JP5378809B2 - Film for solar cell substrate - Google Patents

Film for solar cell substrate Download PDF

Info

Publication number
JP5378809B2
JP5378809B2 JP2009005649A JP2009005649A JP5378809B2 JP 5378809 B2 JP5378809 B2 JP 5378809B2 JP 2009005649 A JP2009005649 A JP 2009005649A JP 2009005649 A JP2009005649 A JP 2009005649A JP 5378809 B2 JP5378809 B2 JP 5378809B2
Authority
JP
Japan
Prior art keywords
film
solar cell
less
temperature
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009005649A
Other languages
Japanese (ja)
Other versions
JP2010163512A (en
Inventor
玲 西尾
哲男 吉田
貴 中広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin DuPont Films Japan Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2009005649A priority Critical patent/JP5378809B2/en
Publication of JP2010163512A publication Critical patent/JP2010163512A/en
Application granted granted Critical
Publication of JP5378809B2 publication Critical patent/JP5378809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は太陽電池の基材として用いられる太陽電池基材用フィルムに関し、詳しくは、フレキシブルタイプの薄膜太陽電池の基材として好適に用いられる太陽電池基材用フィルムに関する。   The present invention relates to a film for a solar cell substrate used as a substrate for a solar cell, and more particularly to a film for a solar cell substrate suitably used as a substrate for a flexible type thin film solar cell.

太陽電池には、基材としてガラスを用いるリジットタイプと、プラスチックフィルムを用いるフレキシブルタイプがある。近年、携帯電話や携帯端末のような移動体通信機器の補助電源として、フレキシブルタイプの太陽電池が多く用いられるようになってきた。   Solar cells include a rigid type using glass as a base material and a flexible type using a plastic film. In recent years, flexible solar cells have come to be frequently used as auxiliary power sources for mobile communication devices such as mobile phones and mobile terminals.

リジットタイプは、フレキシブルタイプに比べて、太陽電池セルでのエネルギーの変換効率は高いものの、太陽電池モジュールの薄型化や軽量化には限界があり、また衝撃を受けたときに、基材のガラスが割れて、太陽電池モジュールが破損する可能性がある。   The rigid type has higher energy conversion efficiency in the solar cell than the flexible type, but there are limits to the reduction in thickness and weight of the solar cell module. May break and damage the solar cell module.

薄型化や軽量化を期待することができ、衝撃に対しても強いため、太陽電池モジュールとしてフレキシブルタイプが有利であり、以前から注目されていた。例えば、特開平1−198081号公報では、高分子フィルムの基材上にアモルファスシリコン層を電極層で挟んだ構造の薄膜太陽電池が開示されている。この他、特開平2−260577号公報、特公平6−5782号公報、特開平6−350117号公報、特開昭62−84568号公報には、可撓性基板を用いた太陽電池モジュールが開示されている。   Thin and light weight can be expected, and it is strong against impacts. Therefore, a flexible type is advantageous as a solar cell module and has been attracting attention for some time. For example, Japanese Patent Application Laid-Open No. 1-198081 discloses a thin film solar cell having a structure in which an amorphous silicon layer is sandwiched between electrode layers on a polymer film substrate. In addition, JP-A-2-260577, JP-B-6-5782, JP-A-6-350117, and JP-A-62-84568 disclose solar cell modules using a flexible substrate. Has been.

特開平1−198081号公報Japanese Patent Laid-Open No. 1-198081 特開平2−260577号公報JP-A-2-260577 特公平6−5782号公報Japanese Patent Publication No. 6-5782 特開平6−350117号公報JP-A-6-350117 特開昭62−84568号公報JP-A-62-84568

太陽電池には、太陽電池基材上に設けられた発電層に太陽光線が入射する前に太陽電池基材を太陽光線が透過するスーパーストレートタイプ(このタイプでは発電層は太陽電池基材の光線入射側とは反対側にある)と、太陽電池基材を透過しないサブストレートタイプ(このタイプでは発電層は太陽電池基材の光線入射側にある)がある。いずれのタイプにおいても、太陽電池との種類によって光発電層の形成の際に必要となるプロセス温度が異なるものの、信頼性の太陽電池を得るためには、太陽電池基材用フィルムとして、熱寸法安定が高く、プロセス温度での水の放出が抑制されたフィルムを用いることが必要である。   The solar cell has a super straight type that allows sunlight to pass through the solar cell substrate before it enters the power generation layer provided on the solar cell substrate (in this type, the power generation layer is incident on the solar cell substrate) And a substrate type that does not pass through the solar cell substrate (in this type, the power generation layer is on the light incident side of the solar cell substrate). In any type, although the process temperature required for the formation of the photovoltaic layer differs depending on the type of the solar cell, in order to obtain a reliable solar cell, as a film for the solar cell substrate, the thermal dimensions It is necessary to use a film that is highly stable and has a controlled release of water at the process temperature.

本発明の目的は、熱寸法安定が高く、太陽電池製造の際のプロセス温度での水の放出が抑制された、スーパーストレートタイプの太陽電池に基材として好適に用いられる、太陽電池基材用フィルムを提供することにある。   An object of the present invention is a film for a solar cell substrate, which is suitably used as a substrate for a super straight type solar cell having high thermal dimensional stability and suppressed release of water at a process temperature during solar cell production. Is to provide.

すなわち本発明は、ポリエチレン−2,6−ナフタレンジカルボキシレートからなり、30℃から120℃まで20℃/分の昇温速度で昇温したときの熱膨張率が長手方向および幅方向のいずれも20.1ppm/℃以下、かつ120℃から200℃まで20℃/分の昇温速度で昇温したときの熱膨張率が長手方向および幅方向のいずれも50ppm/℃以下であり、200℃で10分熱処理したときの熱収縮率が1%以下であって、波長400〜900nmの範囲での全光線透過率が平均70%以上であり、吸水率が1%以下であることを特徴とする、太陽電池基材用フィルムである。 That is, the present invention comprises polyethylene-2,6-naphthalene dicarboxylate, and the coefficient of thermal expansion when heated at a rate of temperature increase of 20 ° C./min from 30 ° C. to 120 ° C. is both in the longitudinal direction and in the width direction. 20.1ppm / ℃ less, and any thermal expansion coefficient in the longitudinal direction and the width direction when the temperature was raised at a heating rate of 20 ° C. / min up to 200 ° C. from 120 ° C. or less 50 ppm / ° C., at 200 ° C. The heat shrinkage rate when heat-treated for 10 minutes is 1% or less, the total light transmittance in the wavelength range of 400 to 900 nm is 70% or more on average, and the water absorption is 1% or less. It is a film for solar cell base materials.

本発明によれば、熱寸法安定が高く、太陽電池製造の際のプロセス温度での水の放出が抑制された、スーパーストレートタイプの太陽電池に基材として好適に用いられる、太陽電池基材用フィルムを提供することができる。   According to the present invention, a film for a solar cell substrate, which is preferably used as a substrate for a super straight type solar cell with high thermal dimensional stability and suppressed release of water at the process temperature during solar cell production. Can be provided.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

[熱可塑性樹脂]
本発明の太陽電池基材用フィルムは熱可塑性樹脂からなる。この熱可塑性樹脂は、溶融押出可能な熱可塑性の樹脂であり、例えば、ポリエステル、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアミドを用いることができる。高い機械的強度と、低い吸水率のフィルムを得ることができることから、熱可塑性樹脂としてポリエステルが好ましく、例えばポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレンジカルボキシレートを用いることができ、中でも、高い機械強度を有し、耐熱性を備えることから、ポリエチレン−2,6−ナフタレンジカルボキシレートが特に好ましい。
[Thermoplastic resin]
The film for a solar cell substrate of the present invention is made of a thermoplastic resin. This thermoplastic resin is a thermoplastic resin that can be melt-extruded. For example, polyester, polyether ether ketone, polyphenylene sulfide, and polyamide can be used. Polyester is preferable as the thermoplastic resin because a film having high mechanical strength and low water absorption can be obtained. For example, polyethylene terephthalate, polyethylene-2,6-naphthalenedicarboxylate can be used, and among them, high mechanical strength Polyethylene-2,6-naphthalenedicarboxylate is particularly preferable because it has strength and heat resistance.

[熱膨張率]
本発明の太陽電池基材用フィルムは、120℃から200℃まで20℃/分の昇温速度で昇温したときの熱膨張率が長手方向および幅方向のいずれも50ppm/℃以下、好ましくは45ppm/℃以下である。なお、熱膨張率は、熱機械分析装置(以下「TMA」と称する場合がある)を用い、20℃/分の昇温速度で昇温して測定した線膨張率である。
[Thermal expansion coefficient]
The film for solar cell base material of the present invention has a coefficient of thermal expansion of not more than 50 ppm / ° C. in both the longitudinal direction and the width direction when heated from 120 ° C. to 200 ° C. at a rate of temperature increase of 20 ° C./min, preferably 45 ppm / ° C. or less. The thermal expansion coefficient is a linear expansion coefficient measured using a thermomechanical analyzer (hereinafter sometimes referred to as “TMA”) at a temperature increase rate of 20 ° C./min.

本発明では、長手方向とはフィルムが連続製膜されるときのフィルムの進行方向である。これを縦方向またはMD方向と称することもある。幅方向とはフィルム面内において長手方向と直交する方向であり、横方向またはTD方向と称することもある。   In the present invention, the longitudinal direction is the traveling direction of the film when the film is continuously formed. This is sometimes referred to as the vertical direction or the MD direction. The width direction is a direction orthogonal to the longitudinal direction in the film plane, and may be referred to as a transverse direction or a TD direction.

120℃から200℃まで20℃/分の昇温速度で昇温したときの熱膨張率が長手方向および幅方向のいずれか一方または両方が50ppm/℃を超えると、光発電層積層プロセスで温度がかかるときに、膨張したフィルム上に光発電層が積層されることになり、室温に戻した際に収縮し光発電層内に歪を起こし、場合によってはクラックが入り、ショートやリークの原因となる。   When the thermal expansion coefficient when the temperature is increased from 120 ° C. to 200 ° C. at a rate of temperature increase of 20 ° C./min exceeds 50 ppm / ° C. in either the longitudinal direction or the width direction, the temperature is increased in the photovoltaic layer lamination process. When this occurs, the photovoltaic layer will be laminated on the expanded film, shrinking when returning to room temperature, causing distortion in the photovoltaic layer, and in some cases, cracks may occur, causing short circuits and leaks. It becomes.

これらのクラックをより確実に防ぐためには、120℃から200℃まで20℃/分の昇温速度で昇温したときの熱膨張率が長手方向および幅方向のいずれも45ppm/℃以下であることが好ましく、また、30℃から120℃まで20℃/分の昇温速度で昇温したときの熱膨張率が長手方向および幅方向のいずれも30ppm/℃以下であることが好ましい。   In order to prevent these cracks more reliably, the coefficient of thermal expansion when the temperature is increased from 120 ° C. to 200 ° C. at a rate of temperature increase of 20 ° C./min is 45 ppm / ° C. or less in both the longitudinal direction and the width direction. In addition, the coefficient of thermal expansion when the temperature is increased from 30 ° C. to 120 ° C. at a rate of temperature increase of 20 ° C./min is preferably 30 ppm / ° C. or less in both the longitudinal direction and the width direction.

[光線透過率]
本発明の太陽電池基材用フィルムの400〜900nmの範囲における全光線透過率はこの範囲の平均値として70%以上、好ましくは75%以上、さらに好ましくは80%以上、特に好ましくは,85%以上である。平均値が70%未満であると太陽電池基材を透過する光量が少なく、スーパーストレートタイプの太陽電池の基材として用いたときに、高い発電効率を得ることができない。なお、本発明における全光線透過率とは、平行光線透過率と散乱光光線透過率の和である。
[Light transmittance]
The total light transmittance of the film for solar cell substrate of the present invention in the range of 400 to 900 nm is 70% or more, preferably 75% or more, more preferably 80% or more, and particularly preferably 85% as an average value in this range. That's it. When the average value is less than 70%, the amount of light transmitted through the solar cell substrate is small, and high power generation efficiency cannot be obtained when used as a substrate for a super straight type solar cell. In addition, the total light transmittance in this invention is the sum of parallel light transmittance and scattered light light transmittance.

[吸水率]
本発明の太陽電池基材用フィルムの吸水率は1%以下であり、好ましくは0.8%以下である。吸水率が1%を超えると光発電層製膜プロセス中に水蒸気が放出され変換効率の高い光発電層が積層できなくなる。また、光発電層製膜前に事前にプロセス温度での乾燥を行う場合に長い時間がかかり、太陽電池の生産性に劣ることになる。
[Water absorption rate]
The water absorption rate of the solar cell substrate film of the present invention is 1% or less, preferably 0.8% or less. If the water absorption rate exceeds 1%, water vapor is released during the photovoltaic layer forming process, and a photovoltaic layer with high conversion efficiency cannot be laminated. In addition, it takes a long time to perform drying at the process temperature in advance before the photovoltaic layer is formed, resulting in poor productivity of the solar cell.

[添加剤]
熱可塑性樹脂には、フィルムの耐候性を向上させるために、紫外線吸収剤を含有させることが好ましい。紫外線吸収剤としては、少量で効果のある吸光係数の大きい化合物が好ましく、例えば、ベンゾオキサジン系、ベンゾフェノン系、ベンゾトリアゾール系、ベンゾトリアジン系の紫外線吸収剤を用いることができる。これらのなかでも高い耐久性を持つものが好ましく、ベンゾトリアジン系、ベンゾトリアゾール系またはベンゾオキサジン系の紫外線吸収剤が好ましい。紫外線吸収剤は、一種類でも複数種類を組み合わせてもよい。
[Additive]
In order to improve the weather resistance of the film, the thermoplastic resin preferably contains an ultraviolet absorber. As the ultraviolet absorber, a compound having a large effective absorption coefficient in a small amount is preferable. For example, a benzoxazine-based, benzophenone-based, benzotriazole-based, or benzotriazine-based ultraviolet absorber can be used. Among these, those having high durability are preferable, and benzotriazine-based, benzotriazole-based, or benzoxazine-based ultraviolet absorbers are preferable. One type or a plurality of types of ultraviolet absorbers may be combined.

紫外線吸収剤の他に、例えば、酸化防止剤、熱安定化剤、易滑剤、難燃剤、帯電防止剤、紫外線吸収剤といった添加剤を添加してもよい。   In addition to the ultraviolet absorber, additives such as an antioxidant, a heat stabilizer, a lubricant, a flame retardant, an antistatic agent, and an ultraviolet absorber may be added.

[厚み]
本発明の太陽電池基材用フィルムの厚みは、太陽電池の支持基材としてのスティフネスを維持し、太陽電池モジュールの可撓性を確保する観点から、好ましくは25〜250μm、さらに好ましくは50〜200μm、特に好ましくは60〜125μmである。
[Thickness]
The thickness of the film for a solar cell substrate of the present invention is preferably 25 to 250 μm, more preferably 50 to 50% from the viewpoint of maintaining the stiffness as a support substrate of the solar cell and ensuring the flexibility of the solar cell module. It is 200 μm, particularly preferably 60 to 125 μm.

[熱収縮率]
本発明の太陽電池基材用フィルムは、太陽電池への加工工程における加熱工程で寸法変化を抑制する観点から、200℃で10分間熱処理したときの熱収縮率が、好ましくは1%以下、さらに好ましくは0.8%以下、特に好ましくは0.6%以下である。
[Heat shrinkage]
The film for solar cell base material of the present invention has a heat shrinkage rate of preferably 1% or less when heat-treated at 200 ° C. for 10 minutes from the viewpoint of suppressing dimensional changes in the heating step in the processing step for solar cells. Preferably it is 0.8% or less, Most preferably, it is 0.6% or less.

[塗布層]
本発明の太陽電池基材用フィルムには片面もしくは両面に塗布層を設けてもよい。この塗布層として、例えば、高分子バインダーおよび微粒子からなる層や、無機物からなる層挙げることができる。
[Coating layer]
You may provide an application layer in the single side | surface or both surfaces in the film for solar cell base materials of this invention. Examples of the coating layer include a layer composed of a polymer binder and fine particles, and a layer composed of an inorganic substance.

高分子バインダーおよび微粒子からなる層を設ける場合、高分子バインダーとしては、塗布層と基材の熱可塑性樹脂フィルムとの良好な接着性を得る観点から、ポリエステル樹脂および/またはアクリル樹脂を用いることが好ましい。この場合の塗布層の厚みは、好ましくは0.01〜8.0μm、さらに好ましくは0.02〜6.0μmである。   When providing a layer composed of a polymer binder and fine particles, a polyester resin and / or an acrylic resin is used as the polymer binder from the viewpoint of obtaining good adhesion between the coating layer and the thermoplastic resin film of the substrate. preferable. In this case, the thickness of the coating layer is preferably 0.01 to 8.0 μm, more preferably 0.02 to 6.0 μm.

無機物の層を設ける場合、高いバリア性を付与する観点から、SiO、SiNまたはSiCNからなる層が好ましい。無機物の層の厚みは、高々500nm、好ましくは50〜500nmである。500nmを越えると割れやすくなり、かえって太陽電池の安定生産ができない。   In the case of providing an inorganic layer, a layer made of SiO, SiN or SiCN is preferable from the viewpoint of imparting high barrier properties. The thickness of the inorganic layer is at most 500 nm, preferably 50 to 500 nm. If it exceeds 500 nm, it will break easily, and on the contrary, stable production of solar cells will not be possible.

[フィルムの製造方法]
本発明の太陽電池基材用フィルムの製造方法を、熱可塑性樹脂としてポリエチレン−2,6−ナフタレンジカルボキシレートを用いる場合を例に、以下説明する。
[Film Production Method]
The manufacturing method of the film for solar cell base materials of this invention is demonstrated below for the case where polyethylene-2,6-naphthalenedicarboxylate is used as a thermoplastic resin.

本発明の太陽電池基材用フィルムは、ポリエチレン−2,6−ナフタレンジカルボキシレートを溶融し、これらを溶融押出して未延伸シートとし、これを延伸することによって製造することができる。実用的な機械的強度を得るために二軸延伸することが好ましい。   The film for a solar cell substrate of the present invention can be produced by melting polyethylene-2,6-naphthalenedicarboxylate, melt-extruding these to form an unstretched sheet, and stretching the sheet. In order to obtain a practical mechanical strength, biaxial stretching is preferred.

ここではフィルムの製造方法について、溶融押出後、逐次二軸延伸によりフィルムを製造する方法を例に詳述する。樹脂を、必要に応じて、通常の加熱または減圧雰囲気下における乾燥により水分を除去した後、通常の溶融押出温度、すなわち融点(「Tm」という)以上、(Tm+50℃)以下の温度で溶融し、ダイのスリットから押出して、樹脂のガラス転移温度(「Tg」という)以下に冷却した回転冷却ドラムの上で急冷固化することにより、非晶質の未延伸シートを得る。得られた未延伸シートは、Tg以上、(Tg+50℃)以下の温度で、縦方向に3.1〜5.0倍の延伸倍率で延伸し、次いで横方向にTg以上、(Tg+50℃)以下の温度で、3.1〜5.0倍の延伸倍率で延伸する。この延伸倍率は、好ましくは縦方向が3.5〜5.0倍、横方向が3.3〜5.0倍である。延伸倍率を高くすることで、熱膨張率の低い本発明のフィルムを得ることができる。なお、縦延伸と横延伸を同時に行う同時2軸延伸も、縦横の機械特性のバランスがとりやすいため、好ましい延伸方法である。   Here, a method for producing a film will be described in detail by taking as an example a method for producing a film by sequential biaxial stretching after melt extrusion. If necessary, the resin is melted at a normal melt extrusion temperature, that is, a melting point (referred to as “Tm”) or more and (Tm + 50 ° C.) or less after removing moisture by ordinary heating or drying under a reduced pressure atmosphere. The amorphous unstretched sheet is obtained by extruding from a slit of the die and rapidly solidifying on a rotary cooling drum cooled to a temperature lower than the glass transition temperature (referred to as “Tg”) of the resin. The obtained unstretched sheet is stretched at a stretch ratio of 3.1 to 5.0 times in the machine direction at a temperature of Tg or more and (Tg + 50 ° C.) or less, and then is Tg or more and (Tg + 50 ° C.) or less in the transverse direction. The film is stretched at a stretching ratio of 3.1 to 5.0 times. The draw ratio is preferably 3.5 to 5.0 times in the longitudinal direction and 3.3 to 5.0 times in the transverse direction. By increasing the draw ratio, the film of the present invention having a low coefficient of thermal expansion can be obtained. Note that simultaneous biaxial stretching in which longitudinal stretching and lateral stretching are performed simultaneously is also a preferred stretching method because it is easy to balance longitudinal and lateral mechanical properties.

縦横に延伸した二軸延伸フィルムは、好ましくはさらに樹脂の結晶化温度(以下「Tc」という)以上、(Tm−10℃)以下の温度で熱固定を行う。上記の用に延伸倍率を上げて分子鎖の配向性を上げることで熱膨張係数を下げた場合、フィルム内部に歪が残りやすく、その結果熱収縮率が上がりやすい。そこでその歪をとるために、縦方向および/または横方向に、弛緩率0.5〜15%の範囲で熱弛緩処理を行うことが好ましい。熱弛緩処理は、フィルム製造時に行ってもよく巻き取った後に別の工程で熱処理を行ってもよい。巻き取った後の熱処理方法は特に限定されないが、特開平1−275031号公報に示されるような、フィルムを懸垂状態で弛緩熱処理する方法を例えば用いることができる。   The biaxially stretched film stretched longitudinally and laterally is preferably heat-set at a temperature not lower than the resin crystallization temperature (hereinafter referred to as “Tc”) and not higher than (Tm−10 ° C.). When the thermal expansion coefficient is lowered by increasing the draw ratio and increasing the orientation of the molecular chain for the above-mentioned purpose, distortion tends to remain in the film, and as a result, the thermal shrinkage rate tends to increase. Therefore, in order to remove the distortion, it is preferable to perform thermal relaxation treatment in the range of 0.5 to 15% in the longitudinal direction and / or the lateral direction. The heat relaxation treatment may be performed at the time of film production, or may be heat-treated in another step after winding. The heat treatment method after winding is not particularly limited, but for example, a method of relaxing heat treatment in a suspended state as shown in JP-A-1-275031 can be used.

以下、実施例により本発明をさらに説明する。
なお、各特性値は以下の方法で測定した。
Hereinafter, the present invention will be further described by examples.
Each characteristic value was measured by the following method.

(1)熱膨張率(αt)
フィルムから、2種類のサンプルを切り出した。一方はフィルムの長手方向に沿って長さ20mm、幅5mmの長方形のサンプルであり、他方はフィルムの幅方向に沿って長さ20mm、幅5mmの長方形のサンプルである。
これらのサンプルそれぞれについて、セイコーインスツルメンツ(株)製のTMA/SS120Cを用い、チャック間距離15mmにて140g/mmの荷重をかけた状態で200℃で30分間前処理をして、その後、室温まで降温させ、それぞれ長手方向の熱膨張率測定用サンプルおよび幅方向の熱膨張率測定用サンプルとした。
それぞれの測定用サンプルを30℃から200℃まで20℃/分の昇温速度で昇温させて、温度とサンプル長さのチャートを得た。このチャートからL,L,Lを読み取り、30℃から120℃まで20℃/分の昇温速度で昇温したときの熱膨張率αt(120)および120℃から200℃まで20℃/分の昇温速度で昇温したときの熱膨張率αt(200)を、下記式で算出した。
αt(120)={〔(L−L)×10〕/(L×ΔT)}+0.5
αt(200)={〔(L−L)×10〕/(L×ΔT)}+0.5
ここで、
; 30℃時のサンプル長(mm)
; 120℃時のサンプル長(mm)
; 200℃時のサンプル長(mm)
ΔT;90℃=(120℃− 30℃)
ΔT;80℃=(200℃−120℃)
である。なお、上記中の0.5は本測定の試料管に使用している石英ガラスの熱膨張係数(ppm/℃)である。
(1) Thermal expansion coefficient (αt)
Two types of samples were cut from the film. One is a rectangular sample having a length of 20 mm and a width of 5 mm along the longitudinal direction of the film, and the other is a rectangular sample having a length of 20 mm and a width of 5 mm along the width direction of the film.
Each of these samples was pretreated at 200 ° C. for 30 minutes with a load of 140 g / mm 2 at a distance between chucks of 15 mm using a TMA / SS120C manufactured by Seiko Instruments Inc., and then at room temperature. The sample was measured for the thermal expansion coefficient in the longitudinal direction and the sample for thermal expansion coefficient measurement in the width direction.
Each measurement sample was heated from 30 ° C. to 200 ° C. at a rate of temperature increase of 20 ° C./min, and a chart of temperature and sample length was obtained. L 1 , L 2 , and L 3 are read from this chart, and the coefficient of thermal expansion αt (120) when the temperature is increased from 30 ° C. to 120 ° C. at a temperature increase rate of 20 ° C./min, and 20 ° C. from 120 ° C. to 200 ° C. The coefficient of thermal expansion αt (200) when the temperature was increased at a rate of temperature increase per minute was calculated by the following formula.
αt (120) = {[(L 2 −L 1 ) × 10 6 ] / (L 1 × ΔT 1 )} + 0.5
αt (200) = {[(L 3 −L 2 ) × 10 6 ] / (L 2 × ΔT 2 )} + 0.5
here,
L 1 ; sample length at 30 ° C. (mm)
L 2 ; sample length at 120 ° C. (mm)
L 3 ; sample length at 200 ° C. (mm)
ΔT 1 ; 90 ° C. = (120 ° C.-30 ° C.)
ΔT 2 ; 80 ° C. = (200 ° C.-120 ° C.)
It is. In the above, 0.5 is the coefficient of thermal expansion (ppm / ° C.) of the quartz glass used in the sample tube for this measurement.

(2)吸水率
JIS K7209−1984 A法 に準拠して測定した。すなわち、サンプルを、50℃で24hrの前処理を行い、サンプルの浸漬処理前の重量(M1)を測定し、この後、23℃×55RH%の環境下でイオン交換水に24hr浸漬する浸漬処理を行った。その後取り出し、浸漬処理後のサンプルの重量(M2)を測定し、浸漬前後でのサンプルの重量変化から、下記式でサンプルの吸水率を算出した。
吸水率(%)=(M2−M1)/M1×100
(2) Water absorption Measured according to JIS K7209-1984 A method. That is, the sample is pretreated at 50 ° C. for 24 hours, the weight (M1) of the sample before the immersion treatment is measured, and then immersed in ion-exchanged water in an environment of 23 ° C. × 55 RH% for 24 hours. Went. Thereafter, the sample was taken out, the weight (M2) of the sample after the immersion treatment was measured, and the water absorption rate of the sample was calculated by the following formula from the change in the weight of the sample before and after the immersion.
Water absorption (%) = (M2−M1) / M1 × 100

(3)固有粘度
オルソクロロフェノール溶媒による溶液の粘度を35℃にて測定し求めた。
(3) Intrinsic viscosity The viscosity of the solution in an orthochlorophenol solvent was measured and determined at 35 ° C.

(4)フィルムの厚み
フィルムサンプルをエレクトリックマイクロメーター(アンリツ製 K−402B)にて10点厚みを測定して平均値を求めフィルム厚みとした。
(4) Film thickness Ten points of film samples were measured with an electric micrometer (Anritsu K-402B), and the average value was obtained to obtain the film thickness.

(5)熱収縮率
フィルムサンプルに30cm間隔で標点をつけ、荷重をかけずに所定の温度のオーブンで所定時間熱処理を実施し、熱処理後の標点間隔を測定して、フィルム連続製膜方向(MD方向)と、製膜方向に垂直な方向(TD方向)において、下記式にて熱収縮率を算出した。この熱処理前の標点間距離Lと熱処理後の標点間距離Lをそれぞれ測定し、熱処理後の寸法変化率を熱収縮率S(%)として下式により算出した。
S(%)=((L−L)/L)×100
(5) Heat shrinkage rate Marks are applied to film samples at intervals of 30 cm, heat treatment is performed for a predetermined time in an oven at a predetermined temperature without applying a load, and the interval between the heat marks after the heat treatment is measured. In the direction (MD direction) and the direction (TD direction) perpendicular to the film forming direction, the thermal shrinkage rate was calculated by the following formula. The inter-marker distance L 0 before the heat treatment and the inter-marker distance L after the heat treatment were measured, respectively, and the dimensional change rate after the heat treatment was calculated as the thermal contraction rate S (%) by the following equation.
S (%) = ((L 0 −L) / L 0 ) × 100

(6)薄膜太陽電池の動作率および光電変換効率
フィルムサンプルの表面に、スパッタリング法によって200nmの厚みのAg薄膜を形成し、さらにその上に50nmの厚みのAZO薄膜を形成した。その後、これらの薄膜が形成されたフィルムサンプルをプラズマCVD装置に入れ、基板温度を190℃とし、n、i、p型の非晶シリコン(a−Si)層の3層からなる光電変換層(3層の合計厚み0.4μm)を形成した。その後、升目上マスクを設置状態でスパッタリング法によって、190℃温度下でAZO薄膜を100nmの厚みで形成したのち、櫛状のマスクを用いてスパッタリングによってAg薄膜を300nmの厚みで形成することで、薄膜太陽電池を得た。
500Wのキセノンランプ(ウシオ電気社製)に太陽光シミュレーション用補正フィルター(オリエール社製AM1.5Global)を装着し、上記の薄膜太陽電池に対し、入射光強度が100mW/cmの模擬太陽光を、水平面に対して垂直になるよう照射した。システムは屋内、気温25℃、湿度50%の雰囲気に静置した。電流電圧測定装置(ケースレー製ソースメジャーユニット238型)を用いて、システムに印加するDC電圧を10mV/秒の定速でスキャンし、I−Vカーブ特性測定をおこなった。この結果から得られた短絡電流(Jsc)および開放電圧(Voc)FF(フィルファクター:曲線因子)から光電変換効率ηを下記式により算出した。
η(%)=Jsc×Voc×FF
また、これらの測定の際に、ショートおよび電流のリークが起こらず発電したセル数をAとし、作成した全セル数をBとして、これらの比A/Bから動作率(%)を算出した。
動作率(%)=A/B×100
(6) Operation rate and photoelectric conversion efficiency of thin film solar cell An Ag thin film having a thickness of 200 nm was formed on the surface of the film sample by a sputtering method, and an AZO thin film having a thickness of 50 nm was further formed thereon. Then, the film sample in which these thin films were formed was put into a plasma CVD apparatus, the substrate temperature was set to 190 ° C., and the photoelectric conversion layer (three layers of n, i, p type amorphous silicon (a-Si) layers) Three layers having a total thickness of 0.4 μm) were formed. Then, after forming an AZO thin film with a thickness of 100 nm at a temperature of 190 ° C. at a temperature of 190 ° C. by a sputtering method in a state where the mask is placed on the mesh, an Ag thin film is formed with a thickness of 300 nm by sputtering using a comb-shaped mask, A thin film solar cell was obtained.
A 500 W xenon lamp (USHIO INC.) Is equipped with a solar simulation correction filter (AM 1.5 Global manufactured by Oriel), and simulated solar light with an incident light intensity of 100 mW / cm 2 is applied to the above thin film solar cell. Irradiated so as to be perpendicular to the horizontal plane. The system was left indoors at a temperature of 25 ° C. and a humidity of 50%. Using a current / voltage measuring device (type Keithley source measure unit 238), the DC voltage applied to the system was scanned at a constant speed of 10 mV / sec, and the IV curve characteristics were measured. From the short-circuit current (Jsc) and open circuit voltage (Voc) FF (fill factor: fill factor) obtained from this result, the photoelectric conversion efficiency η was calculated by the following formula.
η (%) = Jsc × Voc × FF
Also, during these measurements, the operating rate (%) was calculated from these ratios A / B, where A was the number of cells that generated power without causing a short circuit or current leakage, and B was the total number of cells created.
Operating rate (%) = A / B × 100

(7)全光線透過率
分光光度計(島津製作所製MPC3100)を用い、波長範囲400nm〜900nmの光線透過率を、2nm間隔で測定した。測定した各波長の光線透過率の平均から400〜900nmでの全光線透過率を算出した。
全光線透過率 = ΣTn /m
ここで、ΣTnは各波長の光線透過率の合計、mは測定点の数である。
(7) Total light transmittance Using a spectrophotometer (MPC3100 manufactured by Shimadzu Corporation), light transmittance in the wavelength range of 400 nm to 900 nm was measured at intervals of 2 nm. The total light transmittance at 400 to 900 nm was calculated from the average of the measured light transmittance of each wavelength.
Total light transmittance = ΣTn / m
Here, ΣTn is the total light transmittance of each wavelength, and m is the number of measurement points.

[実施例1]
ポリエチレン−2,6−ナフタレンジカルボキシレート(非晶密度1.33、固有粘度:0.65)を、170℃で6時間乾燥させた後に押出機に供給し、溶融温度305℃でスリット状ダイより押出して、表面温度を50℃に維持した回転冷却ドラム上で急冷固化させて未延伸フィルムを得た。
次いで縦方向に140℃で4.0倍に延伸した後、横方向に145℃で4.0倍に延伸し、245℃で5秒間熱固定処理および幅方向に2%収縮させ、厚さ100μmのフィルムを得た。さらに得られたフィルムを200℃10分加熱し弛緩することで内部の歪を取り除いた。得られたフィルムの特性は表1のとおりであり、得られたフィルムを用いて作成したスーパーストレートタイプの薄膜太陽電池の特性は表1のとおりである。
[Example 1]
Polyethylene-2,6-naphthalene dicarboxylate (amorphous density 1.33, intrinsic viscosity: 0.65) was dried at 170 ° C. for 6 hours and then supplied to an extruder, and a slit die at a melting temperature of 305 ° C. The film was further extruded and rapidly solidified on a rotary cooling drum maintained at a surface temperature of 50 ° C. to obtain an unstretched film.
Next, the film was stretched 4.0 times in the longitudinal direction at 140 ° C., then stretched 4.0 times in the transverse direction at 145 ° C., heat-set at 245 ° C. for 5 seconds, and contracted 2% in the width direction, and the thickness was 100 μm. Film was obtained. Further, the obtained film was heated and relaxed at 200 ° C. for 10 minutes to remove internal strain. The characteristics of the obtained film are as shown in Table 1, and the characteristics of the super straight type thin film solar cell prepared using the obtained film are as shown in Table 1.

[実施例2]
延伸倍率を、縦方向3.8倍および横方向3.8倍とした以外は実施例1と同様の方法を用いてフィルムおよびスーパーストレートタイプの薄膜太陽電池を作成した。特性は表1の通りである。
[Example 2]
A film and a super straight type thin film solar cell were prepared using the same method as in Example 1 except that the draw ratio was 3.8 times in the longitudinal direction and 3.8 times in the transverse direction. The characteristics are shown in Table 1.

[実施例3]
弛緩後のフィルムの表面にスパッタリングにより酸化ケイ素層を両面にそれぞれ150nmの厚みで積層した以外は実施例1と同じ方法でフィルムおよびスーパーストレートタイプの薄膜太陽電池を作成した。各特性は表1の通りである。
[Example 3]
A film and a super-straight type thin film solar cell were prepared in the same manner as in Example 1 except that a silicon oxide layer was laminated on both surfaces with a thickness of 150 nm on both surfaces of the film after relaxation. Each characteristic is as shown in Table 1.

[比較例1]
延伸倍率を縦方向3.1倍、横方向3.3倍とした以外は実施例1と同様の方法を用いてフィルムおよびスーパーストレートタイプの薄膜太陽電池を作成した。特性は表1のとおりであり、太陽電池動作率は低かった。
[Comparative Example 1]
A film and a super straight type thin film solar cell were prepared using the same method as in Example 1 except that the stretching ratio was 3.1 times in the vertical direction and 3.3 times in the horizontal direction. The characteristics are as shown in Table 1, and the solar cell operating rate was low.

Figure 0005378809
Figure 0005378809

本発明の太陽電池基材用フィルムは、フレキシブルタイプの太陽電池の基材として、特にスーパーストレートタイプの太陽電池基材用フィルムとして好適に用いることができる。   The film for solar cell substrate of the present invention can be suitably used as a substrate for flexible type solar cells, particularly as a film for super straight type solar cell substrates.

Claims (3)

ポリエチレン−2,6−ナフタレンジカルボキシレートからなり、30℃から120℃まで20℃/分の昇温速度で昇温したときの熱膨張率が長手方向および幅方向のいずれも20.1ppm/℃以下、かつ120℃から200℃まで20℃/分の昇温速度で昇温したときの熱膨張率が長手方向および幅方向のいずれも50ppm/℃以下であり、200℃で10分熱処理したときの熱収縮率が1%以下であって、波長400〜900nmの範囲での全光線透過率が平均70%以上であり、吸水率が1%以下であることを特徴とする、太陽電池基材用フィルム。 It consists of polyethylene-2,6-naphthalenedicarboxylate, and the coefficient of thermal expansion when heated from 30 ° C. to 120 ° C. at a heating rate of 20 ° C./min is 20.1 ppm / ° C. in both the longitudinal and width directions. or less and either 120 ° C. from heating and thermal expansion coefficient when the at a heating rate of 20 ° C. / min to 200 ° C. is in the longitudinal direction and the width direction is at 50 ppm / ° C. or less, when the heat-treated 10 minutes at 200 ° C. The solar cell base material is characterized in that the heat shrinkage ratio is 1% or less, the total light transmittance in the wavelength range of 400 to 900 nm is 70% or more on average, and the water absorption is 1% or less. Film. スーパーストレートタイプの太陽電池基材として用いられる、請求項1記載の太陽電池基材用フィルム。   The film for solar cell base materials according to claim 1, which is used as a super straight type solar cell base material. 薄膜太陽電池用である、請求項1または2に記載の太陽電池基材用フィルム。The film for solar cell base materials according to claim 1 or 2, which is for thin film solar cells.
JP2009005649A 2009-01-14 2009-01-14 Film for solar cell substrate Active JP5378809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009005649A JP5378809B2 (en) 2009-01-14 2009-01-14 Film for solar cell substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009005649A JP5378809B2 (en) 2009-01-14 2009-01-14 Film for solar cell substrate

Publications (2)

Publication Number Publication Date
JP2010163512A JP2010163512A (en) 2010-07-29
JP5378809B2 true JP5378809B2 (en) 2013-12-25

Family

ID=42579937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009005649A Active JP5378809B2 (en) 2009-01-14 2009-01-14 Film for solar cell substrate

Country Status (1)

Country Link
JP (1) JP5378809B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129699A (en) * 2003-10-23 2005-05-19 Teijin Dupont Films Japan Ltd Film for flexible printed circuit board
JP2005139214A (en) * 2003-11-04 2005-06-02 Toray Ind Inc Biaxially oriented film
JP4444955B2 (en) * 2004-05-14 2010-03-31 帝人デュポンフィルム株式会社 Oriented polyester film for flexible electronics device substrate
JP2006291163A (en) * 2004-09-27 2006-10-26 Fuji Photo Film Co Ltd Film, production method therefor and image display device
JP2006306910A (en) * 2005-04-26 2006-11-09 Teijin Dupont Films Japan Ltd Polyester film for solar batteries

Also Published As

Publication number Publication date
JP2010163512A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP5914339B2 (en) Polyester film and method for producing the same
KR101798256B1 (en) Polyester film with uv-stability and high light transmittance
AU2008255673B2 (en) Multilayer film for solar cell base
Wu et al. Ultralight flexible perovskite solar cells
JP5635366B2 (en) Method for producing polyester film for solar cell back surface protective film and polyester film for solar cell back surface protective film
JP5384980B2 (en) Laminated film
JP2009045888A (en) Film for protecting back surface of solar cell
JP5378809B2 (en) Film for solar cell substrate
ES2663432T3 (en) Back plate for solar module and manufacturing procedure
JP2008041746A (en) Substrate of solar cell
JP6011730B2 (en) Manufacturing method of laminate
JP2010163511A (en) Film for solar cell substrate
JP2008041674A (en) Substrate of solar cell
KR101382155B1 (en) PET film for Solar Cell Module
JP2015154067A (en) Solar cell protective sheet and production method therefor
CN101933152B (en) Solar battery base
JP2011192790A (en) Polyester film for solar cells, and method of manufacturing the same
JP2013227440A (en) Polyester film, back sheet for solar cell module, and solar cell module
JP2014077091A (en) Polyester film, back sheet for solar cell module, and solar cell module
WO2014068329A1 (en) Uv-stable polyester film
JP2011100773A (en) Base for solar cell
JP2018202866A (en) Laminated polyester film
JP2013028058A (en) Laminated polyester film for solar battery back sheet
JP2012169134A (en) Film for solar cell

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R150 Certificate of patent or registration of utility model

Ref document number: 5378809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250