JP5369977B2 - Method for determining necessity of repair of wall member having dry shrinkage crack inducing part and design method for wall member having dry shrinkage crack inducing part - Google Patents

Method for determining necessity of repair of wall member having dry shrinkage crack inducing part and design method for wall member having dry shrinkage crack inducing part Download PDF

Info

Publication number
JP5369977B2
JP5369977B2 JP2009181714A JP2009181714A JP5369977B2 JP 5369977 B2 JP5369977 B2 JP 5369977B2 JP 2009181714 A JP2009181714 A JP 2009181714A JP 2009181714 A JP2009181714 A JP 2009181714A JP 5369977 B2 JP5369977 B2 JP 5369977B2
Authority
JP
Japan
Prior art keywords
test body
wall member
shrinkage crack
inducing portion
repair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009181714A
Other languages
Japanese (ja)
Other versions
JP2011032788A (en
Inventor
浩也 萩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2009181714A priority Critical patent/JP5369977B2/en
Publication of JP2011032788A publication Critical patent/JP2011032788A/en
Application granted granted Critical
Publication of JP5369977B2 publication Critical patent/JP5369977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a repair necessity determination method for a wall member having a drying shrinkage crack inducing part, for determining the necessity of repair for the wall member with a drying shrinkage crack generated in the inducing part. <P>SOLUTION: This repair necessity determination method includes a test body manufacturing process for manufacturing a first concrete test body having the drying shrinkage crack inducing part, and the second concrete test body having no drying shrinkage crack inducing part, and formed into an outside-diametric shape same to that of the first test body, a force applying testing process for energizing the first test body with the crack generated in the drying shrinkage crack inducing part, and a second test body respectively with an external force, a data comparison process for comparing a result data of the first test body in a force applying test, with a result data of the second test body therein, and a repair necessity determining process for determining the necessity of the repair for the crack generated in the wall member having the drying shrinkage crack inducing part of structure same to that of the first test body, based on a comparison result in the data comparison process. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、乾燥収縮ひび割れ誘発部を有する壁部材に生じたひび割れの補修の要否を判定する乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法、及び、乾燥収縮ひび割れ誘発部を有する壁部材の設計方法に関する。   The present invention has a method of determining whether or not a wall member having a dry shrinkage cracking inducing portion determines whether or not repairing of a crack generated in a wall member having a dry shrinkage cracking inducing portion is necessary, and a dry shrinkage cracking inducing portion. The present invention relates to a method for designing a wall member.

コンクリート製の構造的な耐震壁や雑壁等の壁部材は、乾燥収縮によりひび割れが発生する。ひび割れは、壁部材の美観を損なうばかりでなく、構造性能が低下する可能性があるため、ひび割れが発生すると、例えばエポキシ樹脂等をひび割れに注入する等して補修を行っている。
また、近年では、壁部材の一部に、乾燥収縮ひび割れが生じやすい誘発部を予め設け、この誘発部を目地としてシール部材を充填することにより、ひび割れが外部に露出しないようにした壁部材が提案されている。
Wall members such as concrete structural earthquake resistant walls and miscellaneous walls are cracked by drying shrinkage. Cracks not only impair the aesthetics of the wall member, but also may deteriorate the structural performance. When cracks occur, repairs are made, for example, by injecting epoxy resin or the like into the cracks.
Further, in recent years, a wall member that prevents a crack from being exposed to the outside by preliminarily providing a trigger part that is prone to dry shrinkage cracks in a part of the wall member and filling the seal member with the trigger part as a joint. Proposed.

乾燥収縮ひび割れの補修は、繁雑な作業であるとともに、費用が発生するため建物の維持管理費用を圧迫することになる。ところで、上述した誘発部が設けられていない壁部材の場合には、乾燥収縮ひび割れの発生箇所を特定することは不可能である。このため、乾燥収縮ひび割れが発生した壁部材は、乾燥収縮ひび割れにより壁部材の構造性能がどの程度低下し補修の要否が判断できないので、費用と労力とがかかる補修をすることが余儀なくされているという課題がある。
一方、誘発部を備えた壁部材は、乾燥収縮によるひび割れの発生箇所が誘発部に集中させることが可能であり、また高い再現性を有している。このため、本願発明者は、誘発部を有する壁部材は、誘発部にひび割れが発生した後の構造性能を評価し、補修の要否を判断できないかと考えた。
更に、乾燥収縮によるひび割れの誘発部が備えられた壁部材の設計方法は特定されておらず、乾燥収縮によるひび割れの誘発部を備えた壁部材の設計方法を確立することが望まれている。
Repairing dry shrinkage cracks is a complex task and costs money, putting pressure on building maintenance costs. By the way, in the case of the wall member in which the induction part mentioned above is not provided, it is impossible to specify the generation | occurrence | production location of a drying shrinkage crack. For this reason, the wall member that has undergone dry shrinkage cracking cannot be judged how much the structural performance of the wall member has deteriorated due to dry shrinkage cracking, and repairs that are costly and labor unavoidable. There is a problem of being.
On the other hand, the wall member provided with the inducing part can concentrate the occurrence of cracks due to drying shrinkage on the inducing part, and has high reproducibility. For this reason, this inventor considered whether the wall member which has a induction part can evaluate the structural performance after a crack generate | occur | produces in the induction part, and can judge the necessity of repair.
Furthermore, the design method of the wall member provided with the crack induction part due to dry shrinkage is not specified, and it is desired to establish the design method of the wall member provided with the crack induction part due to dry shrinkage.

本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、誘発部に乾燥収縮ひび割れが発生した壁部材に対する補修の要否を判定するための乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法、及び、乾燥収縮ひび割れ誘発部を有する壁部材の設計方法を提供することにある。   The present invention has been made in view of the above problems, and the object thereof is to have a dry shrinkage crack inducing portion for determining whether or not a wall member in which a dry shrinkage crack has occurred in the inducing portion needs to be repaired. An object of the present invention is to provide a wall member repair necessity determination method and a wall member design method having a dry shrinkage cracking inducing portion.

かかる目的を達成するために本発明の乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法は、乾燥収縮ひび割れ誘発部を有するコンクリート製の第1試験体と、前記乾燥収縮ひび割れ誘発部を有さず前記第1試験体と同一の外径形状をなすコンクリート製の第2試験体とを製造する試験体製造工程と、前記乾燥収縮ひび割れ誘発部にひび割れが発生した前記第1試験体と、前記第2試験体とに各々外力を付勢する加力試験工程と、前記加力試験における前記第1試験体の結果データと、前記第2試験体の結果データとを比較するデータ比較工程と、前記データ比較工程の比較結果に基づいて、前記第1試験体と同じ構造の前記乾燥収縮ひび割れ誘発部を有する壁部材に生じたひび割れの補修要否を判定する補修要否判定工程と、を有することを特徴とする乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法である。
このような乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法によれば、第1試験体と第2試験体とを製造し、乾燥収縮ひび割れ誘発部にひび割れが発生した第1試験体と、第2試験体にて、各々外力を付勢する加力試験を行うので、誘発部に乾燥収縮ひび割れが発生した第1試験体と、第2試験体との性状を比較することが可能である。また、加力試験における第1試験体の結果データと、第2試験体の結果データとが比較されるので、誘発部に発生した乾燥収縮ひび割れの構造性能への影響を第2試験体の結果データとの比較により把握することが可能である。このため、第1試験体の結果データと第2試験体の結果データとの比較により、第1試験体と同じ構造の乾燥収縮ひび割れ誘発部を有する壁部材に生じたひび割れの補修要否を的確に判定することが可能である。
In order to achieve this object, the method for determining whether or not a wall member having a drying shrinkage crack inducing portion according to the present invention requires repair includes a first test body made of concrete having a drying shrinkage crack inducing portion, and the dry shrinkage crack inducing portion. A test body manufacturing process for manufacturing a second test body made of concrete having the same outer diameter as that of the first test body, and the first test body in which cracks are generated in the dry shrinkage crack inducing portion; , A force test step for urging an external force to the second test body, and a data comparison step for comparing the result data of the first test body and the result data of the second test body in the force test And based on the comparison result of the data comparison step, a repair necessity determination step for determining whether or not the repair of the crack generated in the wall member having the dry shrinkage crack induction portion having the same structure as the first test body is required, Have A repair necessity determination process of the wall member having Cracking inducing portion, wherein Rukoto.
According to such a method for determining whether or not a wall member having a dry shrinkage crack inducing portion needs to be repaired, a first test body and a second test body are manufactured, and the first test body in which cracks have occurred in the dry shrinkage crack inducing portion. Since the second test body performs a force test for energizing each external force, it is possible to compare the properties of the first test body and the second test body in which dry shrinkage cracks have occurred in the induction part. It is. In addition, since the result data of the first test body in the force test and the result data of the second test body are compared, the influence of the dry shrinkage cracks generated in the induction part on the structural performance is the result of the second test body. It is possible to grasp by comparing with data. For this reason, by comparing the result data of the first specimen and the result data of the second specimen, the necessity of repairing the cracks generated in the wall member having the dry shrinkage crack inducing portion having the same structure as the first specimen is confirmed. Can be determined.

かかる乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法であって、前記加力試験工程にて付勢する前記外力は、剪断力であることが望ましい。
このような乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法によれば、加力工程にて、乾燥収縮ひび割れ誘発部にひび割れが発生した第1試験体と、第2試験体とに、各々剪断力が付勢されるので、誘発部にひび割れが発生した第1試験体において、地震等による剪断力の影響を把握することが可能である。
In this method of determining whether or not a wall member having a dry shrinkage crack inducing portion needs to be repaired, it is desirable that the external force to be urged in the force test step is a shearing force.
According to such a method for determining whether or not a wall member having a dry shrinkage crack inducing portion needs to be repaired, the first test body in which a crack has occurred in the dry shrinkage crack inducing portion and the second test body in the applying step. Since each shearing force is energized, it is possible to grasp the influence of the shearing force due to an earthquake or the like in the first test body in which a crack has occurred in the induction portion.

かかる乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法であって、前記第1試験体及び前記第2試験体は前記壁部材に相当する壁部を有し、前記剪断力を、前記壁部の壁面に沿う方向の一方側から押圧し、他方側に引張するように前記壁部の両側にて付勢することが望ましい。
このような乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法によれば、壁部材に相当する壁部の両側にて、壁部の壁面に沿う一方側から押圧し、他方側に引張するように剪断力が付勢されるので、一方側からだけで押圧する場合より、地震等にて作用する剪断力と同様な外力を付勢することが可能である。このため、より適切な結果を得ることが可能である。
A method for determining the necessity of repairing a wall member having such a drying shrinkage crack inducing portion, wherein the first test body and the second test body have a wall portion corresponding to the wall member, and the shear force is It is desirable to press from one side in the direction along the wall surface of the wall portion and to urge both sides of the wall portion so as to pull to the other side.
According to such a method for determining whether or not a wall member having a dry shrinkage crack inducing portion is to be repaired, both sides of the wall portion corresponding to the wall member are pressed from one side along the wall surface of the wall portion and pulled to the other side. Thus, since the shearing force is urged, it is possible to urge an external force similar to the shearing force acting in an earthquake or the like, rather than pressing only from one side. For this reason, it is possible to obtain a more appropriate result.

かかる乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法であって、前記補修要否判定工程では、前記データ比較工程において、前記第1試験体の前記結果データと前記第2試験体の前記結果データとが同等と認められる場合には、補修不要と判定することが望ましい。
このような乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法によれば、第1試験体の結果データと第2試験体の結果データとが同等と認められる場合には、第1試験体は第2試験体と同様の構造性状を備えていることになる。このため、第1試験体の結果データを第2試験体の結果データと比較することにより、的確に補修の要否を判定することが可能である。
A method for determining whether or not a wall member having a dry shrinkage cracking inducing part is necessary, in the repair necessity determining step, in the data comparison step, the result data of the first specimen and the second specimen When the result data is recognized as equivalent, it is desirable to determine that the repair is unnecessary.
According to such a method for determining whether or not a wall member having a drying shrinkage crack inducing part is required, if the result data of the first specimen and the result data of the second specimen are found to be equivalent, the first test The body has the same structural properties as the second specimen. For this reason, by comparing the result data of the first specimen with the result data of the second specimen, it is possible to accurately determine whether repair is necessary.

かかる乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法であって、前記第1試験体と前記第2試験体とを同時期にコンクリートを打設して製造することが望ましい。
このような乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法によれば、第1試験体と第2試験体とが同時期にコンクリートを打設して製造されているので、コンクリートの状態がほぼ同様な2つの試験体において、乾燥収縮ひび割れ誘発部の有無による構造上の劣化の差を比較することが可能である。すなわち、乾燥収縮ひび割れ誘発部の有無による構造上の劣化における差違を、より適正に比較することが可能である。
In this method for determining the necessity of repairing a wall member having a dry shrinkage cracking inducing portion, it is desirable that the first test body and the second test body be manufactured by placing concrete at the same time.
According to the method for determining whether or not a wall member having a dry shrinkage cracking inducing part is required, the first test body and the second test body are manufactured by placing concrete at the same time. It is possible to compare the difference in structural deterioration between the two specimens having almost the same state due to the presence or absence of the dry shrinkage cracking inducing part. That is, it is possible to more appropriately compare the difference in structural deterioration due to the presence or absence of the drying shrinkage cracking inducing portion.

かかる乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法であって、前記第2試験体として、乾燥収縮ひび割れがほとんど発生しておらず、前記乾燥収縮ひび割れによる構造上の劣化への影響がないと判断された試験体を用いることが望ましい。
このような乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法によれば、乾燥収縮ひび割れが発生した第1試験体の比較対象となる第2試験体として、乾燥収縮ひび割れがほとんど発生しておらず、乾燥収縮ひび割れによる構造上の劣化への影響がないと判断された試験体が用いられる。このため、乾燥収縮ひび割れが発生した第1試験体と、高い構造性能が確保されている第2試験体とを比較し、第1試験体の結果データと第2試験体の結果データとが同等と認められた場合には、第1試験体に発生している乾燥収縮ひび割れは構造上の劣化に対し影響がないと判断することが可能である。このため、乾燥収縮ひび割れ誘発部を有する壁部材の補修要否について、より信頼性が高い判定をすることが可能である。
This is a method for determining the necessity of repairing a wall member having a dry shrinkage crack inducing part, and as the second test body, almost no dry shrinkage cracks are generated, and the influence on structural deterioration due to the dry shrinkage cracks. It is desirable to use a specimen that has been determined not to have any.
According to such a method for determining whether or not a wall member having a dry shrinkage crack inducing part is required, dry shrinkage cracks are almost generated as a second test body to be compared with the first test body in which dry shrinkage cracks have occurred. In this case, a specimen that is judged to have no influence on structural deterioration due to dry shrinkage cracking is used. For this reason, the first test body in which dry shrinkage cracking occurs is compared with the second test body in which high structural performance is ensured, and the result data of the first test body and the result data of the second test body are equivalent. When it is recognized, it can be determined that the dry shrinkage cracks occurring in the first specimen have no influence on the structural deterioration. For this reason, it is possible to make a more reliable determination as to whether or not the wall member having the drying shrinkage crack inducing portion needs to be repaired.

また、上記乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法により、補修不要と判定された場合には、前記乾燥収縮ひび割れ誘発部を有する前記壁部材を、前記乾燥収縮ひび割れ誘発部を有しない前記壁部材と同等の方法にて設計することを特徴とする乾燥収縮ひび割れ誘発部を有する壁部材の設計方法である。   Further, when it is determined that the wall member having the dry shrinkage crack inducing part needs to be repaired, the wall member having the dry shrinkage crack inducing part is replaced with the dry shrinkage crack inducing part. It is a design method of the wall member which has a dry shrinkage crack induction part characterized by designing by the method equivalent to the said wall member which does not have.

上記乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法により、補修不要と判定された場合は、第1試験体の結果データと第2試験体の結果データとが同等と認められ、乾燥収縮ひび割れ誘発部を有する壁部材と乾燥収縮ひび割れ誘発部を有しない壁部材とが、ほぼ同等の構造性能を有していることが認められたことになる。このため、乾燥収縮ひび割れ誘発部を有する壁部材を、乾燥収縮ひび割れ誘発部を有しない壁部材と同等の方法にて設計することが可能である。すなわち、上記乾燥収縮ひび割れ誘発部を有する壁部材の設計方法によれば、乾燥収縮ひび割れ誘発部を有しつつ、乾燥収縮ひび割れ誘発部を有しない壁部材とほぼ同等の構造性能を有する壁部材を設計することが可能である。   If it is determined that the wall member having the drying shrinkage crack inducing part is not repaired, the result data of the first test body and the result data of the second test body are recognized as equivalent, and drying is performed. It was confirmed that the wall member having the shrinkage crack inducing portion and the wall member having no dry shrinkage crack inducing portion have substantially the same structural performance. For this reason, it is possible to design the wall member which has a dry shrinkage crack induction part by the method equivalent to the wall member which does not have a dry shrinkage crack induction part. That is, according to the design method of the wall member having the drying shrinkage crack inducing portion, the wall member having the structural performance substantially the same as the wall member having the drying shrinkage crack inducing portion while having the dry shrinkage crack inducing portion. It is possible to design.

本発明によれば、誘発部に乾燥収縮ひび割れが発生した壁部材に対する補修の要否をより的確に判定するための乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法、及び、乾燥収縮ひび割れ誘発部を有する壁部材の設計方法を提供することが可能である。   According to the present invention, a wall member repair necessity determination method having a drying shrinkage crack inducing portion for accurately determining the necessity of repairing a wall member in which a drying shrinkage crack has occurred in the inducing portion, and drying shrinkage It is possible to provide a method for designing a wall member having a crack inducing portion.

本発明に係る乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法の手順を示す図である。It is a figure which shows the procedure of the repair necessity determination method of the wall member which has a dry shrinkage crack induction part which concerns on this invention. 第1試験体及び第2試験体の外観を示す斜視図である。It is a perspective view which shows the external appearance of a 1st test body and a 2nd test body. 誘発部を説明するための水平断面図である。It is a horizontal sectional view for explaining an induction part. 乾燥収縮が発生した第1試験体の一例を示す図である。It is a figure which shows an example of the 1st test body which dry shrinkage generate | occur | produced. 加力試験装置を説明するための図である。It is a figure for demonstrating a force test apparatus. 本実施形態の加力試験における剪断力の載荷履歴を示す図である。It is a figure which shows the load log | history of the shear force in the force test of this embodiment. 図7(a)は、第2試験体の加力試験の結果を表す図であり、図7(b) は、第1試験体の加力試験の結果を表す図であり、図7(c) は、図7(a)と図7(b) とを重ね合わせた図である。FIG. 7A is a diagram showing the result of the force test of the second specimen, and FIG. 7B is a diagram showing the result of the force test of the first specimen. FIG. 7 is a view obtained by superimposing FIG. 7 (a) and FIG. 7 (b). 耐震壁の一例を示す水平断面図である。It is a horizontal sectional view showing an example of a seismic wall.

以下、本実施形態の乾燥収縮ひび割れ誘発目地を有する壁部材の補修要否判定方法の一例について図を用いて詳細に説明する。   Hereinafter, an example of a method for determining whether or not a wall member having a dry shrinkage cracking joint according to this embodiment is necessary will be described in detail with reference to the drawings.

図1は、本発明に係る乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法の手順を示す図である。図2は、第1試験体及び第2試験体の外観を示す斜視図である。図3は、誘発部を説明するための水平断面図である。   FIG. 1 is a diagram showing a procedure of a method for determining whether or not a wall member having a drying shrinkage crack inducing portion according to the present invention is repaired. FIG. 2 is a perspective view showing the appearance of the first test body and the second test body. FIG. 3 is a horizontal sectional view for explaining the inducing portion.

<<発明の概要>>
本実施形態の乾燥収縮ひび割れ誘発部12を有する壁部材の補修要否判定方法は、乾燥収縮ひび割れ誘発部12を有する鉄筋コンクリート製の第1試験体10と、乾燥収縮ひび割れ誘発部12を有さず第1試験体10と同一形状の鉄筋コンクリート製の第2試験体11とを同時期に製造する試験体製造工程S1と、乾燥収縮ひび割れ誘発部12に乾燥収縮ひび割れ12aが発生した第1試験体10と、乾燥収縮ひび割れ12aがほとんど発生していない第2試験体11とに各々剪断力を付勢して各試験体の耐力と破壊性状を確認するための加力試験工程S2と、加力試験における第1試験体10の結果データと、第2試験体11の結果データとを比較するデータ比較工程S3と、データ比較工程の比較結果に基づいて、第1試験体10と同じ構造の乾燥収縮ひび割れ誘発部12を有する壁部材としての耐震壁に生じたひび割れの補修要否を判定する補修要否判定工程S4と、を有している。ここで、第1試験体10と第2試験体11とを製造する時において、コンクリート構造物の耐久年数に対して極めて短い数日程度の期間は同時期としている。
<< Summary of Invention >>
The method of determining whether or not the wall member having the dry shrinkage crack inducing portion 12 according to the present embodiment is repaired does not have the first test body 10 made of reinforced concrete having the dry shrinkage crack inducing portion 12 and the dry shrinkage crack inducing portion 12. A test body manufacturing step S1 for manufacturing a second test body 11 made of reinforced concrete having the same shape as the first test body 10 and a first test body 10 in which dry shrinkage cracks 12a are generated in the dry shrinkage crack inducing part 12 And a force test step S2 for confirming the proof stress and fracture properties of each test body by applying a shearing force to the second test body 11 in which the drying shrinkage crack 12a is hardly generated, and a force test Based on the data comparison step S3 for comparing the result data of the first test body 10 with the result data of the second test body 11 and the comparison result of the data comparison step, the same as the first test body 10 It has a granulation of Cracking inducing portion 12 Crack repair necessity determining repair necessity determination step and S4 generated seismic wall of a wall member having, a. Here, when manufacturing the 1st test body 10 and the 2nd test body 11, the period for about several days very short with respect to the durable years of a concrete structure is set as the simultaneous period.

<<試験体>>
本実施形態では、壁部材としての耐震壁において、加力試験にて剪断力が付勢された際の耐力及び破壊性状を確認するための試験体として、外径形状が同一の2つの試験体を製造する。2つの試験体は、一方が乾燥収縮ひび割れ誘発部12を有しない第2試験体11であり、他方が乾燥収縮ひび割れ誘発部12を有する第1試験体10である。
<< Specimen >>
In this embodiment, in the earthquake resistant wall as a wall member, two test bodies having the same outer diameter shape are used as test bodies for confirming the yield strength and fracture characteristics when shear force is applied in the force test. Manufacturing. One of the two test bodies is the second test body 11 that does not have the drying shrinkage crack inducing part 12, and the other is the first test body 10 that has the dry shrinkage crack inducing part 12.

第2試験体11は、壁部11aと、壁部11aの下に配置され加力試験では試験台32に固定される基礎梁11bと、壁部11aの上に設けられ基礎梁11bと平行に形成された上梁11cと、壁部11aの左右端部に設けられ基礎梁11bと上梁11cとの間に介在された一対の柱11dとが一体に形成されている。   The second test body 11 includes a wall portion 11a, a foundation beam 11b disposed below the wall portion 11a and fixed to the test table 32 in the force test, and provided on the wall portion 11a in parallel with the foundation beam 11b. The formed upper beam 11c and a pair of pillars 11d provided at the left and right ends of the wall portion 11a and interposed between the foundation beam 11b and the upper beam 11c are integrally formed.

基礎梁11b、上梁11c、及び、一対の柱11dには、主筋(不図示)と帯筋(不図示)とがほぼ全領域に亘って適宜配設されており、壁部11aには、縦筋(不図示)と横筋(不図示)とが格子状に配設されている。   In the base beam 11b, the upper beam 11c, and the pair of pillars 11d, main bars (not shown) and band bars (not shown) are appropriately disposed over almost the entire region, and the wall 11a includes Vertical bars (not shown) and horizontal bars (not shown) are arranged in a lattice pattern.

壁部11aの縦筋は、壁面に沿って左右方向に互いに間隔を隔てて複数本配設された縦筋列が2列設けられており、2列の縦筋列は、壁部11aの壁厚方向に互いに間隔を隔てて設けられ壁厚方向における中央から表裏面側に振り分けて配置されている。また、縦筋は、壁部11aの下端部及び上端部を越えて基礎梁11b及び上梁11cに至るように延出されて、両端部が基礎梁11b及び上梁11cに埋設されている。   The vertical streaks of the wall portion 11a are provided with two vertical streak rows arranged in the left-right direction along the wall surface and spaced apart from each other, and the two vertical streak rows are the walls of the wall portion 11a. They are provided at intervals in the thickness direction and are distributed from the center in the wall thickness direction to the front and back surfaces. The vertical bars extend beyond the lower and upper ends of the wall 11a so as to reach the foundation beam 11b and the upper beam 11c, and both ends are embedded in the foundation beam 11b and the upper beam 11c.

壁部11aの横筋は、壁部11aの壁厚方向において2列の縦筋列の外側にそれぞれ、上下方向に互いに間隔を隔てて複数本配設され、縦筋と横筋とが格子状をなして接触するように設けられている。また、横筋は、壁部11aの左右の端部を越えて、一対の柱11dに至るように延出されて両端部が柱11dに埋設されている。   A plurality of horizontal streaks of the wall portion 11a are arranged on the outside of the two vertical streak rows in the wall thickness direction of the wall portion 11a and spaced apart from each other in the vertical direction. Are provided in contact with each other. Further, the lateral stripe extends beyond the left and right end portions of the wall portion 11a so as to reach the pair of columns 11d, and both end portions are embedded in the columns 11d.

第1試験体10は、乾燥収縮ひび割れ誘発部(以下、誘発部という)12が設けられている点で第2試験体11と相違している。すなわち、外径形状や鉄筋の配置等は第2試験体11と同じである。誘発部12は、壁部10aの左右方向における中央から振り分けて2カ所に、壁厚方向において縦筋12eと重ならない位置に設けられている。具体的には、横筋12fと格子状をなす2列の縦筋列の間に上下方向に沿って塩化ビニル製のパイプ20が、壁部10aの上端から下端に至る高さ方向の全域に埋設されており、塩化ビニル製のパイプ20の内部には無収縮グラウト22が充填されて構成されている。   The first test body 10 is different from the second test body 11 in that a drying shrinkage crack induction part (hereinafter referred to as induction part) 12 is provided. That is, the outer diameter shape, the arrangement of reinforcing bars, and the like are the same as those of the second specimen 11. The inducing portions 12 are provided at two positions from the center in the left-right direction of the wall portion 10a at positions that do not overlap with the vertical stripes 12e in the wall thickness direction. Specifically, a vinyl chloride pipe 20 is embedded in the entire height direction from the upper end to the lower end of the wall portion 10a between the horizontal stripes 12f and the two vertical stripes in a lattice shape along the vertical direction. The inside of the pipe 20 made of vinyl chloride is filled with a non-shrink grout 22.

壁部10aに埋設されている塩化ビニル製パイプ20は界面付着がほとんどなくコンクリート24との接合強度が低いので壁部10aのコンクリート24に乾燥収縮によって引張応力が発生した場合には、塩化ビニル製のパイプ20には当該応力が作用しない。このため、塩化ビニル製のパイプ20が埋設されることにより、コンクリート24の断面積が小さくなった、塩化ビニル製のパイプ20の表裏面側のコンクリート24は、応力が集中してひび割れが発生し易くなるので、誘発部12として機能する。   The pipe 20 made of vinyl chloride embedded in the wall 10a has almost no interface adhesion and has low bonding strength with the concrete 24. Therefore, when tensile stress is generated due to drying shrinkage on the concrete 24 of the wall 10a, the pipe 20 made of vinyl chloride is used. The stress does not act on the pipe 20. Therefore, the concrete 24 on the front and back sides of the vinyl chloride pipe 20 is cracked due to stress concentration because the cross section area of the concrete 24 is reduced by burying the pipe 20 made of vinyl chloride. Since it becomes easy, it functions as the induction | guidance | derivation part 12. FIG.

本実施形態加力試験に使用した第1試験体10と第2試験体11とは、同じ形状の型枠にて製造される。例えば、同形状をなす2つの型枠内に主筋、帯筋、縦筋及び横筋等を配筋した後に、一方の型枠内にはコンクリートを打設して第2試験体11を製造する。他方の型枠内には、予め内部に無収縮グラウト22を充填した塩化ビニル製のパイプ20を配置し、塩化ビニル製のパイプ20の外側にコンクリート24を打設して第1試験体10を製造する(試験体製造工程)。   The 1st test body 10 and the 2nd test body 11 which were used for this embodiment force test are manufactured with the same shape mold. For example, after placing main bars, band bars, vertical bars, horizontal bars, and the like in two molds having the same shape, concrete is placed in one mold to manufacture the second specimen 11. In the other mold, a vinyl chloride pipe 20 filled with a non-shrink grout 22 in advance is placed, and concrete 24 is placed outside the vinyl chloride pipe 20 to mount the first test body 10. Manufacture (test body manufacturing process).

図4は、乾燥収縮が発生した第1試験体の一例を示す図である。
コンクリート24を打設した後、約60〜80日経過した第1試験体10には、誘発部12に図4に示すような乾燥収縮による乾燥収縮ひび割れ12aが発生する。このとき、第1試験体10としては、乾燥収縮ひび割れ12aが壁部10aの高さに対し、少なくとも半分以上の領域に発生したものを使用する。また、このとき発生している乾燥収縮ひび割れ12aの幅は約0.1mmである。一方、第1試験体と同時期にコンクリートを打設して製造された第2試験体には、乾燥収縮によるひび割れはほとんど発生していない。例えば、第2試験体としては、乾燥収縮ひび割れが発生していたとしても、その数は極僅かであり、また、幅は第1試験体に発生しているひび割れの幅より狭く、長さも短く、構造上の劣化への影響がないと判断される試験体を用いる。
FIG. 4 is a diagram illustrating an example of a first test body in which drying shrinkage has occurred.
In the first test body 10 that has passed about 60 to 80 days after the concrete 24 is placed, a drying shrinkage crack 12a due to drying shrinkage as shown in FIG. At this time, as the first test body 10, one in which the drying shrinkage crack 12 a is generated in at least a half or more region with respect to the height of the wall portion 10 a is used. Further, the width of the dry shrinkage crack 12a generated at this time is about 0.1 mm. On the other hand, in the second test body manufactured by placing concrete at the same time as the first test body, cracks due to drying shrinkage hardly occur. For example, even if dry shrinkage cracks have occurred in the second specimen, the number is very small, and the width is narrower than the width of cracks in the first specimen, and the length is also short. Use a specimen that is judged to have no influence on structural deterioration.

<<加力試験>>
加力試験は、試験台32(図5)に基礎梁10b、11bが固定され、壁部10a、11aの表面にひずみ計測ゲージが設けられた試験体10、11の上梁10c、11cに左右方向に剪断力を作用させて、ひずみ計測ゲージにより試験体10,11の壁部10a、11aにおける各部の変位を計測する。このとき、試験体10、11には実際の建物と同様に上方から一定の軸力を載荷しつつ剪断力を水平方向に作用させる。
<< Force test >>
In the force test, the base beams 10b and 11b are fixed to the test table 32 (FIG. 5), and the upper and lower beams 10c and 11c of the test bodies 10 and 11 are provided with strain gauges on the surfaces of the wall portions 10a and 11a. A shearing force is applied in the direction, and the displacement of each part in the wall portions 10a and 11a of the test bodies 10 and 11 is measured by a strain measurement gauge. At this time, a shearing force is applied to the test bodies 10 and 11 in the horizontal direction while applying a constant axial force from above as in an actual building.

<試験装置>
図5は、加力試験装置を説明するための図である。
加力試験装置30は、試験体10、11が載置される試験台32と、試験台32と一体となり試験台32上に取り付けられた試験体10、11を取り囲むように設けられたフレーム34と、フレーム34の上部から吊り下げられるように固定され試験体10、11に軸力を載荷するための軸力付勢装置36と、フレーム34において試験台32上に取り付けられた試験体10、11の上梁10c、11cと水平な同じ高さに設けられ、試験体10、11の上梁10c、11cに剪断力を付勢するための剪断力付勢装置38と、を有している。
<Test equipment>
FIG. 5 is a diagram for explaining the force test apparatus.
The force test apparatus 30 includes a test table 32 on which the test bodies 10 and 11 are placed, and a frame 34 that is integrated with the test table 32 and surrounds the test bodies 10 and 11 attached on the test table 32. An axial force urging device 36 that is fixed so as to be suspended from the upper part of the frame 34 and loads an axial force on the test bodies 10 and 11, and the test body 10 that is mounted on the test stand 32 in the frame 34, 11 and the upper beams 10c, 11c of the test body 10, and a shear force biasing device 38 for biasing the test beams 10, 11c to bias the shear force. .

剪断力付勢装置38は、上梁10c、11cの両側方にてフレーム34にそれぞれ固定されており、剪断力を付勢する部位38aが、基礎梁10b、11bの上面から例えば約1mの位置にて上梁10c、11cの両端に接合されている。上梁10c、11cの両側に接合された2つの剪断力付勢装置38は、一方の剪断力付勢装置38が上梁10c、11cを押圧する際に、他方の剪断力付勢装置38が上梁10c、11cを引っ張るように構成されている。すなわち、一方の剪断力付勢装置38が上梁10c、11cの端部がフレーム34から離れる方向に剪断力を付勢する場合には、他方の剪断力付勢装置38は上梁10c、11cの端部がフレーム34に近づく方向に剪断力を付勢するように、2つの剪断力付勢装置38が協働して剪断力を付勢する(加力試験工程)。   The shearing force urging device 38 is fixed to the frame 34 on both sides of the upper beams 10c and 11c, respectively, and the portion 38a that urges the shearing force is at a position of, for example, about 1 m from the upper surface of the foundation beams 10b and 11b. Are joined to both ends of the upper beams 10c and 11c. The two shear force urging devices 38 joined to both sides of the upper beams 10c and 11c are such that when one of the shear force urging devices 38 presses the upper beams 10c and 11c, the other shear force urging device 38 The upper beams 10c and 11c are configured to be pulled. That is, when one of the shearing force biasing devices 38 biases the shearing force in a direction in which the ends of the upper beams 10c and 11c are separated from the frame 34, the other shearing force biasing device 38 has the upper beams 10c and 11c. The two shearing force urging devices 38 cooperate to urge the shearing force so that the end of each of them urges the shearing force in a direction approaching the frame 34 (force test step).

図6は、本実施形態の加力試験における剪断力の載荷履歴を示す図である。
本実施形態における剪断力は図6に示すように剪断力が段階的に大きくなるように変化させて付勢する。
FIG. 6 is a diagram showing a loading history of shear force in the force test of the present embodiment.
As shown in FIG. 6, the shearing force in the present embodiment is changed and biased so that the shearing force increases stepwise.

<結果データの比較及び判断>
図7(a)は、第2試験体の加力試験の結果を表す図であり、図7(b)は、第1試験体の加力試験の結果を表す図であり、図7(c)は、図7(a)と図7(b)とを重ね合わせた図である。図中の□印は、壁部10a、11aの剪断ひび割れ、〇印は、柱10d、11dの剪断ひび割れ、■印は、柱主筋の降伏、および●印は、帯筋の降伏を示している。
また、部材角は、各柱10d、11d及び基礎梁10b、11bと上梁10c、11cの軸芯の変位の平均を加力高さ1mで除したものとした。
<Comparison and judgment of result data>
FIG. 7A is a diagram showing the result of the force test of the second specimen, and FIG. 7B is a diagram showing the result of the force test of the first specimen. ) Is a diagram obtained by superimposing FIG. 7A and FIG. In the figure, □ marks indicate shear cracks in the wall portions 10a and 11a, ◯ marks indicate shear cracks in the columns 10d and 11d, ■ mark indicates the yield of the column main reinforcement, and ● indicates the yield of the band reinforcement. .
In addition, the member angle is obtained by dividing the average displacement of the axes of the columns 10d and 11d and the foundation beams 10b and 11b and the upper beams 10c and 11c by the applied height of 1 m.

図7(a)に示された第2試験体11の加力試験の結果データと、図7(b)に示された第1試験体10の加力試験の結果データとを比較する(データ比較工程)。   The result data of the force test of the second test body 11 shown in FIG. 7A is compared with the result data of the force test of the first test body 10 shown in FIG. 7B (data). Comparison process).

図7(a)〜図7(c)とに示されているように、第2試験体11と第1試験体10との初期剛性は、大差はなくほぼ同等と認められる。よって、誘発部12の配置による初期剛性への影響は、ほとんどないと判断される。   As shown in FIGS. 7A to 7C, the initial stiffness between the second test body 11 and the first test body 10 is recognized to be substantially equal with no significant difference. Therefore, it is determined that there is almost no influence on the initial rigidity due to the arrangement of the inducing portion 12.

また、図7(c)に示すように、第2試験体11と第1試験体10の荷重と部材角の関係に、有意な差は見られない。よって、誘発部12の配置による履歴特性への影響は、ほとんどないと判断される。   Moreover, as shown in FIG.7 (c), a significant difference is not seen by the relationship between the load of the 2nd test body 11 and the 1st test body 10, and a member angle. Therefore, it is determined that there is almost no influence on the history characteristics due to the arrangement of the induction unit 12.

また、図7(a)と図7(b)に示すように、第2試験体11と第1試験体10の最終破壊は、誘発部12の有無にかかわらずほぼ同じで、最大耐力も、同等であった。また、第1試験体10において塩化ビニル製のパイプ20が存在する誘発部12が、他の塩化ビニル製のパイプ20がない部分よりも先行して破壊が進行する現象は、観察されなかった。   Further, as shown in FIGS. 7A and 7B, the final fracture of the second test body 11 and the first test body 10 is almost the same regardless of the presence or absence of the inducing portion 12, and the maximum proof stress is It was equivalent. In addition, in the first test body 10, a phenomenon in which the inducing portion 12 where the vinyl chloride pipe 20 is present progresses prior to the portion where the other vinyl chloride pipe 20 does not exist was not observed.

すなわち、第1試験体10、および、第2試験体11の最終破壊は、誘発部12の有無にかかわらずほぼ同じで、最大耐力もほぼ同等であった。また、誘発部12が存在する部分が、誘発部12が存在しない他の部分よりも先行して破壊が進行する現象は、観察されなかった。   That is, the final fracture of the first test body 10 and the second test body 11 was almost the same regardless of the presence or absence of the inducing portion 12, and the maximum proof stress was almost the same. Moreover, the phenomenon in which destruction progressed before the other part where the induction part 12 does not exist in the part where the induction part 12 exists was not observed.

このように、加力試験による誘発部12を有する第1試験体10の結果データと第2試験体11の結果データとを比較して同等であることが認められた場合には、最大耐力も同等であることが認められるので、第1試験体10のような誘発部12を有する壁部材であっても、第2試験体11のような誘発部12を有しない壁部材と同じ設計方法にて設計することが可能である。   Thus, when the result data of the 1st test body 10 which has the induction part 12 by a force test is compared with the result data of the 2nd test body 11, and it is recognized that it is equivalent, a maximum proof stress is also obtained. Since it is recognized that they are equivalent, even a wall member having a triggering part 12 such as the first test body 10 has the same design method as a wall member having no triggering part 12 such as the second test body 11. Can be designed.

本実施形態の加力試験では、コンクリート24を打設後約60〜80日後の試験体10、11であって、第1試験体10としては、誘発部12に乾燥収縮ひび割れ12aが発生している第1試験体10を使用した。第1試験体10が乾燥収縮ひび割れ誘発部12を有する耐震壁であるが故に、第2試験体11と異なり、打設後約60〜80日という短期間にて乾燥収縮ひび割れ12aが誘発部12に発生する。すなわち、第1試験体10は、乾燥収縮ひび割れ誘発部12を有する耐震壁であるため、誘発部12には早い段階で乾燥収縮ひび割れ12aが発生し、誘発部12に乾燥収縮ひび割れ12aが集中するために誘発部12以外の部位には、乾燥収縮ひび割れ12aは発生しないという特徴を有している。このため、一旦誘発部12に乾燥収縮ひび割れ12aが発生すると、その他の部位には乾燥収縮ひび割れ12aが発生しないので、打設後約60〜80日の第1試験体10の状態は、数年後であってもほぼ同じ状態が保たれると推定される。   In the force test of the present embodiment, the test specimens 10 and 11 are about 60 to 80 days after placing the concrete 24, and as the first test specimen 10, a dry shrinkage crack 12a is generated in the induction portion 12. The first test body 10 is used. Unlike the second test body 11, the first test body 10 is a seismic wall having the dry shrinkage crack inducing part 12, so that the dry shrinkage crack 12a is generated in the inducing part 12 within a short period of about 60 to 80 days after placement. Occurs. That is, since the first test body 10 is a seismic wall having the drying shrinkage crack inducing portion 12, the induction shrinking crack 12 a is generated in the inducing portion 12 at an early stage, and the drying shrinkage cracking 12 a is concentrated on the inducing portion 12. Therefore, there is a feature that dry shrinkage cracks 12a do not occur in portions other than the inducing portion 12. For this reason, once the dry shrinkage crack 12a occurs in the induction part 12, the dry shrinkage crack 12a does not occur in other parts. Therefore, the state of the first specimen 10 about 60 to 80 days after placement is several years. It is estimated that the same state is maintained even after.

このように、第1試験体10と同じ構造の乾燥収縮ひび割れ誘発部12を有する耐震壁は、誘発部12に乾燥収縮ひび割れ12aが発生してしまえば、長期に亘りその状態が保たれるため、打設後約60〜80日の第1試験体10にて誘発部12を有する耐震壁の数年後の耐力及び破壊性状を推定でき、この結果に基づいて補修の要否を判定することが可能である。従って、誘発部12を有する耐震壁は、誘発部12に乾燥収縮ひび割れ12aが発生し数年が経過した後であっても、補修の必要はないと判定できる(補修要否判定工程)。   In this way, the earthquake resistant wall having the drying shrinkage cracking inducing portion 12 having the same structure as the first test body 10 is maintained for a long time if the drying shrinkage cracking 12a occurs in the inducing portion 12. In the first test body 10 about 60 to 80 days after placement, it is possible to estimate the strength and fracture properties of the seismic wall having the induction portion 12 after several years, and to determine whether repair is necessary based on this result. Is possible. Therefore, it can be determined that the seismic wall having the inducing portion 12 does not need to be repaired even after several years have passed since the drying shrinkage crack 12a has occurred in the inducing portion 12 (repair necessity determination step).

本実施形態の乾燥収縮ひび割れ誘発部12を有する壁部材の補修要否判定方法によれば、乾燥収縮ひび割れ誘発部12に乾燥収縮ひび割れ12aが発生した第1試験体10と、第1試験体10と同時期に製造され乾燥収縮ひび割れ誘発部12を有しない第2試験体11とに、各々剪断力を付勢して加力試験を行うので、誘発部12に乾燥収縮ひび割れ12aが発生した第1試験体10と、第2試験体11との性状を比較することにより地震等による剪断力の影響を把握することが可能である。   According to the method of determining whether or not the wall member having the drying shrinkage crack inducing portion 12 according to the present embodiment is repaired, the first test body 10 in which the dry shrinkage cracking 12a occurs in the dry shrinkage crack inducing portion 12 and the first test body 10 are shown. The second test body 11 that is manufactured at the same time as the second test body 11 that does not have the dry shrinkage crack inducing portion 12 is subjected to a force test by applying a shearing force, so that the dry shrinkage crack 12a is generated in the inducing portion 12. By comparing the properties of the first test body 10 and the second test body 11, it is possible to grasp the influence of the shearing force due to an earthquake or the like.

また、加力試験における第1試験体10の結果データと、第2試験体11の結果データとが比較されるので、誘発部12に発生した乾燥収縮ひび割れ12aの構造性能への影響を第2試験体11の結果データとの比較により把握することが可能である。このため、第1試験体10の結果データと第2試験体11の結果データとの比較により、第1試験体10と同じ構造の乾燥収縮ひび割れ誘発部12を有する耐震壁に生じた乾燥収縮ひび割れ12aの補修要否を的確に判定することが可能である。   In addition, since the result data of the first test body 10 and the result data of the second test body 11 in the force test are compared, the influence on the structural performance of the dry shrinkage crack 12a generated in the induction portion 12 is second. It can be grasped by comparison with the result data of the test body 11. For this reason, by comparing the result data of the first test body 10 and the result data of the second test body 11, the dry shrinkage cracks generated in the earthquake resistant wall having the dry shrinkage crack inducing portion 12 having the same structure as the first test body 10. It is possible to accurately determine whether or not the repair of 12a is necessary.

また、第1試験体10、第2試験体11が有する上梁10c、11cの両側にて、壁部10a、11aの壁面に沿う一方側から押圧し、他方側に引張するように剪断力が付勢されるので、一方側からだけ押圧する場合より、地震等による剪断力に近い外力を付勢することが可能である。このため、より適切な結果を得ることが可能である。   Further, on both sides of the upper beams 10c, 11c of the first test body 10 and the second test body 11, a shearing force is applied so as to press from one side along the wall surface of the wall portions 10a, 11a and pull to the other side. Since it is biased, it is possible to bias an external force close to a shearing force due to an earthquake or the like, rather than pressing from only one side. For this reason, it is possible to obtain a more appropriate result.

また、第1試験体10の結果データと第2試験体11の結果データとが同等と認められた場合には、第1試験体10は第2試験体11と同様の構造性状を備えていることになる。このため、第1試験体10の結果データを第2試験体11の結果データと比較することにより、的確に補修の要否を判定することが可能である。   When the result data of the first test body 10 and the result data of the second test body 11 are recognized to be equivalent, the first test body 10 has the same structural properties as the second test body 11. It will be. For this reason, by comparing the result data of the first test body 10 with the result data of the second test body 11, it is possible to accurately determine the necessity of repair.

また、第1試験体10と第2試験体11とが同時期にコンクリートを打設して製造されているので、コンクリートの状態がほぼ同様な2つの試験体10、11において、乾燥収縮ひび割れ誘発部12の有無による構造上の劣化を比較することが可能である。すなわち、乾燥収縮ひび割れ誘発部12の有無による構造上の劣化における差違を、より適正に比較することが可能である。   In addition, since the first test body 10 and the second test body 11 are manufactured by placing concrete at the same time, in the two test bodies 10 and 11 in which the concrete state is substantially similar, dry shrinkage cracking is induced. It is possible to compare the structural deterioration due to the presence or absence of the portion 12. That is, it is possible to more appropriately compare the difference in structural deterioration due to the presence or absence of the drying shrinkage crack inducing portion 12.

また、乾燥収縮ひび割れ12aが発生した第1試験体10の比較対象となる第2試験体11として、乾燥収縮ひび割れ12aがほとんど発生しておらず、乾燥収縮ひび割れ12aによる構造上の劣化への影響がないと判断された第2試験体11が用いられる。このため、乾燥収縮ひび割れ12aが発生した第1試験体10と、高い構造性能が確保されている第2試験体11とを比較し、第1試験体10の結果データと第2試験体11の結果データとが同等と認められた場合には、第1試験体10に発生している乾燥収縮ひび割れ12aは構造上の劣化に対し影響がないと判断することが可能である。このため、乾燥収縮ひび割れ誘発部12を有する壁部材の補修要否について、より的確な判定をすることが可能である。   Further, as the second test body 11 to be compared with the first test body 10 in which the dry shrinkage crack 12a has occurred, the dry shrinkage crack 12a is hardly generated, and the influence on the structural deterioration by the dry shrinkage crack 12a. The second specimen 11 that is determined not to be used is used. For this reason, the first test body 10 in which the drying shrinkage crack 12a has occurred is compared with the second test body 11 in which high structural performance is ensured, and the result data of the first test body 10 and the second test body 11 are compared. When it is recognized that the result data is equivalent, it is possible to determine that the drying shrinkage crack 12a generated in the first specimen 10 has no influence on the structural deterioration. For this reason, it is possible to make a more accurate determination as to whether or not the wall member having the drying shrinkage crack inducing portion 12 needs to be repaired.

また、上記誘発部12を有する壁部材の補修要否判定方法により、補修不要と判定された場合は、第1試験体10の結果データと第2試験体11の結果データとが同等と認められ、誘発部12を有する壁部材と誘発部12を有しない壁部材とが、ほぼ同等の構造性能を有していることが認められたことになる。このため、誘発部12を有する壁部材を、誘発部12を有しない壁部材と同等の方法にて設計することが可能である。すなわち、上記誘発部12を有する壁部材の設計方法によれば、誘発部12を有しつつ、誘発部12を有しない壁部材とほぼ同等の構造性能を有する壁部材を設計することが可能である。   Further, when it is determined that the wall member having the inducing portion 12 needs to be repaired, the result data of the first test body 10 and the result data of the second test body 11 are recognized to be equivalent. It will be recognized that the wall member having the triggering portion 12 and the wall member not having the triggering portion 12 have substantially the same structural performance. For this reason, it is possible to design the wall member which has the induction part 12 by the method equivalent to the wall member which does not have the induction part 12. FIG. That is, according to the design method of the wall member having the inducing portion 12, it is possible to design a wall member having the inducing portion 12 and having substantially the same structural performance as the wall member having no inducing portion 12. is there.

上記実施形態においては、壁部10a、11aが全面壁面をなしている試験体を用いて補修の要否を判定したが、壁部に開口を有するような壁部材の補修の要否を判定する場合には、壁部に同形状の開口を形成した第1試験体と第2試験体とを使用して加力試験を実施すればよい。   In the above embodiment, the necessity of repair is determined using a test body in which the wall portions 10a and 11a form the entire wall surface. However, the necessity of repair of a wall member having an opening in the wall portion is determined. In this case, the force test may be performed using the first test body and the second test body in which openings having the same shape are formed in the wall portion.

図8は、耐震壁の一例を示す水平断面図である。
誘発部12を有する壁部材50は、外観上及び内部への水の浸入防止のために、図8に示すように壁厚方向において塩化ビニル製のパイプ20と重なる位置に、壁内側に窪むノッチ53を形成し、ノッチ53にシール材54を充填して目地52を形成する場合があるが、このような壁部材50の補修の要否は、ノッチ53を設けた試験体にて加力試験を実施する。また、ノッチ53の底53aの位置にて平坦な壁面50aとなるような試験体を用いれば、上記実施形態と同様の形状の試験体にて補修の要否判断が可能である。
FIG. 8 is a horizontal sectional view showing an example of a seismic wall.
The wall member 50 having the inducing portion 12 is recessed inside the wall at a position overlapping with the pipe 20 made of vinyl chloride in the wall thickness direction as shown in FIG. 8 in order to prevent water from entering the appearance and the inside. There is a case where the notch 53 is formed, and the joint material 52 is formed by filling the notch 53 with the sealing material 54. The necessity of repairing the wall member 50 is applied by a test body provided with the notch 53. Conduct the test. Further, if a test body that has a flat wall surface 50a at the position of the bottom 53a of the notch 53 is used, it is possible to determine whether or not repair is necessary with a test body having the same shape as the above embodiment.

また、上記実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはいうまでもない。   Moreover, the said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and it is needless to say that the present invention includes equivalents thereof.

10 第1試験体(試験体)
10a 壁部
10b 基礎梁
10c 上梁
10d 柱
11 第2試験体(試験体)
11a 壁部
11b 基礎梁
11c 上梁
11d 柱
12 誘発部
12a 乾燥収縮ひび割れ
12e 縦筋
12f 横筋
20 塩化ビニル製のパイプ
22 無収縮グラウト
24 コンクリート
30 加力試験装置
32 試験台
34 フレーム
36 軸力付勢装置
38 剪断力付勢装置
38a 剪断力を付勢する部位
50 壁部材
50a 壁面
52 目地
53 ノッチ
53a 底
54 シール材
10 First specimen (test specimen)
10a Wall 10b Foundation beam 10c Upper beam 10d Column 11 Second test body (test body)
11a Wall 11b Foundation beam 11c Upper beam 11d Column 12 Inducing portion 12a Drying shrinkage crack 12e Longitudinal muscle 12f Lateral muscle 20 Vinyl chloride pipe 22 Non-shrink grout 24 Concrete 30 Force test device 32 Test stand 34 Frame 36 Axial force bias Device 38 Shearing force biasing device 38a Site 50 for biasing shearing force 50 Wall member 50a Wall surface 52 Joint 53 Notch 53a Bottom 54 Sealing material

Claims (7)

乾燥収縮ひび割れ誘発部を有するコンクリート製の第1試験体と、前記乾燥収縮ひび割れ誘発部を有さず前記第1試験体と同一の外径形状をなすコンクリート製の第2試験体とを製造する試験体製造工程と、
前記乾燥収縮ひび割れ誘発部にひび割れが発生した前記第1試験体と、前記第2試験体とに各々外力を付勢する加力試験工程と、
前記加力試験における前記第1試験体の結果データと、前記第2試験体の結果データとを比較するデータ比較工程と、
前記データ比較工程の比較結果に基づいて、前記第1試験体と同じ構造の前記乾燥収縮ひび割れ誘発部を有する壁部材に生じたひび割れの補修要否を判定する補修要否判定工程と、
を有することを特徴とする乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法。
A concrete first test body having a drying shrinkage crack inducing portion and a concrete second test body having the same outer diameter as the first test body without the dry shrinkage crack inducing portion are manufactured. Test body manufacturing process;
A force test step of energizing an external force to each of the first test body and the second test body in which cracks have occurred in the dry shrinkage crack inducing section;
A data comparison step for comparing the result data of the first specimen and the result data of the second specimen in the force test;
Based on the comparison result of the data comparison step, a repair necessity determination step for determining whether or not cracks generated in the wall member having the dry shrinkage crack inducing portion having the same structure as the first test body is necessary,
A method for determining the necessity of repair of a wall member having a drying shrinkage cracking inducing portion, characterized by comprising:
請求項1に記載の乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法であって、
前記加力試験工程にて付勢する前記外力は、剪断力であることを特徴とする乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法。
A method for determining whether or not a wall member having a drying shrinkage crack inducing portion according to claim 1 is repaired,
The method of determining whether or not a wall member needs to be repaired having a drying shrinkage crack inducing portion, wherein the external force biased in the force test step is a shearing force.
請求項2に記載の乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法であって、
前記第1試験体及び前記第2試験体は前記壁部材に相当する壁部を有し、
前記剪断力を、前記壁部の壁面に沿う方向の一方側から押圧し、他方側に引張するように前記壁部の両側にて付勢することを特徴とする乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法。
A method for determining the necessity of repair of a wall member having a drying shrinkage crack inducing portion according to claim 2,
The first test body and the second test body have a wall portion corresponding to the wall member,
A wall having a drying shrinkage crack inducing portion, wherein the shearing force is pressed from one side in a direction along the wall surface of the wall portion and is urged on both sides of the wall portion so as to be pulled to the other side. A method for determining the necessity of repair of a member.
請求項1乃至請求項3のいずれかに記載の乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法であって、
前記補修要否判定工程では、前記データ比較工程において、前記第1試験体の前記結果データと前記第2試験体の前記結果データとが同等と認められる場合には、補修不要と判定することを特徴とする乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法。
A method for determining the necessity of repair of a wall member having a drying shrinkage crack inducing portion according to any one of claims 1 to 3,
In the repair necessity determination step, in the data comparison step, when the result data of the first test body and the result data of the second test body are recognized as equivalent, it is determined that repair is unnecessary. A method for determining whether or not a wall member having a drying shrinkage crack inducing portion is necessary is repaired.
請求項1乃至請求項4のいずれかに記載の乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法であって、
前記第1試験体と前記第2試験体とは同時期にコンクリートを打設して製造されることを特徴とする乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法。
A method for determining whether or not a wall member having a drying shrinkage crack inducing portion according to any one of claims 1 to 4 is repaired,
Repair necessity determination process of the wall member having Cracking inducing portion wherein the first specimen and the second specimen, characterized in that it is manufactured by Da設concrete at the same time.
請求項1乃至請求項5のいずれかに記載の乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法であって、
前記第2試験体として、乾燥収縮ひび割れがほとんど発生しておらず、前記乾燥収縮ひび割れによる構造上の劣化への影響がないと判断された試験体を用いることを特徴とする乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法。
A method for determining the necessity of repair of a wall member having a drying shrinkage crack inducing portion according to any one of claims 1 to 5,
A dry shrinkage crack inducing portion characterized by using a test body that is judged to have no effect on structural deterioration due to the dry shrinkage crack as the second test body has almost no dry shrinkage cracking. A method for determining whether or not a wall member has a repair.
請求項1乃至請求項6のいずれかに記載の乾燥収縮ひび割れ誘発部を有する壁部材の補修要否判定方法により、補修不要と判定された場合には、
前記乾燥収縮ひび割れ誘発部を有する前記壁部材を、前記乾燥収縮ひび割れ誘発部を有しない前記壁部材と同等の方法にて設計することを特徴とする乾燥収縮ひび割れ誘発部を有する壁部材の設計方法。
When it is determined that the repair is unnecessary by the repair necessity determination method for the wall member having the drying shrinkage crack inducing portion according to any one of claims 1 to 6,
The wall member having the drying shrinkage cracking inducing portion is designed by the same method as the wall member having no drying shrinkage cracking inducing portion, and a design method of the wall member having the drying shrinkage cracking inducing portion is characterized in that .
JP2009181714A 2009-08-04 2009-08-04 Method for determining necessity of repair of wall member having dry shrinkage crack inducing part and design method for wall member having dry shrinkage crack inducing part Active JP5369977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009181714A JP5369977B2 (en) 2009-08-04 2009-08-04 Method for determining necessity of repair of wall member having dry shrinkage crack inducing part and design method for wall member having dry shrinkage crack inducing part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009181714A JP5369977B2 (en) 2009-08-04 2009-08-04 Method for determining necessity of repair of wall member having dry shrinkage crack inducing part and design method for wall member having dry shrinkage crack inducing part

Publications (2)

Publication Number Publication Date
JP2011032788A JP2011032788A (en) 2011-02-17
JP5369977B2 true JP5369977B2 (en) 2013-12-18

Family

ID=43762127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009181714A Active JP5369977B2 (en) 2009-08-04 2009-08-04 Method for determining necessity of repair of wall member having dry shrinkage crack inducing part and design method for wall member having dry shrinkage crack inducing part

Country Status (1)

Country Link
JP (1) JP5369977B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024111094A1 (en) * 2022-11-24 2024-05-30 日本電信電話株式会社 Determination method, determination device, and program

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607936B2 (en) * 1988-10-05 1997-05-07 清水建設株式会社 Crack measurement method for concrete members
JPH1090235A (en) * 1996-09-13 1998-04-10 Nippon Cement Co Ltd Method of judging deterioration of concrete structure
JP3775185B2 (en) * 1999-09-02 2006-05-17 株式会社大林組 Crack control structure in concrete members.
JP4195176B2 (en) * 2000-08-01 2008-12-10 株式会社奥村組 Crack judgment method at the early age of high strength reinforced concrete members, crack judgment device at the young age of high strength reinforced concrete members, curing method and curing period for high strength reinforced concrete members, and high strength How to place reinforced concrete
JP2003329550A (en) * 2002-05-16 2003-11-19 Sekisui Chem Co Ltd Structure having test piece, diagnosing method of the structure, and evaluating and repairing method
JP3955247B2 (en) * 2002-08-30 2007-08-08 嘉昭 佐藤 Concrete shrinkage cracking test equipment
JP3768951B2 (en) * 2002-11-11 2006-04-19 株式会社竹中工務店 Hydraulic material length change test method
JP2008082126A (en) * 2006-09-29 2008-04-10 Kajima Corp High performance cracking induction joint for earthquake-resisting wall

Also Published As

Publication number Publication date
JP2011032788A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
Sharaky et al. Experimental and numerical study of RC beams strengthened with bottom and side NSM GFRP bars having different end conditions
Hadi et al. Retrofitting nonseismically detailed exterior beam–column joints using concrete covers together with CFRP jacket
Escrig et al. Experimental and analytical study of reinforced concrete beams shear strengthened with different types of textile-reinforced mortar
Fayyad et al. Application of digital image correlation to reinforced concrete fracture
Yang et al. Effect of reinforcement stiffeners on square concrete-filled steel tubular columns subjected to axial compressive load
KR101291504B1 (en) Experimental Device and Method of restrained shrinkage of Concrete
Vella et al. Investigation of headed bar joints between precast concrete panels
Cheng et al. Stress concentration factors and fatigue behavior of square bird-beak SHS T-joints under out-of-plane bending
Joshani et al. Damage mechanics model for fracture process of steel-concrete composite slabs
JP5369977B2 (en) Method for determining necessity of repair of wall member having dry shrinkage crack inducing part and design method for wall member having dry shrinkage crack inducing part
US9410320B2 (en) Reinforced concrete structure
EP2657423A1 (en) A concrete slab and a method of manufacturing a concrete slab, a building, and a method of mounting a concrete slab on a building structure
Lukovic et al. Impact of surface roughness on the debonding mechanism in concrete repairs
CN114459916B (en) Keel butt joint structure, weld joint flexural bearing capacity assessment and safety design method
JP2020020243A (en) Fatigue crack generation inhibition method and manufacturing method for steel floor slab
Islam et al. Experimental verification of automated design of reinforced concrete deep beams
Hegger et al. High-performance materials in composite construction
JP2020020242A (en) Fatigue crack generation inhibition method and manufacturing method for steel floor slab
JP7358798B2 (en) Analysis method, program and system
Sang et al. Curvature-enabled analytical method for bending-induced crack location prediction
JP2006275698A (en) Method of measuring internal strain of concrete structure, and the concrete structure
JP6993066B2 (en) Diagnostic method for concrete structures
Layadi et al. The effect of masonry infill walls on the reinforced concrete frames behavior under lateral load
Dara Behavior of the shear studs in composite beams at elevated temperatures
JP2016205832A (en) Estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5369977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150