JP5377516B2 - 信号配置方法及び通信装置 - Google Patents

信号配置方法及び通信装置 Download PDF

Info

Publication number
JP5377516B2
JP5377516B2 JP2010544036A JP2010544036A JP5377516B2 JP 5377516 B2 JP5377516 B2 JP 5377516B2 JP 2010544036 A JP2010544036 A JP 2010544036A JP 2010544036 A JP2010544036 A JP 2010544036A JP 5377516 B2 JP5377516 B2 JP 5377516B2
Authority
JP
Japan
Prior art keywords
signal
symbol
data symbols
pilot
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010544036A
Other languages
English (en)
Other versions
JPWO2010073987A1 (ja
Inventor
諭 玉木
幹夫 桑原
幸樹 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010544036A priority Critical patent/JP5377516B2/ja
Publication of JPWO2010073987A1 publication Critical patent/JPWO2010073987A1/ja
Application granted granted Critical
Publication of JP5377516B2 publication Critical patent/JP5377516B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は符号化した信号を複数の通信リソースに分割して通信を行う通信方式、特に複数のサブキャリアに分割して通信する直交周波数分割多重方式のようなマルチキャリア通信方式において、符号化した情報の信号配置方法及び当該方法を実現する通信装置に関する。
無線通信の広帯域化に伴って、以下サブキャリアと称する複数の周波数帯域に送信情報を分割して通信を行うマルチキャリア通信方式が用いられている。マルチキャリア通信方式のうち、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)方式は、サブキャリアあたりの帯域幅を狭帯域化することで遅延波に対する耐性を向上しつつ、信号の直交性を利用することでサブキャリア間のガードバンドを不要として高い周波数利用効率を実現できることから、例えばWiMAX(Worldwide Interoperability of Microwave Access)やLTE(Long Tern Evolution)等の幅広いシステムで採用されている。
これらの通信システムでは、送信側では以下パイロット信号と称する固定パターンの信号を送信信号に挿入し、受信側ではパイロット信号の振幅及び位相から信号伝搬中の振幅及び位相の変動を推定して受信信号の復調処理を行う。送信信号に挿入されるパイロット信号の割合が高い程精度良く伝搬路推定を行い、通信品質を高める事が出来る。一方でパイロット信号の挿入比率が低いほどデータ信号の比率が上がり、最大データレートが向上するため、パイロット信号は必要な伝搬路推定の精度を満たす範囲で可能な限り少量となるように配置される。
図2は、LTE方式のパイロット信号配置の一例を示す図である。この図は、「3GPP TS 36.211 V8.3.0 Evolved Universal Terrestrial Radio Access (E−UTRA); Physical Channels and Modulation(Release 8)」(非特許文献1)に示されている例であり、一つのantenna portを使用する際のパイロット信号配置を表す。なお、同文献にてreference signalと呼称されている信号がパイロット信号に相当する。図2は横軸をOFDMシンボル番号、即ち時間軸とし、縦軸をサブキャリア番号、即ち周波数軸とした模式図であり、各矩形の箱がQPSKや16QAM等の一つの変調シンボルを表す。このうち、シンボル202の灰色の矩形がパイロット信号を表し、シンボル201の白色の矩形は例えばデータ信号や制御信号などのパイロットではない信号を表す。この例では、時間方向には1Slotあたり2のパイロット信号が配置され、周波数方向には6サブキャリアあたり1のパイロットが配置される。なおLTEでは、時間方向のパイロット信号が配置される位置はアンテナ数等によって異なるもののすべてのセルで共通である。一方で周波数方向については、セルによって異なった位置にパイロット信号が配置される。図2に示した例では、パイロット信号はsubcarrier n、subcarrier n+3、subcarrier n+6、subcarrier n+9に配置されているが、別のセルでは例えばパイロット信号はsubcarrier n+1、subcarrier n+4、subcarrier n+7、subcarrier n+10に配置される。
図3は、LTE方式のパイロット信号配置の別の一例を示す図である。
図3は図2と同じく非特許文献1記載のパイロット信号配置の一例であり、4つのantenna portを使用する際の一つのantenna portにおけるパイロット信号配置を表した模式図である。シンボル202の灰色の矩形がパイロット信号を表し、シンボル201の白色の矩形が非パイロット信号を表す点は図2と同様である。シンボル203のX印の矩形は他のantenna portのパイロット信号との衝突を避けるために信号送信には使用しない時間・周波数であることを示す。
各々の非パイロット信号を復調する際には、パイロット信号を用いた伝搬路推定結果を元に該当する非パイロット信号が配置された時間・周波数に補間ないしは外挿して求めた伝搬路情報を用いる。図2及び図3の模式図のとおりパイロット信号は非パイロット信号に比べて少数である為、パイロット信号1シンボルに対して加わった擾乱は当該パイロット信号の伝搬路推定結果を用いる周辺の多数の非パイロット信号の受信品質に影響を与える。このためパイロット信号は非パイロット信号に比べて高い受信品質が求められる。このため例えば特許文献1では時間当たりの総送信電力を一定にしつつパイロット信号の送信電力を増加させるために、非パイロット信号の送信電力を平均的に低下させる、あるいは非パイロット信号の送信用に割り当てられたシンボルのうちいくつかを送信に用いない技術が紹介されている。
特開2008−172377号公報 「OFDM方式を利用する移動通信システム使用される送信装置、受信装置及び方法」 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E−UTRA); Physical Channels and Modulation(Release 8)、 3GPP TS 36.211 V8.3.0、 2008年5月、 6.10 Reference signals
図4は、マルチセル環境における基地局と端末との関係の例を示す図である。
複数の基地局が存在するマルチセル環境においては、あるセルにおける通信信号が別のセルの通信信号の妨害となるセル間干渉が発生する場合がある。例えば基地局A101から端末A111への送信信号は、端末B112に対しても距離相応の減衰を持って到達する。このため、同時に基地局B102から端末B102に対して信号を送信していた場合、基地局A101から届いた信号が干渉となり、通信品質を低下させる。
このようなセル間干渉の影響を低減させる為には、例えば隣接するセル同士では同じ周波数を使わないようにして、干渉となる信号が十分に減衰するように同一の周波数を用いて通信を行うセル同士の間隔を離す方法がある。しかし同一周波数を用いるセル間の間隔を離す程セル間干渉は低減するものの周波数の利用効率が低下してしまうという課題がある。このため周波数の利用効率を高めるためにはある程度のセル間干渉が存在する状況においても通信品質が大きく低下する事がない方式が必要となる。
また、例えば上記特許文献1に記載の技術では、パイロット信号の送信電力を他のシンボルの送信電力よりも大きくする事でパイロット電力の信号対干渉電力比の向上を図るが、セル間干渉を考慮するとこの電力を大きくしたパイロット信号から干渉を受けるシンボルの品質は大きく劣化するという課題がある。更に特許文献1記載の技術では、パイロット信号の電力と非パイロット信号との電力の比率、あるいはいずれの非パイロット信号用のシンボルを送信に用いないかの情報を送信局と受信局とで予め共有する必要がある。このため、特許文献1記載の技術を使用する局と使用しない局との混在や、使用の有無の切替が困難であるという課題がある。
本発明は上記の課題を解決すべく為されたものであり、マルチセル環境において生じるセル間の干渉の影響による通信品質の低下を軽減するための信号配置方法及び通信装置を提供する事を目的とする。
上記課題を解決するための手段として、本発明による信号配置方法及び該方法を実現する通信装置では、パイロット信号と同時刻に送信するデータシンボルと、パイロット信号と同時刻ではないデータシンボルとで、誤り訂正符号化した信号の配置を変更する。または、本発明による電力割当方法及び該方法を実現する通信装置では、パイロット信号と同時刻に送信するデータシンボルと、パイロット信号と同時刻ではないデータシンボルとで変調方式を変更する。
本発明の第1の解決手段によると、
符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための信号配置方法であって、
N0ビットの送信信号を誤り訂正符号化してN1ビットの信号を生成し、
パイロットシンボルと同時刻でない複数の第1のデータシンボルに配置可能な信号がM0ビット、パイロットシンボルと同時刻の複数の第2のデータシンボルに配置可能な信号がM1ビットであるとき、
(i)N0≦M0≦N1の場合、
誤り訂正符号化後の信号N1ビットから誤り訂正符合化前のN0ビットの送信信号の復号に最低限必要なM0ビットを抜き出して符号化率N0/M0のパンクチャド符号を構成して、該パンクチャド符号を前記複数の第1のデータシンボルに配置し、さらに、誤り訂正符号化後の信号のうち前記複数の第1のデータシンボルに配置されなかった信号の一部又は全てのビットを、前記複数の第2のデータシンボルに配置し、
(ii)M0>N1の場合、
誤り訂正符号化後の信号N1ビットを全て前記複数の第1のデータシンボルに配置し、
(iii)M0<N0≦M0+M1の場合、
誤り訂正符号化後の信号N1ビットから符号化率N0/(M0+M1)の符号を構成し、前記複数の第1のデータシンボル及び前記複数の第2のデータシンボルに配置する
ことを特徴とする信号配置方法が提供される。
また、本発明の第2の解決手段によると、
符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための信号配置方法であって、
パイロット信号と同時刻のデータシンボルに用いる変調方式の1シンボルあたりに伝送可能な最大伝送ビット数が、パイロット信号と同時刻でないデータシンボルに用いる変調方式の1シンボルあたりに伝送可能な最大伝送ビット数よりも少なくしたことを特徴とする信号配置方法が提供される。
また、本発明の第3の解決手段によると、
符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための信号配置方法であって、
パイロットシンボルと同時刻でないデータシンボルにおいては、振幅方向及び位相方向に情報を持つ変調方式を用い、
パイロットシンボルと同時刻のデータシンボルにおいては振幅方向には情報を持たず、位相方向にのみ情報を持つ変調方式を用いる
ことを特徴とする信号配置方法が提供される。
また、本発明の第4の解決手段によると、
符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための通信装置であって、
N0ビットの送信信号を誤り訂正符号化してN1ビットの信号を生成する誤り訂正符号化部と、
前記誤り訂正符号化部からの誤り訂正符号化後の信号N1ビットと、パイロット信号とを前記各シンボルに多重化及びマッピングする多重化マッピング部と、
を備え、
パイロットシンボルと同時刻でない複数の第1のデータシンボルに配置可能な信号がM0ビット、パイロットシンボルと同時刻の複数の第2のデータシンボルに配置可能な信号がM1ビットであるとき、
前記多重化マッピング部は、
(i)N0≦M0≦N1の場合、
誤り訂正符号化後の信号N1ビットから、誤り訂正符合化前のN0ビットの送信信号の復号に最低限必要なM0ビットを抜き出して符号化率N0/M0のパンクチャド符号を構成して、該パンクチャド符号を前記複数の第1のデータシンボルに配置し、さらに、誤り訂正符号化後の信号のうち前記複数の第1のデータシンボルに配置されなかった信号の一部又は全てのビットを、前記複数の第2のデータシンボルに配置し、
(ii)M0>N1の場合、
誤り訂正符号化後の信号N1ビットを全て前記複数の第1のデータシンボルに配置し、
(iii)M0<N0≦M0+M1の場合、
誤り訂正符号化後の信号N1ビットから符号化率N0/(M0+M1)の符号を構成し、前記複数の第1のデータシンボル及び前記複数の第2のデータシンボルに配置する
ことを特徴とする通信装置が提供される。
また、本発明の第5の解決手段によると、
符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア又は周波数とシンボル番号又は時間軸とのマトリクスで表された各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための通信装置であって、
前記各シンボルに割り当てられた信号を変調するシンボル変調部を備え、
前記シンボル変調部は、
パイロット信号と同時刻のデータシンボルに用いる変調方式の1シンボルあたりに伝送可能な最大伝送ビット数が、パイロット信号と同時刻でないデータシンボルに用いる変調方式の1シンボルあたりに伝送可能な最大伝送ビット数よりも少なくしたことを特徴とする通信装置が提供される。
また、本発明の第6の解決手段によると、
符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための通信装置であって、
前記各シンボルに割り当てられた信号を変調するシンボル変調部を備え、
前記シンボル変調部は、
パイロット信号と同時刻でないデータシンボルにおいては、振幅方向及び位相方向に情報を持つ変調方式を用い、
パイロット信号と同時刻のデータシンボルにおいては振幅方向には情報を持たず、位相方向にのみ情報を持つ変調方式を用いることにより、シンボル毎に大きなピーク電力が生じる事が無いようにした
ことを特徴とする通信装置が提供される。
本発明によれば、OFDMなどのマルチキャリア通信方式において、セル間干渉が存在する環境においても通信品質の低下の影響を軽減できる信号配置方法及び通信装置が提供される。
本発明を適用する無線局における信号処理を表すブロック図の一例を示す図。 LTE方式のパイロット信号配置の一例を示す図。 LTE方式のパイロット信号配置の別の一例を示す図。 マルチセル環境における基地局と端末との関係の例を示す図。 本発明の実施の形態における信号配置の模式図の一例。 本発明の実施の形態における信号配置の模式図の別の一例。 誤り訂正符号化器の一例であるターボ符号化器の例を示す図。 ガードインターバル挿入処理を示す模式図。 CPUやDSPを主体とした送受信機実装例の模式図。 本発明を適用する無線局における信号処理を表すブロック図の別の一例を示す図。 本発明の実施の形態におけるシンボル変調処理の処理の流れの一例を示す図。 本発明を適用する無線局における信号処理を表すブロック図の別の一例を示す図。 本発明の実施の形態における電力低下判定処理の処理の流れの一例を示す図。 本発明の実施の形態における信号配置の条件分岐を表す図の一例を示す図。 本発明の実施の形態における信号配置の模式図の別の一例。
1.本発明の適応
以下、本発明の種々の実施の形態について図面を用いて説明する。以下の説明では簡単のために第1の無線局から第2の無線局に対して送信する信号に対して本発明の信号配置方法及び通信装置を適用する場合について説明し、上記第1の無線局を送信局、上記第2の無線局を受信局と称する。一方本発明の信号配置方法及び通信装置は第1の無線局から第2の無線局への信号送信に対してと、第2の無線局から第1の無線局への信号送信に対してとの両方に対して適用することが可能であり、この場合、該第1及び第2の無線局はそれぞれ以下で説明する送信局と受信局との両方の信号処理を行う。なお、本発明の通信装置は、送信局、受信局、または、送信局と受信局の両方を含むことができる。
例えばセルラシステムやインフラストラクチャモードの無線LANにおける、以下固定局と称する基地局ないしはアクセスポイントと、以下移動局と称するユーザ端末とが存在するシステムにおいては、固定局から移動局への通信に対して本発明を適用する際には固定局が送信局、移動局が受信局に対応する。逆に移動局から固定局への通信に対して本発明を適用する際には移動局が送信局、固定局が受信局に対応する。また固定局から移動局、移動局から固定局の両方の通信に対して本発明を適用する際には、固定局及び移動局のそれぞれが送信局及び受信局として両方の信号処理を行う。
またアドホックモードの無線LANのように端末同士が直接通信するシステムにおいては、本発明を適用する信号を送信する際には各端末がそれぞれ送信局として動作し、本発明を適用する信号を受信する際には各端末がそれぞれ受信局として動作する。
また、以下ではマルチキャリア通信方式として、各サブキャリアをシンボル単位で直交するような周波数に配置するOFDM方式を例に本発明の実施の形態について説明しているが、本発明はOFDM方式に限定されるものではなく、複数のサブキャリアを用いるマルチキャリア方式であれば適用可能である。
また以下ではサブキャリア数を例えば12に絞った図面を元に記載するが、本発明の適用はサブキャリア数に制限を受けず、いかなるサブキャリア数のシステムに対しても適用可能である。
また以下においてデータシンボル及び送信データと呼称する際のデータとは、例えば音声トラフィック又は画像・映像トラフィックなどのユーザデータだけを含むようにしてもよいし、ユーザデータに加えて制御信号を含むようにしてもよい。
また以下においてパイロットシンボルとは、伝搬路における位相及び振幅変動の推定等に用いられる固定パターンの信号を指す。例えば非特許文献1においてはReference signalと呼称される信号が相当する。
また以下においてパイロットシンボルの配置方法については適宜のものを採用することができる。その配置方法は、特に記載しないが、本発明においてはパイロットシンボルと同時刻のデータシンボルと、パイロットシンボルと同時刻ではないデータシンボルとが存在するようなパイロットシンボルの配置であればいかなる配置でもかまわない。例えば非特許文献1に示されているDownlink reference signalと同じ配置方法でよい。
また本発明において尤度とは受信信号から推定する値であり、送信信号が0であったと推定される確率と送信信号が1であったと推定される確率との比の対数値、あるいはその近似値であり、対数尤度比とも呼ばれる値を指す。
2.第1の実施の形態
2−1.信号配置
以下、本発明の第1の実施の形態について図面に基づいて説明する。
図5は、本発明の実施の形態における信号配置の模式図の一例である。縦軸がサブキャリア即ち周波数を、横軸がOFDMシンボル即ち時間を表し、個々の矩形が一つの変調シンボルを表す。灰色の矩形202がパイロットシンボルを表し、斜線付の矩形がパイロットシンボルと同時刻のデータシンボル212、白色の矩形がその他のパイロットシンボルと同時刻ではないデータシンボル201を表す。
本発明の信号配置では、受信信号の復号に最低限必要な信号を最も高い優先度でパイロットシンボルと同時刻ではないデータシンボル201に配置し、パイロットシンボルと同時刻ではないデータシンボル201に配置された信号だけでパンクチャド符号が構成されるように信号の選択及び配置を行う。
以下、パイロットシンボルと同時刻ではないデータシンボル201に配置可能な信号をM0ビット、パイロットシンボルと同時刻のデータシンボル212に配置可能な信号をM1ビット、誤り訂正符号化前の送信信号をN0ビット、誤り訂正符号化後の信号をN1ビットとする。例えば図5のシンボル配置で各シンボルの変調方式として1シンボルあたり2ビット通信可能なQPSKを用い、2スロットを1単位としてデータ配置を行う場合、パイロットシンボルと同時刻ではないデータシンボル201の数は120あるため、M0=240となる。同様に、パイロットシンボルと同時刻のデータシンボル212の数は40あるため、M1=80となる。
図14は、本発明の実施の形態における信号配置の条件分岐を表す図の一例を示す図である。
信号配置は図14に示すとおり、M0、M1、N0、N1の値間の関係によってそれぞれ以下の通りに行う。
A) N0 ≦ M0 ≦ N1 かつ M0+M1 ≦ N1の場合 : 誤り訂正符号化後の信号N1ビットからM0ビットを抜き出して符号化率N0/M0のパンクチャド符号を構成して、そのパンクチャド符号をパイロットシンボルと同時刻ではないデータシンボル201に配置する。さらに誤り訂正符号化後の信号のうちパイロットシンボルと同時刻ではないデータシンボル201に配置されなかった信号からM1ビットを抜き出し、パイロットシンボルと同時刻のデータシンボル212に配置する。なお、誤り訂正符号化後の信号N1ビットのうち、M0にもM1にも配置されなかった信号に関しては、そのまま廃棄しても良いし、例えばハイブリッドARQのような再送制御を行う場合に再送に用いる情報として優先的に選択してもよい。
B) N0 ≦ M0 ≦ N1 かつ M0+M1 > N1の場合 : 誤り訂正符号化後の信号N1ビットからM0ビットを抜き出して符号化率N0/M0のパンクチャド符号を構成して、そのパンクチャド符号をパイロットシンボルと同時刻ではないデータシンボル201に配置する。さらに誤り訂正符号化後の信号のうちパイロットシンボルと同時刻ではないデータシンボル201に配置されなかった信号全てをパイロットシンボルと同時刻のデータシンボル212に配置し、更に既にいずれかのデータシンボルに配置された信号からM0+M1−N1ビット分の信号を適宜の手法により選択してパイロットシンボルと同時刻のデータシンボル212に配置する。
C) M0 > N1 の場合 : 誤り訂正符号化後の信号N1ビットを全てパイロットシンボルと同時刻ではないデータシンボル201に配置する。さらに既にデータシンボルに配置された信号からM0−N1ビット分の信号を選択してパイロットシンボルと同時刻ではないデータシンボル201に、M1ビット分の信号を適宜の手法により選択してパイロットシンボルと同時刻のデータシンボル212に配置する。
D) M0 < N0 ≦ M0+M1 の場合 : 誤り訂正符号化後の信号N1ビットから符号化率N0/(M0+M1)の符号を構成し、パイロットシンボルと同時刻のデータシンボル212及びパイロットシンボルと同時刻ではないデータシンボル202に配置する。
E) M0+M1 < N0の場合 : 1単位の送信では受信不可能であり、再送制御等により複数回の送信データをまとめることで受信可能となる状態である。この場合には、x単位の送信で受信可能となる場合、x単位分の、パイロットシンボルと同時刻ではないデータシンボル201に配置可能なビット数をまとめてM0、x単位分の、パイロットシンボルと同時刻のデータシンボル212に配置可能なビット数をまとめてM1として扱い、上記A)、B)、C)、D)のいづれかの場合にあてはめる。例えば、2スロットを1単位として、2単位分(x=2)のデータ配置を行う場合、図5の例では、データシンボル201についてはM0=480、データシンボル212についてはN1=160となり、これらに基づき、上記A)、B)、C)、D)のいずれかの場合にあてはめてデータを配置する。
以上に示したようなデータの配置にて用いるパンクチャド符号の構成方法としては、簡単には例えば誤り訂正符号として組織符号を使用する際の組織ビットを優先的にパイロットシンボルと同時刻ではないデータシンボル201に割り当てる方法がある。
図7は無線通信において用いられる組織符号の一つであるターボ符号の符号化部の模式図である。ターボ符号化器では符号化前信号500は、直接組織ビット列501として出力される他に、再帰的畳込み符号化部511を通じて再帰的畳み込み符号化されたパリティビット列502及び、ターボインタリーバ510において順序の変換を行った後に再帰的畳込み符号化部512を通じて再帰的畳み込み符号化されたパリティ信号列503として出力される。
図7のターボ符号器を用いて符号化された信号に対して本発明を適用する場合、組織ビット列501を優先的にパイロットシンボルと同時刻ではないデータシンボル201に配置した後に、パリティビット列502及び503をパイロットシンボルと同時刻ではないデータシンボル201及びパイロットシンボルと同時刻のデータシンボル212に配置すれば良い。
なおここでは組織符号の例としてターボ符号を挙げたが、例えばLDPC符号のようなターボ符号とは異なる組織符号であっても同じ方法は適用可能である。また復号可能なパンクチャド符号を構成可能でさえあればこれとは異なるパンクチャド符号の構成方法を用いても良く、また誤り訂正符号として組織符号を用いる必要もない。
以上の信号配置によれば、他セルのパイロット信号由来の干渉によって品質劣化するパイロットシンボルと同時刻のデータシンボル212を用いずとも復号することが可能となるため、セル間干渉が存在する環境においても通信品質の低下を抑えることが出来る。
図15は、本発明の実施の形態における信号配置の模式図の別の一例である。縦軸がサブキャリア即ち周波数を、横軸がOFDMシンボル即ち時間を表し、個々の矩形が一つの変調シンボルを表す。灰色の矩形がパイロットシンボル202を表し、斜線付の矩形がパイロットシンボルと同時刻のデータシンボル212、白色の矩形がその他のパイロットシンボルと同時刻ではないデータシンボル201を表す。また一点鎖線の範囲は一つ目のチャネル範囲221であり、一点鎖線の範囲内のデータシンボルをあわせて一つのチャネルを構成することを表す。また破線の範囲は図中のチャネル範囲222であり、破線の範囲内のデータシンボルをあわせてもう一つのチャネルを構成することを表す。
図15の信号配置のように、データ配置を行う一つの単位内にそれぞれ別個に誤り訂正符号化を行う複数のチャネルを配置する場合には、それぞれのチャネルごとに図5の信号配置と同様の信号配置を行ってもよいし、例えば一つ目のチャネル範囲221は図5の信号配置と同様の信号配置を行わず、二つ目のチャネル範囲222についてのみ図5と信号配置と同様の信号配置を行っても良い。
なお、図15はデータ配置を行う単位内に2つのチャネルが配置される場合の例であるが、3以上のチャネルを配置する場合についても同様である。
図6は、本発明の実施の形態における信号配置の模式図の別の一例である。縦軸がサブキャリア即ち周波数を、横軸がOFDMシンボル即ち時間を表し、個々の矩形が一つの変調シンボルを表す。灰色の矩形がパイロットシンボル202を表し、斜線付の矩形がパイロットシンボルと同時刻のデータシンボル212、白色の矩形がその他のパイロットシンボルと同時刻ではないデータシンボル201を表す。また×印付の矩形は別のアンテナにてパイロット信号を送信する等により信号を送信しない無送信シンボル203であり、縦縞付の矩形は無送信シンボルと同時刻のデータシンボル213である。
図6の信号配置の場合には、パイロットシンボルと同時刻のデータシンボル212およびパイロットシンボルと同時刻ではないデータシンボル201に対する信号配置の方法は、図5の信号配置の場合と同様である。無送信シンボルと同時刻のデータシンボル213に関しては、上記パイロットシンボルと同時刻のデータシンボル212として扱っても良いし、或いは上記パイロットシンボルと同時刻ではないデータシンボル201として扱っても良い。
2−2.通信装置
以下、本発明における通信装置(送信局並びに受信局)の構成を図面に基づいて説明する。
図1は、本発明を適用する通信装置(無線局)における信号処理を表すブロック図である。
誤り訂正符号化部301は、例えばターボ符号や畳込み符号、リードソロモン符号、LDPC符号といった誤り訂正符号を用いて入力された送信情報に対する誤り訂正符号化を行い、インタリーブ部302に対して出力する。なお誤り訂正符号化部301では、誤り訂正符号化前に送信情報に対して例えばCRCのような誤り検出符号を付加しても良い。また誤り訂正符号化の前もしくは後に例えばPN符号を用いた信号のランダム化処理を行っても良い。
インタリーブ部302は、入力された信号に対して信号順序の入れ替えであるインタリーブ処理を行い、送信バッファ部303に出力する。送信バッファ部303は入力された信号を蓄積し、単位時間毎に送信する情報量に応じて多重化・マッピング部304に出力する。
なお誤り訂正符号化部301から送信バッファ部303までの処理は、例えば制御信号用のチャネル及び1ないし複数のデータ信号用のチャネルの信号を生成する場合や、あるいは複数のユーザに対する信号を生成する場合には、複数のブロックを並列に持って処理を行う事も可能であるし、1ないし複数のブロックを時多重により繰り返し使用することも可能である。
多重化・マッピング部304は、データシンボルに信号を配置するとともに、パイロットシンボルにパイロット信号を配置する。多重化・マッピング部304は入力された信号及びパイロット信号を、複数チャネルを用いる通信であれば複数チャネル分、複数ユーザの通信であれば複数ユーザ分、それぞれについて送信を行うサブキャリア及びシンボル時間に対応してマッピングを行って出力を行う。
図1の無線局が送信局である場合には、多重化・マッピング部304の出力の時点で上記ルールに従った信号配置が為されるようにマッピングを行う。上記ルールでは信号が配置されるサブキャリア及びシンボル時間と、誤り訂正符号化部301の出力との対応が関係付けられればよいため、その間のいずれの箇所にて上記ルールに従った配置が実装されてもよい。即ち、例えば誤り訂正符号化部301において組織符号を用いて符号化を行い、インタリーブ部302では組織ビットとパリティビットとをそれぞれ個別にインタリーブし、多重化・マッピング部304でそれら信号を上記ルールに従ってサブキャリア及びシンボル時間に割り当てても良い。また例えば多重化・マッピング部304におけるマッピングルールは固定とし、当該マッピングルールにてサブキャリア及びシンボル時間に信号を割り当てた際に上記ルールに従うように予めインタリーブ部302においてインタリーブを行っても良い。
シンボル変調部305は各サブキャリア及びシンボル時間毎に割りあてられた信号を、例えばBPSKやQPSK、8PSK、16QAM等のシンボル変調方式にて各サブキャリア及びシンボル時間毎に変調処理を行う。IFFT部306はシンボル変調部305から入力された信号を周波数軸に並べ、IFFT演算により時間領域信号に変換して出力する。
GI挿入部307は、図8の模式図のように、IFFT信号処理単位毎にIFFT演算後の時間領域信号の末尾一部をコピーして先頭に挿入するガードインターバル挿入処理を行い、RF部を通じて信号を無線周波数帯域の信号に変換して送信を行う。
タイミング検出部408は、RF部を通じてベースバンド帯域に変換された受信信号を用いて受信信号タイミングを検出してFFT部406に対して出力する。受信信号タイミングの検出手段としては、例えば受信信号と固定パターン信号との相互相関値を用いても良いし、IFFT単位だけ離れた受信信号自体の自己相関値を用いても良い。FFT部406は、RF部から入力された時間領域の信号に対して、タイミング検出部408から通知された受信タイミングを用いてIFFT単位に信号を切り分け、FFT処理を行って周波数領域の信号に変換して出力する。
伝搬路推定部407は、FFT部406から入力された信号に含まれるパイロット信号の位相及び振幅と、送信された固定パターンであるパイロット信号の位相及び振幅とを比較し、比較結果からサブキャリア及び時間毎の位相及び振幅の変動量を推定してシンボル復調部405に対して通知する。シンボル復調部405は、伝搬路推定部407から通知された位相及び振幅変動の推定値を用いてFFT部406から入力された信号の伝搬路における変動を補償し、またQPSKや16QAM等のシンボル変調された信号を復調してビット毎の尤度を導出して出力する。
信号分離部404はシンボル復調部405にて導出されたビットごとの尤度を例えばユーザ毎やチャネル毎に行う復号処理の単位毎に信号を抽出及び分離する。受信バッファ部403は復号処理の単位毎に信号分離部404の出力を保持し、復号を行う処理単位分の信号が蓄積されるとデインタリーブ部402に対して出力する。デインタリーブ部402では、送信時にインタリーブ部302においてなされた順序変換の逆変換に相当する順序変換であるデインタリーブ処理を行う。誤り訂正復号部401では、送信時に誤り訂正符号化部301にて用いた誤り訂正符号を用いて復号処理を行い、受信情報として出力する。また送信時に誤り訂正符号化部301において誤り訂正符号化の前もしくは後にランダム化処理が為されていた場合には、復号処理の後もしくは前にランダム化処理に対応する逆変換処理を行う。また送信時に誤り訂正符号化部301において誤り訂正符号化の前に誤り検出符号が付加されていた場合には、復号処理の後に誤り検出処理を行い、誤り検出結果を受信情報に付加して出力する。
なお受信バッファ部403から誤り訂正部401までの処理は、例えば制御信号用のチャネル及び1ないし複数のデータ信号用のチャネルの信号を受信する場合や、あるいは複数のユーザに対する信号を受信する場合には、複数のブロックを並列に持って処理を行う事も可能であるし、1ないし複数のブロックを時多重により繰り返し使用することも可能である。
また上記に記した信号処理の流れはあくまでも一例であり、送信時には最終的にRF部から出力される信号が同じ形であれば、受信時には誤り訂正復号部401から出力される信号が同じ形であれば、信号処理の流れ及び順序はどのような形であっても構わない。例えば上記例ではシンボル変調部305は多重化・マッピング部204の後に記しているが、シンボル変調部305をインタリーブ部302の直後とし、送信バッファ部303に蓄積する前にシンボル変調を行うような構成でも良い。
3.第2の実施の形態
第1の実施の形態では信号配置のみに着目した方法について記載したが、別の実施の形態として変調方法の変更によっても本発明の目的を達成可能である。
即ち図5の信号配置の場合、パイロットシンボルと同時刻ではないデータシンボル201において用いる変調方式に比べて、パイロットシンボルと同時刻のデータシンボル212に用いる変調方式を誤り耐性の強い方式とすることで、他セルのパイロットシンボルからの干渉によって生じる通信品質の低下を低減する事が出来る。
一般的に変調方式毎のシンボルあたりに伝送可能な最大ビット数が小さい変調方式ほど誤り耐性が強い。このため、例えばパイロットシンボルと同時刻ではないデータシンボル201において、1シンボルあたり最大6ビットの情報を伝送可能な64QAMを用いている場合に、パイロットシンボルと同時刻のデータシンボル212において1シンボルあたり最大4ビットの情報を伝送可能な16QAMを用いる事や、1シンボルあたり最大2ビットの情報を伝送可能なQPSKを用いる事により本目的を達成する事が出来る。
また他セルのパイロットシンボルに対する干渉を低減する為に、シンボル毎に大きなピーク電力が生じる事が無いよう、パイロットシンボルと同時刻のデータシンボル212においては振幅方向には情報を持たず、位相方向にのみ情報を持つBPSKやQPSK、8PSK等の変調方式を用いる事によっても、本目的を達成する事が出来る。
なお信号配置が図6の模式図に示すとおりである場合についても、第1の実施の形態の場合と同様にパイロットシンボルと同時刻のデータシンボル212およびパイロットシンボルと同時刻ではないデータシンボル201に対する変調方式の選択の方法は上記図5の変調方式の選択と同様である。無送信シンボルと同時刻のデータシンボル213に関しては、上記パイロットシンボルと同時刻のデータシンボル212として扱っても良いし、或いは上記パイロットシンボルと同時刻ではないデータシンボル201として扱っても良い。
以下、本実施の形態における通信装置(送信局並びに受信局)の構成を、図1のブロック図に基づいて説明する。信号の送信及び受信に係る図1のブロック図各部の動作については、基本的に第1の実施の形態にて記載の動作と同じである。
図1の通信装置(無線局)が本第2の実施の形態の送信局である場合には、シンボル変調部305においてパイロットシンボルと同時刻ではないデータシンボル201とパイロットシンボルと同時刻のデータシンボル212とで異なる変調方式を選択する。例えばパイロットシンボルと同時刻のデータシンボル212で用いる変調方式を、パイロットシンボルと同時刻ではないデータシンボル201で用いる変調方式に比べ、1シンボルあたりに伝送可能な最大ビット数が少ない変調方式を選択する。あるいは、パイロットシンボルと同時刻のデータシンボル212にて用いる変調方式として、振幅方式に情報を持たない例えばBPSKやQPSK、8PSKといった変調方式を選択する。なお、シンボル変調部305において複数のチャネル或いは複数のユーザに対する信号の処理を行う際には、チャネルごと或いは対象のユーザ毎に変調方式を個別に選択しても良い。
なお本実施の形態において示した方式は単独で用いる事ができる他、第1の実施の形態において記した方法と両方を同時に実施する事も可能である。
4.第3の実施の形態
第1の実施の形態及び第2の実施の形態に記載の方法は、送信電力の制御を追加する事で本発明の目的を更に効果的に達成する事が出来る。即ち第1の実施の形態もしくは第2の実施の形態記載の方法の一方もしくは両方を適用した上で、パイロットシンボルと同時刻のデータシンボル212の1シンボルあたりの送信電力を、パイロットシンボルと同時刻ではないデータシンボル201の1シンボルあたりの送信電力よりも小さくすることで、あるいはパイロットシンボルと同時刻のデータシンボル212のシンボルあたりの送信電力を0とすることでセル間干渉の影響を低減することが可能である。
一般に、一部の送信シンボルの電力を低下させる、或いは0とする事によって当該シンボルを含む受信信号を復号した際の品質は低下する。しかるに第1の実施の形態記載の信号配置を組み合わせる事によって復号品質の低下を軽減する事が出来る。また第2の実施の形態記載のようにパイロットシンボルと同時刻のデータシンボル212で用いる変調方式のシンボルあたりのビット数を小さくする事によっても、復号品質の低下を軽減する事が出来る。
更に一般的に一部の送信シンボルの電力を低下させる、或いは0とする場合にはどのシンボルの電力がどの変化したかの情報を送信局と受信局とで共有する必要がある。しかるに第2の実施の形態記載のようにパイロットシンボルと同時刻のデータシンボル212にて振幅方向に情報を持たない変調方式を用いる事により、送信局においてパイロットシンボルと同時刻のデータシンボル212の送信電力を低下させたか否か、或いはパイロットシンボルと同時刻のデータシンボル212の送信電力をどの程度低下させたかの情報を持たずとも受信局は信号の復調が可能である為、容易に送信電力を変更することが可能である。
なお信号配置が図6の模式図に示すとおりである場合についても、第1及び第2の実施の形態の場合と同様にパイロットシンボルと同時刻のデータシンボル212およびパイロットシンボルと同時刻ではないデータシンボル201に対する送信電力決定の方法は、上記図5の送信電力決定の方法と同様である。無送信シンボルと同時刻のデータシンボル213に関しては、上記パイロットシンボルと同時刻のデータシンボル212として扱っても良いし、或いは上記パイロットシンボルと同時刻ではないデータシンボル201として扱っても良い。
以下、本実施の形態における通信装置(送信局並びに受信局)の構成を図1のブロック図に基づいて説明する。信号の送信及び受信に係る図1のブロック図各部の動作については、基本的に第1の実施の形態にて記載の動作と同じである。
図1の通信装置(無線局)が本第3の実施の形態の送信局である場合には、シンボル変調部205においてパイロットシンボルと同時刻ではないデータシンボル201の信号振幅よりも、パイロットシンボルと同時刻のデータシンボル212の信号振幅を低下させる。あるいはシンボル変調部205において、パイロットシンボルと同時刻のデータシンボル212の信号振幅を0とする。なお、シンボル変調部305において複数のチャネル或いは複数のユーザに対する信号の処理を行う際には、チャネルごと或いは対象のユーザ毎に信号振幅を個別に選択しても良い。
また受信局において受信する信号が本第3の実施の形態の送信局が送信する信号である事が予め判明している場合には、図1の無線局が受信局である場合にはシンボル復調部305においてパイロットシンボルと同時刻のデータシンボル212の復調結果として求まる尤度を減少させる、あるいは0としても良い。復調結果として求まる尤度を減少させる処理としては、尤度に対して例えば0.5のような1よりも小さな係数を乗算する方法がある。対応するビットの尤度を0とする処理としては、同様に尤度に対して0を乗算する方法がある。
5.第3の実施の形態の変形例
上記第3の実施の形態の制御は、固定的に行うだけではなく条件をトリガにして実施する事も可能である。
図10は、本実施の形態の無線局における信号処理を表すブロック図の別の一例である。図10のブロック図は図1のブロック図に対して、干渉低減判定部310が追加されている点及びシンボル変調部305に対して干渉低減判定部310からの入力が追加されている点が異なっており、この2点以外の各部については以上の実施の形態にて示した通りの動作を行う。
図11は、本実施の形態におけるシンボル変調部305の処理の流れの一例である。シンボル変調部305では、処理P601から処理P605までのチャネル数及びユーザ数分の繰り返し処理を行う。繰り返し処理の内部では、まず、処理P602の干渉低減指示の判断処理として、干渉低減判定部310からの通知を判断し、干渉低減指示がOnであれば次の処理として処理P603に、干渉低減指示がOffであれば次の処理として処理P604にジャンプする。処理P603では、パイロットと同時刻のデータシンボル212の信号振幅を低下させる処理を行い次の処理P604に移行する。P604では、各サブキャリア及びシンボル時間毎に例えばQPSKや16QAMといった変調方式を用いてシンボル変調処理を行い、処理P604処理の終了をもって繰り返し処理の終了とする。
干渉低減判定部310は各チャネル及び各ユーザの信号に対して干渉低減のための電力制御が必要か否かの判定を行い、干渉低減指示Onもしくは干渉低減指示Offをシンボル変調部305に対して通知する。判定の条件としては、例えば自局の種別によって、自局がフェムトセルであればOnとする。また別の判定の条件としては、例えば信号の送信先局の種別によって、送信先局がフェムトセルであればOnとする。また別の判定の条件としては、例えば信号の送信先のユーザ種別によってOnとするユーザとOffとするユーザとを切り替える。また別の判定の条件としては、例えば信号のQoSによって、ベストエフォートタイプの通信の場合にOnとする。また別の判定の条件としては、例えば当該チャネルの送信電力の総量によって、総送信電力が大きなチャネルに対してOnとする。
図12は、本実施の形態の無線局における信号処理を表すブロック図の別の一例であり、本実施の形態の受信局を図12のブロック図のように構成することも可能である。図12のブロック図は図10のブロック図に対して、電力低下判定部409が追加されている点及びシンボル復調部405に対して電力低下判定部409からの入力が追加されている点が異なっており、この2点以外の各部については図10のブロック図の説明の通りの動作を行う。
図13は、本実施の形態における電力低下判定部409の処理の流れの例である。電力低下判定部409では、処理P611から処理P617までのチャネル数及びユーザ数分の繰り返し処理を行う。繰り返し処理の内部では、まず、処理P612において電力低下判定係数Cを決定する。電力低下判定係数Cは送信局におけるパイロットシンボルと同時刻のデータシンボル212の電力低下を判定するための非負の値である。係数Cが小さいほど電力低下を見逃す可能性が低下する一方で、送信局において電力低下がなされていないにもかかわらず電力低下されたと誤判定してしまう可能性が増加する。逆に係数Cが大きいほど誤判定の可能性は低下するものの電力低下を見逃す可能性が増加する。Cとして用いる値としては、例えば4等の値を固定的に用いても良い。また通信状況に応じて例えば通信状況の変動が小さく誤判定の可能性が低い場合には小さめの係数Cを選択するように適応的に変更しても良い。次いで処理P613においてチャネル内のパイロットシンボルのシンボルあたりの平均電力Prを導出する。平均電力Prの導出の際には、過去の値を用いた平均化を行っても良い。次いで処理P614において、チャネル内のパイロットシンボルと同時刻のデータシンボル212のシンボルあたりの平均電力Pdを導出する。
なお、図13では便宜上処理P612、処理P613、処理P614をこの順で記載しているが、これら処理はそれぞれ独立であるためどのような順序で実行しても良い。以上の処理の後、処理P615では平均電力Pdと係数Cとの積の値と平均電力Prの値との比較を行う。比較の結果、平均電力Prの方が大きい場合には次の処理として処理P616に、その他の場合には処理P617の繰り返し処理の終了にジャンプする。処理P616では、尤度低下指示をシンボル復調部405に通知する。処理P616の終了もしくは処理P615の分岐の結果によって繰り返し処理の終了となる。
この実施の形態においては、シンボル復調部405では電力低下判定部409からの尤度低下指示が通知された場合には該当するチャネル及びユーザのパイロットシンボルと同時刻のデータシンボル212に対応するビットの尤度を低下させる、或いは0とする処理を行う。対応するビットの尤度を低下させる処理としては、例えば尤度低下判定部409からの尤度低下指示が通知されない場合には尤度に対して係数1を乗算し、尤度低下判定部409からの尤度低下指示が通知された場合には尤度に対して1よりも小さな係数、例えば0.5、を乗算する方法がある。対応するビットの尤度を0とする処理としては、同様に尤度低下判定部409からの尤度低下指示が通知された場合には尤度に対して0を乗算する方法がある。
6.通信装置の他の構成
なお、以上の構成図では信号処理のブロック毎に説明したが、実際にはそれぞれが独立した実体を持つ必要は無く、汎用の処理モジュールを用いて各ブロックの動作を実現する実装でも良い。
例えば、図9は、DSPやCPUを主体とした送受信機実装例の模式図である。
ブロック701はCPU及びDSPモジュールであり、各上記実施の形態にて示した信号処理演算及び信号処理の制御を行う。ブロック702はメモリモジュールであり、処理中及び処理前後の送信信号及び受信信号や、信号処理に用いるテーブル類を保持する。ブロック703は論理回路モジュールであり、CPU/DSP701と同様に各上記実施の形態にて示した信号処理演算及び信号処理の制御を行う。ブロック704はインタフェースモジュールであり、制御信号や信号処理前の送信信号、信号処理後の受信信号の入出力を行う。ブロック705はRFモジュールであり、送信信号に対しては無線周波数帯域の信号に変換してアンテナを経由して送信を行い、受信信号に対してはアンテナを介して受信した信号をベースバンド帯域の信号に変換する。バス706は、上記各モジュールを接続する。
第1から第4の実施の形態にて示した各処理ブロックにおける信号処理演算及び信号処理の制御それぞれは、CPU/DSPモジュール701におけるプログラムと論理回路モジュール703における演算回路との一方もしくは両方及び必要であればメモリモジュール702を用いて行われる。
なお、図9は最も単純な実装例であり各モジュール一つずつを記載しているが、各モジュール及びバスはそれぞれ必ずしも単一である必要は無い。例えば複数のCPU/DSPモジュール701があっても良く、また複数のバス706があっても良い。またバス706が複数ある場合には、必ずしもすべてのバスが全てのモジュールと接続している必要は無く、例えば全てのモジュールと接続しているバスの他に、メモリモジュール702と論理回路モジュール703とのみを接続するバスがあっても良い。
本発明は、上述した以外にも様々な各種マルチキャリア通信方式、変調方式等に適用することができる。

Claims (12)

  1. 符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための信号配置方法であって、
    N0ビットの送信信号を誤り訂正符号化してN1ビットの信号を生成し、
    パイロットシンボルと同時刻でない複数の第1のデータシンボルに配置可能な信号がM0ビット、パイロットシンボルと同時刻の複数の第2のデータシンボルに配置可能な信号がM1ビットであるとき、
    (i)N0≦M0≦N1の場合、
    誤り訂正符号化後の信号N1ビットから誤り訂正符合化前のN0ビットの送信信号の復号に最低限必要なM0ビットを抜き出して符号化率N0/M0のパンクチャド符号を構成して、該パンクチャド符号を前記複数の第1のデータシンボルに配置し、さらに、誤り訂正符号化後の信号のうち前記複数の第1のデータシンボルに配置されなかった信号の一部又は全てのビットを、前記複数の第2のデータシンボルに配置し、
    (ii)M0>N1の場合、
    誤り訂正符号化後の信号N1ビットを全て前記複数の第1のデータシンボルに配置し、
    (iii)M0<N0≦M0+M1の場合、
    誤り訂正符号化後の信号N1ビットから符号化率N0/(M0+M1)の符号を構成し、前記複数の第1のデータシンボル及び前記複数の第2のデータシンボルに配置する
    ことを特徴とする信号配置方法。
  2. 請求項1に記載の信号配置方法であって、
    i−1) N0≦M0≦N1かつM0+M1≦N1の場合、誤り訂正符号化後の信号N1ビットのうち、前記複数の第1のデータシンボルにも前記複数の第2のデータシンボルにも配置されなかった信号を、そのまま廃棄する、又は、再送に用いる情報として優先的に選択及び/又は記憶し、
    i−2) N0≦M0≦N1かつM0+M1>N1の場合、更に既に前記複数の第1のデータシンボル又は前記複数の第2のデータシンボルのいずれかに配置された信号からM0+M1−N1ビット分の信号を選択して前記複数の第2のデータシンボルに配置する
    ことを特徴とする信号配置方法。
  3. 請求項1に記載の信号配置方法であって、
    (ii) M0>N1の場合、さらに既に前記複数の第1のデータシンボルに配置された信号から、M0−N1ビット分の信号を選択して前記複数の第1のデータシンボルに、M1ビット分の信号を選択して前記複数の第2のデータシンボルに配置することを特徴とする信号配置方法。
  4. 請求項1に記載の信号配置方法であって、
    (iv)M0+M1<N0の場合、信号がx単位(x≧2)の送信で受信可能となる場合、x単位分の前記複数の第1のデータシンボルに配置可能なビット数をまとめてM0、x単位分の前記複数の第2のデータシンボルに配置可能なビット数をまとめてM1として扱い、上記(i)、(ii)、(iii)のいずれかの場合にあてはめて信号を配置することを特徴とする信号配置方法。
  5. 請求項1に記載の信号配置方法であって、
    さらに、マトリクス上に、信号を送信しない複数の無送信シンボルを配置し、
    前記複数の無送信シンボルと同時刻の複数の第3のデータシンボルに関しては、前記複数の第2のデータシンボルとして扱う、または、前記複数の第1のデータシンボルとして扱うことを特徴とする信号配置方法。
  6. 請求項1に記載の信号配置方法であって、
    パイロット信号と同時刻のデータシンボルに用いる変調方式の1シンボルあたりに伝送可能な最大伝送ビット数が、パイロット信号と同時刻でないデータシンボルに用いる変調方式の1シンボルあたりに伝送可能な最大伝送ビット数よりも少なくしたことを特徴とする信号配置方法。
  7. 請求項1に記載の信号配置方法であって、
    パイロットシンボルと同時刻でないデータシンボルにおいては、振幅方向及び位相方向に情報を持つ変調方式を用い、
    パイロットシンボルと同時刻のデータシンボルにおいては振幅方向には情報を持たず、位相方向にのみ情報を持つ変調方式を用いる
    ことを特徴とする信号配置方法。
  8. 請求項1に記載の信号配置方法であって、
    前記第2のデータシンボルの送信電力又は振幅を、前記第1のデータシンボルの送信電力又は振幅よりも小さくすることで、または、前記第2のデータシンボルの送信電力又は振幅を0とすることを特徴とする信号配置方法。
  9. 請求項に記載の信号配置方法であって、
    干渉低減のための電力制御が必要であることを示す干渉低減指示に従い、前記複数の第2のデータシンボルの信号振幅を低下させること又は0とすることを特徴とする信号配置方法。
  10. 請求項に記載の信号配置方法であって、
    前記複数の第2のデータシンボルの復調結果として求められる尤度を低下させるまたは0とすることを特徴とする信号配置方法。
  11. 請求項に記載の信号配置方法であって、
    パイロットシンボルの電力と、前記第2のデータシンボルの電力とを比較し、その比較結果に従い尤度低下指示を通知し、シンボル復調処理において、前記尤度低下指示に従い、該当するチャネル及び/又はユーザーの前記第2のデータシンボルに対応するビットの尤度を低下させる又は0とすることを特徴とする信号配置方法。
  12. 請求項11に記載の信号配置方法であって、
    電力低下判定係数Cを、送信局における前記複数の第2のデータシンボルの電力低下を判定するための非負の値である予め定められた係数とし、平均電力Prを、チャネル内のパイロットシンボルのシンボルあたりの平均電力とし、平均電力Pdを、チャネル内の前記複数の第2のデータシンボルのシンボルあたりの平均電力としたとき、
    平均電力Pdと予め定められた電力低下判定係数Cとの積の値と、平均電力Prの値との比較を行い、比較の結果、平均電力Prの方が大きい場合に、前記尤度低下指示を通知することを特徴とする信号配置方法。
JP2010544036A 2008-12-22 2009-12-18 信号配置方法及び通信装置 Expired - Fee Related JP5377516B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010544036A JP5377516B2 (ja) 2008-12-22 2009-12-18 信号配置方法及び通信装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008325929 2008-12-22
JP2008325929 2008-12-22
PCT/JP2009/071130 WO2010073987A1 (ja) 2008-12-22 2009-12-18 信号配置方法及び通信装置
JP2010544036A JP5377516B2 (ja) 2008-12-22 2009-12-18 信号配置方法及び通信装置

Publications (2)

Publication Number Publication Date
JPWO2010073987A1 JPWO2010073987A1 (ja) 2012-06-14
JP5377516B2 true JP5377516B2 (ja) 2013-12-25

Family

ID=42287597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010544036A Expired - Fee Related JP5377516B2 (ja) 2008-12-22 2009-12-18 信号配置方法及び通信装置

Country Status (4)

Country Link
US (1) US8630313B2 (ja)
EP (1) EP2381602B1 (ja)
JP (1) JP5377516B2 (ja)
WO (1) WO2010073987A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8937875B2 (en) * 2009-03-16 2015-01-20 Panasonic Intellectual Property Corporation Of America Radio reception apparatus, radio transmission apparatus, and radio communication method
JP5280384B2 (ja) * 2010-01-28 2013-09-04 Kddi株式会社 無線基地局装置及び無線通信方法
JP2012034211A (ja) * 2010-07-30 2012-02-16 Panasonic Corp 基地局装置及び送信電力制御方法
EP2690812B1 (en) * 2012-07-25 2016-02-24 Mitsubishi Electric R&D Centre Europe B.V. Method and device for performing channel estimation and equalization for an optical OFDM signal
JP6848879B2 (ja) * 2015-11-19 2021-03-24 ソニー株式会社 装置、方法及びプログラム
US10721052B2 (en) 2017-02-28 2020-07-21 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
CN110838889B (zh) * 2018-08-16 2022-06-24 海能达通信股份有限公司 编码方法、解码方法、发送终端和接收终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138753A1 (ja) * 2006-05-31 2007-12-06 Hitachi Communication Technologies, Ltd. マルチキャリア通信における符号化信号配置方法及び通信装置
JP2007329588A (ja) * 2006-06-06 2007-12-20 Fujitsu Ltd 送信機及び送信方法
JP2008160822A (ja) * 2006-11-30 2008-07-10 Matsushita Electric Ind Co Ltd 無線送信装置、無線受信装置、無線送信方法、及び、無線受信方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6947748B2 (en) * 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
JP4323985B2 (ja) * 2003-08-07 2009-09-02 パナソニック株式会社 無線送信装置及び無線送信方法
JP4041087B2 (ja) * 2004-03-31 2008-01-30 株式会社東芝 通信装置および通信方法
US7457231B2 (en) * 2004-05-04 2008-11-25 Qualcomm Incorporated Staggered pilot transmission for channel estimation and time tracking
KR100698770B1 (ko) * 2005-03-09 2007-03-23 삼성전자주식회사 광대역 무선통신시스템에서 시공간 부호화 데이터의 부반송파 사상 장치 및 방법
JP4640844B2 (ja) 2007-01-09 2011-03-02 株式会社エヌ・ティ・ティ・ドコモ 送信装置、送信方法及び通信システム
US8315660B2 (en) * 2007-02-14 2012-11-20 Qualcomm Incorporated User power offset estimation using dedicated pilot tones for OFDMA
US8411732B2 (en) * 2007-03-21 2013-04-02 Qualcomm Incorporated Fast square root algorithm for MIMO equalization
US7804893B2 (en) * 2007-04-26 2010-09-28 Broadcom Corporation Feedback of reinterleaved correctly decoded data block to decoder for use in additional channel decoding operations of channel coded word containing data block

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138753A1 (ja) * 2006-05-31 2007-12-06 Hitachi Communication Technologies, Ltd. マルチキャリア通信における符号化信号配置方法及び通信装置
JP2007329588A (ja) * 2006-06-06 2007-12-20 Fujitsu Ltd 送信機及び送信方法
JP2008160822A (ja) * 2006-11-30 2008-07-10 Matsushita Electric Ind Co Ltd 無線送信装置、無線受信装置、無線送信方法、及び、無線受信方法

Also Published As

Publication number Publication date
EP2381602B1 (en) 2015-12-16
US8630313B2 (en) 2014-01-14
US20110255519A1 (en) 2011-10-20
JPWO2010073987A1 (ja) 2012-06-14
EP2381602A1 (en) 2011-10-26
EP2381602A4 (en) 2014-04-30
WO2010073987A1 (ja) 2010-07-01

Similar Documents

Publication Publication Date Title
US10250428B2 (en) Transmitter and receiver and methods of transmitting and receiving
US11930505B2 (en) Communication method and communication apparatus
KR100925439B1 (ko) 물리 하이브리드 arq 지시 채널 매핑 방법
JP4125712B2 (ja) 直交周波数分割多重方式を使用する通信システムでの適応変調及びコーディングを制御するための装置及び方法
US7746758B2 (en) Orthogonal-Frequency-Division-Multiplex-Packet-Aggregation (OFDM-PA) for wireless network systems using error-correcting codes
JP6227135B2 (ja) データスクランブリングプロシージャのためのシステムおよび方法
US8792359B2 (en) Communication system, transmitting device, receiving device, transmission method, and communication method
US8619917B2 (en) Decoding apparatus and method of terminal in wireless communication system
JP5377516B2 (ja) 信号配置方法及び通信装置
US20060101168A1 (en) Apparatus and method for allocating data bursts in a broadband wireless communication system
RU2538180C2 (ru) Способ передачи управляющего сообщения по восходящей линии связи
US20110103338A1 (en) Method and Devices for Providing Enhanced Signaling
WO2010039013A2 (en) Symbol-level random network coded cooperation with hierarchical modulation in relay communication
WO2009099308A2 (en) Method for transmitting control information in wireless communication system
WO2015062557A1 (en) Method for channel quality report
RU2739589C2 (ru) Устройство базовой станции, терминальное устройство и способ связи
JP4153452B2 (ja) マルチキャリア適応変調通信システムとその送受信装置
WO2015197376A1 (en) Multiple access scheme
KR100980275B1 (ko) 프레임 제어 헤더 디코딩 장치
KR20080111918A (ko) 직교주파수분할다중접속 시스템에서 ack/nack 신호전송 장치 및 방법
WO2007051191A1 (en) In-band rate control for an orthogonal frequency division multiple access communication system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees