JP5369940B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP5369940B2
JP5369940B2 JP2009157600A JP2009157600A JP5369940B2 JP 5369940 B2 JP5369940 B2 JP 5369940B2 JP 2009157600 A JP2009157600 A JP 2009157600A JP 2009157600 A JP2009157600 A JP 2009157600A JP 5369940 B2 JP5369940 B2 JP 5369940B2
Authority
JP
Japan
Prior art keywords
flow
ultrasonic
flow rate
fluid
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009157600A
Other languages
Japanese (ja)
Other versions
JP2011013100A (en
Inventor
真人 佐藤
行則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009157600A priority Critical patent/JP5369940B2/en
Publication of JP2011013100A publication Critical patent/JP2011013100A/en
Application granted granted Critical
Publication of JP5369940B2 publication Critical patent/JP5369940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、超音波パルスの送受信を行う超音波送受波器を用いて気体や液体の流量や流速の計測を行う装置に関するものである。 The present invention relates to an apparatus for measuring the flow rate and flow velocity of gas and liquid using an ultrasonic transducer that transmits and receives ultrasonic pulses .

従来、この種の超音波流量計は、図9、10、11、12に示すように、計測部1は高さ方向には短い断面長方形をなす矩形としてあり、その上流室2に流体供給路3が、下流室4に流体流出路5がそれぞれ略直角に接続され、全体としてU字状に設定していた。計測部1には、図示していない一対の超音波送受波器などからなる流速検知手段を配置していた。   Conventionally, in this type of ultrasonic flowmeter, as shown in FIGS. 9, 10, 11, and 12, the measuring unit 1 has a rectangular shape having a short cross-sectional rectangle in the height direction, and the fluid supply path is connected to the upstream chamber 2. 3, the fluid outflow passages 5 are connected to the downstream chamber 4 at substantially right angles, respectively, and are set in a U-shape as a whole. The measurement unit 1 is provided with a flow velocity detection means including a pair of ultrasonic transducers and the like (not shown).

また流体が2次元性の層流となるように前記計測部1の内部は複数の仕切板6a、6b、6cで分割されていた。   Further, the inside of the measurement unit 1 is divided by a plurality of partition plates 6a, 6b, 6c so that the fluid becomes a two-dimensional laminar flow.

そして、前記流速検知手段で計測部1を流れる流体の流速を測定し、この測定した流速を基に流量を演算するようにしていた。   Then, the flow velocity of the fluid flowing through the measuring unit 1 is measured by the flow velocity detection means, and the flow rate is calculated based on the measured flow velocity.

特開2004−264064号公報JP 2004-264064 A

しかしながら、前記従来の流量計測装置では、図10に示すように被計測流体が小流量で流れている場合の流速分布は、管路断面において中心付近の流速が早くなる(流速分布G参照)が、大流量になると図11に示すように前記流体供給路3と前記流体流出路5の形状に起因して、被計測流体が計測部1を通過するときの管路断面における流速分布に偏りを起こしてしまい(流速分布J参照)、各層の流速が異なる(流速分布K参照)ことがあった。   However, in the conventional flow rate measuring device, as shown in FIG. 10, the flow velocity distribution when the fluid to be measured flows at a small flow rate has a higher flow velocity near the center in the pipe cross section (see the flow velocity distribution G). When the flow rate becomes large, as shown in FIG. 11, due to the shapes of the fluid supply passage 3 and the fluid outflow passage 5, the flow velocity distribution in the pipe cross section when the fluid to be measured passes through the measuring section 1 is biased. (See flow velocity distribution J), and the flow velocity of each layer may be different (see flow velocity distribution K).

そして、超音波送受波器から送信された超音波は、各層の流速分布が異なるため各層ごとに受信側に到達するまでの時間が異なる可能性が生じていた。 Then, ultrasonic waves transmitted ultrasonic transducer or colleagues, time to each flow velocity distribution reaches the receiving side for each different for each layer may be different has occurred.

図12には、真の流量に対して計測流量の割合を示しているが、各層の流速が異なることで流量が多くなると真の流量と計測流量との差が大きくなる、即ち、比が大きくなる傾向があった。   Although the ratio of the measured flow rate to the true flow rate is shown in FIG. 12, the difference between the true flow rate and the measured flow rate increases as the flow rate increases due to the different flow velocities of the layers, that is, the ratio increases. There was a tendency to become.

本発明は前記従来の課題を解決するもので、全体としてU字状に設定した超音波流量計において、流路断面が横方向に対して縦方向に長く構成した矩形の整流手段を設けることで、超音波が伝搬する流速分布全体を計測するようにしたものである。   The present invention solves the above-mentioned conventional problems, and in the ultrasonic flow meter set in a U-shape as a whole, by providing a rectangular rectifying means whose flow path section is configured to be longer in the vertical direction than in the horizontal direction. The entire flow velocity distribution through which the ultrasonic wave propagates is measured.

前記従来の課題を解決するために、本発明の超音波式流量計測装置は、流体を供給する流体供給部と、流体を排出する流体排出部と、前記流体供給部と前記流体排出部に接続された流量測定部と、前記流量測定部内に収められ、断面形状が前記流体供給部及び前記流体排出部の延長方向を、前記延長方向と直交する方向よりも長く構成された矩形の整流手段と、前記整流手段の長手方向を横切るようにし、一方から超音波を送信し他方で受信するように配置した第1の超音波振動子および第2の超音波振動子と、前記第1と第2の超音波振動子間の超音波の伝搬時間を測定することで得られる前記流体の流速を基に流量を算出する流量演算部とからなり、前記整流手段は、長手方向の面に対して平行に複数の仕切板を設けることで流体の流れ方向に向かって複数の層状の流路構成としたもので、流路断面形状が流体供給部及び流体排出部の延長方向を、延長方向と直交する方向よりも長く構成した矩形の整流手段により、超音波が伝搬する流速分布全体を計測することが可能となる。 In order to solve the conventional problems, an ultrasonic flow measuring device according to the present invention is connected to a fluid supply unit that supplies a fluid, a fluid discharge unit that discharges fluid, and the fluid supply unit and the fluid discharge unit. And a rectangular rectifying means that is housed in the flow rate measurement unit and whose cross-sectional shape is longer than the direction orthogonal to the extension direction in the extension direction of the fluid supply unit and the fluid discharge unit. A first ultrasonic transducer and a second ultrasonic transducer arranged so as to cross the longitudinal direction of the rectifying means, and to transmit ultrasonic waves from one side and receive them from the other, and the first and second ultrasonic transducers of Ri Do and a flow rate calculation unit for calculating a flow rate based on the flow velocity of the fluid obtained by measuring the ultrasonic wave propagation time between the ultrasonic transducers, said rectifying means, to the longitudinal plane Flow of fluid by providing multiple partition plates in parallel Obtained by a passage of a plurality of layers towards the direction, the direction of extension of the fluid supply flow path cross section and the fluid discharge portion, the rectangular rectifying means arranged longer than a direction orthogonal to the extending direction, It is possible to measure the entire flow velocity distribution through which ultrasonic waves propagate.

本発明の超音波式流量計測装置によれば、流量測定部内に収められた整流手段の流路断面を、横方向に対して縦方向に長くし、縦方向の面に対して平行に仕切板を設けて層状の流路構成としたことで、超音波は流路断面全体を伝搬するので層の流速分布全体を計測することができる。   According to the ultrasonic flow measuring device of the present invention, the flow passage section of the rectifying means housed in the flow measuring unit is elongated in the vertical direction with respect to the horizontal direction, and is parallel to the vertical surface. Since the ultrasonic wave propagates through the entire cross section of the flow path, the entire flow velocity distribution of the layer can be measured.

また、高さ方向に流速分布が異なっても超音波が層全体を横切ることで超音波送受波器の受信側に到達するまでの時間は流速分布の影響を受けずに計測することができる。   Even if the flow velocity distribution differs in the height direction, the time until the ultrasonic wave crosses the entire layer and reaches the reception side of the ultrasonic transducer can be measured without being affected by the flow velocity distribution.

本発明の超音波式流量計測装置に用いる超音波流量計の構成図Configuration diagram of an ultrasonic flow meter used in the ultrasonic flow measuring device of the present invention 本発明の第1の実施の形態に係る超音波式流量計測装置を示す断面図Sectional drawing which shows the ultrasonic flow measuring device which concerns on the 1st Embodiment of this invention 本発明の第1の実施の形態に係る超音波式流量計測装置の側面図1 is a side view of an ultrasonic flow measuring device according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る超音波式流量計測装置の側面図Side view of the ultrasonic flow measuring device according to the second embodiment of the present invention 本発明の第2の実施の形態に係る超音波式流量計測装置における流量分布を模式的に表した断面図Sectional drawing which represented typically the flow volume distribution in the ultrasonic type flow measuring device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る超音波式流量計測装置における流量分布を模式的に表した上から見た断面図Sectional drawing seen from the top which represented typically the flow volume distribution in the ultrasonic type flow measuring device which concerns on the 2nd Embodiment of this invention 本発明の第2の実施の形態に係る超音波式流量計測装置の測定精度を示したグラフThe graph which showed the measurement accuracy of the ultrasonic type flow measuring device concerning a 2nd embodiment of the present invention. 本発明の第3の実施の形態に係る超音波式流量計測装置の構成を示す断面図Sectional drawing which shows the structure of the ultrasonic type flow measuring device which concerns on the 3rd Embodiment of this invention. 従来の超音波式流量計測装置の断面図Cross-sectional view of a conventional ultrasonic flow measurement device 従来の超音波式流量計測装置における小流量時の流量分布を模式的に表した断面図Cross-sectional view schematically showing the flow distribution at a small flow rate in a conventional ultrasonic flow measurement device 従来の超音波式流量計測装置における大流量時の流量分布を模式的に表した断面図Cross-sectional view schematically showing the flow distribution at a large flow rate in a conventional ultrasonic flow measurement device 従来の超音波式流量計測装置の測定精度を示したグラフA graph showing the measurement accuracy of a conventional ultrasonic flow meter

第1の発明は、流体を供給する流体供給部と、流体を排出する流体排出部と、前記流体供給部と前記流体排出部に接続された流量測定部と、前記流量測定部内に収められ、断面形状が前記流体供給部及び前記流体排出部の延長方向を、前記延長方向と直交する方向よりも長く構成された矩形の整流手段と、前記整流手段の長手方向を横切るようにし、一方から超音波を送信し他方で受信するように配置した第1の超音波振動子および第2の超音波振動子と、前記第1と第2の超音波振動子間の超音波の伝搬時間を測定することで得られる前記流体の流速を基に流量を算出する流量演算部とからなり、前記整流手段は、長手方向の面に対して平行に複数の仕切板を設けることで流体の流れ方向に向かって複数の層状の流路構成としたもので、流路断面形状が流体供給部及び流体排出部の延長方向を、延長方向と直交する方向よりも長く構成した矩形の整流手段により、超音波が伝搬する流速分布全体を計測することが可能となる。 The first invention is housed in the fluid supply unit for supplying a fluid, the fluid discharge unit for discharging the fluid, the flow rate measuring unit connected to the fluid supply unit and the fluid discharge unit, and the flow rate measuring unit, The cross-sectional shape is such that the extending direction of the fluid supply part and the fluid discharging part is longer than the direction orthogonal to the extending direction and the rectangular rectifying means, and the longitudinal direction of the rectifying means is crossed, A first ultrasonic transducer and a second ultrasonic transducer arranged to transmit and receive a sound wave, and an ultrasonic wave propagation time between the first and second ultrasonic transducers; Ri Do from the flow velocity of the fluid and resulting flow rate calculation unit for calculating a flow rate based on by said rectifying means, in the flow direction of the fluid by providing a plurality of partition plates parallel to the longitudinal plane With a plurality of laminar flow paths. Fluid supply unit cross-sectional shape and the direction of extension of the fluid discharge portion, the rectangular rectifying means arranged longer than a direction orthogonal to the extending direction, it is possible to measure the overall flow velocity distribution ultrasound propagates.

以下、本発明の実施形態に係る超音波式流量計測装置について、図面を参照して説明する。なお図面中で同一符号を付しているものは同一なものであり、詳細な説明は省略する。   Hereinafter, an ultrasonic flow measuring device according to an embodiment of the present invention will be described with reference to the drawings. In addition, what attaches | subjects the same code | symbol in drawing is the same thing, and abbreviate | omits detailed description.

(実施の形態1)
図1は本発明の後述する各実施例で示す超音波送受波器を用いた超音波式流量計測装置の概略構成図である。図1において、10は被測定流体が流れる流量測定部、11、12は流量測定部10の流れの方向に対し斜めに対向して配置された第1の超音波送受波器と第2の超音波送受波器、13は第1の超音波送受波器11と第2の超音波送受波器12の使用周波数を発信する発振回路、14は発振回路4に接続され第1の超音波送受波器11、第2の超音波送受波器12を駆動する駆動回路、15は送受信する第1、第2の超音波送受波器11、12を切り替える切替回路、16は超音波パルスを検知する受信検知回路、17は超音波パルスの伝搬時間を計測するタイマ、18はタイマ17の出力より流量を演算する流量演算部、19は駆動回路14とタイマ17に制御信号を出力する制御部である。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of an ultrasonic flow rate measuring apparatus using an ultrasonic transducer shown in each embodiment described later of the present invention. In FIG. 1, 10 is a flow rate measurement unit through which a fluid to be measured flows, and 11 and 12 are a first ultrasonic transducer and a second ultrasonic transducer that are arranged obliquely opposite to the flow direction of the flow rate measurement unit 10. The ultrasonic transducer 13 is an oscillation circuit for transmitting the operating frequencies of the first ultrasonic transducer 11 and the second ultrasonic transducer 12, and 14 is connected to the oscillation circuit 4 and is connected to the first ultrasonic transducer. 11, a drive circuit for driving the second ultrasonic transducer 12, 15 is a switching circuit for switching the first and second ultrasonic transducers 11 and 12 for transmission and reception, and 16 is a reception for detecting an ultrasonic pulse. A detection circuit, 17 is a timer that measures the propagation time of the ultrasonic pulse, 18 is a flow rate calculation unit that calculates the flow rate from the output of the timer 17, and 19 is a control unit that outputs a control signal to the drive circuit 14 and the timer 17.

上記のように構成される超音波流量計の動作を説明する。本実施例では被測定流体を都市ガス、超音波流量計として家庭用ガスメータを想定し、流量測定部10を構成する材料をアルミニウム合金ダイカストとする。   The operation of the ultrasonic flowmeter configured as described above will be described. In the present embodiment, the gas to be measured is assumed to be a city gas and a household gas meter as an ultrasonic flow meter, and the material constituting the flow rate measuring unit 10 is an aluminum alloy die casting.

また第1の超音波送受波器11、第2の超音波送受波器12の使用周波数には約500kHzを選択する。発振回路4は例えばコンデンサと抵抗で構成され約500kHzの方形波を発信し、駆動回路14では発振回路13の信号から第1の超音波送受波器11、第2の超音波送受波器12を駆動するため方形波が数波のバースト信号からなる駆動信号を出力可能とする。   Also, about 500 kHz is selected as the operating frequency of the first ultrasonic transducer 11 and the second ultrasonic transducer 12. The oscillation circuit 4 is composed of, for example, a capacitor and a resistor, and transmits a square wave of about 500 kHz. The drive circuit 14 sends the first ultrasonic transducer 11 and the second ultrasonic transducer 12 from the signal of the oscillation circuit 13. In order to drive, it is possible to output a drive signal composed of burst signals having several square waves.

制御部19では駆動回路14に送信開始信号を出力すると同時に、タイマ17の時間計測を開始させる。駆動回路14は送信開始信号を受けると第1の超音波送受波器11を駆動し、超音波パルスを送信する。送信された超音波パルスは流量測定部10内を伝搬し第2の超音波送受波器12で受信される。受信された超音波パルスは第1の超音波送受波器12で電気信号に変換され、受信検知回路16に出力される。受信検知回路16では受信信号の受信タイミングを決定し、制御部19に受信検知信号を出力する。制御部19では受信検知信号を受けると、あらかじめ設定した遅延時間td経過後に再び駆動回路14に送信開始信号を出力し、2回目の計測を行う。この動作をN回繰返した後、タイマ17を停止させる。流量演算部18ではタイマ17で測定した時間を測定回数のNで割り、遅延時間tdを引いて伝搬時間t1を演算する。   The control unit 19 outputs a transmission start signal to the drive circuit 14 and starts time measurement of the timer 17 at the same time. When receiving the transmission start signal, the drive circuit 14 drives the first ultrasonic transducer 11 and transmits an ultrasonic pulse. The transmitted ultrasonic pulse propagates through the flow rate measuring unit 10 and is received by the second ultrasonic transducer 12. The received ultrasonic pulse is converted into an electrical signal by the first ultrasonic transducer 12 and output to the reception detection circuit 16. The reception detection circuit 16 determines the reception timing of the reception signal and outputs the reception detection signal to the control unit 19. When the control unit 19 receives the reception detection signal, it outputs a transmission start signal to the drive circuit 14 again after the elapse of a preset delay time td, and performs the second measurement. After repeating this operation N times, the timer 17 is stopped. The flow rate calculation unit 18 calculates the propagation time t1 by dividing the time measured by the timer 17 by the number of times N and subtracting the delay time td.

引き続き切替回路15で駆動回路14と受信検知回路16に接続する第1、第2の超音波送受波器11、12を切り替え、再び制御部19では駆動回路14に送信開始信号を出力すると同時に、タイマ17の時間計測を開始させる。伝搬時間t1の測定と逆に、第1の超音波送受波器12で超音波パルスを送信し、第1の超音波送受波器11で受信する計測をN回繰返し、流量演算部18で伝搬時間t2を演算する。   Subsequently, the switching circuit 15 switches the first and second ultrasonic transducers 11 and 12 connected to the drive circuit 14 and the reception detection circuit 16, and the control unit 19 outputs a transmission start signal to the drive circuit 14 at the same time. Time measurement of the timer 17 is started. Contrary to the measurement of the propagation time t1, the ultrasonic pulse is transmitted by the first ultrasonic transducer 12 and the measurement received by the first ultrasonic transducer 11 is repeated N times and propagated by the flow rate calculation unit 18. Time t2 is calculated.

ここで、第1の超音波送受波器11と第2の超音波送受波器12の中心を結ぶ距離をL、空気の無風状態での音速をC、流量測定部10内での流速をV、非測定流体の流れの方向と第1の超音波送受波器11と第2の超音波送受波器12の中心を結ぶ線との角度をθとすると、伝搬時間t1、t2は、
t1=L/(C+Vcosθ) (1)
t2=L/(C−Vcosθ) (2)
で示される。(1)(2)式より音速Cを消去して、流速Vを求めると
V=L/2cosθ(1/t1−1/t2) (3)
が得られる。L、θは既知であるのでt1とt2を測定すれば流速Vが求められる。この流速Vと流量測定部10の流路断面積をS、補正係数をKとすれば、流量Qは、
Q=KSV (4)
で演算できる。
Here, the distance connecting the centers of the first ultrasonic transducer 11 and the second ultrasonic transducer 12 is L, the speed of sound in an airless state is C, and the flow velocity in the flow measurement unit 10 is V. If the angle between the flow direction of the non-measurement fluid and the line connecting the centers of the first ultrasonic transducer 11 and the second ultrasonic transducer 12 is θ, the propagation times t1 and t2 are
t1 = L / (C + V cos θ) (1)
t2 = L / (C−Vcos θ) (2)
Indicated by (1) When sonic velocity C is eliminated from equation (2) and flow velocity V is obtained, V = L / 2 cos θ (1 / t1-1 / t2) (3)
Is obtained. Since L and θ are known, the flow velocity V can be obtained by measuring t1 and t2. If this flow velocity V and the flow path cross-sectional area of the flow rate measuring unit 10 are S and the correction coefficient is K, the flow rate Q is
Q = KSV (4)
It can be calculated with.

図2、3に示す実施の形態1の超音波式流量計測装置20は、供給流路21および排出流路22に連通された流量測定部10と、流量測定部10に収容された整流手段24と、流量測定部10に第1の超音波送受波器11および第2の超音波送受波器12が設けられている。   The ultrasonic flow measuring device 20 according to the first embodiment shown in FIGS. 2 and 3 includes a flow rate measuring unit 10 communicated with a supply channel 21 and a discharge channel 22, and a rectifying unit 24 accommodated in the flow rate measuring unit 10. The flow rate measuring unit 10 is provided with a first ultrasonic transducer 11 and a second ultrasonic transducer 12.

流量測定部10は、矩形でありY方向に長く、Z方向(図3参照)に短い状態で超音波
式流量計測装置20に設置されている。整流手段24は、供給流路21および排出流路22内に延長部29a、29bを設けている。
また、供給流路21および排出流路22には延長部29a、29bとの距離を保つために、供給流路21および排出流路22の底面方向に対して下側空間30a、30bを設け、供給流路21のZ方向には31a、31b、排出流路22のZ方向には32a、32b(図3参照)そしてX方向に33a、33bを備えている。
The flow rate measuring unit 10 is installed in the ultrasonic flow rate measuring device 20 in a rectangular shape that is long in the Y direction and short in the Z direction (see FIG. 3). The rectifying means 24 is provided with extensions 29 a and 29 b in the supply channel 21 and the discharge channel 22.
Further, in order to keep the distance from the extensions 29a and 29b in the supply flow path 21 and the discharge flow path 22, lower spaces 30a and 30b are provided with respect to the bottom direction of the supply flow path 21 and the discharge flow path 22, The supply channel 21 is provided with 31a and 31b in the Z direction, the discharge channel 22 is provided with 32a and 32b (see FIG. 3) in the Z direction, and 33a and 33b in the X direction.

(実施の形態2)
図4は、第2の実施の形態の超音波式流量計測装置2を示すもので、整流手段24には、縦方向の面に対して複数枚の仕切板28a〜28eがほぼ平行に配列されている。仕切板28は延長部29a、29b(図2参照)を含んだ整流手段24のX方向の長さより、短くしてある。
(Embodiment 2)
FIG. 4 shows the ultrasonic flow rate measuring device 2 according to the second embodiment. In the rectifying means 24, a plurality of partition plates 28a to 28e are arranged substantially parallel to the vertical surface. ing. The partition plate 28 is shorter than the length in the X direction of the rectifying means 24 including the extensions 29a and 29b (see FIG. 2).

次に、この超音波式流量計測装置20における流量測定部10の作用について説明する。図5に模式的に表したように、流量測定部10がY方向に長く配置された場合、大流量時の被計測流体は流量測定部10の上面側の流速が遅く、下面側へ下がるにしたがって流速が早くなり、流量測定部10のY方向の中心より下面側で最大流速を迎え、下面部に近づくと再び流速が遅くなる傾向にある(流量分布C、D参照)。これは、供給流路21および排出流路22の形状などに起因して、被測定流体の管路断面における流速分布に偏りが生じてしまうためである。   Next, the operation of the flow rate measurement unit 10 in the ultrasonic flow measurement device 20 will be described. As schematically shown in FIG. 5, when the flow rate measuring unit 10 is arranged long in the Y direction, the fluid to be measured at the time of a large flow rate has a low flow velocity on the upper surface side of the flow rate measuring unit 10 and falls to the lower surface side. Accordingly, the flow velocity becomes faster, the maximum flow velocity is reached on the lower surface side from the center in the Y direction of the flow rate measuring unit 10, and the flow velocity tends to become slower again when approaching the lower surface portion (see the flow distributions C and D). This is because the flow velocity distribution in the pipe cross section of the fluid to be measured is biased due to the shape of the supply flow path 21 and the discharge flow path 22.

図6は図5をAの方向から見た場合の流量測定部10の内部の概要構成を表したものである。図6で表したように、複数枚の仕切板28a〜28eがほぼ平行に配列されている場合、被測定流体が仕切板28a〜28eの上流側端部に至ると、仕切板28a〜28eの整流作用によって被測定流体の管路断面における速度分布がある程度均一化される(流路分布が、EからFに変化する)。具体的には隙間34b、34c、34d、34eがほぼ均一で、両端の隙間34a、34fにおいては中央部の隙間34b、34c、34d、34eよりも流速が遅くなる。これは、延長部29aの中心部の流速が早く壁面は遅くなるため、被測定流体が仕切板28a〜28eの上流側端部に至っても流速分布の影響を受けるためである。ここで、第1の超音波送受波器11から送信される超音波は、隙間34b、34c、34d、34eの範囲を伝搬して第2の超音波送受波器12に到達するように構成することで、安定した流速を測定することが可能となる。また、図5において超音波伝搬路27は、偏りが生じている流速分布全体を伝搬するため平均化された流速の計測が可能となる。   FIG. 6 illustrates a schematic configuration inside the flow rate measurement unit 10 when FIG. 5 is viewed from the direction A. As shown in FIG. 6, when the plurality of partition plates 28a to 28e are arranged substantially in parallel, when the fluid to be measured reaches the upstream end of the partition plates 28a to 28e, the partition plates 28a to 28e The velocity distribution in the pipe cross section of the fluid to be measured is made uniform to some extent by the rectifying action (the flow path distribution changes from E to F). Specifically, the gaps 34b, 34c, 34d, and 34e are substantially uniform, and the flow speeds of the gaps 34a and 34f at both ends are slower than the gaps 34b, 34c, 34d, and 34e at the center. This is because the flow velocity at the center of the extension 29a is fast and the wall surface is slow, so that the fluid to be measured is affected by the flow velocity distribution even if it reaches the upstream end of the partition plates 28a to 28e. Here, the ultrasonic waves transmitted from the first ultrasonic transducer 11 are configured to propagate through the gaps 34 b, 34 c, 34 d, 34 e and reach the second ultrasonic transducer 12. Thus, a stable flow rate can be measured. Further, in FIG. 5, the ultrasonic propagation path 27 propagates the entire flow velocity distribution in which the bias is generated, so that the averaged flow velocity can be measured.

図7において、真の流量に対する計測流量の割合でも、第1の超音波送受波器11から送信される超音波は、流速分布全体の範囲を伝搬して第2の超音波送受波器12に到達するため、整流手段24の高さ方向に偏りが生じていても、真の流量と計測流量との差が少なくので、流速分布の影響を受けずに計測することが可能となる。   In FIG. 7, the ultrasonic wave transmitted from the first ultrasonic transducer 11 propagates through the entire flow velocity distribution to the second ultrasonic transducer 12 even at the ratio of the measured flow rate to the true flow rate. Therefore, even if there is a deviation in the height direction of the rectifying means 24, since the difference between the true flow rate and the measured flow rate is small, measurement can be performed without being affected by the flow velocity distribution.

(実施の形態3)
図8は、第3の実施の形態の超音波式流量計測装置を示す断面図で、第1の超音波送受波器11と第2の超音波送受波器12を流量測定部10の同列に設置し、超音波の伝搬は壁面反射を用いて送受信するように構成したものであり、超音波伝搬路27’はV字状になっている。
(Embodiment 3)
FIG. 8 is a cross-sectional view showing the ultrasonic flow rate measuring apparatus according to the third embodiment, and the first ultrasonic transducer 11 and the second ultrasonic transducer 12 are arranged in the same row of the flow rate measuring unit 10. The ultrasonic wave propagation path 27 'is V-shaped, and is configured to transmit and receive ultrasonic waves using wall surface reflection.

なお、第2の超音波送受波器12を流量測定部10の下面側に設けることで、流量測定部10に水等の液体が入った場合に第2の超音波送受波器12の前空間に液体がたまることで、超音波の伝搬が不能となり計測手段での流速の計測が不可能となり液体が入ったことを検知してもよい。   In addition, by providing the second ultrasonic transducer 12 on the lower surface side of the flow rate measurement unit 10, when a liquid such as water enters the flow rate measurement unit 10, the front space of the second ultrasonic transducer 12 It is also possible to detect that the liquid has accumulated, so that the ultrasonic wave cannot be propagated and the flow rate cannot be measured by the measuring means, and the liquid has entered.

本発明は、計測流路内を流れる流体の流速を計測する超音波式流量計測装置への適用に好適である。   The present invention is suitable for application to an ultrasonic flow measurement device that measures the flow velocity of a fluid flowing in a measurement channel.

10 流量測定部
11 第1の超音波送受波器(第1の超音波振動子)
12 第2の超音波送受波器(第2の超音波振動子)
18 流量演算部
20、20’ 超音波式流量計測装置
21 供給流路(流体供給部)
22 排出流路(流体排出部)
24 整流手段
34a〜34f 仕切板
DESCRIPTION OF SYMBOLS 10 Flow measurement part 11 1st ultrasonic transducer (1st ultrasonic transducer | vibrator)
12 Second ultrasonic transducer (second ultrasonic transducer)
18 Flow rate calculation unit 20, 20 'Ultrasonic flow measurement device 21 Supply flow path (fluid supply unit)
22 Discharge flow path (fluid discharge part)
24 Rectification means 34a-34f Partition plate

Claims (1)

流体を供給する流体供給部と、流体を排出する流体排出部と、前記流体供給部と前記流体排出部に接続された流量測定部と、前記流量測定部内に収められ、断面形状が前記流体供給部及び前記流体排出部の延長方向を、前記延長方向と直交する方向よりも長く構成された矩形の整流手段と、前記整流手段の長手方向を横切るようにし、一方から超音波を送信し他方で受信するように配置した第1の超音波振動子および第2の超音波振動子と、前記第1と第2の超音波振動子間の超音波の伝搬時間を測定することで得られる前記流体の流速を基に流量を算出する流量演算部とからなり、前記整流手段は、長手方向の面に対して平行に複数の仕切板を設けることで流体の流れ方向に向かって複数の層状の流路構成とした超音波式流量計測装置。 A fluid supply unit that supplies fluid, a fluid discharge unit that discharges fluid, a flow rate measurement unit connected to the fluid supply unit and the fluid discharge unit, and a cross-sectional shape housed in the flow rate measurement unit The extending direction of the fluid discharge section and the rectangular rectifying means configured to be longer than the direction orthogonal to the extending direction and the longitudinal direction of the rectifying means are transmitted, and ultrasonic waves are transmitted from one side and the other. The first ultrasonic transducer and the second ultrasonic transducer arranged to receive, and the fluid obtained by measuring the propagation time of ultrasonic waves between the first and second ultrasonic transducers flow rate Ri Do and a flow rate calculation unit for calculating a flow rate based on said rectifying means in the longitudinal direction of the plurality in parallel to the plane partition plate to a plurality of layers towards the flow direction of the fluid providing Ultrasonic flow measuring device with flow path configuration .
JP2009157600A 2009-07-02 2009-07-02 Ultrasonic flow meter Active JP5369940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157600A JP5369940B2 (en) 2009-07-02 2009-07-02 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157600A JP5369940B2 (en) 2009-07-02 2009-07-02 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2011013100A JP2011013100A (en) 2011-01-20
JP5369940B2 true JP5369940B2 (en) 2013-12-18

Family

ID=43592155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157600A Active JP5369940B2 (en) 2009-07-02 2009-07-02 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP5369940B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6474682B2 (en) * 2015-05-14 2019-02-27 株式会社キーエンス Ultrasonic flow switch
JP6326073B2 (en) * 2016-01-19 2018-05-16 矢崎エナジーシステム株式会社 Gas meter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3328505B2 (en) * 1996-04-19 2002-09-24 株式会社カイジョー Ultrasonic flow meter
JP3890698B2 (en) * 1997-09-26 2007-03-07 松下電器産業株式会社 Flow measuring device
JPH11351926A (en) * 1998-06-10 1999-12-24 Matsushita Electric Ind Co Ltd Ultrasonic flow rate measuring device
JP4447205B2 (en) * 2002-10-15 2010-04-07 パナソニック株式会社 Ultrasonic flow meter
JP4186645B2 (en) * 2003-02-24 2008-11-26 松下電器産業株式会社 Ultrasonic flow measuring device

Also Published As

Publication number Publication date
JP2011013100A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
US11293791B2 (en) Leaky lamb wave flowmeter
US8694270B2 (en) Ultrasonic clamp-on multiphase flowmeter
JPH07218307A (en) Method and device for measuring ultrasonic flow rate
JP2007529725A (en) Ultrasonic flow rate flow sensor with transducer array and reflective surface
US10330509B2 (en) Method and arrangement for an ultrasound clamp-on flow measurement and circuit arrangement for control of an ultrasound clamp-on flow measurement
US20090019945A1 (en) Ultrasonic Flowmaster
KR101195438B1 (en) Ultrasonic flowmeter and method of measuring flux by ultrasonic waves
CN103270396A (en) Ultrasonic flowmeter
JP4535065B2 (en) Doppler ultrasonic flow meter
JP5369940B2 (en) Ultrasonic flow meter
JP5582480B2 (en) Flow measuring device
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
JP5838292B2 (en) Ultrasonic flow measuring device
JP4688253B2 (en) Ultrasonic flow meter
JP4797515B2 (en) Ultrasonic flow measuring device
JP7151311B2 (en) ultrasonic flow meter
US11221244B2 (en) Clamp-on circumferential resonance ultrasonic flowmeter for collectively exciting and receiving circumferential modes of a pipe
JP5156918B2 (en) Ultrasonic density meter
RU2517996C1 (en) Ultrasonic flowmeter sensor
JP2008304283A (en) Ultrasonic flow meter
US11852608B2 (en) Fluid measuring device
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
RU2498229C1 (en) Ultrasonic gas flow meter
KR20100007215A (en) Ultrasonic transducer control method of a ultrasonic flowmeter and ultrasonic flowmeter to applying the method
WO2007074779A1 (en) Ultrasonic flowmeter and wedge for use in ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R151 Written notification of patent or utility model registration

Ref document number: 5369940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151