JP5365983B2 - Glass substrate with conductive film for solar cells - Google Patents

Glass substrate with conductive film for solar cells Download PDF

Info

Publication number
JP5365983B2
JP5365983B2 JP2008258761A JP2008258761A JP5365983B2 JP 5365983 B2 JP5365983 B2 JP 5365983B2 JP 2008258761 A JP2008258761 A JP 2008258761A JP 2008258761 A JP2008258761 A JP 2008258761A JP 5365983 B2 JP5365983 B2 JP 5365983B2
Authority
JP
Japan
Prior art keywords
glass substrate
film
oxide semiconductor
conductive film
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008258761A
Other languages
Japanese (ja)
Other versions
JP2010028068A (en
Inventor
正弘 澤田
直 瀬戸
智史 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008258761A priority Critical patent/JP5365983B2/en
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to US12/999,008 priority patent/US20110094584A1/en
Priority to EP09766762A priority patent/EP2299536A4/en
Priority to CN201310473977.0A priority patent/CN103601367A/en
Priority to CN2009801227541A priority patent/CN102106033A/en
Priority to PCT/JP2009/064265 priority patent/WO2009154314A1/en
Publication of JP2010028068A publication Critical patent/JP2010028068A/en
Application granted granted Critical
Publication of JP5365983B2 publication Critical patent/JP5365983B2/en
Priority to US14/563,150 priority patent/US20150090335A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Surface Treatment Of Glass (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass substrate with a conductive film for a solar cell, which can not be easily deformed when an FTO film or an ATO film is formed. <P>SOLUTION: The glass substrate with the conductive film for the solar cell is configured by depositing the conductive film composed of a fluorine-doped tin oxide or an antimony-doped tin oxide on the glass substrate having a thickness of 0.05 to 2 mm, wherein a strain point of the glass substrate is 525&deg;C or higher. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、太陽電池用導電膜付ガラス基板に関する。具体的には、太陽電池の電極基板として用いられる太陽電池用導電膜付ガラス基板に関する。   The present invention relates to a glass substrate with a conductive film for solar cells. Specifically, it is related with the glass substrate with a conductive film for solar cells used as an electrode substrate of a solar cell.

近年、単結晶シリコン、多結晶シリコン太陽電池またはアモルファスシリコン太陽電池を始めとする太陽電池に対する需要がますます高まっている。これらの太陽電池は、主に家庭用発電、商業用発電などに利用されている。また、その他の太陽電池として、CIS太陽電池、CdTe太陽電池、色素増感型太陽電池、有機薄膜太陽電池などが開発されており、これらも実用化されようとしている。   In recent years, there has been an increasing demand for solar cells including single crystal silicon, polycrystalline silicon solar cells and amorphous silicon solar cells. These solar cells are mainly used for household power generation and commercial power generation. As other solar cells, CIS solar cells, CdTe solar cells, dye-sensitized solar cells, organic thin film solar cells, and the like have been developed, and these are also being put to practical use.

アモルファスシリコン太陽電池や色素増感型太陽電池などには、電極基板として透明導電膜付ガラス基板が用いられる。ここで、ガラス基板としては、製造コストや汎用性の面で有利なことから、一般にソーダライムガラスが用いられている。また透明導電膜としては、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化スズ(ATO)、スズドープ酸化インジウム(ITO)などが用いられる。中でもFTOやATOは、ITOに比べ抵抗率では劣るものの、化学的および熱的に安定であり、さらに膜表面の凹凸形状による光の封じ込めや表面積の増大化による導電性向上などの効果が期待できるため、アモルファスシリコン太陽電池や色素増感型太陽電池用の電極基板として汎用されている(例えば、特許文献1および非特許文献1参照)。   A glass substrate with a transparent conductive film is used as an electrode substrate in amorphous silicon solar cells, dye-sensitized solar cells, and the like. Here, as the glass substrate, soda lime glass is generally used because it is advantageous in terms of manufacturing cost and versatility. As the transparent conductive film, fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), tin-doped indium oxide (ITO), or the like is used. Among them, although FTO and ATO are inferior in resistivity as compared with ITO, they are chemically and thermally stable, and can be expected to have effects such as light confinement due to the uneven shape of the film surface and conductivity improvement due to an increase in surface area. Therefore, it is widely used as an electrode substrate for amorphous silicon solar cells and dye-sensitized solar cells (see, for example, Patent Document 1 and Non-Patent Document 1).

一般に、FTO膜およびATO膜の作製には、成膜性が良好であり、かつ低コストであることから熱化学気相成長(熱CVD)法が用いられる。具体的には、スズおよびフッ素を含む化合物の混合ガスを、約480℃以上に熱したガラス基板上で熱分解反応させることにより成膜される。なお、熱CVD法には、板ガラス製造ラインでその熱を利用して成膜するオンラインCVD法と、一旦冷却されたガラスを所定の寸法に切断し、再加熱して成膜するオフラインCVD法がある。   In general, thermal chemical vapor deposition (thermal CVD) is used for the production of the FTO film and the ATO film because of its good film formability and low cost. Specifically, the film is formed by subjecting a mixed gas of a compound containing tin and fluorine to a thermal decomposition reaction on a glass substrate heated to about 480 ° C. or more. The thermal CVD method includes an on-line CVD method in which film is formed using the heat in a plate glass production line, and an off-line CVD method in which a glass once cooled is cut into a predetermined size and reheated to form a film. is there.

ところで、近年の携帯電子機器の普及に伴い、電源として、従来のバッテリーに加え、太陽電池も使用されるようになってきている。太陽電池が携帯電子機器に用いられる場合、従来の屋外設置の家庭用や商業用発電に用いられる太陽電池よりも、薄型化および軽量化が求められる。   By the way, with the spread of portable electronic devices in recent years, solar cells have come to be used as a power source in addition to conventional batteries. When solar cells are used for portable electronic devices, they are required to be thinner and lighter than solar cells used for conventional outdoor home use and commercial power generation.

太陽電池を薄型化および軽量化するためには、電極基板を薄型化することが最も有効である。電極基板を薄型化するためには、例えば、電極基板を構成するガラス基板を研磨して薄くする方法が挙げられる。通常、ガラスを研磨する場合、時間短縮やコスト削減などの理由により両面研磨が行われる。しかしながら、ガラス基板の片側に導電膜が成膜されている場合、片面しか研磨することができないため時間とコストが掛かる。また、研磨工程において導電膜にキズが入りやすいという問題がある。   In order to make the solar cell thinner and lighter, it is most effective to make the electrode substrate thinner. In order to reduce the thickness of the electrode substrate, for example, there is a method of polishing and thinning a glass substrate constituting the electrode substrate. Usually, when glass is polished, double-side polishing is performed for reasons such as time reduction and cost reduction. However, when a conductive film is formed on one side of a glass substrate, only one side can be polished, which takes time and cost. Further, there is a problem that the conductive film is easily scratched in the polishing process.

そこで、予め薄板ガラス基板を用意し、その表面に導電膜を成膜する方法が提案されている。当該方法によれば、ガラス基板の研磨作業が不要であるため時間とコストの削減となり、太陽電池の薄型化および軽量化を効率よく実現することが可能となる。
特開2002−260448号公報 透明導電膜の技術(改訂2版)、オーム社、153〜165頁
Therefore, a method has been proposed in which a thin glass substrate is prepared in advance and a conductive film is formed on the surface thereof. According to this method, the polishing work of the glass substrate is unnecessary, so that time and cost can be reduced, and the solar cell can be efficiently reduced in thickness and weight.
JP 2002-260448 A Transparent conductive film technology (2nd revised edition), Ohm, pages 153-165

既述のように、ガラス基板にFTO膜やATO膜をオフラインCVD法で成膜する場合、ガラス基板を約480℃以上まで加熱して成膜が行われる。しかしながら、ガラス基板に吹き付けられるガス温度は比較的低いため、成膜によりガラス基板の温度が低下しやすい。それにより、ガラス基板の面方向や厚み方向の温度分布にムラが生じたりすると、応力が発生し変形が生じやすい。したがって、従来のようにガラス基板厚みが十分に厚い場合は変形が生じにくいが、板厚が薄い場合、特に2mm以下となると変形は顕著となり、太陽電池用電極基板として使用できなくなるといった問題が生じていた。   As described above, when an FTO film or an ATO film is formed on a glass substrate by an off-line CVD method, the glass substrate is heated to about 480 ° C. or higher for film formation. However, since the temperature of the gas sprayed onto the glass substrate is relatively low, the temperature of the glass substrate is likely to decrease due to film formation. As a result, if unevenness occurs in the temperature distribution in the surface direction or thickness direction of the glass substrate, stress is generated and deformation tends to occur. Therefore, when the glass substrate thickness is sufficiently thick as in the prior art, deformation is difficult to occur, but when the plate thickness is thin, especially when the thickness is 2 mm or less, the deformation becomes significant, and there is a problem that it cannot be used as a solar cell electrode substrate. It was.

したがって、本発明は、FTO膜またはATO膜の成膜時に変形が生じにくい太陽電池用導電膜付ガラス基板を提供することを目的とする。   Accordingly, an object of the present invention is to provide a glass substrate with a conductive film for a solar cell that is less likely to be deformed when an FTO film or an ATO film is formed.

本発明者等は鋭意検討を行った結果、薄板ガラス基板にFTO膜またはATO膜が成膜されてなる太陽電池用導電膜付ガラス基板において、ガラス基板の歪点を一定の範囲に限定することにより、前記課題を解決できることを見出し、本発明として提案するものである。   As a result of intensive studies, the present inventors limited the strain point of the glass substrate to a certain range in the glass substrate with a conductive film for a solar cell in which an FTO film or an ATO film is formed on a thin glass substrate. Thus, the present inventors have found that the above problems can be solved, and propose as the present invention.

すなわち、本発明の太陽電池用導電膜付ガラス基板は、0.05〜2mmの厚みを有するガラス基板上にフッ素ドープ酸化スズまたはアンチモンドープ酸化スズからなる導電膜が成膜されてなるものであって、ガラス基板は、歪点が525℃以上であり、熱膨張係数が30×10 −7 /℃以上50×10 −7 /℃以下であり、Na O及びK Oを含有しないガラスからなることを特徴とする。本発明においてガラス基板の歪点は、JIS R3103に準じて測定された値をいう。 That is, the glass substrate with a conductive film for solar cells of the present invention is obtained by forming a conductive film made of fluorine-doped tin oxide or antimony-doped tin oxide on a glass substrate having a thickness of 0.05 to 2 mm. Te, glass substrates state, and are strain point 525 ° C. or higher, the thermal expansion coefficient is not more 30 × 10 -7 / ℃ least 50 × 10 -7 / ℃ less, not containing Na 2 O and K 2 O glass characterized in that it consists of. In the present invention, the strain point of the glass substrate refers to a value measured according to JIS R3103.

FTO膜およびATO膜の成膜温度は、例えば熱CVD法による場合、成膜に使用される原料や膜厚によっても異なるが、概ね480℃以上である。ガラス基板温度が480℃より低い場合、成膜速度が極端に遅くなるため、実用上好ましくない。基板温度が上がるにつれ成膜速度が速くなり、同時に膜表面の凹凸も大きくなる。この膜表面の凹凸は、光の封じ込め効果や表面積の増大化に寄与し、導電性向上につながる。良好な成膜速度および膜の表面状態を得るためには、成膜温度は510℃以上であること好ましい。特に、本発明で用いられるガラス基板は、厚みが0.05〜2mmと非常に薄く、成膜時に熱変形が生じやすいが、ガラス基板の歪点が525℃以上と成膜温度よりも十分に高ければ、成膜時におけるガラス基板の変形を防止することが可能となる。   For example, in the case of the thermal CVD method, the film formation temperature of the FTO film and the ATO film is approximately 480 ° C. or more although it varies depending on the raw material and film thickness used for film formation. When the glass substrate temperature is lower than 480 ° C., the film formation rate becomes extremely slow, which is not preferable for practical use. As the substrate temperature rises, the deposition rate increases, and at the same time, the unevenness of the film surface increases. The unevenness on the film surface contributes to the light containment effect and the increase in surface area, leading to improved conductivity. In order to obtain a good film formation speed and film surface condition, the film formation temperature is preferably 510 ° C. or higher. In particular, the glass substrate used in the present invention has a very thin thickness of 0.05 to 2 mm and is likely to be thermally deformed during film formation. If it is high, it becomes possible to prevent the deformation of the glass substrate during film formation.

第二に、本発明の太陽電池用導電膜付ガラス基板は、色素増感型太陽電池に用いることができる。   2ndly, the glass substrate with a conductive film for solar cells of this invention can be used for a dye-sensitized solar cell.

色素増感型太陽電池は、導電膜付ガラス基板と、導電膜付ガラス基板に形成された多孔質酸化物半導体層(主にTiO層)からなる多孔質酸化物半導体電極と、その多孔質酸化物半導体電極に吸着されたRu色素等の色素と、ヨウ素を含むヨウ素電解液と、触媒膜と透明導電膜が成膜された対極基板等で構成される。 A dye-sensitized solar cell includes a porous oxide semiconductor electrode composed of a glass substrate with a conductive film, a porous oxide semiconductor layer (mainly a TiO 2 layer) formed on the glass substrate with a conductive film, and a porous structure thereof. It comprises a dye such as a Ru dye adsorbed on an oxide semiconductor electrode, an iodine electrolyte containing iodine, a counter electrode substrate on which a catalyst film and a transparent conductive film are formed, and the like.

色素増感型太陽電池においては、ガラス基板上にFTO膜やATO膜などの導電膜が成膜されたのち、さらに、約500℃の加熱温度にて多孔質酸化物半導体層が導電膜付ガラス基板上に形成される。一般に、ガラス基板上に成膜された導電膜の耐熱温度は、成膜温度に依存する。そのため、導電膜の成膜温度が500℃付近であると、多孔質酸化物半導体層形成工程にて膜特性が変化し、特に抵抗率が上昇し、エネルギー変換効率が低下してしまうおそれがある。本発明においては、ガラス基板の歪点が525℃以上であるため、従来のソーダライムガラス等の基板と比べて、より高温での導電幕の成膜が可能であるため、多孔質酸化物半導体層の形成工程によって膜特性が変化しにくい。したがって、本発明の導電膜付ガラス基板は色素増感型太陽電池用として好適である。   In a dye-sensitized solar cell, after a conductive film such as an FTO film or an ATO film is formed on a glass substrate, the porous oxide semiconductor layer is further formed into a glass with a conductive film at a heating temperature of about 500 ° C. Formed on a substrate. In general, the heat resistance temperature of a conductive film formed on a glass substrate depends on the film formation temperature. Therefore, if the film forming temperature of the conductive film is around 500 ° C., the film characteristics change in the porous oxide semiconductor layer forming step, and in particular, the resistivity may increase and the energy conversion efficiency may decrease. . In the present invention, since the strain point of the glass substrate is 525 ° C. or higher, it is possible to form a conductive curtain at a higher temperature than a conventional substrate such as soda lime glass. The film characteristics hardly change depending on the layer formation process. Therefore, the glass substrate with a conductive film of the present invention is suitable for a dye-sensitized solar cell.

なお、FTO膜やATO膜は、ITO膜と比較して膜表面の凹凸の度合いが大きいため、TiO層などの多孔質酸化物半導体層が十分に固定されやすくなる効果(アンカー効果)も期待できる。 In addition, since the FTO film and the ATO film have a larger degree of unevenness on the film surface than the ITO film, an effect (anchor effect) that the porous oxide semiconductor layer such as a TiO 2 layer is easily fixed is expected. it can.

に、本発明は、前記いずれかの太陽電池用導電膜付ガラス基板上に、厚さ5〜50μmの酸化物半導体層が形成されてなることを特徴とする色素増感型太陽電池用酸化物半導体電極に関する。 Third , the present invention provides a dye-sensitized solar cell, wherein an oxide semiconductor layer having a thickness of 5 to 50 μm is formed on any one of the glass substrates with a conductive film for a solar cell. The present invention relates to an oxide semiconductor electrode.

に、本発明の色素増感型太陽電池用酸化物半導体電極において、酸化物半導体層が、平均一次粒子径が30nm以下の酸化物粒子からなることを特徴とする。 Fourth , in the oxide semiconductor electrode for dye-sensitized solar cell of the present invention, the oxide semiconductor layer is characterized by comprising oxide particles having an average primary particle diameter of 30 nm or less.

このように、酸化物半導体層を構成する酸化物粒子の平均一次粒子径を小さくすることにより、酸化物半導体層の光透過性を高めることが可能となる。   As described above, by reducing the average primary particle diameter of the oxide particles constituting the oxide semiconductor layer, the light transmittance of the oxide semiconductor layer can be increased.

に、本発明の色素増感型太陽電池用酸化物半導体電極において、酸化物半導体層の気孔率が60〜80%であることを特徴とする。 Fifth , in the oxide semiconductor electrode for dye-sensitized solar cell of the present invention, the porosity of the oxide semiconductor layer is 60 to 80%.

酸化物半導体層の気孔率を当該範囲に限定することにより、発生する応力を緩和できるとともに、色素の吸着を十分に行うことができる。なお、本発明において、酸化物半導体層の気孔率は以下の式により算出される。   By limiting the porosity of the oxide semiconductor layer to the range, the generated stress can be reduced and the dye can be sufficiently adsorbed. Note that in the present invention, the porosity of the oxide semiconductor layer is calculated by the following equation.

ρ=W/V
P=(1−ρ/D)×100〔%〕
ここで、Wは酸化物半導体層の質量、Vは酸化物半導体層の体積、ρは酸化物半導体層の見かけ密度、Dは酸化物半導体の理論密度、Pは酸化物半導体層の気孔率を示す。
ρ = W / V
P = (1−ρ / D) × 100 [%]
Here, W is the mass of the oxide semiconductor layer, V is the volume of the oxide semiconductor layer, ρ is the apparent density of the oxide semiconductor layer, D is the theoretical density of the oxide semiconductor, and P is the porosity of the oxide semiconductor layer. Show.

本発明において、ガラス基板の歪点は525℃以上であり、成膜時の温度むらなどを考慮すると、好ましくは540℃以上である。ガラス基板の歪点が525℃未満であると、成膜時に熱変形が生じやすくなる。なお、FTO膜またはATO膜の成膜温度との兼ね合いで言えば、ガラス基板の歪点は、FTO膜またはATO膜の成膜温度より15℃以上、好ましくは30℃以上高いことが好ましい。ここで、成膜温度とは、成膜時におけるガラス基板の保持温度をいう。   In the present invention, the strain point of the glass substrate is 525 ° C. or higher, and preferably 540 ° C. or higher in consideration of temperature unevenness during film formation. When the strain point of the glass substrate is lower than 525 ° C., thermal deformation tends to occur during film formation. In terms of the film formation temperature of the FTO film or the ATO film, the strain point of the glass substrate is preferably 15 ° C. or more, preferably 30 ° C. or more higher than the film formation temperature of the FTO film or the ATO film. Here, the film formation temperature refers to the holding temperature of the glass substrate during film formation.

このようなガラスとしては、SiO−Al−RO−R’O系、SiO−Al−B−RO系、SiO−Al−R’O系、SiO−B−R’O系、SiO−B−Al−RO−R’O系ガラスなどが挙げられる(ただし、RはMg、Ca、Sr、Ba、Znのいずれかを示し、R’はLi、Na、Kのいずれかを示す)。 Examples of such glass include SiO 2 —Al 2 O 3 —RO—R ′ 2 O, SiO 2 —Al 2 O 3 —B 2 O 3 —RO, and SiO 2 —Al 2 O 3 —R ′ 2. O-based, SiO 2 —B 2 O 3 —R ′ 2 O-based, SiO 2 —B 2 O 3 —Al 2 O 3 —RO—R ′ 2 O-based glass, etc. (where R is Mg, Ca, etc.) , Sr, Ba, or Zn, and R ′ represents any of Li, Na, and K).

ここで、AlおよびZrOは、ガラスの歪点を高める成分であるが、高温粘性も同時に高くなり、溶融性が悪化する傾向がある。一方、LiO、NaO、KOなどのアルカリ金属酸化物は、高温粘性を下げる成分であるが、ガラスの歪点が低下する傾向がある。 Here, Al 2 O 3 and ZrO 2 are components that increase the strain point of the glass, but the high-temperature viscosity also increases at the same time, and the meltability tends to deteriorate. On the other hand, alkali metal oxides such as Li 2 O, Na 2 O, and K 2 O are components that lower the high-temperature viscosity, but the glass strain point tends to decrease.

MgO、CaO、SrO、BaO、ZnOは、ガラスの高温粘性を下げる成分であり、アルカリ金属酸化物と比較して歪点を低下させる割合が少ないという性質を有する。よって、アルカリ金属酸化物をこれらの成分と適宜置換することにより、ガラスの高温粘性を比較的低いレベルに維持しつつ、ガラスの歪点を高めることができる。   MgO, CaO, SrO, BaO, and ZnO are components that lower the high-temperature viscosity of glass, and have the property that the ratio of lowering the strain point is lower than that of alkali metal oxides. Therefore, by appropriately replacing the alkali metal oxide with these components, it is possible to increase the strain point of the glass while maintaining the high temperature viscosity of the glass at a relatively low level.

例えば、SiO−Al−RO−R’O系ガラスとしては、質量%で、SiO 50〜70%、Al 0.5〜15%、MgO+CaO+SrO+BaO+ZnO 10〜27%、LiO+NaO+KO 7〜15%、ZrO 0〜9%、TiO 0〜5%、SnO+Sb+As+SO 0〜1%の組成を含有するものが一例として挙げられる。 For example, as SiO 2 —Al 2 O 3 —RO—R ′ 2 O-based glass, by mass%, SiO 2 50 to 70%, Al 2 O 3 0.5 to 15%, MgO + CaO + SrO + BaO + ZnO 10 to 27%, Li As an example, a composition containing 2 O + Na 2 O + K 2 O 7-15%, ZrO 2 0-9%, TiO 2 0-5%, SnO 2 + Sb 2 O 3 + As 2 O 3 + SO 3 0-1% Can be mentioned.

このようにガラス組成を限定した理由は以下のように説明される。   The reason for limiting the glass composition in this way is explained as follows.

SiOはガラスの網目構成成分であり、その含有量は50〜70%、好ましくは52〜65%である。SiOの含有量が50%より少ないと、ガラスの歪点が低くなる傾向がある。一方、SiOの含有量が70%より多いと、溶融温度が高くなるため溶融性が悪化し、また失透しやすくなる。 SiO 2 is a glass network constituent, and its content is 50 to 70%, preferably 52 to 65%. When the content of SiO 2 is less than 50%, the strain point of the glass tends to be low. On the other hand, when the content of SiO 2 is more than 70%, the melting temperature becomes high, so that the meltability is deteriorated and devitrification easily occurs.

Alはガラスの歪点を高めるための成分であり、その含有量は0.5〜15%、好ましくは2〜12%である。Alの含有量が0.5%より少ないと、歪点を高める効果が得られにくい。一方、Alの含有量が15%より多いと、溶融温度が高くなるため溶融性が悪化し、また失透しやすくなる。 Al 2 O 3 is a component for increasing the strain point of glass, and its content is 0.5 to 15%, preferably 2 to 12%. When the content of Al 2 O 3 is less than 0.5%, it is difficult to obtain the effect of increasing the strain point. On the other hand, when the content of Al 2 O 3 is more than 15%, the melting temperature becomes high, so that the meltability is deteriorated and devitrification easily occurs.

MgO、CaO、SrO、BaOおよびZnOは、いずれもガラスの溶融性を向上させるとともに、熱膨張係数を制御するための成分である。また既述のように、アルカリ金属酸化物と比較して歪点を低下させる割合が少ないという性質を有する。これらの成分の含有量は合量で10〜27%、好ましくは15〜25%である。これらの成分の合量が10%より少ないと、溶融温度が高くなり溶融性が悪化しやすく、一方、27%より多いと失透しやすく、成形が困難となりやすい。   MgO, CaO, SrO, BaO and ZnO are all components for improving the meltability of glass and controlling the thermal expansion coefficient. Further, as described above, it has the property that the ratio of lowering the strain point is smaller than that of the alkali metal oxide. The total content of these components is 10 to 27%, preferably 15 to 25%. If the total amount of these components is less than 10%, the melting temperature tends to be high and the meltability tends to deteriorate. On the other hand, if it exceeds 27%, devitrification tends to occur and molding tends to be difficult.

LiO、NaOおよびKOは、いずれもガラスの溶融性を向上させるとともに、熱膨張係数を制御するための成分である。これらの成分の含有量は合量で7〜15%、好ましくは8〜13%である。これらの成分の合量が7%より少ないと、溶融温度が高くなり溶融性が悪化しやすく、一方、15%より多いと、歪点が低くなりやすくなる。 Li 2 O, Na 2 O and K 2 O are all components for improving the meltability of glass and controlling the thermal expansion coefficient. The total content of these components is 7 to 15%, preferably 8 to 13%. If the total amount of these components is less than 7%, the melting temperature becomes high and the meltability tends to deteriorate, whereas if it exceeds 15%, the strain point tends to be low.

ZrOは歪点を高め、かつ化学的耐久性を向上させる成分である。ZrOの含有量は0〜9%、好ましくは1〜7%である。ZrOの含有量が9%より多くなると、溶融時に失透物が生成しやすく成形が困難となりやすい。 ZrO 2 is a component that increases the strain point and improves the chemical durability. The content of ZrO 2 is 0 to 9%, preferably 1 to 7%. When the content of ZrO 2 exceeds 9%, a devitrified material is likely to be generated at the time of melting, and molding tends to be difficult.

TiOはガラスの紫外線による着色(ソーラリゼーション)を防止する成分である。ガラス基板中に不純物として鉄イオンを含有していると(例えば、0.01〜0.2%)、当該ガラス基板を用いた太陽電池を長期間使用することにより、鉄イオンによる着色が生じやすくなる。そこで、TiOを含有することによって、この種の着色を防止することができる。TiOの含有量は0〜5%、好ましくは1〜4%である。TiOの含有量が5%より多くなると、失透しやすく、成形が困難となりやすい。 TiO 2 is a component that prevents the glass from being colored (solarization) by ultraviolet rays. When iron ions are contained as impurities in the glass substrate (for example, 0.01 to 0.2%), the use of solar cells using the glass substrate for a long period of time tends to cause coloring due to iron ions. Become. Therefore, this kind of coloring can be prevented by containing TiO 2 . The content of TiO 2 is 0 to 5%, preferably 1 to 4%. When the content of TiO 2 exceeds 5%, devitrification tends to occur and molding tends to be difficult.

SnO、Sb、AsおよびSOは、いずれも清澄剤として使用する成分である。これらの成分の含有量は合量で0〜1%、好ましくは0.1〜0.8%である。これらの成分の合量が1%より多くなると、失透しやすく、成形が困難となりやすい。 SnO 2 , Sb 2 O 3 , As 2 O 3 and SO 3 are all components used as fining agents. The total content of these components is 0 to 1%, preferably 0.1 to 0.8%. When the total amount of these components exceeds 1%, devitrification tends to occur and molding tends to be difficult.

また、より歪点の高いSiO−Al−B−RO系ガラスとしては、質量%で、SiO 50〜70%、Al 10〜20%、B 9〜15%、MgO+CaO+SrO+BaO 10〜18%、SnO+Sb+As 0.05〜1%の組成を含有するものが挙げられる。 Further, as a more higher SiO 2 -Al 2 O 3 -B 2 O 3 -RO based glass having a strain point of, in mass%, SiO 2 50~70%, Al 2 O 3 10~20%, B 2 O 3 9~15%, MgO + CaO + SrO + BaO 10~18%, include those containing the composition of the SnO 2 + Sb 2 O 3 + as 2 O 3 0.05~1%.

このようにガラス組成を限定した理由は以下のように説明される。   The reason for limiting the glass composition in this way is explained as follows.

SiOはガラスの網目構成成分である。SiOの含有量は50〜70%、好ましくは55〜65%である。SiOの含有量が50%より少ないと、歪点が低くなりやすい。一方、SiOの含有量が70%より多いと、溶融温度が高くなり溶融性が悪化し、また失透しやすくなる。 SiO 2 is a glass network constituent. The content of SiO 2 is 50 to 70%, preferably 55 to 65%. If the content of SiO 2 is less than 50%, the strain point tends to be low. On the other hand, when the content of SiO 2 is more than 70%, the melting temperature becomes high, the meltability is deteriorated, and devitrification easily occurs.

Alは、ガラスの歪点を高めるための成分である。Alの含有量は10〜20%、好ましくは12〜18%である。Alの含有量が10%より少ないと、歪点を高める効果が十分に得られにくい。一方、Alの含有量が20%より多いと、溶融温度が高くなり溶融性が悪化し、また失透しやすくなる。 Al 2 O 3 is a component for increasing the strain point of glass. The content of Al 2 O 3 is 10 to 20%, preferably 12 to 18%. When the content of Al 2 O 3 is less than 10%, it is difficult to sufficiently obtain the effect of increasing the strain point. On the other hand, when the content of Al 2 O 3 is more than 20%, the melting temperature becomes high, the meltability deteriorates, and devitrification easily occurs.

は融剤として働き、ガラスの粘性を下げて溶融を容易にする成分である。Bの含有量は9〜15%、好ましくは9〜14%である。Bの含有量が9%より少ないと、融剤としての効果が不十分となりやすい。一方、Bの含有量が15%より多いと、歪点が低下しやすい。 B 2 O 3 is a component that works as a flux and lowers the viscosity of the glass to facilitate melting. The content of B 2 O 3 is 9 to 15%, preferably 9 to 14%. When the content of B 2 O 3 is less than 9%, the effect as a flux tends to be insufficient. On the other hand, if the content of B 2 O 3 is more than 15%, the strain point tends to be lowered.

MgO、CaO、SrO、BaOおよびZnOは、いずれもガラスの溶融性を向上させるとともに、熱膨張係数を制御するための成分である。また既述のように、アルカリ金属酸化物と比較して歪点を低下させる割合が少ないという性質を有する。これらの成分の含有量は合量で10〜18%、好ましくは11〜16%である。これらの成分の合量が10%より少ないと、溶融温度が高くなり溶融性が悪化しやすく、一方、18%より多いと、失透しやすく、成形が困難となりやすい。なお、各成分の含有量としては、MgO 0〜2.5%(さらには0.1〜2%)、CaO 6.5〜15%(さらには、7〜13%)、SrO 3〜10%(さらには、3〜8%)、BaO 0〜3%(さらには、0.1〜2%)であることが好ましい。   MgO, CaO, SrO, BaO and ZnO are all components for improving the meltability of glass and controlling the thermal expansion coefficient. Further, as described above, it has the property that the ratio of lowering the strain point is smaller than that of the alkali metal oxide. The total content of these components is 10 to 18%, preferably 11 to 16%. When the total amount of these components is less than 10%, the melting temperature tends to be high and the meltability tends to deteriorate. On the other hand, when it exceeds 18%, devitrification tends to occur and molding tends to be difficult. In addition, as content of each component, MgO 0-2.5% (further 0.1-2%), CaO 6.5-15% (further 7-13%), SrO 3-10% (Furthermore, 3 to 8%) and BaO 0 to 3% (further 0.1 to 2%) are preferable.

SnO、Sb、Asはいずれも清澄剤としての働きを有する成分である。これらの成分の含有量は合量で0.05〜1%である。これらの成分の合量が0.05%より少ないと、清澄剤としての十分な効果が得られにくく、一方、1%より多いと、失透しやすくなる。 SnO 2 , Sb 2 O 3 and As 2 O 3 are all components having a function as a fining agent. The total content of these components is 0.05 to 1%. When the total amount of these components is less than 0.05%, it is difficult to obtain a sufficient effect as a fining agent, while when it exceeds 1%, devitrification is likely to occur.

本発明において、ガラス基板の厚みは0.05〜2mm、好ましくは0.1〜1.5mm、より好ましくは0.2〜1.2mmである。ガラス基板の厚みが2mmよりも大きい場合、太陽電池の薄型軽量化を達成しにくい。一方、ガラス基板の厚みが0.05mmよりも薄い場合、柔軟性(可撓性)に優れるものの、強度が低下し破損しやすくなる。   In this invention, the thickness of a glass substrate is 0.05-2 mm, Preferably it is 0.1-1.5 mm, More preferably, it is 0.2-1.2 mm. When the thickness of the glass substrate is larger than 2 mm, it is difficult to achieve a thin and lightweight solar cell. On the other hand, when the thickness of the glass substrate is less than 0.05 mm, the glass substrate is excellent in flexibility (flexibility), but the strength is reduced and the glass substrate is easily damaged.

例えば熱CVD法などの成膜方法によるFTO膜、ATO膜の原料としては、スズ源としてSnCl、CSnCl、(CHSnCl、フッ素源としてHF、CFCOOH、CHF、CCl、またアンチモン源としてSbClなどを用いることができる。 For example, as a raw material for an FTO film or an ATO film formed by a film forming method such as a thermal CVD method, SnCl 4 , C 4 H 9 SnCl 3 , (CH 3 ) 2 SnCl 2 as a tin source, HF, CF 3 COOH as a fluorine source, CHF 2 , CCl 2 F 2 , SbCl 3 or the like can be used as an antimony source.

FTO膜およびATO膜の膜厚は特に限定されないが、0.5〜1.5μmの範囲で調整することが好ましい。FTO膜およびATO膜の膜厚が0.5μmより薄いと、十分な導電性が得られず、一方、1.5μmより厚いと、太陽光スペクトルに対する透過率が下がり太陽電池の発電効率が低下しやすい。   The film thicknesses of the FTO film and the ATO film are not particularly limited, but are preferably adjusted in the range of 0.5 to 1.5 μm. If the film thickness of the FTO film and the ATO film is less than 0.5 μm, sufficient conductivity cannot be obtained. On the other hand, if the film thickness is more than 1.5 μm, the transmittance for the solar spectrum decreases and the power generation efficiency of the solar cell decreases. Cheap.

FTO膜およびATO膜の抵抗値は、好ましくは10Ω/□以下、より好ましくは7Ω/□以下である。抵抗値が10Ω/□を超えると、膜の導電性が低下し、太陽電池としての性能に劣る傾向がある。   The resistance value of the FTO film and the ATO film is preferably 10Ω / □ or less, more preferably 7Ω / □ or less. When the resistance value exceeds 10Ω / □, the conductivity of the film is lowered, and the performance as a solar cell tends to be inferior.

FTO膜およびATO膜の平均表面粗さ(Ra)は、好ましくは20nm以上、より好ましくは30nm以上である。膜の平均表面粗さを当該範囲とすることにより、光の封じ込め効果が発揮されるとともに、膜の表面積が増大し、導電性を向上させることができる。   The average surface roughness (Ra) of the FTO film and the ATO film is preferably 20 nm or more, more preferably 30 nm or more. By setting the average surface roughness of the film in this range, the light containment effect is exhibited, the surface area of the film is increased, and the conductivity can be improved.

なお、ガラス基板がアルカリ金属酸化物を含むガラスからなる場合、FTO膜またはATO膜とガラス基板の間にSiOなどのアンダーコート層を設けてもよい。このようなアンダーコート層を設けることにより、ガラスから溶出するアルカリイオンによるFTO膜またはATO膜の導電性低下を防止することができる。 When the glass substrate is made of glass containing an alkali metal oxide, an undercoat layer such as SiO 2 may be provided between the FTO film or ATO film and the glass substrate. By providing such an undercoat layer, it is possible to prevent a decrease in conductivity of the FTO film or the ATO film due to alkali ions eluted from the glass.

本発明において、特に導電膜付ガラス基板を色素増感型太陽電池用として用いる場合、ガラス基板の熱膨張係数を70〜110×10−7/℃の範囲で調整することが好ましい。既述のように、ガラス基板の熱膨張係数が70×10−7/℃より小さいと、封止用の低融点ガラスとの熱膨張係数差が大きくなるため、封止部分またはガラス基板にクラックが生じ、ヨウ素電解液の漏れが発生するおそれがある。一方、ガラス基板の熱膨張係数が110×10−7/℃より大きいと、FTO膜やATO膜の成膜時において、基板が熱変形しやすくなる。 In the present invention, particularly when a glass substrate with a conductive film is used for a dye-sensitized solar cell, the thermal expansion coefficient of the glass substrate is preferably adjusted in the range of 70 to 110 × 10 −7 / ° C. As described above, if the thermal expansion coefficient of the glass substrate is smaller than 70 × 10 −7 / ° C., the difference in thermal expansion coefficient from the low-melting glass for sealing becomes large, so cracks occur in the sealing portion or the glass substrate. May occur and iodine electrolyte leakage may occur. On the other hand, when the thermal expansion coefficient of the glass substrate is larger than 110 × 10 −7 / ° C., the substrate is likely to be thermally deformed when forming the FTO film or the ATO film.

なお、ガラス基板の封止に、樹脂等の、低融点ガラス以外の封止材を用いる場合は、ガラス基板の熱膨張係数は上記範囲に限定されず、例えば、熱膨張係数が−5〜110×10−7/℃、さらには30〜110×10−7/℃のガラス基板を用いることができる。特に、熱膨張係数が70×10−7/℃より小さいガラス基板も用いることが可能であり、具体的には、熱膨張係数が60×10−7/℃以下、さらには50×10−7/℃以下のガラス基板を用いることができる。 In addition, when using sealing materials other than low melting glass, such as resin, for sealing a glass substrate, the thermal expansion coefficient of a glass substrate is not limited to the said range, For example, a thermal expansion coefficient is -5-110. A glass substrate of × 10 −7 / ° C., further 30 to 110 × 10 −7 / ° C. can be used. In particular, a glass substrate having a thermal expansion coefficient smaller than 70 × 10 −7 / ° C. can be used. Specifically, the thermal expansion coefficient is 60 × 10 −7 / ° C. or less, and further 50 × 10 −7. A glass substrate at / ° C or lower can be used.

本発明の色素増感型太陽電池用酸化物半導体電極において、酸化物半導体層の厚さは5〜50μm、好ましくは8〜40μm、より好ましくは10〜30μmである。酸化物半導体層の厚さが5μmより薄いと、色素増感型太陽電池の発電効率が低くなりやすい。一方、酸化物半導体層の厚さが50μmより厚いと、照射光を有効活用しにくくなるとともに、酸化物半導体層の剥離が起こりやすくなる。   In the oxide semiconductor electrode for dye-sensitized solar cell of the present invention, the thickness of the oxide semiconductor layer is 5 to 50 μm, preferably 8 to 40 μm, more preferably 10 to 30 μm. When the thickness of the oxide semiconductor layer is less than 5 μm, the power generation efficiency of the dye-sensitized solar cell tends to be low. On the other hand, when the thickness of the oxide semiconductor layer is greater than 50 μm, it is difficult to effectively use the irradiation light, and the oxide semiconductor layer is easily peeled off.

酸化物半導体層は、単層あるいは光透過性の異なる複数の層(少なくとも2層以上)で構成される。   The oxide semiconductor layer includes a single layer or a plurality of layers (at least two layers) having different light transmittances.

酸化物半導体層は、光透過性の異なる複数の層(少なくとも2層以上)で構成すること、さらには、ガラス基板に近い側の層から順に光透過性の高い酸化物半導体層を配置することにより、照射光を有効活用し、色素増感型太陽電池の発電効率を向上させることが可能となることが知られている。一方、当該構成とした場合、各層の焼結挙動の違いによって酸化物半導体層とガラス基板の間に働く応力が増加しやすくなるため、酸化物半導体層の剥離が生じやすくなる。特に、ガラス基板の熱膨張係数が小さい場合(例えば、70×10−7/℃未満、60×10−7/℃以下、さらには50×10−7/℃以下)、酸化物半導体層の剥離が顕著になる傾向がある。そこで、このような酸化物半導体層の剥離を抑制するという観点では、酸化物半導体層を単層で構成することが好ましい。 The oxide semiconductor layer is composed of a plurality of layers (at least two layers) having different light transmissivities, and furthermore, an oxide semiconductor layer having a high light transmissivity is arranged in order from the layer closer to the glass substrate. Thus, it is known that the irradiation power can be effectively utilized to improve the power generation efficiency of the dye-sensitized solar cell. On the other hand, when the structure is adopted, stress acting between the oxide semiconductor layer and the glass substrate is likely to increase due to a difference in sintering behavior of each layer, and thus the oxide semiconductor layer is easily peeled off. In particular, when the thermal expansion coefficient of the glass substrate is small (for example, less than 70 × 10 −7 / ° C., 60 × 10 −7 / ° C. or less, and further 50 × 10 −7 / ° C. or less), the oxide semiconductor layer is peeled off. Tend to be prominent. Thus, from the viewpoint of suppressing such peeling of the oxide semiconductor layer, the oxide semiconductor layer is preferably formed as a single layer.

酸化物半導体層の光透過性を高める手段としては、酸化物半導体を構成する酸化物粒子の粒子径を小さくすることが有効である。   As a means for increasing the light transmittance of the oxide semiconductor layer, it is effective to reduce the particle diameter of the oxide particles constituting the oxide semiconductor.

酸化物粒子の平均一次粒子径は30nm以下、25nm以下、特に20nm以下が好ましい。酸化物粒子の平均一次粒子径が30nmを超えると、酸化物半導体層の光透過性に劣る傾向がある。   The average primary particle diameter of the oxide particles is preferably 30 nm or less, 25 nm or less, and particularly preferably 20 nm or less. When the average primary particle diameter of the oxide particles exceeds 30 nm, the light transmittance of the oxide semiconductor layer tends to be inferior.

酸化物半導体層の気孔率は、60〜80%、特に65〜75%が好ましい。酸化物半導体層の気孔率が60%未満であると、焼成時に発生する応力により剥離が生じやすく、また十分な量の色素吸着が得られないため発電効率が低下する。酸化物半導体層の気孔率が80%を超えると、実効酸化物半導体粒子数が減る、あるいは、電子が移動するためのパスが減るなどにより発電効率が低下する。また、膜の機械的強度が落ち、僅かな外的衝撃が負荷されただけでも剥がれが生じやすくなる。   The porosity of the oxide semiconductor layer is preferably 60 to 80%, particularly preferably 65 to 75%. When the porosity of the oxide semiconductor layer is less than 60%, peeling is likely to occur due to stress generated during firing, and a sufficient amount of dye adsorption cannot be obtained, so that power generation efficiency is reduced. When the porosity of the oxide semiconductor layer exceeds 80%, the number of effective oxide semiconductor particles decreases, or the power generation efficiency decreases due to a decrease in paths for moving electrons. Further, the mechanical strength of the film is lowered, and peeling easily occurs even when a slight external impact is applied.

酸化物半導体層は、酸化チタンを含む酸化物粒子から構成されることが好ましい。酸化チタンの結晶系としては、エネルギー変換効率に優れるためアナターゼ型が好ましい。ただし、酸化物粒子は、酸化チタンに限定されるものではなく、色素増感型太陽電池としての性能を発揮するものであれば使用可能である。例えば、酸化亜鉛などが挙げられる。   The oxide semiconductor layer is preferably composed of oxide particles containing titanium oxide. The crystal system of titanium oxide is preferably an anatase type because of its excellent energy conversion efficiency. However, the oxide particles are not limited to titanium oxide, and any oxide particles that exhibit performance as a dye-sensitized solar cell can be used. For example, zinc oxide etc. are mentioned.

酸化物半導体層は、酸化物半導体ペーストをガラス基板上に塗布し、焼成することにより形成される。酸化物半導体ペーストの塗布方法としては、スクリーン印刷法、ドクターブレード法、スキージ法、スピンコート法、スプレー法などが挙げられる。特に、スクリーン印刷法は、大面積に均一に数〜数十μmの厚膜を形成することができ、好ましい。   The oxide semiconductor layer is formed by applying an oxide semiconductor paste onto a glass substrate and baking it. Examples of the method for applying the oxide semiconductor paste include a screen printing method, a doctor blade method, a squeegee method, a spin coating method, and a spray method. In particular, the screen printing method is preferable because it can uniformly form a thick film of several to several tens of μm over a large area.

酸化物半導体ペーストは、主に酸化物粒子と溶媒と樹脂とからなる。樹脂はペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。   The oxide semiconductor paste is mainly composed of oxide particles, a solvent, and a resin. The resin is added for the purpose of adjusting the viscosity of the paste. Moreover, surfactant, a thickener, etc. can also be added as needed.

樹脂としては、アクリル酸エステル(アクリル樹脂)、エチルセルロース、カルボキシセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロース系化合物、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、エチルセルロース、ニトロセルロースは、熱分解性が良好であるため、好ましい。   As the resin, acrylic acid ester (acrylic resin), cellulose compounds such as ethyl cellulose, carboxy cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol derivatives, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester, etc. can be used. is there. In particular, acrylic acid ester, ethyl cellulose, and nitrocellulose are preferable because of their good thermal decomposability.

溶媒としては、N、N’−ジメチルホルムアミド(DMF)、α−ターピネオール、高級アルコール、γ−ブチルラクトン(γ−BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3−メトキシ−3−メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン等が使用可能である。特に、α−ターピネオールは、高粘性であり、樹脂等の溶解性も良好であるため、好ましい。   As the solvent, N, N′-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyllactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, triethylene glycol Propylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), N-me -2-pyrrolidone and the like can be used. In particular, α-terpineol is preferable because it is highly viscous and has good solubility in resins and the like.

酸化物半導体ペーストの焼成温度は400〜600℃、420〜570℃、特に450〜550℃が好ましい。400℃未満であると、樹脂が完全に燃焼せず、酸化物粒子の結合が不十分であり、電池性能が低下する。一方、600℃より高いと、ガラス基板が変形しやすいとともに、酸化物半導体層の収縮に伴い、発生する応力が大きくなり、剥がれが生じやすくなる。   The firing temperature of the oxide semiconductor paste is preferably 400 to 600 ° C, 420 to 570 ° C, particularly 450 to 550 ° C. If it is less than 400 ° C., the resin does not completely burn, the bonding of the oxide particles is insufficient, and the battery performance decreases. On the other hand, when the temperature is higher than 600 ° C., the glass substrate is likely to be deformed, and stress generated is increased due to contraction of the oxide semiconductor layer, and peeling is likely to occur.

本発明の導電膜付ガラス基板の大きさは特に限定されず、用途に応じて適宜選択される。なお、基板の大きさが大きくなるほど成膜時の温度分布のムラが生じやすくなり、熱変形が生じやすくなるため、本発明の効果が得られやすくなる。具体的には、導電膜付ガラス基板の面積が1000mm以上、さらには5000mm以上、特に10000mm以上の場合に本発明は有効である。 The magnitude | size of the glass substrate with a electrically conductive film of this invention is not specifically limited, It selects suitably according to a use. Note that as the size of the substrate increases, unevenness in temperature distribution during film formation tends to occur and thermal deformation easily occurs, so that the effects of the present invention can be easily obtained. Specifically, the present invention is effective when the area of the glass substrate with a conductive film is 1000 mm 2 or more, further 5000 mm 2 or more, particularly 10,000 mm 2 or more.

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

実施例2、参考例1、3、4および比較例1、2)
表1に記載の各ガラス基板(120×120mm)上に、熱CVD法によりFTO膜を成膜した。具体的には、原料として(CHSnCl、CFCOOHを用い、これらを一旦ガス化した後、表1記載の成膜温度に加熱されたガラス基板上に吹き付けることにより成膜を行い、導電膜付ガラス基板を得た。成膜は、各ガラス基板を成膜温度にて10分間保持した後に行った。また、FTO膜の膜厚は約1μmとなるよう、2〜5分の範囲で成膜時間を調整した。
( Example 2, Reference Examples 1, 3, 4 and Comparative Examples 1, 2)
An FTO film was formed on each glass substrate (120 × 120 mm) described in Table 1 by a thermal CVD method. Specifically, (CH 3 ) 2 SnCl 2 and CF 3 COOH are used as raw materials, and these are once gasified and then sprayed onto a glass substrate heated to the film formation temperature described in Table 1 to form a film. This was performed to obtain a glass substrate with a conductive film. Film formation was performed after each glass substrate was held at the film formation temperature for 10 minutes. The film formation time was adjusted in the range of 2 to 5 minutes so that the thickness of the FTO film was about 1 μm.

得られた各導電膜付ガラス基板を徐冷し、徐冷後の導電膜付ガラス基板を定盤上に載置して隙間ゲージにより変形の有無を確認した。変形が0.1mm未満の場合を「○」、0.1mm以上の場合を「×」として導電膜付ガラス基板の状態を評価した。結果を表1に示す。   Each obtained glass substrate with a conductive film was gradually cooled, and the glass substrate with a conductive film after the slow cooling was placed on a surface plate, and the presence or absence of deformation was confirmed by a gap gauge. The state of the glass substrate with the conductive film was evaluated with “◯” when the deformation was less than 0.1 mm and “X” when the deformation was 0.1 mm or more. The results are shown in Table 1.

実施例2、参考例1、3、4では、導電膜付ガラス基板の歪点がいずれも525℃以上であるため、成膜後の試料に変形は確認されなかった。一方、比較例1および2では、実施例よりガラス基板の厚みが大きく、かつ成膜温度が低いにも係わらず、0.5mm以上の変形が確認された。 In Example 2 and Reference Examples 1 , 3 , and 4 , since the strain point of the glass substrate with a conductive film was 525 ° C. or higher, no deformation was confirmed in the sample after film formation. On the other hand, in Comparative Examples 1 and 2, although the thickness of the glass substrate was larger than that of Example 2 and the film formation temperature was low, deformation of 0.5 mm or more was confirmed.

(実施例7、8、参考例5、6および比較例3
実施例および参考例1導電膜付ガラス基板を15×15mmのサイズに切断し、200メッシュスクリーンを用いて、導電膜上に酸化チタンペーストをスクリーン印刷した。酸化チタンペーストは、焼成後半透明であるSolaronix社Ti−NanoxideT/SP(以下T/SP、平均粒径13nm)、および焼成後不透明である同社Ti−NanoxideD/SP(以下、D/SP、平均粒径13nm(一部、平均粒径400nm粒子含む))を用いた。実施例および参考例5ではD/SPのみを、実施例および参考例6ではT/SPのみを、さらに比較例3ではT/SP、D/SPの順でスクリーン印刷し、電気炉で500℃にて30分間焼成を行った。
(Examples 7 and 8, Reference Examples 5 and 6 and Comparative Example 3 )
The glass substrate with a conductive film of Example 2 and Reference Example 1 was cut into a size of 15 × 15 mm, and a titanium oxide paste was screen-printed on the conductive film using a 200 mesh screen. Titanium oxide paste is made of Solarix Ti-Nanoxide T / SP (hereinafter T / SP, average particle size 13 nm), which is transparent in the latter half of the baking, and Ti-Nanoxide D / SP (hereinafter D / SP, average particle), which is opaque after baking. A diameter of 13 nm (partially including an average particle diameter of 400 nm) was used. In Example 7 and Reference Example 5 , only D / SP was screened, in Example 8 and Reference Example 6 only T / SP was screened, and in Comparative Example 3, screen printing was performed in the order of T / SP and D / SP. Firing was performed at 500 ° C. for 30 minutes.

次に、焼成された酸化チタン層にスコッチメンディングテープ810を貼り付け、ゴムローラーで加圧した後、一気に引き剥がすことによりガラス基板と酸化チタン層の密着性を確認した。このときの酸化チタン層とガラス基板の密着性の度合いを、酸化チタン層の印刷面積に対して、酸化チタン層が剥がれガラス基板(FTO膜表面)が剥き出しになっている面積の割合を求め、A:0〜10%未満、B:10〜30%未満、C:30〜80%未満、D:80〜100%のように評価し、AおよびBを良とした。結果を表2に示す。   Next, a scotch mending tape 810 was applied to the baked titanium oxide layer, and after pressurizing with a rubber roller, the adhesiveness between the glass substrate and the titanium oxide layer was confirmed by peeling off at once. The degree of adhesion between the titanium oxide layer and the glass substrate at this time is obtained by calculating the ratio of the area where the titanium oxide layer is peeled off and the glass substrate (FTO film surface) is exposed with respect to the printed area of the titanium oxide layer. A: 0 to less than 10%, B: less than 10 to 30%, C: less than 30 to 80%, D: 80 to 100%, and A and B were evaluated as good. The results are shown in Table 2.


本発明の太陽電池用導電膜付ガラス基板は、アモルファスシリコン太陽電池を始めとするシリコン系薄膜太陽電池、色素増感型太陽電池、CdTe太陽電池、などに用いられる電極基板として好適である。   The glass substrate with a conductive film for solar cell of the present invention is suitable as an electrode substrate used for silicon-based thin film solar cells such as amorphous silicon solar cells, dye-sensitized solar cells, CdTe solar cells, and the like.

Claims (5)

0.05〜2mmの厚みを有するガラス基板上にフッ素ドープ酸化スズまたはアンチモンドープ酸化スズからなる導電膜が成膜されてなる太陽電池用導電膜付ガラス基板であって、ガラス基板は、歪点が525℃以上であり、熱膨張係数が30×10 −7 /℃以上50×10 −7 /℃以下であり、Na O及びK Oを含有しないガラスからなることを特徴とする太陽電池用導電膜付ガラス基板。 A glass substrate with a conductive film for a solar cell in which a conductive film made of fluorine-doped tin oxide or antimony-doped tin oxide is formed on a glass substrate having a thickness of 0.05 to 2 mm, the glass substrate having a strain point Ri der There 525 ° C. or higher, the thermal expansion coefficient is not more 30 × 10 -7 / ℃ least 50 × 10 -7 / ℃ less, sun, characterized in that it consists of a glass containing no Na 2 O and K 2 O Glass substrate with conductive film for battery. 太陽電池が色素増感型太陽電池であることを特徴とする請求項1に記載の太陽電池用導電膜付ガラス基板。   The glass substrate with a conductive film for a solar cell according to claim 1, wherein the solar cell is a dye-sensitized solar cell. 請求項1または2に記載の太陽電池用導電膜付ガラス基板上に、厚さ5〜50μmの酸化物半導体層が形成されてなることを特徴とする色素増感型太陽電池用酸化物半導体電極。 An oxide semiconductor electrode for a dye-sensitized solar cell, wherein an oxide semiconductor layer having a thickness of 5 to 50 µm is formed on the glass substrate with a conductive film for a solar cell according to claim 1 or 2. . 酸化物半導体層が、平均一次粒子径が30nm以下の酸化物粒子からなることを特徴とする請求項に記載の色素増感型太陽電池用酸化物半導体電極。 4. The oxide semiconductor electrode for a dye-sensitized solar cell according to claim 3 , wherein the oxide semiconductor layer comprises oxide particles having an average primary particle size of 30 nm or less. 酸化物半導体層の気孔率が60〜80%であることを特徴とする請求項3または4に記載の色素増感型太陽電池用酸化物半導体電極。 The oxide semiconductor electrode for a dye-sensitized solar cell according to claim 3 or 4 , wherein the porosity of the oxide semiconductor layer is 60 to 80%.
JP2008258761A 2008-06-17 2008-10-03 Glass substrate with conductive film for solar cells Active JP5365983B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008258761A JP5365983B2 (en) 2008-06-17 2008-10-03 Glass substrate with conductive film for solar cells
EP09766762A EP2299536A4 (en) 2008-06-17 2009-08-12 Substrate for solar cell and oxide semiconductor electrode for dye-sensitized solar cell
CN201310473977.0A CN103601367A (en) 2008-09-19 2009-08-12 Substrate for solar cell and oxide semiconductor electrode for dye-sensitized solar cell
CN2009801227541A CN102106033A (en) 2008-09-19 2009-08-12 Substrate for solar cell and oxide semiconductor electrode for dye-sensitized solar cell
US12/999,008 US20110094584A1 (en) 2008-06-17 2009-08-12 Solar cell substrate and oxide semiconductor electrode for dye-sensitized solar cell
PCT/JP2009/064265 WO2009154314A1 (en) 2008-06-17 2009-08-12 Substrate for solar cell and oxide semiconductor electrode for dye-sensitized solar cell
US14/563,150 US20150090335A1 (en) 2008-06-17 2014-12-08 Solar cell substrate and oxide semiconductor electrode for dye- sensitized solar cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008157645 2008-06-17
JP2008157645 2008-06-17
JP2008258761A JP5365983B2 (en) 2008-06-17 2008-10-03 Glass substrate with conductive film for solar cells

Publications (2)

Publication Number Publication Date
JP2010028068A JP2010028068A (en) 2010-02-04
JP5365983B2 true JP5365983B2 (en) 2013-12-11

Family

ID=41733572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258761A Active JP5365983B2 (en) 2008-06-17 2008-10-03 Glass substrate with conductive film for solar cells

Country Status (1)

Country Link
JP (1) JP5365983B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2972446B1 (en) * 2011-03-09 2017-11-24 Saint Gobain SUBSTRATE FOR PHOTOVOLTAIC CELL
JP6965707B2 (en) * 2017-11-29 2021-11-10 日本電気硝子株式会社 Manufacturing method of glass substrate with film and manufacturing equipment of glass substrate with film
JP7162164B1 (en) * 2021-05-07 2022-10-28 福建晶▲しい▼新材料科技有限公司 Semiconductor electrothermal film precursor solution, semiconductor electrothermal film structure, and method for manufacturing electrothermal structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135819A (en) * 1997-10-31 1999-05-21 Matsushita Electric Ind Co Ltd Compound thin-film solar cell
JP2001093591A (en) * 1999-09-28 2001-04-06 Toshiba Corp Photoelectric conversion device
JP4185285B2 (en) * 2002-01-18 2008-11-26 シャープ株式会社 Dye-sensitized photoelectric conversion element and solar cell using the same
JP4102054B2 (en) * 2001-10-31 2008-06-18 株式会社豊田中央研究所 Photoelectrode and dye-sensitized solar cell provided with the same
JP5008841B2 (en) * 2005-08-02 2012-08-22 株式会社フジクラ Electrode substrate manufacturing method, photoelectric conversion element, and dye-sensitized solar cell
JP5101038B2 (en) * 2006-05-19 2012-12-19 株式会社フジクラ Electrode substrate manufacturing method, electrode substrate evaluation method

Also Published As

Publication number Publication date
JP2010028068A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
WO2009154314A1 (en) Substrate for solar cell and oxide semiconductor electrode for dye-sensitized solar cell
JP2010073551A (en) Substrate for dye-sensitized solar cell, and oxide semiconductor electrode for dye-sensitized solar cell
JP5330400B2 (en) Glass substrate coated with a layer having improved resistivity
EP2458643B1 (en) Glass substrate with conductive film for solar cell
TWI460142B (en) Insulated with lead - free low - melting glass paste
JP2006516793A (en) Member for use in creating a light emitting display device
TW201105600A (en) Glass composition, electrically conductive paste composition comprising same, electrode wiring member, and electronic component
JP5962663B2 (en) Glass plate with transparent conductive film
JP5365983B2 (en) Glass substrate with conductive film for solar cells
WO2010137667A1 (en) Glass member with sealing material layer attached thereto, electronic device produced using same, and process for producing same
JP6246544B2 (en) Insulating substrate for CIGS solar cell and CIGS solar cell
JP2013219079A (en) Electronic device and manufacturing method thereof
JP4380589B2 (en) Low melting point glass for electrode coating and plasma display device
JP4282885B2 (en) Low melting point glass for electrode coating and plasma display device
JP4075298B2 (en) Low melting point glass for electrode coating
KR101255779B1 (en) Dye sensitized solar cell with excellent sealability and durability
TW201222847A (en) Electronic device and method of manufacturing thereof
KR101301482B1 (en) Composition for protecting electrode with excellent anti-corrosion and dye sensitized solar cell using the composition
KR20150057453A (en) Aluminium paste composition and solar cell device using the same
JP2012140296A (en) Lead-free low-melting glass composition with corrosion resistance
KR20130042392A (en) Aluminium paste composition and solar cell device using the same
KR20140053431A (en) Aluminium paste composition and solar cell device using the same
KR20140053430A (en) Aluminium paste composition and solar cell device using the same
KR20150057473A (en) Aluminium paste composition and solar cell device using the same
KR20140052480A (en) Aluminium paste composition and solar cell device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130901

R150 Certificate of patent or registration of utility model

Ref document number: 5365983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150