change appearing in the shape of the theoretical function equation by variable control of the nonlinear optical constant ratio d 33 / d 31 . In FIG. 4, the horizontal axis is the incident angle θ, and the vertical axis is the SH-MF ratio.

図4より分かるように、非線形光学定数比d33/d31の変化に伴うSH−MF比の振幅変化は入射角θが大きい領域ほど大きくなり、入射角θが0°に近づくほどSH−MF比の振幅変化は小さくなる。このため、入射角θが大きい領域において、実験測定値であるSH−MF比曲線と理論関数式との近似演算処理を実行し、実験測定値のSH−MF比曲線に最も近似する理論関数式を与える非線形光学定数比d33/d31を決定すれば、測定試料10の非線形光学定数比d33/d31を測定できたことになる。 As can be seen from FIG. 4, the amplitude change in the SH-MF ratio accompanying the change in the nonlinear optical constant ratio d 33 / d 31 increases as the incident angle θ increases, and as the incident angle θ approaches 0 °, SH-MF. The change in the amplitude of the ratio is small. For this reason, in the region where the incident angle θ is large, an approximate calculation process of the SH-MF ratio curve that is the experimental measurement value and the theoretical function formula is executed, and the theoretical function formula that most closely approximates the SH-MF ratio curve of the experimental measurement value It is determined nonlinear optical constant ratio d 33 / d 31 to give, so that could be measured nonlinear optical constant ratio d 33 / d 31 of the measurement sample 10.

以上より、入射角θが0o付近のSH−MF比曲線Iratio(θ)の値からは複屈折率Δnが、入射角θが大きい範囲(例えばθ=±70°)の値からは非線形光学定数比d33/d31を求めることができることが分かる。 Nonlinear from a value of from, birefringence Δn is the value of the incident angle theta is 0 o near SH-MF ratio curve I ratio (theta) is a large incident angle theta range (e.g. θ = ± 70 °) or It can be seen that the optical constant ratio d 33 / d 31 can be obtained.

(4)光学物性値の解析手順
図5を用いて、物性値測定部120において実行される光学物性値の解析手順の概要例を説明する。すなわち、未知パラメータ決定部123が、有機アモルファス薄膜の2つの光学物性値(複屈折率Δn(詳しくはΔn1とΔn)及び非線形光学定数比d33/d31)を、SH−MF比曲線の解析を通じて決定する際に実行される処理手順の概要を説明する。
(4) Optical Physical Property Value Analysis Procedure With reference to FIG. 5, an outline example of the optical physical property value analysis procedure executed in the physical property value measurement unit 120 will be described. That is, the unknown parameter determination unit 123 calculates two optical property values (birefringence index Δn (specifically Δn 1 and Δn 2 ) and nonlinear optical constant ratio d 33 / d 31 ) of the organic amorphous thin film as an SH-MF ratio curve. The outline of the processing procedure executed when making a decision through the analysis of will be described.

この解析処理では、実験測定値に基づいて得たSH−MF比曲線に理論関数式の曲線((16)式)を合わせこむことにより、複屈折率Δn1とΔn及び非線形光学定数比d33/d31の決定が実行される。ここでの合わせこみ処理を、フィッティング処理ともいう。 In this analysis process, a birefringence index Δn 1 and Δn 2 and a nonlinear optical constant ratio d are obtained by fitting the curve of the theoretical function formula (equation (16)) to the SH-MF ratio curve obtained based on the experimental measurement value. A decision of 33 / d 31 is carried out. The fitting process here is also referred to as a fitting process.

合わせこみ処理には、例えば最小二乗法などの既知の近似演算処理が用いられる。具体的には、両曲線間の誤差が最も小さくなる複屈折率Δn1とΔn及び非線形光学定数比d33/d31を、コンピュータ上で実行される近似演算処理を通じて決定する。ただし、合わせこみ処理時の処理負荷を低減するには、SH−MF比曲線の理論関数式の未知パラメータ数を予め削減しておくことが好ましい。 For the fitting process, a known approximate calculation process such as a least square method is used. Specifically, the birefringences Δn 1 and Δn 2 and the nonlinear optical constant ratio d 33 / d 31 that minimize the error between the two curves are determined through an approximate calculation process executed on a computer. However, in order to reduce the processing load during the fitting process, it is preferable to reduce in advance the number of unknown parameters in the theoretical function formula of the SH-MF ratio curve.

この実施例では、配向処理前の光2次非線形効果を有する薄膜のSH−MF比曲線に対応する理論関数式の5つの未知パラメータのうち3つのパラメータ、すなわちn1 0、Δn12 0、mを事前に測定し、パラメータ数を削減しておく(処理a)。因みに、n1 0、Δn12 0は、エリプソメトリー法やモードライン法等によって測定することができる。mは、例えば光吸収スペクトル測定によって得ることのできる吸収ピーク波長λegを、エネルギー2準位モデルに基づいて導いた次式に代入することにより求めることができる。 In this embodiment, three parameters among the five unknown parameters of the theoretical function equation corresponding to the SH-MF ratio curve of the thin film having the optical second-order nonlinear effect before the alignment treatment, that is, n 1 0 , Δn 12 0 , m Are measured in advance to reduce the number of parameters (processing a). Incidentally, n 1 0 and Δn 12 0 can be measured by an ellipsometry method, a mode line method, or the like. For example, m can be obtained by substituting an absorption peak wavelength λ eg that can be obtained by optical absorption spectrum measurement into the following equation derived based on the energy two-level model.

この処理aの適用により、SH−MF比曲線の理論関数式((16)式)の未知パラメータは、Δn1とd33/d31の2つとなる。 By applying this processing a, the unknown parameters of the theoretical function equation (equation (16)) of the SH-MF ratio curve become two, Δn 1 and d 33 / d 31 .

次に、未知パラメータ決定部123は近似演算処理を実行し、これら2つの未知パラメータを変数とする理論関数式((16)式)を、実験測定値であるSH−MF比曲線に合わせこむ処理bを実行する。   Next, the unknown parameter determination unit 123 executes an approximate calculation process, and a process for fitting a theoretical function equation (equation (16)) having these two unknown parameters as variables to an SH-MF ratio curve that is an experimental measurement value. b is executed.

未知パラメータ決定部123は、入射角θの0°付近について複屈折率Δn1を可変することで、実験測定値であるSH−MF比曲線に最も近似する理論関数式((16)式)を与える複屈折率Δn1を決定する。また、未知パラメータ決定部123は、入射角θが大きい領域(例えば70°)付近について複非線形光学定数比d33/d31を可変することで、実験測定値であるSH−MF比曲線に最も近似する理論関数式((16)式)を与える非線形光学定数比d33/d31を決定する。 The unknown parameter determination unit 123 varies the birefringence index Δn 1 around 0 ° of the incident angle θ to obtain a theoretical function equation (Equation (16)) that most closely approximates the SH-MF ratio curve that is an experimental measurement value. The birefringence index Δn 1 to be given is determined. Further, the unknown parameter determining unit 123 varies the double nonlinear optical constant ratio d 33 / d 31 in the vicinity of a region where the incident angle θ is large (for example, 70 °), so that the SH-MF ratio curve that is an experimentally measured value is the most. A nonlinear optical constant ratio d 33 / d 31 that gives an approximate theoretical function equation (Equation (16)) is determined.

以上の処理の後、パラメータ出力部124は、処理bにおける合わせ込みで決定した2つのパラメータを最終値として出力する。すなわち、処理cを実行する。   After the above processing, the parameter output unit 124 outputs the two parameters determined by the matching in the processing b as final values. That is, process c is executed.

(5)まとめ
この実施例によれば、1つの測定試料10を回転テーブル114に装着した後は、1つの基本波レーザー光源111から射出されるp偏光とs偏光について2つのSH−MF曲線を実測するだけで、有機アモルファス薄膜等の非常に膜厚の小さい試料における複屈折率Δn1と複非線形光学定数比d33/d31とを同時に測定することができる。
(5) Summary According to this embodiment, after one measurement sample 10 is mounted on the rotary table 114, two SH-MF curves for p-polarized light and s-polarized light emitted from one fundamental wave laser light source 111 are obtained. Only by actual measurement, it is possible to simultaneously measure the birefringence Δn 1 and the bilinear optical constant ratio d 33 / d 31 in a sample having a very small thickness such as an organic amorphous thin film.

このように、実施例に係る測定装置100は、従来装置のように各光学物性値に応じて異なる試料や測定条件を用意しなくて済むため、測定結果の信頼性を高めることができる。   As described above, the measurement apparatus 100 according to the embodiment does not need to prepare different samples and measurement conditions according to the respective optical property values as in the conventional apparatus, so that the reliability of the measurement result can be improved.

10…測定試料、11…透明基板、12…有機アモルファス薄膜層、13…透明層、100…測定装置、110…SH−MF曲線測定光学系、111…基本波レーザー源、112…波長板、113…SH波カットフィルター、114…回転ステージ、115…基本波カットフィルター、116…検光子、117…光電子倍増管、120…物性値測定部、121…実測データ格納部、122…SH−MF比曲線生成部、123…未知パラメータ決定部、124…パラメータ出力部。   DESCRIPTION OF SYMBOLS 10 ... Measurement sample, 11 ... Transparent substrate, 12 ... Organic amorphous thin film layer, 13 ... Transparent layer, 100 ... Measuring apparatus, 110 ... SH-MF curve measurement optical system, 111 ... Fundamental laser source, 112 ... Wave plate, 113 DESCRIPTION OF SYMBOLS ... SH wave cut filter, 114 ... Rotating stage, 115 ... Fundamental wave cut filter, 116 ... Analyzer, 117 ... Photomultiplier tube, 120 ... Physical property measurement unit, 121 ... Actual data storage unit, 122 ... SH-MF ratio curve Generation unit, 123 ... unknown parameter determination unit, 124 ... parameter output unit.

Claims (6)

1つの光2次非線形性薄膜に対する2種類の基本波レーザー光の照射により実験的に測定される2種類のSH−MF曲線における各入射角の測定データ間の比の算出によりSH−MF比曲線を生成する処理と、
前記SH−MF比曲線に対応する理論関数式と実験測定曲線としての前記SH−MF比曲線との近似演算処理を実行し、前記理論関数式における2つの未知パラメータである複屈折率(Δn)と非線形光学定数比(d-ratio)を決定する処理と、
決定された前記複屈折率(Δn)と前記非線形光学定数比(d-ratio)を出力する処理と
を有する、光2次非線形薄膜における1次及び2次光感受率異方性同時測定方法。
The SH-MF ratio curve is calculated by calculating the ratio between the measured data of each incident angle in two types of SH-MF curves experimentally measured by irradiation of two types of fundamental laser beams on one optical second-order nonlinear thin film. Processing to generate
Approximation calculation processing of the theoretical function equation corresponding to the SH-MF ratio curve and the SH-MF ratio curve as an experimental measurement curve is executed, and birefringence (Δn) which is two unknown parameters in the theoretical function equation And a process for determining a nonlinear optical constant ratio (d-ratio);
A method for simultaneously measuring primary and secondary photosensitivity anisotropies in an optical second-order nonlinear thin film, comprising: processing for outputting the determined birefringence index (Δn) and the nonlinear optical constant ratio (d-ratio).
前記理論関数式は、次式で与えられる
ことを特徴とする請求項1に記載の光2次非線形薄膜における1次及び2次光感受率異方性同時測定方法。

ここで、θは光2次非線形薄膜に対する基本波レーザー光の入射角であり、Iratio(θ)は入射角θにおける2種類のSH−MF曲線の測定データ間の比であり、右辺第1項は実効非線形光学定数の比であり、右辺第2項は光2次非線形薄膜に至る基本波レーザー光の透過率の比である。
The method of simultaneous measurement of primary and secondary photosensitivity anisotropy in an optical second-order nonlinear thin film according to claim 1, wherein the theoretical function formula is given by the following formula.

Here, θ is the incident angle of the fundamental laser beam to the optical second-order nonlinear thin film, I ratio (θ) is the ratio between the measured data of the two types of SH-MF curves at the incident angle θ, The term is the ratio of effective nonlinear optical constants, and the second term on the right side is the ratio of the transmittance of the fundamental laser beam that reaches the optical second-order nonlinear thin film.
前記光2次非線形性薄膜は、有機アモルファス薄膜である
ことを特徴とする請求項1又は2に記載の光2次非線形薄膜における1次及び2次光感受率異方性同時測定方法。
The method for simultaneously measuring primary and secondary photosensitivity anisotropy in an optical secondary nonlinear thin film according to claim 1 or 2, wherein the optical secondary nonlinear thin film is an organic amorphous thin film.
前記複屈折率(Δn)の算出時には、0°付近の第1の入射角θ1について近似演算処理を実行し、
前記非線形光学定数成分の比(d-ratio)の算出時には、前記第1の入射角θ1よりも大きい第2の入射角θ2について近似演算処理を実行する
ことを特徴とする請求項1〜3のいずれか1項に記載の光2次非線形薄膜における1次及び2次光感受率異方性同時測定方法。
When calculating the birefringence (Δn), an approximate calculation process is executed for the first incident angle θ1 near 0 °,
The approximate calculation process is executed for a second incident angle θ2 larger than the first incident angle θ1 when calculating the ratio (d-ratio) of the nonlinear optical constant components. A method for simultaneously measuring primary and secondary photosensitivity anisotropy in the optical second-order nonlinear thin film according to any one of the above items.
1つの光2次非線形性薄膜に対する2種類の基本波レーザー光の照射により実験的に測定される2種類のSH−MF曲線における各入射角の測定データ間の比の算出によりSH−MF比曲線を生成する第1の演算部と、
前記SH−MF比曲線に対応する理論関数式と実験測定曲線としての前記SH−MF比曲線との近似演算処理を実行し、前記理論関数式における2つの未知パラメータである複屈折率(Δn)と非線形光学定数比(d-ratio)を決定する第2の演算部と、
決定された前記複屈折率(Δn)と前記非線形光学定数比(d-ratio)を出力する第3の演算部と
を有する、光2次非線形薄膜における1次及び2次光感受率異方性同時測定装置。
The SH-MF ratio curve is calculated by calculating the ratio between the measured data of each incident angle in two types of SH-MF curves experimentally measured by irradiation of two types of fundamental laser beams on one optical second-order nonlinear thin film. A first arithmetic unit for generating
Approximation calculation processing of the theoretical function equation corresponding to the SH-MF ratio curve and the SH-MF ratio curve as an experimental measurement curve is executed, and birefringence (Δn) which is two unknown parameters in the theoretical function equation And a second arithmetic unit for determining a nonlinear optical constant ratio (d-ratio);
Primary and secondary photosensitivity anisotropy in the optical second-order nonlinear thin film, having a third arithmetic unit that outputs the determined birefringence index (Δn) and the nonlinear optical constant ratio (d-ratio). Simultaneous measurement device.
1つの光2次非線形性薄膜に対する2種類の基本波レーザー光の照射により実験的に測定される2種類のSH−MF曲線における各入射角の測定データ間の比の算出によりSH−MF比曲線を生成する処理と、
前記SH−MF比曲線に対応する理論関数式と実験測定曲線としての前記SH−MF比曲線との近似演算処理を実行し、前記理論関数式における2つの未知パラメータである複屈折率(Δn)と非線形光学定数比(d-ratio)を決定する処理と、
決定された前記複屈折率(Δn)と前記非線形光学定数比(d-ratio)を出力する処理と
をコンピュータに実行させ、光2次非線形薄膜における1次及び2次光感受率異方性を同時に測定するプログラム。
The SH-MF ratio curve is calculated by calculating the ratio between the measured data of each incident angle in two types of SH-MF curves experimentally measured by irradiation of two types of fundamental laser beams on one optical second-order nonlinear thin film. Processing to generate
Approximation calculation processing of the theoretical function equation corresponding to the SH-MF ratio curve and the SH-MF ratio curve as an experimental measurement curve is executed, and birefringence (Δn) which is two unknown parameters in the theoretical function equation And a process for determining a nonlinear optical constant ratio (d-ratio);
The computer executes a process of outputting the determined birefringence index (Δn) and the nonlinear optical constant ratio (d-ratio) to determine the first-order and second-order photosensitivity anisotropy in the optical second-order nonlinear thin film. A program that measures simultaneously.
JP2009188069A 2009-08-14 2009-08-14 Method for simultaneously measuring primary and secondary photosensitivity anisotropy in optical second-order nonlinear thin film, apparatus for executing the method, and program for causing computer to execute the method Expired - Fee Related JP5382792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009188069A JP5382792B2 (en) 2009-08-14 2009-08-14 Method for simultaneously measuring primary and secondary photosensitivity anisotropy in optical second-order nonlinear thin film, apparatus for executing the method, and program for causing computer to execute the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009188069A JP5382792B2 (en) 2009-08-14 2009-08-14 Method for simultaneously measuring primary and secondary photosensitivity anisotropy in optical second-order nonlinear thin film, apparatus for executing the method, and program for causing computer to execute the method

Publications (2)

Publication Number Publication Date
JP2011038949A JP2011038949A (en) 2011-02-24
JP5382792B2 true JP5382792B2 (en) 2014-01-08

Family

ID=43766872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009188069A Expired - Fee Related JP5382792B2 (en) 2009-08-14 2009-08-14 Method for simultaneously measuring primary and secondary photosensitivity anisotropy in optical second-order nonlinear thin film, apparatus for executing the method, and program for causing computer to execute the method

Country Status (1)

Country Link
JP (1) JP5382792B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8829184B2 (en) 2010-04-15 2014-09-09 Spirogen Sarl Intermediates useful for the synthesis of pyrrolobenzodiazepines
US10392393B2 (en) 2016-01-26 2019-08-27 Medimmune Limited Pyrrolobenzodiazepines
US10420777B2 (en) 2014-09-12 2019-09-24 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US10544223B2 (en) 2017-04-20 2020-01-28 Adc Therapeutics Sa Combination therapy with an anti-axl antibody-drug conjugate
US10543279B2 (en) 2016-04-29 2020-01-28 Medimmune Limited Pyrrolobenzodiazepine conjugates and their use for the treatment of cancer
US10646584B2 (en) 2012-10-12 2020-05-12 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US10695439B2 (en) 2016-02-10 2020-06-30 Medimmune Limited Pyrrolobenzodiazepine conjugates
US10799595B2 (en) 2016-10-14 2020-10-13 Medimmune Limited Pyrrolobenzodiazepine conjugates
US11059893B2 (en) 2015-04-15 2021-07-13 Bergenbio Asa Humanized anti-AXL antibodies
US11160872B2 (en) 2017-02-08 2021-11-02 Adc Therapeutics Sa Pyrrolobenzodiazepine-antibody conjugates
US11318211B2 (en) 2017-06-14 2022-05-03 Adc Therapeutics Sa Dosage regimes for the administration of an anti-CD19 ADC
US11352324B2 (en) 2018-03-01 2022-06-07 Medimmune Limited Methods
US11370801B2 (en) 2017-04-18 2022-06-28 Medimmune Limited Pyrrolobenzodiazepine conjugates
US11517626B2 (en) 2016-02-10 2022-12-06 Medimmune Limited Pyrrolobenzodiazepine antibody conjugates
US11524969B2 (en) 2018-04-12 2022-12-13 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof as antitumour agents
US11612665B2 (en) 2017-02-08 2023-03-28 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US11649250B2 (en) 2017-08-18 2023-05-16 Medimmune Limited Pyrrolobenzodiazepine conjugates

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326338A (en) * 1991-04-26 1992-11-16 Toray Ind Inc Organic secondary nonlinear optical part and element
JPH11311815A (en) * 1998-04-28 1999-11-09 Mitsubishi Electric Corp Photorefractive organic and inorganic composite material and its production
JP3536053B2 (en) * 2000-03-14 2004-06-07 独立行政法人理化学研究所 Triindole derivative

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8829184B2 (en) 2010-04-15 2014-09-09 Spirogen Sarl Intermediates useful for the synthesis of pyrrolobenzodiazepines
US11701430B2 (en) 2012-10-12 2023-07-18 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US10646584B2 (en) 2012-10-12 2020-05-12 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US10994023B2 (en) 2012-10-12 2021-05-04 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US10420777B2 (en) 2014-09-12 2019-09-24 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US11059893B2 (en) 2015-04-15 2021-07-13 Bergenbio Asa Humanized anti-AXL antibodies
US10392393B2 (en) 2016-01-26 2019-08-27 Medimmune Limited Pyrrolobenzodiazepines
US11517626B2 (en) 2016-02-10 2022-12-06 Medimmune Limited Pyrrolobenzodiazepine antibody conjugates
US10695439B2 (en) 2016-02-10 2020-06-30 Medimmune Limited Pyrrolobenzodiazepine conjugates
US10543279B2 (en) 2016-04-29 2020-01-28 Medimmune Limited Pyrrolobenzodiazepine conjugates and their use for the treatment of cancer
US10799595B2 (en) 2016-10-14 2020-10-13 Medimmune Limited Pyrrolobenzodiazepine conjugates
US11160872B2 (en) 2017-02-08 2021-11-02 Adc Therapeutics Sa Pyrrolobenzodiazepine-antibody conjugates
US11612665B2 (en) 2017-02-08 2023-03-28 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US11813335B2 (en) 2017-02-08 2023-11-14 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US11370801B2 (en) 2017-04-18 2022-06-28 Medimmune Limited Pyrrolobenzodiazepine conjugates
US10544223B2 (en) 2017-04-20 2020-01-28 Adc Therapeutics Sa Combination therapy with an anti-axl antibody-drug conjugate
US11318211B2 (en) 2017-06-14 2022-05-03 Adc Therapeutics Sa Dosage regimes for the administration of an anti-CD19 ADC
US11938192B2 (en) 2017-06-14 2024-03-26 Medimmune Limited Dosage regimes for the administration of an anti-CD19 ADC
US11649250B2 (en) 2017-08-18 2023-05-16 Medimmune Limited Pyrrolobenzodiazepine conjugates
US11352324B2 (en) 2018-03-01 2022-06-07 Medimmune Limited Methods
US11524969B2 (en) 2018-04-12 2022-12-13 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof as antitumour agents

Also Published As

Publication number Publication date
JP2011038949A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
JP5382792B2 (en) Method for simultaneously measuring primary and secondary photosensitivity anisotropy in optical second-order nonlinear thin film, apparatus for executing the method, and program for causing computer to execute the method
US8582124B2 (en) Optical characteristic measuring apparatus and optical characteristic measuring method
Hermans et al. On the determination of χ (2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies
JP5198980B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
Rodriguez et al. General Maker-fringe ellipsometric analyses in multilayer nonlinear and linear anisotropic optical media
JP2001356072A (en) Pretilt angle detection method and apparatus
Rodriguez et al. Calibration of the second-order nonlinear optical susceptibility of surface and bulk of glass
US8379228B1 (en) Apparatus for measuring thin film refractive index and thickness with a spectrophotometer
Gu et al. Superachromatic polarization modulator for stable and complete polarization measurement over an ultra-wide spectral range
KR20010107968A (en) Method and apparatus for measuring cell gap of VA liquid crystal panel
JP3520379B2 (en) Optical constant measuring method and device
Friedman et al. Spatially resolved phase imaging of a programmable liquid-crystal grating
JP2010107758A (en) Method and device for measuring tilt angle of liquid crystal cell
Gehr et al. Separated-beam nonphase-matched second-harmonic method of characterizing nonlinear optical crystals
Äyräs et al. Conoscopic interferometry of surface-acoustic-wave substrate crystals
JP3825111B2 (en) Determination method of equivalent incident light angle of acousto-optic tunable filter
Rodrigues et al. Predicting the performance of surface plasmon resonance sensors based on anisotropic substrates
Banerjee et al. Split Mach–Zehnder interferometer for surface plasmon resonance based phase modulation
JP3855080B2 (en) Optical characteristic measuring method for liquid crystal element and optical characteristic measuring system for liquid crystal element
Shan et al. Analysis of non-idealities in rhomb compensators
Shopa et al. Application of two-dimensional intensity maps in high-accuracy polarimetry
Hu et al. Retardation correction for photoelastic modulator-based multichannel reflectance difference spectroscopy
JP6861351B2 (en) Spectral analyzer and spectroscopic analysis method
JP3777659B2 (en) Method and apparatus for determining refractive index and birefringence by measuring interference spectrum
Golovina et al. Determination of the Optical Parameters of Uniaxial Optically Active Crystals Taking into Account the Imperfection of Spectrophotometric Complex Elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees