JP5373218B1 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP5373218B1
JP5373218B1 JP2013089376A JP2013089376A JP5373218B1 JP 5373218 B1 JP5373218 B1 JP 5373218B1 JP 2013089376 A JP2013089376 A JP 2013089376A JP 2013089376 A JP2013089376 A JP 2013089376A JP 5373218 B1 JP5373218 B1 JP 5373218B1
Authority
JP
Japan
Prior art keywords
ultrasonic
tube
fluid
tubular body
ultrasonic beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013089376A
Other languages
Japanese (ja)
Other versions
JP2014215040A (en
Inventor
貴史 阿部
俊朗 小林
祐二 高橋
正樹 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP2013089376A priority Critical patent/JP5373218B1/en
Application granted granted Critical
Publication of JP5373218B1 publication Critical patent/JP5373218B1/en
Priority to PCT/JP2014/057880 priority patent/WO2014174956A1/en
Publication of JP2014215040A publication Critical patent/JP2014215040A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/7082Measuring the time taken to traverse a fixed distance using acoustic detecting arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

【課題】超音波振動子の面と直交する方向に超音波ビームを発信し、曲面反射体を有するビーム伝達体を介して管体の円周上に超音波ビームを集束し測定精度を向上させる。
【解決手段】管体11から離隔し中心部に孔が開けられた円板状の超音波振動子12Aから出射された平行束の超音波ビームBは、ビーム伝達体12Bに形成された凹曲反射部12Cで反射し、管体11の外周の周囲に円環状に集束される。ビーム伝達体12Bは管体11の外周を取り囲むように配置されているので、超音波ビームは管体11の円周上から管体11内の流体Fに伝搬し、流体Fに大きな超音波振動エネルギを伝達させることが可能となる。超音波ビームBは一円周上から管体11内に入射し、超音波ビームBは流体F中を伝播して他方の超音波送受信器12、12’に送信される。
【選択図】図2
An ultrasonic beam is transmitted in a direction orthogonal to the surface of an ultrasonic transducer, and the ultrasonic beam is focused on the circumference of a tube through a beam transmission body having a curved reflector to improve measurement accuracy. .
A parallel bundle of ultrasonic beams B emitted from a disk-shaped ultrasonic transducer 12A that is spaced apart from a tube 11 and has a hole in the center is a concave curve formed in a beam transmission body 12B. The light is reflected by the reflecting portion 12 </ b> C and converged in an annular shape around the outer periphery of the tubular body 11. Since the beam transmission body 12B is disposed so as to surround the outer periphery of the tube body 11, the ultrasonic beam propagates from the circumference of the tube body 11 to the fluid F in the tube body 11, and a large ultrasonic vibration occurs in the fluid F. It becomes possible to transmit energy. The ultrasonic beam B enters the tube body 11 from one circumference, and the ultrasonic beam B propagates through the fluid F and is transmitted to the other ultrasonic transceivers 12 and 12 ′.
[Selection] Figure 2

Description

本発明は、管体中を流れる流体の流量を測定する超音波流量計に関するものである。   The present invention relates to an ultrasonic flowmeter that measures the flow rate of a fluid flowing in a tubular body.

従来のクランプオン式超音波流量計においては、超音波送受信器を管体の外側に取り付けて超音波ビームを管体内に送受信して流量測定を行うため、超音波送受信器が接液することがなく、既存の管体に後から超音波流量計を構成できる利点がある。しかし、このクランプオン式超音波流量計では、一対の超音波送受信器を管体に対して斜めに取り付け、管体内を超音波ビームを伝播させる必要がある。   In a conventional clamp-on type ultrasonic flowmeter, an ultrasonic transmitter / receiver is attached to the outside of a tube and an ultrasonic beam is transmitted / received into the tube to measure the flow rate. In addition, there is an advantage that an ultrasonic flow meter can be configured later on an existing tube body. However, in this clamp-on type ultrasonic flowmeter, it is necessary to attach a pair of ultrasonic transmitters / receivers obliquely with respect to the tubular body and propagate the ultrasonic beam through the tubular body.

このような方式では、管体に対して斜めに超音波ビームを送受信することで、管体内全体を通過する流量を推定して求めるために、流速分布の影響を受けて正確な測定がなかなか難しい。更に、管体の直径が小さくなると表面の曲率が小さくなり、管体に対して正確に斜めに超音波ビームを送受信することが困難であり、また信号伝搬距離も短くなって、時間差方式の測定において分解能が低下するという問題点がある。   In such a method, an ultrasonic beam is transmitted / received obliquely with respect to the tubular body, and the flow rate passing through the entire tubular body is estimated and obtained, so accurate measurement is difficult due to the influence of the flow velocity distribution. . Furthermore, as the diameter of the tube decreases, the curvature of the surface decreases, making it difficult to transmit and receive an ultrasonic beam accurately and obliquely to the tube, and also shortening the signal propagation distance, so that the time difference measurement is performed. There is a problem that the resolution is lowered.

そこで、この問題を回避するために、特許文献1には、図5に示すように管体1の周囲に配置し中央に孔が開けられた円板状の超音波振動子2を用いて、管体1の円周全体から超音波ビームを打ち込む方法が開示されている。この方法では、管体1内の流速分布の影響を受けることもなく、曲率の小さな管体1の表面からでも超音波ビームの送受信を容易に行うことができる利点がある。しかし、この方法ではリング状の超音波振動子の直径方向の振動モードの超音波ビームを利用することになるため、低周波数の超音波ビームしか利用できず、測定の分解能を上げることができない欠点がある。   Therefore, in order to avoid this problem, Patent Document 1 uses a disk-shaped ultrasonic vibrator 2 that is arranged around the tube 1 and has a hole in the center as shown in FIG. A method of driving an ultrasonic beam from the entire circumference of the tube 1 is disclosed. This method has an advantage that the ultrasonic beam can be easily transmitted and received even from the surface of the tube 1 having a small curvature without being affected by the flow velocity distribution in the tube 1. However, since this method uses an ultrasonic beam in the vibration mode in the diameter direction of the ring-shaped ultrasonic transducer, only the low-frequency ultrasonic beam can be used, and the measurement resolution cannot be increased. There is.

また、測定の時間分解能を向上させるためには、円板状の超音波振動子の厚み方向の振動モードの超音波パルスを管体の外周全体から管体内に打ち込む必要がある。そこで、特許文献2、3には図6に示すような超音波振動子3のコーン状のビーム伝達体(シュー)4を用いて、管体1内に超音波ビームを打ち込む方法が開示されている。この方法は、超音波振動子3の厚み方向の振動モードを利用するため、高い周波数の超音波ビームを利用できる利点がある。   In order to improve the time resolution of the measurement, it is necessary to drive an ultrasonic pulse in the vibration mode in the thickness direction of the disk-shaped ultrasonic transducer from the entire outer periphery of the tube. Therefore, Patent Documents 2 and 3 disclose a method of driving an ultrasonic beam into the tube 1 using a cone-shaped beam transmission body (shoe) 4 of the ultrasonic transducer 3 as shown in FIG. Yes. Since this method uses the vibration mode in the thickness direction of the ultrasonic transducer 3, there is an advantage that an ultrasonic beam having a high frequency can be used.

特開平11−264750号公報JP-A-11-264750 米国特許第7360448号公報U.S. Pat. No. 7,360,448 特許第4233445号公報Japanese Patent No. 4233445

しかし、このコーン状の超音波ビーム伝達体4は、対となる相手側の超音波送受信器に向けて同軸方向で信号の方向を絞ってゆく構造となる。従って、ビーム伝達体4と外部の界面であるコーンの外形面で反射して管体1に至る超音波ビームの伝搬経路は1個所ではなく、複数個所に拡散されて出射してゆくことになる。   However, the cone-shaped ultrasonic beam transmission body 4 has a structure in which the direction of the signal is narrowed in the coaxial direction toward the counterpart ultrasonic transmitter / receiver. Therefore, the propagation path of the ultrasonic beam that is reflected by the outer surface of the cone, which is the interface between the beam transmission body 4 and the outside, and reaches the tube 1 is diffused and emitted to a plurality of places instead of one place. .

従って、超音波ビームは分散されて伝達するため、単位面積辺りのエネルギ強度が弱くなるだけでなく、超音波ビームのビーム伝達体4から管体1内の流体への伝搬位置の正確な特定が困難になる。管体1に対する超音波ビームの打ち込み位置、取り込み位置が正確に特定できないと、超音波ビームの伝達経路長が正確に決められないという問題点がある。   Accordingly, since the ultrasonic beam is distributed and transmitted, not only the energy intensity per unit area is weakened, but also the accurate specification of the propagation position of the ultrasonic beam from the beam transmission body 4 to the fluid in the tube 1 is possible. It becomes difficult. There is a problem in that the transmission path length of the ultrasonic beam cannot be determined accurately unless the ultrasonic beam driving position and the capturing position for the tube 1 can be accurately specified.

このように、特許文献2、3のようなコーン状の超音波ビーム伝達体4を用いて管体1内の流体に超音波ビームを伝えようとすると、超音波ビームが拡散し、超音波流量計の高精度化を妨げるという問題がある。超音波ビームが拡散すると、受信信号が弱くなって信号のSN比も悪くなり、測定精度が悪くなる一因となる。   As described above, when the ultrasonic beam is transmitted to the fluid in the tube body 1 using the cone-shaped ultrasonic beam transmission body 4 as in Patent Documents 2 and 3, the ultrasonic beam diffuses and the ultrasonic flow rate is increased. There is a problem that the high accuracy of the meter is hindered. When the ultrasonic beam is diffused, the received signal is weakened, the signal-to-noise ratio of the signal is also deteriorated, and the measurement accuracy is deteriorated.

本発明の目的は、上述の課題を解消し、超音波振動子の面と直交する方向に超音波ビームを発信し、凹面反射部を有するビーム伝達体を介して管体の一円周上に超音波ビームを集束し、高精度な測定が可能な超音波流量計を提供することにある。 An object of the present invention is to solve the above-mentioned problems, transmit an ultrasonic beam in a direction orthogonal to the surface of the ultrasonic transducer, and pass on a circumference of a tubular body via a beam transmission body having a concave reflecting portion. An object of the present invention is to provide an ultrasonic flowmeter that can focus an ultrasonic beam and perform highly accurate measurement.

上記目的を達成するための本発明に係る超音波流量計は、流体が流れる管体の上流側と下流側のそれぞれの外周に少なくとも2つの超音波送受信器を配置し、一方の前記超音波送受信器から前記管体内の流体中に超音波ビームを発信し他方の前記超音波送受信器により受信し、前記超音波ビームが上流側から下流側に伝搬する時間と下流側から上流側に伝搬する時間差から前記管体内の流体の速度を求め、前記管体内を流れる流量を求める時間差方式の超音波流量計において、前記超音波送受信器は、中央に孔を開けた円板状の超音波振動子を前記管体の周囲に厚み方向が前記管体の長さ方向と平行になるように配置し、前記超音波振動子と前記管体との間に、前記超音波ビームを略直交方向に屈曲すると共に集束機能を有する凹曲反射部を備えたビーム伝達体を前記管体を取り囲むように配置し、前記超音波振動子で発信した前記超音波ビームを前記ビーム伝達体を介して前記管体の一円周上に集束させて前記管体内に出射し、また到達した前記超音波ビームを前記管体の一円周上から入射し、前記ビーム伝達体を介して前記超音波振動子で受信することを特徴とする。 In order to achieve the above object, an ultrasonic flowmeter according to the present invention includes at least two ultrasonic transmitters / receivers disposed on the outer circumferences of an upstream side and a downstream side of a tubular body through which a fluid flows, The time difference between the time when the ultrasonic beam is transmitted from the upstream side to the downstream side and the time when the ultrasonic beam is transmitted from the upstream side to the downstream side is transmitted by the other ultrasonic transmitter / receiver. In the time difference type ultrasonic flowmeter for obtaining the flow velocity of the fluid in the tubular body and obtaining the flow rate flowing in the tubular body, the ultrasonic transceiver includes a disk-shaped ultrasonic vibrator having a hole in the center. The tube is arranged around the tube so that the thickness direction is parallel to the length of the tube, and the ultrasonic beam is bent in a substantially orthogonal direction between the ultrasonic transducer and the tube. And a concave reflector with a focusing function The example was beam transmitting members arranged to surround the tube body, the tube body said the originated by the ultrasonic transducer an ultrasound beam is focused on one circumference of the tubular body through said beam transmission body The ultrasonic beam that has exited and reached is incident from one circumference of the tubular body, and is received by the ultrasonic transducer via the beam transmission body .

本発明に係る超音波流量計によれば、管体の一円周上に超音波振動子からの超音波ビームを集束させ、また到達した超音波ビームを一円周上から超音波振動子に導くことによって、超音波ビームの拡散を防ぎ、伝搬経路長を明確にし、更に超音波ビーム信号のSN比を改善できることにより測定精度が向上する。 According to the ultrasonic flowmeter of the present invention, the ultrasonic beam from the ultrasonic transducer is focused on one circumference of the tubular body, and the reached ultrasonic beam is fed from one circumference to the ultrasonic transducer. By guiding, the diffusion of the ultrasonic beam can be prevented, the propagation path length can be clarified, and the SN ratio of the ultrasonic beam signal can be improved, thereby improving the measurement accuracy.

超音波流量計の実施例1の斜視図である。It is a perspective view of Example 1 of an ultrasonic flowmeter. 超音波ビームの伝播経路の説明図である。It is explanatory drawing of the propagation path of an ultrasonic beam. 超音波送受信器の断面図である。It is sectional drawing of an ultrasonic transceiver. 実施例2の超音波ビームの伝播経路の説明図である。It is explanatory drawing of the propagation path of the ultrasonic beam of Example 2. FIG. 従来例の構成図である。It is a block diagram of a prior art example. 他の従来例の構成図である。It is a block diagram of another prior art example.

本発明を図1〜図4に図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiment shown in FIGS.

図1は実施例1の斜視図であり、図2はビーム伝達体内の超音波ビームの伝播経路の説明図である。   FIG. 1 is a perspective view of the first embodiment, and FIG. 2 is an explanatory view of a propagation path of an ultrasonic beam in the beam transmission body.

直管状の管体11の上流側と下流側に、所定の間隔をおいて超音波送受信器12、12’が配置されている。これらの超音波送受信器12、12’には、管体11から離隔し中心部に孔が開けられた円板状の超音波振動子12Aが使用されている。超音波振動子12Aと管体11との間に円環状の超音波ビーム伝達体12Bが配置され、超音波ビームのビーム伝達体12Bの内周面は管体11の表面に密着されている。これらの超音波送受信器12、12’からはそれぞれリード線が引き出され、図示しない測定回路に接続されている。   Ultrasonic transmitters / receivers 12 and 12 ′ are arranged at a predetermined interval on the upstream side and the downstream side of the straight tubular body 11. These ultrasonic transmitters / receivers 12 and 12 ′ use a disk-shaped ultrasonic transducer 12 </ b> A that is separated from the tube 11 and has a hole in the center. An annular ultrasonic beam transmission body 12B is disposed between the ultrasonic transducer 12A and the tube body 11, and the inner peripheral surface of the ultrasonic beam transmission body 12B is in close contact with the surface of the tube body 11. Lead wires are drawn out from the ultrasonic transceivers 12 and 12 ', respectively, and connected to a measurement circuit (not shown).

超音波振動子12Aで発生し出射された平行束の超音波ビームBは、ビーム伝達体12Bに形成された凹曲反射部12Cで反射し、管体11の外周の周囲に円環状に集束されるようになっている。また、超音波送受信器12、12’を受信器として使用する際には、管体11から超音波振動子12Aに戻る超音波ビームBは反対の経路を通ることになる。   The parallel bundle of ultrasonic beams B generated and emitted by the ultrasonic transducer 12A is reflected by the concave reflecting portion 12C formed on the beam transmission body 12B, and is focused in an annular shape around the outer periphery of the tube body 11. It has become so. Further, when the ultrasonic transceivers 12 and 12 'are used as receivers, the ultrasonic beam B returning from the tubular body 11 to the ultrasonic transducer 12A passes through the opposite path.

一般に、超音波振動子12Aは電圧を印加する方向に最も大きな振動エネルギを生じさせる。超音波振動子12Aは面と直交する軸線方向に伸縮するので、ビーム伝達体12Bの凹曲反射部12Cを介して超音波ビームBを管体11の長手方向と略直交方向に屈曲して伝達させることができる。また、ビーム伝達体12Bは管体11の外周を取り囲むように配置されているので、超音波ビームは管体11の一円周上から管体11内の流体Fに伝搬し、流体Fに大きな超音波振動エネルギを伝達させることが可能となる。 In general, the ultrasonic transducer 12A generates the largest vibration energy in the direction in which a voltage is applied. Since the ultrasonic transducer 12A expands and contracts in the axial direction orthogonal to the surface, the ultrasonic beam B is bent and transmitted in a direction substantially orthogonal to the longitudinal direction of the tube body 11 via the concave reflection portion 12C of the beam transmission body 12B. Can be made. In addition, since the beam transmission body 12B is arranged so as to surround the outer periphery of the tube body 11, the ultrasonic beam propagates from the circumference of the tube body 11 to the fluid F in the tube body 11, and is large in the fluid F. It is possible to transmit ultrasonic vibration energy.

凹曲反射部12Cは球面、楕円面、放物面等の超音波振動子12Aからの超音波ビームBの平行束を、管体11の外周面に集束できる機能を有していればよく、ビーム伝達体12Bの外表面を目的の曲面に形成し、超音波ビームBは凹曲反射部12Cの内面で全反射するようにされている。なお、これらの凹曲反射部12Cは、平面である多数の反射部を組合わせて、全体として多面体による凹曲面を構成することもできる。   The concave reflecting portion 12C only needs to have a function of focusing a parallel bundle of ultrasonic beams B from the ultrasonic transducer 12A such as a spherical surface, an elliptical surface, a paraboloid, etc. on the outer peripheral surface of the tubular body 11, The outer surface of the beam transmission body 12B is formed into a target curved surface, and the ultrasonic beam B is totally reflected by the inner surface of the concave reflection part 12C. In addition, these concave curved reflection parts 12C can also comprise the concave curved surface by a polyhedron as a whole by combining many reflective parts which are planes.

このようにして、超音波送受信器12、12’の超音波振動子12Aから発信された超音波ビームBは、ビーム伝達体12Bを経て一円周上から管体11内に出射し、超音波ビームBは流体F中を伝播して他方の超音波送受信器12’、12に送信される。一方、管体11中の超音波ビームBを受信する際にも、管体11の一円周上からビーム伝達体12Bに入射した超音波ビームBはビーム伝達体12B内で平行束とされ、超音波振動子12Aにより受信されることになる。 In this way, the ultrasonic beam B transmitted from the ultrasonic transducer 12A of the ultrasonic transmitters / receivers 12 and 12 ′ is emitted into the tubular body 11 from one circumference via the beam transmission body 12B. The beam B propagates in the fluid F and is transmitted to the other ultrasonic transceivers 12 ′ and 12 . On the other hand, when receiving the ultrasonic beam B in the tubular body 11, the ultrasonic beam B incident on the beam transmission body 12B from one circumference of the tubular body 11 is made into a parallel bundle in the beam transmission body 12B. It is received by the ultrasonic transducer 12A.

実際の超音波送受信器12、12’では、図3に示すようにビーム伝達体12Bは必要なビーム経路以外にも肉盛りがなされていて、ビーム伝達体12Bを介して管体11に取り付け易いようにされている。   In the actual ultrasonic transmitters / receivers 12 and 12 ', as shown in FIG. 3, the beam transmission body 12B is overlaid in addition to the necessary beam path, and can be easily attached to the tube body 11 via the beam transmission body 12B. Has been.

既設の管体11に超音波送受信器12、12’を取り付けるには、予め超音波送受信器12、12’を例えば2つ割りにしておいて、管体11を挟み付けるように取り付ければよい。   In order to attach the ultrasonic transmitters / receivers 12 and 12 ′ to the existing tube 11, the ultrasonic transmitters / receivers 12 and 12 ′ may be divided in advance, for example, so that the tube 11 is sandwiched therebetween.

この超音波流量計では、管体11中を流体Fが流れている状態で、超音波送受信器12、12’から交互に超音波パルス信号が送信され、管体11内の流体Fを通過して他方の超音波送受信器12’、12で受信される。そして、流体Fの流れに順行した場合と逆行した場合との超音波ビームの伝搬時間を計測する。この伝播時間は測定管路長L間を流れる流体Fの速度Vに関係するので、演算で得られた速度Vに管体1の断面積Sを乗ずることにより時間差方式で流量を求めることができる。   In this ultrasonic flowmeter, an ultrasonic pulse signal is alternately transmitted from the ultrasonic transmitters / receivers 12 and 12 ′ while the fluid F is flowing through the tube 11, and passes through the fluid F in the tube 11. And received by the other ultrasonic transmitter / receiver 12 ', 12. Then, the propagation time of the ultrasonic beam in the case of going forward and backward in the flow of the fluid F is measured. Since this propagation time is related to the velocity V of the fluid F flowing between the measurement pipe lengths L, the flow rate can be obtained by a time difference method by multiplying the velocity V obtained by the calculation with the cross-sectional area S of the tube 1. .

上述の実施例では、1組の超音波送受信器12、12’を用いて、交互に超音波ビームBを発振し、流体F中に順行する場合と逆行する場合の時間差を測定している。   In the above-described embodiment, the ultrasonic beam B is alternately oscillated by using a pair of ultrasonic transmitters / receivers 12 and 12 ′, and the time difference between the case of going forward in the fluid F and the case of going backward is measured. .

しかし、図4に示す実施例2のように、管体11に沿って3個の超音波送受信器12、12’、12”を等間隔に配置し、中央の超音波送受信器12は発信専用とし、上流側及び下流側の超音波送受信器12、12’は受信専用とすることもできる。或いは、中央の超音波送受信器12は受信専用とし、超音波送受信器12’、12”は発信専用とすることもできる。   However, as in the second embodiment shown in FIG. 4, three ultrasonic transmitters / receivers 12, 12 ′, 12 ″ are arranged at equal intervals along the tube 11, and the central ultrasonic transmitter / receiver 12 is dedicated for transmission. The upstream and downstream ultrasonic transmitters / receivers 12 and 12 ′ may be dedicated to reception, or the central ultrasonic transmitter / receiver 12 may be dedicated to reception and the ultrasonic transmitter / receivers 12 ′ and 12 ″ may transmit. It can also be dedicated.

また、計4個の2組の超音波送受信器を用いて、1組ずつ順行専用、逆行専用に伝播時間の測定を行うようにしてもよい。   Further, the propagation time may be measured for only forward and backward only one by one using a total of two sets of four ultrasonic transceivers.

11 管体
12、12’、12” 超音波送受信器
12A 超音波振動子
12B ビーム伝達体
12C 凹曲反射部
B 超音波ビーム
F 流体
11 Tubing 12, 12 ', 12 "Ultrasonic Transceiver 12A Ultrasonic Transducer 12B Beam Transmitter 12C Concave Reflector B Ultrasonic Beam F Fluid

Claims (3)

流体が流れる管体の上流側と下流側のそれぞれの外周に少なくとも2つの超音波送受信器を配置し、一方の前記超音波送受信器から前記管体内の流体中に超音波ビームを発信し他方の前記超音波送受信器により受信し、前記超音波ビームが上流側から下流側に伝搬する時間と下流側から上流側に伝搬する時間差から前記管体内の流体の速度を求め、前記管体内を流れる流量を求める時間差方式の超音波流量計において、
前記超音波送受信器は、中央に孔を開けた円板状の超音波振動子を前記管体の周囲に厚み方向が前記管体の長さ方向と平行になるように配置し、前記超音波振動子と前記管体との間に、前記超音波ビームを略直交方向に屈曲すると共に集束機能を有する凹曲反射部を備えたビーム伝達体を前記管体を取り囲むように配置し、
前記超音波振動子で発信した前記超音波ビームを前記ビーム伝達体を介して前記管体の一円周上に集束させて前記管体内に出射し、また到達した前記超音波ビームを前記管体の一円周上から入射し、前記ビーム伝達体を介して前記超音波振動子で受信することを特徴とする超音波流量計。
At least two ultrasonic transmitters / receivers are arranged on the outer circumferences of the upstream and downstream sides of the tube through which the fluid flows, and an ultrasonic beam is transmitted from one of the ultrasonic transmitters / receivers into the fluid in the tube. The flow rate of the fluid that is received by the ultrasonic transmitter / receiver and that determines the velocity of the fluid in the tube from the time difference between the time that the ultrasonic beam propagates from the upstream side to the downstream side and the time that the ultrasonic beam propagates from the downstream side to the upstream side. In the time difference type ultrasonic flowmeter
In the ultrasonic transceiver, a disk-shaped ultrasonic transducer having a hole in the center is arranged around the tube so that a thickness direction is parallel to a length direction of the tube, and the ultrasonic wave Between the vibrator and the tubular body, a beam transmission body provided with a concave reflection part having a focusing function while bending the ultrasonic beam in a substantially orthogonal direction is disposed so as to surround the tubular body,
The ultrasonic beam transmitted by the ultrasonic transducer is focused on one circumference of the tubular body via the beam transmission body and emitted into the tubular body, and the reached ultrasonic beam is the tubular body An ultrasonic flowmeter that is incident from one circumference and received by the ultrasonic transducer via the beam transmission body .
前記凹曲反射部は円面、楕円面、放物面の何れかとしたことを特徴とする請求項1に記載の超音波流量計。   The ultrasonic flowmeter according to claim 1, wherein the concave reflection portion is a circular surface, an elliptical surface, or a parabolic surface. 前記凹曲反射部は多面体により構成したことを特徴とする請求項1又は2に記載の超音波流量計。   The ultrasonic flowmeter according to claim 1, wherein the concave reflection part is configured by a polyhedron.
JP2013089376A 2013-04-22 2013-04-22 Ultrasonic flow meter Expired - Fee Related JP5373218B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013089376A JP5373218B1 (en) 2013-04-22 2013-04-22 Ultrasonic flow meter
PCT/JP2014/057880 WO2014174956A1 (en) 2013-04-22 2014-03-20 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013089376A JP5373218B1 (en) 2013-04-22 2013-04-22 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP5373218B1 true JP5373218B1 (en) 2013-12-18
JP2014215040A JP2014215040A (en) 2014-11-17

Family

ID=49954938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013089376A Expired - Fee Related JP5373218B1 (en) 2013-04-22 2013-04-22 Ultrasonic flow meter

Country Status (2)

Country Link
JP (1) JP5373218B1 (en)
WO (1) WO2014174956A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015623A (en) * 2017-07-07 2019-01-31 株式会社ソニック Ultrasonic flowmeter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312611A (en) * 1992-05-13 1993-11-22 Fuji Electric Co Ltd Transmissive ultrasonic flowmeter
JPH07294300A (en) * 1994-04-26 1995-11-10 Fuji Electric Co Ltd Ultrasonic flow rate measuring apparatus and manufacture of oblique wedge therefor
JP2005188974A (en) * 2003-12-24 2005-07-14 Asahi Organic Chem Ind Co Ltd Ultrasonic flowmeter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312611A (en) * 1992-05-13 1993-11-22 Fuji Electric Co Ltd Transmissive ultrasonic flowmeter
JPH07294300A (en) * 1994-04-26 1995-11-10 Fuji Electric Co Ltd Ultrasonic flow rate measuring apparatus and manufacture of oblique wedge therefor
JP2005188974A (en) * 2003-12-24 2005-07-14 Asahi Organic Chem Ind Co Ltd Ultrasonic flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015623A (en) * 2017-07-07 2019-01-31 株式会社ソニック Ultrasonic flowmeter

Also Published As

Publication number Publication date
WO2014174956A1 (en) 2014-10-30
JP2014215040A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
US9279708B2 (en) Ultrasonic flowmeter
CN104583731B (en) Compact ultrasonic flowmeter
JP5479605B2 (en) Ultrasonic flow sensor for detecting the flow rate of fluid medium
US9335193B2 (en) Ultrasonic flow measuring device having a concave reflective surface that cancels dispersion and method for ascertaining flow velocity, respectively volume flow, of a fluid
JP2015232519A (en) Clamp-on type ultrasonic flow meter and flow measurement method
JP4939907B2 (en) Ultrasonic flow meter for gas
JP5373218B1 (en) Ultrasonic flow meter
RU2708904C1 (en) Method and system for ultrasonic overhead flow measurement and body for measurement
JP2008122317A5 (en)
JP5113354B2 (en) Ultrasonic flow meter
JP3583114B2 (en) Ultrasonic flow velocity measuring device
JP3535625B2 (en) Ultrasonic current meter
KR101476534B1 (en) Ultra sonic Flow measuring Device
JP3013596B2 (en) Transmission ultrasonic flowmeter
JP4818713B2 (en) Ultrasonic flow meter
JP6187661B2 (en) Ultrasonic flow meter
JP2008014833A (en) Ultrasonic flowmeter
JP2001349758A (en) Ultrasonic flow velocity measuring instrument
JP7246275B2 (en) Spiral ultrasonic flowmeter
JP5316795B2 (en) Ultrasonic measuring instrument
JP5049689B2 (en) Ultrasonic flow meter
JP2010025680A (en) Ultrasonic flowmeter
US20200173824A1 (en) Device and method for ultrasonic flow measurement
JPH10170318A (en) Ultrasonic flow-velocity measuring apparatus
JP2022188333A (en) ultrasonic flow meter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees