JP5365151B2 - Method for producing phosphazenium salt - Google Patents

Method for producing phosphazenium salt Download PDF

Info

Publication number
JP5365151B2
JP5365151B2 JP2008292619A JP2008292619A JP5365151B2 JP 5365151 B2 JP5365151 B2 JP 5365151B2 JP 2008292619 A JP2008292619 A JP 2008292619A JP 2008292619 A JP2008292619 A JP 2008292619A JP 5365151 B2 JP5365151 B2 JP 5365151B2
Authority
JP
Japan
Prior art keywords
general formula
reaction
group
phosphazenium salt
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008292619A
Other languages
Japanese (ja)
Other versions
JP2010116378A (en
Inventor
敏秀 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008292619A priority Critical patent/JP5365151B2/en
Publication of JP2010116378A publication Critical patent/JP2010116378A/en
Application granted granted Critical
Publication of JP5365151B2 publication Critical patent/JP5365151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing a phosphazenium salt which does not require any neutralization treatment, removal of high-boiling solvents, etc. <P>SOLUTION: The phosphazenium salt of formula (3) is prepared by reacting phosphorus pentahalide with a guanidine derivative, provided that the reaction is performed in an inert gas atmosphere in a heterogenous state using a solvent in which the product is not dissolved, and the product is filtered after the completion of the reaction. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ホスファゼニウム塩の製造方法の製造方法に関する。ホスファゼニウム塩は、有機塩基や相関移動触媒として有用な化合物である。   The present invention relates to a method for producing a phosphazenium salt. The phosphazenium salt is a compound useful as an organic base or a phase transfer catalyst.

1,1,3,3−テトラメチルグアニジンと五塩化リンから、下記一般式   From 1,1,3,3-tetramethylguanidine and phosphorus pentachloride, the following general formula

Figure 0005365151
において、R,Rが共にメチル基で、Xが塩素原子であるホスファゼニウム塩を製造する方法が報告されている(例えば、特許文献1参照)。その製造法は、具体的には、(1)クロロベンゼンを溶媒とし、窒素雰囲気下、−30℃で懸濁させた五塩化リンに対して、8.5当量の1,1,3,3−テトラメチルグアニジンを0℃以下の温度を保持するように少しずつ添加し、さらに150℃で12時間加熱撹拌することにより、五塩化リンと1,1,3,3−テトラメチルグアニジンを反応させ、(2)反応後室温まで冷却し、ナトリウムメチラートのメタノール溶液により中和し、メタノール及びクロロベンゼンを減圧条件下に除去した残渣をジクロロメタンで抽出し、ジクロロメタンを除去することによりホスファゼニウム塩を得ている。
Figure 0005365151
, A method for producing a phosphazenium salt in which R 1 and R 2 are both methyl groups and X is a chlorine atom has been reported (for example, see Patent Document 1). Specifically, (1) 8.5 equivalents of 1,1,3,3-based on phosphorus pentachloride suspended in a nitrogen atmosphere at −30 ° C. using chlorobenzene as a solvent. Tetramethylguanidine was added little by little so as to maintain a temperature of 0 ° C. or lower, and further heated and stirred at 150 ° C. for 12 hours to react phosphorus pentachloride with 1,1,3,3-tetramethylguanidine, (2) After the reaction, the reaction mixture was cooled to room temperature, neutralized with a methanol solution of sodium methylate, the residue obtained by removing methanol and chlorobenzene under reduced pressure was extracted with dichloromethane, and phosphazenium salt was obtained by removing dichloromethane. .

しかしながらこの方法では、反応後に中和処理が必要であるばかりではなく、溶媒除去を容易とするため、ナトリウムメチラートのメタノール溶液等の特殊な中和剤を使用することや、中和後に高沸点溶媒を除去する必要がある等、不経済で煩雑な操作が必要であった。そこで簡便な操作で効率よくホスファゼニウム塩を製造する方法が望まれている。   However, this method not only requires neutralization after the reaction, but also facilitates removal of the solvent. For this reason, a special neutralizer such as a methanol solution of sodium methylate is used, or a high boiling point after neutralization. An uneconomical and cumbersome operation, such as the need to remove the solvent, was necessary. Therefore, a method for efficiently producing a phosphazenium salt by a simple operation is desired.

ドイツ特許DE102006010034−A1German patent DE102006010034-A1

本発明は上記の背景技術に鑑みてなされたものであり、その目的は、反応後の生成物を濾過することにより容易に回収可能であり、中和処理や高沸点溶媒の除去等煩雑な操作を必要としない、経済的で効率的にホスファゼニウム塩を製造可能とする方法を提供することである。   The present invention has been made in view of the above-described background art, and its purpose is to easily recover the product after the reaction by filtration, and to perform complicated operations such as neutralization and removal of the high-boiling solvent. It is an economical and efficient method for producing a phosphazenium salt that does not require the use of

本発明者は上記目的を達成するために鋭意検討を行った結果、本発明を完成するに至った。すなわち本発明は、以下に示すとおりのホスファゼニウム塩の製造方法である。   As a result of intensive studies to achieve the above object, the present inventor has completed the present invention. That is, this invention is a manufacturing method of the phosphazenium salt as shown below.

[1]下記一般式(1)   [1] The following general formula (1)

Figure 0005365151
(式中、Xは塩素原子又は臭素原子を表す。)
により表される五ハロゲン化リンと下記一般式(2)
Figure 0005365151
(In the formula, X represents a chlorine atom or a bromine atom.)
And the following general formula (2)

Figure 0005365151
(式中、R,Rは各々独立して炭素数1〜10のアルキル基、無置換の若しくは置換基を有する炭素数6〜10のフェニル基又はアルキルフェニル基を表し、RとR又はR同士が互いに結合して環構造を形成していても良い。)
で表されるグアニジン誘導体を反応させ、下記一般式(3)
Figure 0005365151
Wherein R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms, an unsubstituted or substituted phenyl group having 6 to 10 carbon atoms or an alkylphenyl group, and R 1 and R 2 2 or R 2 may be bonded to each other to form a ring structure.)
Is reacted with a guanidine derivative represented by the following general formula (3):

Figure 0005365151
(式中、R,Rは各々独立して炭素数1〜10のアルキル基、無置換の若しくは置換基を有する炭素数6〜10のフェニル基又はアルキルフェニル基を表し、RとR又はR同士が互いに結合して環構造を形成していても良い。Xは、塩素アニオン又は臭素アニオンを表す。)
で示されるホスファゼニウム塩を製造する際に、不活性ガス雰囲気下、生成物を溶解しない溶媒を用い、不均一状態で反応を行い、反応終了後に生成物を濾過することにより分離回収することを特徴とするホスファゼニウム塩の製造方法。
Figure 0005365151
Wherein R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms, an unsubstituted or substituted phenyl group having 6 to 10 carbon atoms or an alkylphenyl group, and R 1 and R 2 2 or R 2 may be bonded to each other to form a ring structure, and X represents a chlorine anion or a bromine anion.)
When producing the phosphazenium salt represented by the above, the reaction is performed in a non-uniform state using a solvent that does not dissolve the product in an inert gas atmosphere, and the product is separated and recovered by filtering the product after completion of the reaction. A method for producing a phosphazenium salt.

[2]上記溶媒が、トルエン又はキシレンであることを特徴とする上記[1]に記載のホスファゼニウム塩の製造方法。   [2] The method for producing a phosphazenium salt according to the above [1], wherein the solvent is toluene or xylene.

[3]上記一般式(2)及び一般式(3)中の置換基R、Rが共にメチル基であることを特徴とする上記[1]又は[2]に記載のホスファゼニウム塩の製造方法。 [3] The production of the phosphazenium salt according to [1] or [2], wherein the substituents R 1 and R 2 in the general formula (2) and the general formula (3) are both methyl groups. Method.

本発明の方法によれば、濾過という簡便な操作により反応後の生成物を容易に回収可能であり、中和処理や高沸点溶媒の除去等煩雑な操作を必要とすることなく、経済的で効率的にホスファゼニウム塩を製造可能であるため、本発明は工業的に極めて有用である。   According to the method of the present invention, the product after the reaction can be easily recovered by a simple operation of filtration, which is economical without requiring complicated operations such as neutralization treatment and removal of a high boiling point solvent. Since the phosphazenium salt can be efficiently produced, the present invention is extremely useful industrially.

本発明で使用される上記一般式(1)で表される五ハロゲン化リンは、五塩化リン又は五臭化リンであって、好ましくは五塩化リンである。   The phosphorus pentahalide represented by the general formula (1) used in the present invention is phosphorus pentachloride or phosphorus pentabromide, preferably phosphorus pentachloride.

本発明において、上記一般式(2)及び一般式(3)中の置換基R、Rは各々独立して炭素数1〜10のアルキル基、無置換の若しくは置換基を有する炭素数6〜10のフェニル基又はアルキルフェニル基であり、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、2−ブチル基、1−ペンチル基、2−ペンチル基、3−ペンチル基、2−メチル−1−ブチル基、イソペンチル基、tert−ペンチル基、3−メチル−2−ブチル基、ネオペンチル基、n−ヘキシル基、4−メチル−2−ペンチル基、シクロペンチル基、シクロヘキシル基、1−ヘプチル基、3−ヘプチル基、1−オクチル基、2−オクチル基、2−エチル−1−ヘキシル基、1,1−ジメチル−3,3−ジメチルブチル基、ノニル基、デシル基、フェニル基、4−トルイル基、ベンジル基、1−フェニルエチル基、2−フェニルエチル基等の脂肪族又は芳香族の炭化水素基が例示される。これらのうち、メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、tert−ペンチル基、1,1−ジメチル−3,3−ジメチルブチル基等の炭素数1〜10の脂肪族炭化水素基が好ましく、メチル基がより好ましい。 In the present invention, the substituents R 1 and R 2 in the general formula (2) and the general formula (3) are each independently an alkyl group having 1 to 10 carbon atoms, unsubstituted or having 6 substituents. -10 phenyl group or alkylphenyl group, specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, 2-butyl group 1-pentyl group, 2-pentyl group, 3-pentyl group, 2-methyl-1-butyl group, isopentyl group, tert-pentyl group, 3-methyl-2-butyl group, neopentyl group, n-hexyl group, 4-methyl-2-pentyl, cyclopentyl, cyclohexyl, 1-heptyl, 3-heptyl, 1-octyl, 2-octyl, 2-ethyl-1-hexyl, 1,1-dimethyl An aliphatic or aromatic hydrocarbon group such as ru-3,3-dimethylbutyl group, nonyl group, decyl group, phenyl group, 4-toluyl group, benzyl group, 1-phenylethyl group, 2-phenylethyl group, etc. Illustrated. Among these, fatty acids having 1 to 10 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, tert-pentyl group, 1,1-dimethyl-3,3-dimethylbutyl group, etc. A group hydrocarbon group is preferable, and a methyl group is more preferable.

本発明において、上記一般式(2)及び一般式(3)中の置換基RとR、又はR同士が互いに結合して環構造を形成していても良い。そのような置換基として、例えば、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等を挙げることができ、好ましくはテトラメチレン基である。 In the present invention, the substituents R 1 and R 2 or R 2 in the general formula (2) and the general formula (3) may be bonded to each other to form a ring structure. Examples of such a substituent include a tetramethylene group, a pentamethylene group, and a hexamethylene group, and a tetramethylene group is preferable.

本発明の上記一般式(3)で表されるホスファゼニウム塩においてXは、塩素アニオン、臭素アニオンである。 In the phosphazenium salt represented by the general formula (3) of the present invention, X represents a chlorine anion or a bromine anion.

上記一般式(3)で表されるホスファゼニウム塩は、上記一般式(1)で表される五ハロゲン化リンに、上記一般式(2)で表されるグアニジン誘導体を少なくとも4当量反応させることにより製造することができる。   The phosphazenium salt represented by the general formula (3) is obtained by reacting at least 4 equivalents of the guanidine derivative represented by the general formula (2) with the phosphorus pentahalide represented by the general formula (1). Can be manufactured.

本発明で使用される上記一般式(2)で表されるグアニジン誘導体の使用量は、上記一般式(1)で表される五ハロゲン化リン1モルに対して通常は6〜20モルの範囲であり、好ましくは8〜12モルの範囲である。グアニジン誘導体の使用量が少ないと、目的のホスファゼニウム塩の生成量が大きく低下し、逆に使用量が多すぎると反応には殆ど影響はないが、不経済となる。   The amount of the guanidine derivative represented by the general formula (2) used in the present invention is usually in the range of 6 to 20 mol with respect to 1 mol of phosphorus pentahalide represented by the general formula (1). Preferably, it is the range of 8-12 mol. If the amount of the guanidine derivative used is small, the amount of the desired phosphazenium salt produced is greatly reduced. Conversely, if the amount used is too large, the reaction is hardly affected, but it is uneconomical.

本発明において、上記一般式(1)で表される五ハロゲン化リンと、上記一般式(2)で表されるグアニジン誘導体との反応に用いられる溶媒は、生成物である上記一般式(3)で表されるホスファゼニウム塩を溶解しない溶媒であればよく、特に限定するものではないが、例えば、ベンゼン、トルエン、キシレン等が挙げられる。好ましくはトルエン又はキシレンである。これらの溶媒は、単独でも2種以上を混合して用いてもよい。また、使用される溶媒は、脱水処理を行った後に使用することが好ましい。   In the present invention, the solvent used in the reaction of the phosphorus pentahalide represented by the general formula (1) and the guanidine derivative represented by the general formula (2) is a product of the general formula (3 The solvent is not particularly limited as long as it is a solvent that does not dissolve the phosphazenium salt represented by (II), and examples thereof include benzene, toluene, and xylene. Preferably it is toluene or xylene. These solvents may be used alone or in combination of two or more. The solvent used is preferably used after dehydration treatment.

本発明において、上記一般式(1)で表される五ハロゲン化リンと、上記一般式(2)で表されるグアニジン誘導体との反応に用いられる、上記溶媒の量は、上記一般式(1)で表される五ハロゲン化リン1molに対して、通常0.1L〜80Lの範囲であり、好ましくは0.5L〜40Lの範囲、より好ましくは1L〜20Lの範囲である。溶媒量が少なすぎると、温度の制御が難しくなり、副反応を引き起こす可能性があり、反対に溶媒量が多すぎると、反応後の処理が煩雑となるばかりでなく、不経済である。   In the present invention, the amount of the solvent used for the reaction between the phosphorus pentahalide represented by the general formula (1) and the guanidine derivative represented by the general formula (2) is the above general formula (1). ) Is usually in the range of 0.1 L to 80 L, preferably in the range of 0.5 L to 40 L, more preferably in the range of 1 L to 20 L. If the amount of the solvent is too small, it becomes difficult to control the temperature and may cause a side reaction. On the other hand, if the amount of the solvent is too large, the treatment after the reaction becomes complicated and it is uneconomical.

本発明において、上記一般式(1)で表される五ハロゲン化リンと、上記一般式(2)で表されるグアニジン誘導体との反応は、ヘリウム、窒素、アルゴン等の不活性ガスの雰囲気下で通常実施される。   In the present invention, the reaction between the phosphorus pentahalide represented by the general formula (1) and the guanidine derivative represented by the general formula (2) is carried out under an atmosphere of an inert gas such as helium, nitrogen, or argon. Usually implemented in

本発明において、上記一般式(1)で表される五ハロゲン化リンと、上記一般式(2)で表されるグアニジン誘導体との反応における反応温度は、通常−50℃〜150℃の範囲であり、好ましくは−30℃〜120℃の範囲である。反応温度が高すぎると、発熱を制御できず、副反応が起こる可能性があり、反応温度が低すぎると反応速度が低下し、反応時間が長くなる。また、五塩化リンに対するグアニジン誘導体の置換反応は、激しい発熱を伴うため、反応初期は0℃以下の温度で実施することが望ましい。反応温度が0℃より高くなると、副反応などによる収率低下の可能性がある。一方、反応の後半では反応生成物の立体障害により、置換反応が極端に遅くなるため、反応速度を高めるため反応温度を50℃以上にすることが望ましい。後半の反応温度が低いと反応時間が非常に長くなり、生産性が大きく低下する。従って、反応温度は反応の前半と後半の二段階で制御することが好ましい。   In the present invention, the reaction temperature in the reaction between the phosphorus pentahalide represented by the general formula (1) and the guanidine derivative represented by the general formula (2) is usually in the range of −50 ° C. to 150 ° C. Yes, preferably in the range of -30 ° C to 120 ° C. If the reaction temperature is too high, heat generation cannot be controlled and a side reaction may occur. If the reaction temperature is too low, the reaction rate decreases and the reaction time increases. In addition, since the substitution reaction of the guanidine derivative with phosphorus pentachloride is accompanied by intense heat generation, it is desirable to carry out the reaction at an initial temperature of 0 ° C. or lower. When the reaction temperature is higher than 0 ° C., there is a possibility of yield reduction due to side reactions. On the other hand, in the latter half of the reaction, the substitution reaction becomes extremely slow due to the steric hindrance of the reaction product. Therefore, it is desirable to set the reaction temperature to 50 ° C. or higher in order to increase the reaction rate. If the reaction temperature in the latter half is low, the reaction time becomes very long and the productivity is greatly reduced. Therefore, the reaction temperature is preferably controlled in two stages, the first half and the second half of the reaction.

本発明の方法における反応圧力は、減圧、常圧及び加圧の何れでも実施し得るが、好ましくは0.01〜1MPaであり、より好ましくは0.05〜0.3MPaの範囲である。   The reaction pressure in the method of the present invention may be any of reduced pressure, normal pressure and increased pressure, but is preferably 0.01 to 1 MPa, more preferably 0.05 to 0.3 MPa.

本発明の方法における反応時間は、反応温度や反応系の状態等によって一様ではないが、通常1分〜48時間の範囲であり、好ましくは1分〜24時間、より好ましくは5分〜10時間の範囲である。   The reaction time in the method of the present invention is not uniform depending on the reaction temperature, the state of the reaction system, etc., but is usually in the range of 1 minute to 48 hours, preferably 1 minute to 24 hours, more preferably 5 minutes to 10 minutes. It is a range of time.

本発明の方法では、上記一般式(1)で表される五ハロゲン化リンと、上記一般式(2)で表されるグアニジン誘導体との反応生成物は、溶媒に不溶であり、濾過により簡便に分離される。得られる濾過残渣には、目的のホスファゼニウム塩以外に、反応により副生したグアニジン誘導体のハロゲン化水素塩及び副生するホスフィンオキサイドが含まれるが、溶媒による洗浄や抽出等通常の後処理を行うことにより、濾過残渣から目的とするホスファゼニウム塩を精製することができる。   In the method of the present invention, the reaction product of the phosphorus pentahalide represented by the above general formula (1) and the guanidine derivative represented by the above general formula (2) is insoluble in the solvent and can be easily filtered. Separated. In addition to the target phosphazenium salt, the resulting filtration residue contains the hydrogen halide salt of the guanidine derivative by-produced by the reaction and the phosphine oxide by-product. Thus, the desired phosphazenium salt can be purified from the filtration residue.

次に実施例により本発明を更に詳細に説明するが、本発明はこれらに何ら限定されるものではない。なお、以下の実施例においては、NMRスペクトル、GC−MSを以下のとおり測定した。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these at all. In the following examples, NMR spectra and GC-MS were measured as follows.

NMRスペクトルの測定:
核磁気共鳴スペクトル測定装置(日本電子製、商品名:GSX270WB)を用い、内部標準にテトラメチルシラン(TMS)及び重溶媒に重クロロホルムを用い測定した。
NMR spectrum measurement:
Using a nuclear magnetic resonance spectrum measuring apparatus (trade name: GSX270WB, manufactured by JEOL Ltd.), measurement was performed using tetramethylsilane (TMS) as an internal standard and deuterated chloroform as a heavy solvent.

GC−MSの測定:
ガスクロマトグラフィー−質量分析装置(日本電子製、商品名:JMS−700)を用い、イオン化モードとしてFAB+を用いて測定を行った。
GC-MS measurement:
Measurement was performed using FAB + as an ionization mode using a gas chromatography-mass spectrometer (trade name: JMS-700, manufactured by JEOL Ltd.).

実施例1.
テトラキス(テトラメチルグアニジノ)ホスフォニウムクロライド:[(MeN)C=N] Cl(式中、Meはメチル基を表す。以下同様)を以下のとおり合成した。
Example 1.
Tetrakis (tetramethylguanidino) phosphonium chloride: [(Me 2 N) 2 C═N] 4 P + Cl (wherein Me represents a methyl group, the same shall apply hereinafter) was synthesized as follows.

温度計、滴下ロート、冷却管及びテフロン(登録商標)製撹拌翼を付した300mlの4つ口フラスコに窒素雰囲気下で五塩化リン4.01g(20.0mmol)を採った。以後の操作はすべて窒素雰囲気下で行った。60mlの脱水トルエン(和光純薬製)を加えてスラリー溶液とした。このスラリー溶液をドライアイス−アセトンにて−30℃に冷却したクーリングバスにつけて内温を−30℃とした後、強撹拌下に1,1,3,3−テトラメチルグアニジン22.2g(190mmol)を滴下ロートから1時間かけて滴下した。反応液中には多量の白色スラリーが生成していた。そのまま−30℃で1時間撹拌した後、クーリングバスをはずして室温までゆっくり昇温した。更にこのスラリー溶液を100℃で20時間加熱して白色のスラリー溶液を得た。室温まで冷却した後、白色スラリーを濾過した。   In a 300 ml four-necked flask equipped with a thermometer, a dropping funnel, a condenser, and a Teflon (registered trademark) stirring blade, 4.01 g (20.0 mmol) of phosphorus pentachloride was taken under a nitrogen atmosphere. All subsequent operations were performed under a nitrogen atmosphere. 60 ml of dehydrated toluene (manufactured by Wako Pure Chemical Industries, Ltd.) was added to make a slurry solution. The slurry solution was attached to a cooling bath cooled to −30 ° C. with dry ice-acetone to adjust the internal temperature to −30 ° C., and then subjected to 1,2,3,3-tetramethylguanidine (22.2 g, 190 mmol) with vigorous stirring. ) Was dropped from the dropping funnel over 1 hour. A large amount of white slurry was generated in the reaction solution. After stirring for 1 hour at −30 ° C., the cooling bath was removed and the temperature was slowly raised to room temperature. Further, this slurry solution was heated at 100 ° C. for 20 hours to obtain a white slurry solution. After cooling to room temperature, the white slurry was filtered.

濾過残渣をアセトン100mlで洗浄し、アセトン溶液を濃縮することにより、テトラキス(テトラメチルグアニジノ)ホスフォニウムクロリド:[(MeN)C=N] Clを9.6gの白色粉体として得た。H−NMRより求めた純度は82%であり、収率は80.4%であった。 The filtration residue was washed with 100 ml of acetone and the acetone solution was concentrated to obtain 9.6 g of tetrakis (tetramethylguanidino) phosphonium chloride: [(Me 2 N) 2 C═N] 4 P + Cl −. Obtained as a powder. The purity determined from 1 H-NMR was 82%, and the yield was 80.4%.

生成物は、H−NMR、GC−MS、元素分析により同定した。 The product was identified by 1 H-NMR, GC-MS, elemental analysis.

H−NMR(重溶媒:CDCl,内部標準:テトラメチルシラン):
化学シフト:2.83ppm(ホスファゼニウム塩由来のメチル基)。
1 H-NMR (heavy solvent: CDCl 3 , internal standard: tetramethylsilane):
Chemical shift: 2.83 ppm (methyl group derived from phosphazenium salt).

GC−MS(FAB+)測定結果:
m/z=487(テトラキス(テトラメチルグアニジノ)ホスフォニウムカチオンの分子量に一致。)。
GC-MS (FAB +) measurement results:
m / z = 487 (matches the molecular weight of the tetrakis (tetramethylguanidino) phosphonium cation).

実施例2.
温度計、滴下ロート、冷却管及びテフロン(登録商標)製撹拌翼を付した300mlの4つ口フラスコに窒素雰囲気下で五塩化リン4.01g(20.0mmol)を採った。以後の操作はすべて窒素雰囲気下で行った。60mlの脱水トルエン(和光純薬製)を加えてスラリー溶液とした。このスラリー溶液をドライアイス−アセトンにて−30℃に冷却したクーリングバスにつけて内温を−30℃とした後、強撹拌下に1,1,2,2−テトラメチルグアニジン33.3g(285mmol)を滴下ロートから1時間かけて滴下した。反応液中には多量の白色スラリーが生成していた。のそのまま−30℃で1時間撹拌した後、クーリングバスをはずして室温までゆっくり昇温した。更にこのスラリー溶液を100℃で20時間加熱して白色のスラリー溶液を得た。室温まで冷却した後、白色スラリーを濾過した。
Example 2
In a 300 ml four-necked flask equipped with a thermometer, a dropping funnel, a condenser, and a Teflon (registered trademark) stirring blade, 4.01 g (20.0 mmol) of phosphorus pentachloride was taken under a nitrogen atmosphere. All subsequent operations were performed under a nitrogen atmosphere. 60 ml of dehydrated toluene (manufactured by Wako Pure Chemical Industries, Ltd.) was added to make a slurry solution. This slurry solution was attached to a cooling bath cooled to −30 ° C. with dry ice-acetone to adjust the internal temperature to −30 ° C., and then 33.3 g (285 mmol) of 1,1,2,2-tetramethylguanidine under strong stirring. ) Was dropped from the dropping funnel over 1 hour. A large amount of white slurry was generated in the reaction solution. After stirring for 1 hour at -30 ° C, the cooling bath was removed and the temperature was slowly raised to room temperature. Further, this slurry solution was heated at 100 ° C. for 20 hours to obtain a white slurry solution. After cooling to room temperature, the white slurry was filtered.

濾過残渣をアセトン100mlで洗浄し、アセトン溶液を濃縮することにより、テトラキス(テトラメチルグアニジノ)ホスフォニウムクロリド:[(MeN)C=N] Clを9.8gの白色粉体として得た。H−NMRより求めた純度は74%であり、収率は76.6%であった。 The filtration residue was washed with 100 ml of acetone and the acetone solution was concentrated to obtain 9.8 g of tetrakis (tetramethylguanidino) phosphonium chloride: [(Me 2 N) 2 C═N] 4 P + Cl −. Obtained as a powder. The purity determined from 1 H-NMR was 74%, and the yield was 76.6%.

比較例.
温度計、滴下ロート、冷却管及び磁気回転子を付した300mlの4つ口フラスコに窒素雰囲気下で五塩化リン4.01g(20.0mmol)を採った。クロロベンゼン(40ml)を加え、クーリングバスにて内温を−30℃に冷却し、−30℃で攪拌されているクロロベンゼン懸濁液に、乾燥窒素雰囲気下に、1,1,3,3−テトラメチルグアニジン18.8g(163.5mmol)を少量ずつ、0℃未満の反応温度が維持されるように加えた。発熱反応が終了した後に、反応混合物を室温にし、次いで、浴温度150℃で12時間保持した。引き続き、室温に冷却し得られた反応混合物は均一溶液であった。
Comparative example.
In a 300 ml four-necked flask equipped with a thermometer, a dropping funnel, a condenser, and a magnetic rotor, 4.01 g (20.0 mmol) of phosphorus pentachloride was taken under a nitrogen atmosphere. Chlorobenzene (40 ml) was added, the internal temperature was cooled to −30 ° C. with a cooling bath, and the chlorobenzene suspension stirred at −30 ° C. was added to 1,1,3,3-tetra 18.8 g (163.5 mmol) of methylguanidine was added in small portions so that the reaction temperature below 0 ° C. was maintained. After the exothermic reaction was completed, the reaction mixture was allowed to reach room temperature and then held at a bath temperature of 150 ° C. for 12 hours. Subsequently, the reaction mixture obtained by cooling to room temperature was a homogeneous solution.

続いて、反応混合物を氷で冷却した。次いで、反応混合物にナトリウムメタノラート4.15g(77.0mmol)の30%メタノール(13.8g)溶液を滴加したが、この際、20℃未満の温度を保持した。引き続き、揮発性成分を、メタノール、クロロベンゼン及び1,1,3,3−テトラメチルグアニジンの混合物の形態で、真空下に乾燥するまで留去した。   Subsequently, the reaction mixture was cooled with ice. A solution of 4.15 g (77.0 mmol) of sodium methanolate in 30% methanol (13.8 g) was then added dropwise to the reaction mixture, while maintaining a temperature below 20 ° C. Subsequently, the volatile constituents were distilled off in the form of a mixture of methanol, chlorobenzene and 1,1,3,3-tetramethylguanidine until dry under vacuum.

残渣を塩化メチレン60mlに溶かし、塩化ナトリウム存在下で濾過し、引き続き、溶媒を真空下に蒸発させた。クロロホスファゼニウム塩を淡黄色の固体として9.0g(収率:73%)、純度85%で得られた。   The residue was dissolved in 60 ml of methylene chloride and filtered in the presence of sodium chloride, and the solvent was subsequently evaporated under vacuum. The chlorophosphazenium salt was obtained as a pale yellow solid in 9.0 g (yield: 73%) with a purity of 85%.

Claims (3)

下記一般式(1)
Figure 0005365151
(式中、Xは塩素原子又は臭素原子を表す。)
により表される五ハロゲン化リンと下記一般式(2)
Figure 0005365151
(式中、R,Rは各々独立して炭素数1〜10のアルキル基、無置換の若しくは置換基を有する炭素数6〜10のフェニル基又はアルキルフェニル基を表し、RとR又はR同士が互いに結合して環構造を形成していても良い。)
で表されるグアニジン誘導体を反応させ、下記一般式(3)
Figure 0005365151
(式中、R,Rは各々独立して炭素数1〜10のアルキル基、無置換の若しくは置換基を有する炭素数6〜10のフェニル基又はアルキルフェニル基を表し、RとR又はR同士が互いに結合して環構造を形成していても良い。Xは、塩素アニオン又は臭素アニオンを表す。)
で示されるホスファゼニウム塩を製造する際に、不活性ガス雰囲気下、トルエン及び/又はキシレンを用い、不均一状態で反応を行い、反応終了後に生成物を濾過することにより分離回収することを特徴とするホスファゼニウム塩の製造方法。
The following general formula (1)
Figure 0005365151
(In the formula, X represents a chlorine atom or a bromine atom.)
And the following general formula (2)
Figure 0005365151
Wherein R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms, an unsubstituted or substituted phenyl group having 6 to 10 carbon atoms or an alkylphenyl group, and R 1 and R 2 2 or R 2 may be bonded to each other to form a ring structure.)
Is reacted with a guanidine derivative represented by the following general formula (3):
Figure 0005365151
Wherein R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms, an unsubstituted or substituted phenyl group having 6 to 10 carbon atoms or an alkylphenyl group, and R 1 and R 2 2 or R 2 may be bonded to each other to form a ring structure, and X represents a chlorine anion or a bromine anion.)
When the phosphazenium salt represented by the formula (1) is produced, the reaction is carried out in an inhomogeneous state using toluene and / or xylene under an inert gas atmosphere, and the product is separated and recovered by filtering after completion of the reaction. A method for producing a phosphazenium salt.
一般式(2)で表されるグアニジン誘導体の使用量が、上記一般式(1)で表される五ハロゲン化リン1モルに対して8〜12モルの範囲であり、一般式(1)で表される五ハロゲン化リンと、上記一般式(2)で表されるグアニジン誘導体との反応に用いられる、トルエン及び/又はキシレンの量が、上記一般式(1)で表される五ハロゲン化リン1molに対して、1L〜20Lの範囲であることを特徴とする請求項1に記載のホスファゼニウム塩の製造方法。The amount of the guanidine derivative represented by the general formula (2) is in the range of 8 to 12 moles relative to 1 mole of phosphorus pentahalide represented by the general formula (1). The amount of toluene and / or xylene used for the reaction between the phosphorus pentahalide represented by the above and the guanidine derivative represented by the above general formula (2) is the pentahalogenated represented by the above general formula (1). The method for producing a phosphazenium salt according to claim 1, wherein the range is 1 L to 20 L with respect to 1 mol of phosphorus. 一般式(2)及び一般式(3)中の置換基R、Rが共にメチル基であることを特徴とする請求項1又は請求項2に記載のホスファゼニウム塩の製造方法。 The method for producing a phosphazenium salt according to claim 1 or 2 , wherein the substituents R 1 and R 2 in the general formula (2) and the general formula (3) are both methyl groups.
JP2008292619A 2008-11-14 2008-11-14 Method for producing phosphazenium salt Active JP5365151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008292619A JP5365151B2 (en) 2008-11-14 2008-11-14 Method for producing phosphazenium salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008292619A JP5365151B2 (en) 2008-11-14 2008-11-14 Method for producing phosphazenium salt

Publications (2)

Publication Number Publication Date
JP2010116378A JP2010116378A (en) 2010-05-27
JP5365151B2 true JP5365151B2 (en) 2013-12-11

Family

ID=42304262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008292619A Active JP5365151B2 (en) 2008-11-14 2008-11-14 Method for producing phosphazenium salt

Country Status (1)

Country Link
JP (1) JP5365151B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776517B2 (en) * 2011-11-29 2015-09-09 東ソー株式会社 Method for producing iminophosphazenium halide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184061A (en) * 1984-03-01 1985-09-19 Mitsui Toatsu Chem Inc Process for separating and preparing diphenylmethane dimethyl carbamate and polymethylene polyphenylpolymethyl carbamate
JP3501816B2 (en) * 1991-04-25 2004-03-02 三井化学株式会社 Method for producing keto acid
JP3748687B2 (en) * 1997-11-19 2006-02-22 三井化学株式会社 Process for producing aminotris (dimethylamino) phosphonium chloride
JP2004285009A (en) * 2003-03-24 2004-10-14 Mitsui Takeda Chemicals Inc Method for producing aminotris(disubstituted amino)phosphonium chloride
DE102006010034A1 (en) * 2006-03-04 2007-09-06 Degussa Ag New nitrogen containing phosphonium salt useful e.g. as a non-metal containing catalyst preferably for halogen exchange reaction and phase transfer catalyst reaction
JP5663856B2 (en) * 2008-10-02 2015-02-04 東ソー株式会社 Polyalkylene glycol production catalyst, production method thereof, and production method of polyalkylene glycol using the same

Also Published As

Publication number Publication date
JP2010116378A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
AU5977298A (en) Process for the production of 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid or salts thereof
JP6788253B2 (en) Method for producing alkenyl phosphorus compound
JP6878270B2 (en) How to Prepare Tris (Trialkylsilyl) Phosphine
JP5234912B2 (en) Acylphosphanes and methods for producing these oxides and sulfides
CA2826260A1 (en) Methods of making hiv attachment inhibitor prodrug compound and intermediates
JP5365151B2 (en) Method for producing phosphazenium salt
JP5365152B2 (en) Method for producing phosphazenium salt
JPH1045781A (en) Production of tertiary phosphine containing phosphinate-or phosphonate group and novel tertiary phosphine having phosphinate group
JP2010508376A (en) Method for producing biphosphonic acid and salt thereof
KR20120067398A (en) Manufacturing process of high-purity tris(trialkylsilyl)phosphite
JP5776517B2 (en) Method for producing iminophosphazenium halide
JP4464516B2 (en) Method for producing phosphine-borane derivative
WO2019006774A1 (en) Method for preparing didopo compound
KR20180126598A (en) Cationic Silicone (II) Compounds and Processes for Their Preparation
JP2010209067A (en) METHOD FOR PREPARING METAL COMPLEX OF MULTIDENTATE beta-KETOIMINATE
JP4822651B2 (en) Method for producing phenol metal salt
EP2880041B1 (en) Process for preparation of aryl phosphorous compounds
Sadykova et al. 2 H-Benzo [e]-1, 2-oxaphosphorine Related Heterocycles as Precursors for the Synthesis of Unsymmetrical Bicyclic Phosphonates
JP3748669B2 (en) Method for producing phosphazenium halide
JP6837883B2 (en) Method for Producing Disubstituted Electron-donating Group of Dicyanoaryl or Dicyanoheteroaryl
CN102712667A (en) Process for production of trialkylphosphine
JP5776518B2 (en) Method for producing basic iminophosphazenium salt-containing solution
JP4757057B2 (en) Process for producing 10-halogeno-10H-9-oxa-10-phosphaphenanthrene compound
JP2004331540A (en) Method for producing bisphosphine
KR20230060027A (en) Method for preparing nonsymmetric phosphate based compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R151 Written notification of patent or utility model registration

Ref document number: 5365151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151