JP5364643B2 - Eddy current flaw detection method and contrast specimen used therefor - Google Patents

Eddy current flaw detection method and contrast specimen used therefor Download PDF

Info

Publication number
JP5364643B2
JP5364643B2 JP2010122656A JP2010122656A JP5364643B2 JP 5364643 B2 JP5364643 B2 JP 5364643B2 JP 2010122656 A JP2010122656 A JP 2010122656A JP 2010122656 A JP2010122656 A JP 2010122656A JP 5364643 B2 JP5364643 B2 JP 5364643B2
Authority
JP
Japan
Prior art keywords
flaw
coil
flaw detector
flaw detection
phase angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010122656A
Other languages
Japanese (ja)
Other versions
JP2011075540A (en
Inventor
弘文 大内
将史 成重
亮 西水
正浩 小池
嘉治 阿部
裕一 鳴海
豊彦 津下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2010122656A priority Critical patent/JP5364643B2/en
Publication of JP2011075540A publication Critical patent/JP2011075540A/en
Application granted granted Critical
Publication of JP5364643B2 publication Critical patent/JP5364643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、マルチコイル式プローブを用いる渦電流探傷法、および探傷条件の設定、探傷装置の性能の確認及び点検に用いる対比試験片に関するものである。   The present invention relates to an eddy current flaw detection method using a multi-coil probe, and a contrast test piece used for setting flaw detection conditions, confirming the performance of a flaw detection apparatus, and checking.

渦電流探傷法では、探傷条件の設定、探傷装置の性能の確認及び点検に対比試験片を利用する。JIS Z2300によれば、対比試験片とは、「試験装置の性能の確認及び試験条件の調整・確認のために用いる人工きずなどをもつ試験片。人工きずには、角溝、やすり溝およびドリル穴などが規定されている。」と定義されている。対比試験片に使用する人工きずの形状としては、非特許文献1ではドリル穴、円周溝、ヤスリきずやスリットの例が示され、試験対象物に発生しやすいきずの形状に近いものが望ましいとされている。   In the eddy current flaw detection method, a contrast test piece is used for setting flaw detection conditions, checking the performance of the flaw detection apparatus, and checking. According to JIS Z2300, the contrast test piece is "a test piece having artificial flaws used for confirming the performance of the test apparatus and adjusting / confirming the test conditions. The artificial flaws include square grooves, file grooves and drills. Holes are defined. " As the shape of the artificial flaw used for the contrast test piece, Non-Patent Document 1 shows examples of a drill hole, a circumferential groove, a flaw and a slit, and a shape close to the shape of a flaw that easily occurs in the test object is desirable. It is said that.

しかしながら、試験対象物に発生しやすいきずの形状の対比試験片だけでは、探傷条件の設定、探傷装置の性能の確認及び点検に不都合な場合もある。例えば、伝熱管などの管検査でマルチコイル式渦電流探傷法を利用する場合、単一の人工きずを持つ対比試験片に対してプローブを走査する作業がコイル数分だけ必要になり、作業工数が増えて現場での対比試験には不適当である。   However, it may be inconvenient for setting the flaw detection conditions, confirming the performance of the flaw detection apparatus, and inspecting only the contrast test piece having a flaw shape that easily occurs on the test object. For example, when using the multi-coil eddy current flaw detection method for tube inspection of heat transfer tubes, etc., it is necessary to scan the probe against a contrast test piece with a single artificial flaw by the number of coils, and the number of work steps This is unsuitable for field comparison tests.

軽水型原子力発電所用蒸気発生器伝熱管の供用期間中検査における渦電流探傷試験指針(JEAG4208)では、マルチコイル式プローブに対して人工きずとして全周方向のスリットや段差形状(拡管境界)の利用が示されているが、例えば特許文献1のようなマルチコイル式プローブでは、このような対比試験片は、軸方向に各検出コイル出力が同時に出力されてしまうため使用することができない。   In the eddy current testing guidelines (JEAG4208) for in-service inspection of steam generator tubes for light water nuclear power plants, use of slits and step shapes (expanded boundary) in the circumferential direction as multi-coil probes as artificial flaws. However, in a multi-coil probe such as Patent Document 1, for example, such a comparison test piece cannot be used because outputs of detection coils are simultaneously output in the axial direction.

特開2007−263946号公報JP 2007-263946 A

(社)日本非破壊検査協会 渦電流探傷試験I p.p.69−83.Japan Nondestructive Inspection Association Eddy current testing I p. p. 69-83.

伝熱管などの管検査でマルチコイル式渦電流探傷法を利用する場合、従来の対比試験片では探傷条件の設定、探傷装置の性能の確認及び点検に不都合な場合がある。そこで、マルチコイル式プローブの探傷条件の設定、探傷装置の性能確認及び点検を容易にする、渦電流探傷法における試験方法及び対比試験片を提案する。   When the multi-coil eddy current flaw detection method is used for pipe inspection of a heat transfer tube or the like, the conventional contrast test piece may be inconvenient for setting flaw detection conditions, checking the performance of the flaw detection apparatus, and checking. Therefore, a test method and a contrast test piece in an eddy current flaw detection method that facilitates the setting of flaw detection conditions for a multi-coil probe and the performance confirmation and inspection of the flaw detection apparatus are proposed.

本発明は、マルチコイル式プローブを用いた円筒管の渦電流探傷法において、単一の円筒管に複数個の同一形状の人工きずを全周方向及び軸方向にずらして配置した対比試験片を用いてマルチコイル式プローブの探傷条件の設定、探傷装置の性能確認及び点検をすることを特徴とする。   In the eddy current flaw detection method for a cylindrical tube using a multi-coil probe, the present invention provides a contrast test piece in which a plurality of artificial flaws having the same shape are arranged on a single cylindrical tube while being shifted in the entire circumferential direction and the axial direction. It is used to set the flaw detection conditions of the multi-coil probe and to check and inspect the performance of the flaw detection apparatus.

また、渦電流探傷法において、前記複数の人工きずは、前記対比試験片の全周を覆う様に配置したことを特徴とする。   Further, in the eddy current flaw detection method, the plurality of artificial flaws are arranged so as to cover the entire circumference of the comparison test piece.

また、渦電流探傷法において、前記複数の人工きずは、前記対比試験片外周を螺旋状に覆って配置されたことを特徴とする。   In the eddy current flaw detection method, the plurality of artificial flaws are arranged so as to cover the outer periphery of the comparison test piece in a spiral shape.

また、渦電流探傷法において、探傷前の校正では、前記対比試験片の全周を覆う人工きずを有する対比試験片を用いて探傷し、各コイルで検出した信号を用いて、全コイルの探傷器感度、探傷器位相角を算出することを特徴とする。   Further, in the eddy current flaw detection method, in calibration before flaw detection, flaw detection is performed using a contrast test piece having an artificial flaw covering the entire circumference of the contrast test specimen, and the flaw detection of all coils is performed using signals detected by each coil. The instrument sensitivity and the flaw detector phase angle are calculated.

また、渦電流探傷法において、前記人工きずを全周方向及び軸方向に等間隔にずらして配置した対比試験片を用いることを特徴とする。   In the eddy current flaw detection method, a contrast test piece in which the artificial flaws are arranged at equal intervals in the entire circumferential direction and the axial direction is used.

また、渦電流探傷法において、単一の円筒管に一定の幅と深さを持つ連続的な溝を、人工きずとして等間隔の軸方向ピッチで螺旋状に加工した対比試験片を用いて、マルチコイル式プローブの探傷条件の設定、探傷装置の性能確認及び点検をすることを特徴とする。   Moreover, in the eddy current flaw detection method, using a contrast test piece in which a continuous groove having a certain width and depth is formed in a single cylindrical tube in a spiral shape at an equally spaced axial pitch as an artificial flaw, It is characterized by setting the flaw detection conditions of the multi-coil probe, checking the performance of the flaw detection device, and checking.

また、渦電流探傷法において、さらに、外周に軸方向と直交する単一のスリットを設けた対比試験片を併用して、マルチコイル式プローブの探傷条件の設定、探傷装置の性能確認、及び点検をすることを特徴とする。   In addition, in the eddy current flaw detection method, the test condition of the multi-coil probe is set, the flaw detection device performance is confirmed, and the inspection is performed in combination with a contrast test piece provided with a single slit perpendicular to the axial direction on the outer periphery. It is characterized by doing.

また、渦電流探傷法において、前記螺旋溝を有する対比試験片を用いてマルチコイル式プローブの探傷器感度及び探傷器位相角を設定し、
前記外周に軸方向と直交する単一のスリットを設けた対比試験片を用いてマルチコイル式プローブの任意のコイルの探傷器感度及び探傷器位相角を設定し、前記単一のスリットを設けた対比試験片により設定された前記マルチコイル式プローブの探傷器感度及び探傷器位相角により、前記マルチコイル式プローブの全コイルの探傷器感度及び探傷器位相角を補正することを特徴とする。
Further, in the eddy current flaw detection method, the flaw detector sensitivity and flaw detector phase angle of the multi-coil probe are set using the contrast test piece having the spiral groove,
Using the comparison test piece provided with a single slit perpendicular to the axial direction on the outer periphery, the flaw detector sensitivity and flaw detector phase angle of an arbitrary coil of the multi-coil probe were set, and the single slit was provided. The flaw detector sensitivity and flaw detector phase angle of all coils of the multi-coil probe are corrected by the flaw detector sensitivity and flaw detector phase angle of the multi-coil probe set by the contrast test piece.

また、渦電流探傷法において、螺旋溝を付与した対比試験片を探傷し、全コイルにおける螺旋溝に起因する信号の振幅値、位相角を所定の値に合わせ、そのときの全コイルの探傷器感度、探傷器位相角を記録し、スリットを付与した対比試験片を探傷し、スリットに起因する信号を検出した任意のコイルの振幅値や位相角を所定の値に合わせ、同時にそのときの任意のコイルにおける探傷器感度、探傷器位相角を記録し、上記スリットを付与した対比試験片を探傷して記録した任意のコイルの探傷器感度、探傷器位相角と、前記螺旋溝を付与した対比試験片を探傷して記録した前記任意のコイルと同じコイルの探傷器感度、探傷器位相角の差を補正値とし、その補正値を、前記螺旋溝を付与した対比試験片を探傷して記録した全コイルの探傷器感度、探傷器位相角に加算または減算して、探傷時に使用する探傷器感度、探傷器位相角とすることを特徴とする。(探傷器感度はdB表示とする。)
また、渦電流探傷法において、単一の円筒管に一定の幅と深さを持つ連続的な溝を、人工きずとして等間隔の軸方向ピッチで螺旋状に加工し、右回り螺旋及び左回り螺旋の2つを形成した対比試験片を用いたことを特徴とする。
Further, in the eddy current flaw detection method, a test specimen having a spiral groove is flawed, and the amplitude value and phase angle of the signal caused by the spiral groove in all coils are adjusted to predetermined values, and the flaw detector for all coils at that time Record the sensitivity and flaw detector phase angle, detect flaws on the contrast test piece with slits, and adjust the amplitude and phase angle of any coil that detects the signal caused by the slit to the specified values, and at the same time The flaw detector sensitivity and flaw detector phase angle in the coil of the above-mentioned coil were recorded, and the flaw detector sensitivity and flaw detector phase angle of the arbitrary coil recorded by flaw detection and recording the above-mentioned slit-fitted contrast specimen were compared with the spiral groove. The difference between the flaw detector sensitivity and flaw detector phase angle of the same coil as the arbitrary coil recorded by flaw detection of the test piece is used as a correction value, and the correction value is detected and recorded on the comparison test piece provided with the spiral groove. Flaw detection on all coils Sensitivity, and added to or subtracted from the flaw detector phase angle flaw detector sensitivity to be used for flaw detection, characterized in that the flaw detector phase angle. (Flaw detector sensitivity is displayed in dB.)
In the eddy current flaw detection method, a continuous groove having a certain width and depth is machined into a single cylindrical tube in a spiral shape at equal intervals in the axial direction as artificial flaws. A contrast test piece having two spirals is used.

さらに、渦電流探傷法のマルチコイル式プローブの探傷条件の設定、探傷装置の性能確認及び点検に用いる対比試験片において、単一の円筒管に複数個の同一形状の人工きずを全周方向及び軸方向にずらして配置したことを特徴とする。   Furthermore, in a comparative test piece used for setting the flaw detection conditions of the multi-coil probe of the eddy current flaw detection method, confirming the performance of the flaw detection device, and checking it, a plurality of artificial flaws of the same shape are arranged in the circumferential direction in a single cylindrical tube. It is characterized by being shifted in the axial direction.

さらに、渦電流探傷法に用いる対比試験片において、前記人工きずを周方向及び軸方向に等間隔にずらして配置したことを特徴とする。   Furthermore, in the contrast test piece used for the eddy current flaw detection method, the artificial flaws are arranged at equal intervals in the circumferential direction and the axial direction.

さらに、渦電流探傷法のマルチコイル式プローブの探傷条件の設定、探傷装置の性能確認及び点検に用いる対比試験片において、単一の円筒管に一定の幅と深さを持つ連続的な溝を、人工きずとして等間隔の軸方向ピッチで螺旋状に加工したことを特徴とする。   Furthermore, a continuous groove with a certain width and depth is formed in a single cylindrical tube in the contrast test piece used for setting the flaw detection conditions of the multi-coil probe of the eddy current flaw detection method, checking the performance of the flaw detection device, and checking it. It is characterized in that it is processed as an artificial flaw in a spiral shape at equal pitches in the axial direction.

さらに、渦電流探傷法に用いる対比試験片において、単一の円筒管に一定の幅と深さを持つ連続的な溝を、人工きずとして等間隔の軸方向ピッチで螺旋状に加工し、少なくとも左回り螺旋溝及び右回り螺旋溝の2つを形成したことを特徴とする。   Further, in the contrast test piece used for the eddy current flaw detection method, a continuous groove having a certain width and depth is formed in a single cylindrical tube in a spiral shape at equal axial pitches as an artificial flaw, and at least A left-handed spiral groove and a right-handed spiral groove are formed.

本発明は、マルチコイル式プローブを用いた円筒管の渦電流探傷法において、単一の円筒管に複数個の同一形状の人工きずを全周方向及び軸方向にずらして配置した対比試験片を用いて、マルチコイル式プローブの探傷条件の設定、探傷装置の性能確認及び点検をするという構成により、マルチコイル式プローブの探傷条件の設定、探傷装置の性能確認及び点検を容易にする事が出来る。 In the eddy current flaw detection method for a cylindrical tube using a multi-coil probe, the present invention provides a contrast test piece in which a plurality of artificial flaws having the same shape are arranged on a single cylindrical tube while being shifted in the entire circumferential direction and the axial direction. Using the configuration to set the flaw detection conditions of the multi-coil probe, and confirm and inspect the performance of the flaw detection apparatus, it is possible to easily set the flaw detection conditions of the multi-coil probe, and confirm and inspect the performance of the flaw detection apparatus. .

本発明の渦電流探傷システムの構成を表すブロック図The block diagram showing the structure of the eddy current flaw detection system of this invention マルチコイル式プローブの模式図Schematic diagram of multi-coil probe 本発明の実施例1に係る対比試験片の模式図The schematic diagram of the contrast test piece which concerns on Example 1 of this invention マルチコイル式プローブの探傷条件の設定フロー図Flaw detection condition setting flowchart for multi-coil probe 各コイルでのスリットによる検出信号を示す模式図Schematic diagram showing detection signals by slits in each coil 特定コイルの取得検出信号のリサージュ波形図Lissajous waveform diagram of acquisition detection signal of specific coil 各コイルでのスリットによる検出信号の測定グラフMeasurement signal measurement graph by slit in each coil 本発明の実施例2に係る対比試験片の模式図The schematic diagram of the contrast test piece which concerns on Example 2 of this invention 本発明の実施例3に係る対比試験片の模式図Schematic diagram of a contrast test piece according to Example 3 of the present invention 本発明の実施例4のマルチコイル渦電流探傷方法を示すフローチャートThe flowchart which shows the multi-coil eddy current flaw detection method of Example 4 of this invention. 本発明の実施例4の装置構成を示すブロック図The block diagram which shows the apparatus structure of Example 4 of this invention. 実施例4の表示画面の一例を示す説明図Explanatory drawing which shows an example of the display screen of Example 4. 実施例4のマルチコイル式プローブを示す模式図Schematic diagram showing the multi-coil probe of Example 4 実施例4の螺旋溝を付与した対比試験片の検出方法を示す模式図The schematic diagram which shows the detection method of the contrast test piece which provided the spiral groove of Example 4. 実施例4の螺旋溝を検出したときの信号出力結果を示すグラフThe graph which shows the signal output result when the spiral groove of Example 4 is detected 実施例4の所定値の信号出力結果を示すグラフThe graph which shows the signal output result of the predetermined value of Example 4 実施例4のスリットを付与した対比試験片の検出方法を示す模式図The schematic diagram which shows the detection method of the contrast test piece which provided the slit of Example 4. 実施例4のスリットを検出したときの信号出力結果を示すグラフThe graph which shows the signal output result when the slit of Example 4 is detected 実施例4の所定値の信号出力結果を示すグラフThe graph which shows the signal output result of the predetermined value of Example 4 本発明の実施例4の複数スリットを有した対比試験片を示す模式図The schematic diagram which shows the contrast test piece which has the some slit of Example 4 of this invention 実施例5のマルチコイル渦電流探傷方法を示すフローチャートFlowchart illustrating a multi-coil eddy current flaw detection method according to the fifth embodiment. 従来例のマルチコイル渦電流探傷法を示すフローチャートFlow chart showing conventional multi-coil eddy current flaw detection method

以下に本発明の実施例を図面について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施例1に係る渦電流探傷システムのブロック図である。図1において、渦電流探傷システムはマルチコイル式プローブ14の位置制御系と探傷制御系に大別できる。マルチコイル式プローブ14の位置制御系は、マルチコイル式プローブ14を保持した巻き取り機12と位置制御回路11とコンピュータ10で構成される。また、探傷制御系は、マルチコイル式プローブ14と渦電流探傷器13で構成される。位置制御系と探傷制御系はコンピュータ10により制御され、その状態はモニタ15で観測される。   FIG. 1 is a block diagram of an eddy current flaw detection system according to Embodiment 1 of the present invention. In FIG. 1, the eddy current flaw detection system can be roughly divided into a position control system and a flaw detection control system for the multi-coil probe 14. The position control system of the multi-coil probe 14 includes a winder 12 that holds the multi-coil probe 14, a position control circuit 11, and a computer 10. The flaw detection control system includes a multi-coil probe 14 and an eddy current flaw detector 13. The position control system and the flaw detection control system are controlled by the computer 10, and the state is observed by the monitor 15.

次に、図1の電気的及び機械的な接続関係について述べる。マルチコイル式プローブ14は巻き取り機12に機械的に固定され、巻き取り機12は位置制御回路11と電気的に接続されている。位置制御回路11はコンピュータ10と接続され、コンピュータ10はさらにモニタ15と接続されている。探傷制御系では、マルチコイル式プローブ14の外部入出力端子は渦電流探傷器13と接続されている。渦電流探傷器13はコンピュータ10と接続され、探傷条件等をモニタ15で確認できる。   Next, the electrical and mechanical connection relationships in FIG. 1 will be described. The multi-coil probe 14 is mechanically fixed to the winder 12, and the winder 12 is electrically connected to the position control circuit 11. The position control circuit 11 is connected to a computer 10, and the computer 10 is further connected to a monitor 15. In the flaw detection control system, the external input / output terminal of the multi-coil probe 14 is connected to the eddy current flaw detector 13. The eddy current flaw detector 13 is connected to the computer 10 and the flaw detection conditions and the like can be confirmed on the monitor 15.

図1の渦電流探傷システムの動作について説明する。全てのシステム制御は、モニタ15で状態を監視しながらコンピュータ10で設定条件を変更する。位置制御回路11において、コンピュータ10での設定情報(移動距離と移動速度等)が位置制御回路11に送信され、その情報をもとに巻き取り機12が作動し、マルチコイル式プローブ14が目的の位置に移動する。次いで、探傷制御系において、コンピュータ10から設定情報(送信周波数や電圧等)が渦電流探傷器13に送信される。   The operation of the eddy current flaw detection system of FIG. 1 will be described. In all system controls, the setting conditions are changed by the computer 10 while the state is monitored by the monitor 15. In the position control circuit 11, setting information (movement distance, movement speed, etc.) in the computer 10 is transmitted to the position control circuit 11, and the winder 12 is operated based on the information, and the multi-coil probe 14 is used. Move to the position. Next, in the flaw detection control system, setting information (transmission frequency, voltage, etc.) is transmitted from the computer 10 to the eddy current flaw detector 13.

渦電流探傷器13からマルチコイル式プローブ14の励磁コイル21の外部入力端子に交流電圧が印加される。一方、マルチコイル式プローブ14の検出コイル22の外部出力端子からの検出信号電圧は渦電流探傷器13に送られる。渦電流探傷器13内の出力検出信号はデジタル検出信号としてコンピュータ10に送信され、モニタ15で観測される。上記の位置制御系及び探傷制御系の制御は時間的に同時に進行し、各移動位置での検出信号がモニタされる。   An AC voltage is applied from the eddy current flaw detector 13 to the external input terminal of the exciting coil 21 of the multi-coil probe 14. On the other hand, the detection signal voltage from the external output terminal of the detection coil 22 of the multi-coil probe 14 is sent to the eddy current flaw detector 13. The output detection signal in the eddy current flaw detector 13 is transmitted to the computer 10 as a digital detection signal and observed by the monitor 15. The above-described control of the position control system and the flaw detection control system proceeds simultaneously in time, and the detection signal at each moving position is monitored.

図2はマルチコイル式プローブ14の模式図である。マルチコイル式プローブ14の全周には、励磁コイル21と検出コイル22が樹脂製のコイル台座26の上に配置され、コイル押さえ23で各コイルの配置が固定されている。マルチコイル式プローブ14には、中心軸調整機構25が設置されて、管内の中心に渦電流探傷センサ14が位置するように調整される。励磁コイル21および検出コイル22の末端は、ケーブル24Aのリード線と直接結線され、渦電流探傷器13と電気的に接続されている。ケーブル24Bには、マルチコイル式プローブ14と同一構成の、図示しないもう一つのマルチコイル式プローブが接続され、このマルチコイル式プローブもケーブル24Bの内部のリード線と結線され、内部のリード線を介して、渦電流探傷器13と電気的に接続されている。   FIG. 2 is a schematic diagram of the multi-coil probe 14. An excitation coil 21 and a detection coil 22 are arranged on a resin-made coil base 26 around the entire circumference of the multi-coil probe 14, and the arrangement of each coil is fixed by a coil presser 23. The multi-coil probe 14 is provided with a center axis adjusting mechanism 25 and adjusted so that the eddy current flaw detection sensor 14 is located at the center in the tube. The ends of the excitation coil 21 and the detection coil 22 are directly connected to the lead wire of the cable 24 </ b> A and are electrically connected to the eddy current flaw detector 13. Another multi-coil probe (not shown) having the same configuration as the multi-coil probe 14 is connected to the cable 24B. This multi-coil probe is also connected to the internal lead wire of the cable 24B, and the internal lead wire is connected to the cable 24B. Through the eddy current flaw detector 13.

本実施例の対比試験片を図3に示す。対比試験片31には、円筒管表面の周方向に長さを持つ短い複数のスリット32を周方向及び軸方向に等間隔にずらして全周にわたって螺旋状に配置している。本発明の対比試験片では、周方向及び軸方向に等間隔ずらしてスリット32を配置したが、周方向及び軸方向の間隔は任意であり、いずれかのスリットが各検出コイルに対応していれば良い。またスリットの個数も変更可能である。   FIG. 3 shows a contrast test piece of this example. In the contrast test piece 31, a plurality of short slits 32 having a length in the circumferential direction on the surface of the cylindrical tube are arranged in a spiral shape over the entire circumference while being equally spaced in the circumferential direction and the axial direction. In the contrast test piece of the present invention, the slits 32 are arranged at equal intervals in the circumferential direction and the axial direction, but the intervals in the circumferential direction and the axial direction are arbitrary, and any of the slits corresponds to each detection coil. It ’s fine. The number of slits can also be changed.

図4はマルチコイル式プローブの探傷条件の設定フロー図を表している。各ステップについて以下に説明する。まず、対比試験片31にマルチコイル式プローブ14を挿入する(S41)。次に、マルチコイル式プローブ14により対比試験片31内部を走査してスリット32による検出信号を取得する(S42)。   FIG. 4 shows a flow chart for setting the flaw detection conditions of the multi-coil probe. Each step will be described below. First, the multi-coil probe 14 is inserted into the contrast test piece 31 (S41). Next, the inside of the contrast test piece 31 is scanned by the multi-coil probe 14 to obtain a detection signal from the slit 32 (S42).

図5は各コイルでのスリット32による検出信号52の例を模式的に表しており、カーソル51等でスリットによる検出信号のうち試験に用いる範囲を選択する(S43)。   FIG. 5 schematically shows an example of the detection signal 52 by the slit 32 in each coil, and a range to be used for the test is selected from the detection signals by the cursor 51 or the like (S43).

図6は図5の特定コイルにおける取得検出信号のX振幅とY振幅のリサージュ波形図である。実線61は現在の探傷条件でのスリットによる検出信号のリサージュ波形を表し、丸印62は自動調整に用いるスリット検出信号の振幅及び位相の目標設定値を表している(S44)。最後に、スリットによる検出信号が点線63のように振幅と位相の目標設置値となる様にプローブの各検出コイルのゲインと位相を自動調整または手動調整して更新する(S45)。   FIG. 6 is a Lissajous waveform diagram of the X amplitude and Y amplitude of the acquired detection signal in the specific coil of FIG. The solid line 61 represents the Lissajous waveform of the detection signal by the slit under the current flaw detection conditions, and the circle 62 represents the target set value of the amplitude and phase of the slit detection signal used for automatic adjustment (S44). Finally, the gain and phase of each detection coil of the probe are updated by automatic adjustment or manual adjustment so that the detection signal by the slit becomes the target setting value of the amplitude and phase as indicated by the dotted line 63 (S45).

本発明の効果を確認するために、マルチコイル式プローブの探傷条件の設定を実施した。図7はコイルでのスリットによる検出信号の測定例である。図7の上部はコイル1〜8でスリットに対応した検出信号強度が濃淡のグラフで観測される。例えばコイル3における、目標設定値を振幅1Vで位相90度とした場合の、取得検出信号のX振幅とY振幅の波形は下側のチャート図のようになる。このようなゲインと位相の調整は全コイルで実施され、マルチコイル式プローブのゲインと位相を容易に設定できる。   In order to confirm the effect of the present invention, the flaw detection conditions of the multi-coil probe were set. FIG. 7 is an example of measurement of a detection signal by a slit in a coil. In the upper part of FIG. 7, the detection signal intensity corresponding to the slits is observed in a shaded graph with coils 1 to 8. For example, when the target set value in the coil 3 is 1 V and the phase is 90 degrees, the X amplitude and Y amplitude waveforms of the acquired detection signal are as shown in the lower chart. Such gain and phase adjustment is performed for all coils, and the gain and phase of the multi-coil probe can be easily set.

また、設定した前記設定ゲインと位相により、再度対比試験片を走査して検出信号を確認することで探傷装置の性能の確認及び点検を行う。   Further, the performance of the flaw detection apparatus is confirmed and checked by scanning the comparison test piece again and confirming the detection signal with the set gain and phase set.

図8は本発明の実施例2に係る対比試験片の模式図である。対比試験片81は単一の円筒管の全周に一定の幅と深さを持つ連続的な螺旋溝82が等間隔の軸方向ピッチで加工されている。螺旋溝82は、実施例1におけるスリットの間隔を無限に短縮したものととらえることもでき、実質的に同一と見なせる。   FIG. 8 is a schematic diagram of a contrast test piece according to Example 2 of the present invention. In the contrast test piece 81, continuous spiral grooves 82 having a constant width and depth are machined at equal intervals in the axial pitch on the entire circumference of a single cylindrical tube. The spiral groove 82 can be regarded as an infinitely shortened slit interval in the first embodiment, and can be regarded as substantially the same.

螺旋溝82は等ピッチで加工されているため、各検出コイルに対する人工きず密度等の条件を揃える事ができる。螺旋溝82の幅や深さは任意であり、複数回の巻き数で加工することができる。実施例1の図4のマルチコイル式プローブの探傷条件の設定フローを利用して、本実施例の対比試験片も実施例1と同様に用いることができる。   Since the spiral grooves 82 are processed at an equal pitch, conditions such as artificial flaw density for each detection coil can be made uniform. The width and depth of the spiral groove 82 are arbitrary and can be processed with a plurality of turns. Using the flow of setting the flaw detection conditions of the multi-coil probe of FIG. 4 of Example 1, the comparative test piece of this example can also be used in the same manner as Example 1.

図9は本発明の実施例3に係る対比試験片の模式図である。対比試験片91は単一の円筒管に一定の幅と深さを持つ連続的な溝を等間隔の軸方向ピッチで螺旋状に加工し、左回り螺旋溝92及び右回り螺旋溝93の2つを形成している。螺旋溝の幅や深さは任意であり、複数回の巻き数を与えることができる。このように設定することで、各コイルの検出コイル出力は正負に分布した出力としてチェック可能となる。実施例1の図4のマルチコイル式プローブの探傷条件の設定フローを利用して、本発明の対比試験片で実施形態1と同様に用いることができる。   FIG. 9 is a schematic view of a contrast test piece according to Example 3 of the present invention. The contrast test piece 91 is formed by processing a continuous groove having a constant width and depth into a single cylindrical tube in a spiral shape at equal intervals in the axial direction. Forming one. The width and depth of the spiral groove are arbitrary, and a plurality of turns can be given. By setting in this way, the detection coil output of each coil can be checked as an output distributed positively and negatively. Using the flow of setting the flaw detection conditions of the multi-coil probe of FIG. 4 in Example 1, the contrast test piece of the present invention can be used in the same manner as in Embodiment 1.

次に、連続的な螺旋溝を有する対比試験片および周方向の単一スリットを有する対比試験片を併用した、より検出精度の高い渦電流探傷法について説明する。
〔基本的手順〕
まず、図10を使って実施例4の円筒管のマルチコイル渦電流探傷法のフローチャートを説明する。探傷準備S101では、検査機器対象の確認、管列番のマーキング、探傷器の準備、試験条件の設定等を実施する。探傷準備S101を終えた後、探傷前の校正S102を実施する。ここで、全コイルが所定の探傷器感度、探傷器位相角を有していることを確認できれば、実際の探傷S103を開始する。予定の探傷S103が終了次第、探傷後の校正S104でスリット210(図16)に起因する信号の振幅値や位相角が、所定の値であることを確認する。最後にS105でマルチコイル201(図13)が検出した信号波形を確認して、信号検出箇所の有無を確認し、評価S106、記録作成S107という手順となる。
〔従来の手順〕
図20に示すボビンコイル式プローブ等を用いる従来の校正方法では、探傷前の校正S102と探傷後の校正S104の内容が図10と異なる。探傷前の校正S102において、従来は人工きずとして貫通孔を有する対比試験片を用い、貫通穴を使った探傷器感度、探傷器位相角の設定S114、貫通穴を検出したときの振幅値、位相角の記録S115を行っていた。また、探傷後の校正S104において、貫通穴を検出したときの振幅値、位相角の記録S116、探傷前後における貫通穴の振幅値、位相角差の確認S117を行っていた。背景技術の欄で述べたように、マルチコイル201の各コイル出力は、このような対比試験片に対して原理的に発生しないため、そのまま適用することができない。
〔本発明の手順〕
図10において、マルチコイル式プローブ301(図13)を使った探傷前の校正S102では、全コイルの探傷器感度、探傷器位相角を設定するために、人工きずとして螺旋溝207(図14)を使った探傷器感度、探傷器位相角の設定S108、人工きずとしてスリット210(図16)を使った探傷器感度、探傷器位相角の設定S109、探傷器感度、探傷器位相角の補正S110および螺旋溝207を検出したときの振幅値、位相角の記録S111を実施する。
Next, an eddy current flaw detection method with higher detection accuracy using a comparison test piece having a continuous spiral groove and a comparison test piece having a single slit in the circumferential direction will be described.
[Basic procedure]
First, the flowchart of the multi-coil eddy current flaw detection method of the cylindrical tube of Example 4 is demonstrated using FIG. In the flaw detection preparation S101, confirmation of the inspection device target, marking of the tube row number, preparation of the flaw detector, setting of test conditions, and the like are performed. After completing the flaw detection preparation S101, calibration S102 before flaw detection is performed. Here, if it can be confirmed that all the coils have predetermined flaw detector sensitivity and flaw detector phase angle, actual flaw detection S103 is started. Upon completion of the scheduled flaw detection S103, it is confirmed in calibration S104 after the flaw detection that the amplitude value and phase angle of the signal caused by the slit 210 (FIG. 16) are predetermined values. Finally, the signal waveform detected by the multi-coil 201 (FIG. 13) is confirmed in S105, the presence / absence of a signal detection point is confirmed, and the procedure of evaluation S106 and record creation S107 is performed.
[Conventional procedure]
In the conventional calibration method using the bobbin coil type probe or the like shown in FIG. 20, the contents of calibration S102 before flaw detection and calibration S104 after flaw detection are different from those in FIG. In the calibration S102 before the flaw detection, a contrast test piece having a through hole is conventionally used as an artificial flaw, the flaw detector sensitivity using the through hole, the flaw detector phase angle setting S114, the amplitude value when the through hole is detected, the phase Corner recording S115 was performed. Further, in the calibration S104 after the flaw detection, the amplitude value and phase angle recording S116 when the through hole is detected, and the amplitude value and phase angle difference confirmation S117 of the through hole before and after the flaw detection are performed. As described in the background art section, each coil output of the multi-coil 201 is not generated in principle for such a contrast test piece, and thus cannot be applied as it is.
[Procedure of the present invention]
In FIG. 10, in the calibration S102 before the flaw detection using the multi-coil probe 301 (FIG. 13), the spiral groove 207 (FIG. 14) is used as an artificial flaw to set the flaw detector sensitivity and flaw detector phase angle of all the coils. Flaw detector sensitivity and flaw detector phase angle setting S108, flaw detector sensitivity using slit 210 (FIG. 16) as an artificial flaw, flaw detector phase angle setting S109, flaw detector sensitivity and flaw detector phase angle correction S110 In addition, recording S111 of the amplitude value and the phase angle when the spiral groove 207 is detected is performed.

また、探傷後の校正S104において、対象となる螺旋溝207を検出したときの振幅値、位相角の記録S112および探傷前後における螺旋溝207の振幅値、位相角差の確認S113を実施する。
〔装置構成〕
実施例4の装置構成について、図11を用いて説明する。装置はマルチコイル式プローブ301、渦電流探傷器302、各コイルで検出した信号の振幅値、位相角の計算を行う演算部303と演算した信号情報や位置情報を保存するメモリ304を含むコンピュータ305、コンピュータ305の入力部306およびモニタ307で構成される。
Further, in calibration S104 after the flaw detection, the amplitude value and phase angle recording S112 when the target spiral groove 207 is detected, and the amplitude value and phase angle difference confirmation S113 of the spiral groove 207 before and after the flaw detection are performed.
〔Device configuration〕
The apparatus configuration of the fourth embodiment will be described with reference to FIG. The apparatus includes a multi-coil probe 301, an eddy current flaw detector 302, a calculation unit 303 for calculating the amplitude value and phase angle of the signal detected by each coil, and a computer 305 including a memory 304 for storing the calculated signal information and position information. The computer 305 includes an input unit 306 and a monitor 307.

次に、装置の表示画面の一例について、螺旋溝207の信号311を検出したときの表示を図12にて説明する。探傷結果の表示は、平面表示(Cスコープ表示)308、Y振幅チャート309、X振幅チャート310から構成される。平面表示308は、コイル1〜8まで並べて表示され、平面表示308上で指定したカーソル312の波形が、随時Y振幅チャート309、X振幅チャート310に表示される。また、表示画面上において、校正値の設定ボタン313、探傷器感度、探傷器位相角の表示ボタン314、振幅値、位相角の表示ボタン315等を使って、探傷前後の校正を実施することができる。   Next, an example of the display screen of the apparatus will be described with reference to FIG. 12 when the signal 311 of the spiral groove 207 is detected. The display of the flaw detection result includes a plane display (C scope display) 308, a Y amplitude chart 309, and an X amplitude chart 310. The plane display 308 is displayed side by side from the coils 1 to 8, and the waveform of the cursor 312 designated on the plane display 308 is displayed on the Y amplitude chart 309 and the X amplitude chart 310 as needed. On the display screen, calibration before and after the flaw detection can be performed using the calibration value setting button 313, flaw detector sensitivity, flaw detector phase angle display button 314, amplitude value, phase angle display button 315, and the like. it can.

円筒管渦電流探傷用のマルチコイル式プローブ301の概要を図13に示す。マルチコイル式プローブ301は、マルチコイル201、ケーブル203、各コイルのリード線とケーブル203を直接繋ぐ結線部202から構成され、渦電流探傷器302と電気的に接続される。また、マルチコイル201は、前段、後段の2つのブロック201A、201Bから構成されており、両ブロック201A、201Bは円筒管の内面に沿って各ブロックの不感帯を補完するように、周方向取付け位置がずれた複数の励磁コイル204と検出コイル205が交互に配置されている。
〔探傷前の校正(S102)〕
実施例4における探傷前の校正S102とその手順について述べる。探傷前の校正S102は、以下の4つの手順により進める。
(1)ステップ1
まず、ステップ1として螺旋溝207を使った探傷器感度、探傷器位相角の設定S108を実施する。この手順は、複数のコイル間における探傷器感度、探傷器位相角のばらつきを押さえることを目的とする。螺旋溝207を有した対比試験片206の内部へマルチコイル式プローブ301を通過させ、各コイルで螺旋溝207に起因する信号を取得する。
An outline of a multi-coil probe 301 for cylindrical tube eddy current flaw detection is shown in FIG. The multi-coil probe 301 includes a multi-coil 201, a cable 203, and a connection portion 202 that directly connects the lead wire of each coil and the cable 203, and is electrically connected to the eddy current flaw detector 302. The multi-coil 201 is composed of two blocks 201A and 201B at the front stage and the rear stage, and both the blocks 201A and 201B are installed in the circumferential direction so as to complement the dead zone of each block along the inner surface of the cylindrical tube. A plurality of excitation coils 204 and detection coils 205 that are shifted from each other are alternately arranged.
[Calibration before flaw detection (S102)]
The calibration S102 before flaw detection and its procedure in the fourth embodiment will be described. Calibration S102 before the flaw detection proceeds according to the following four procedures.
(1) Step 1
First, as step 1, setting S108 of flaw detector sensitivity and flaw detector phase angle using the spiral groove 207 is performed. This procedure aims to suppress flaw detector sensitivity and flaw detector phase angle variations among a plurality of coils. The multi-coil probe 301 is passed through the comparison test piece 206 having the spiral groove 207, and a signal resulting from the spiral groove 207 is acquired by each coil.

図14は、そのときの対比試験片206内部における複数の検出コイル205のうちの任意のコイル208の動きを示している。対象となる人工きずは螺旋溝207であり、コイルの進む方向と螺旋溝207の進展方向が成す角度は何処でも同じであり、どのコイルも同じ試験条件を有する。全コイルにおいて螺旋溝207に起因する信号が検出されるが、各コイル特性の違いにより、振幅値、位相角に多少の違いが出る。したがって、同じ試験条件で検出した信号情報出力が、所定の同一振幅値、同一位相角になるように演算部303で補正計算されて、各コイル間における探傷器感度、探傷器位相角のばらつきを押さえることができる。   FIG. 14 shows the movement of an arbitrary coil 208 among the plurality of detection coils 205 in the contrast test piece 206 at that time. The target artificial flaw is the spiral groove 207, and the angle formed by the direction in which the coil advances and the direction in which the spiral groove 207 advances is the same everywhere, and all the coils have the same test conditions. Although signals due to the spiral groove 207 are detected in all coils, there are some differences in the amplitude value and the phase angle due to differences in the coil characteristics. Therefore, the signal information output detected under the same test conditions is corrected and calculated by the calculation unit 303 so as to have a predetermined same amplitude value and the same phase angle, so that the flaw detector sensitivity and flaw detector phase angle variations between the coils can be reduced. I can hold it down.

図15Aは、螺旋溝207に起因する信号を検出したときの任意のコイル208におけるX振幅、Y振幅の一例を示している。上記信号を、例えば図15Bのように振幅値:1.0V、位相角:90deg等のように所定の振幅値、位相角に設定したときの、各コイルの探傷器感度、探傷器位相角が演算部303によって算出され、補正された各コイルの探傷器感度、探傷器位相角が、表1に示す螺旋溝探傷時の各コイルの探傷器感度、探傷器位相角のイメージでモニタ307に表示され、各値がメモリ304へ保存される。   FIG. 15A shows an example of the X amplitude and Y amplitude in an arbitrary coil 208 when a signal due to the spiral groove 207 is detected. When the above signals are set to predetermined amplitude values and phase angles such as amplitude value: 1.0 V and phase angle: 90 deeg as shown in FIG. 15B, the flaw detector sensitivity and flaw detector phase angle of each coil are as follows. The flaw detector sensitivity and flaw detector phase angle calculated and corrected by the calculation unit 303 are displayed on the monitor 307 as an image of the flaw detector sensitivity and flaw detector phase angle at the time of spiral groove flaw detection shown in Table 1. Each value is stored in the memory 304.

Figure 0005364643
Figure 0005364643

(2)ステップ2
次にステップ2として、外周に軸方向と直交するスリットを設けた円筒状の対比試験片を使った探傷器感度、探傷器位相角の設定S109を実施する。この手順は、任意のコイルでスリットに起因する信号を取得し、上記手順S108で記録した探傷器感度、探傷器位相角との差を算出する。所定の深さを有するスリット210を有した対比試験片209の内部へマルチコイル式プローブ301を通過させ、スリット210に起因する信号を取得する。
(2) Step 2
Next, as step 2, the setting of the flaw detector sensitivity and flaw detector phase angle S109 using a cylindrical contrast test piece provided with a slit perpendicular to the axial direction on the outer periphery is carried out. In this procedure, a signal due to the slit is acquired by an arbitrary coil, and the difference between the flaw detector sensitivity and the flaw detector phase angle recorded in the procedure S108 is calculated. The multi-coil probe 301 is passed through the comparison test piece 209 having the slit 210 having a predetermined depth, and a signal resulting from the slit 210 is acquired.

図16は、そのときの対比試験片209内部における任意のコイル208の動きを示している。その際、複数あるコイルのうち、どのコイルがスリット210端部付近を通過して、スリット210に起因する信号を取得するのかは予測できない。したがって、探傷結果(探傷波形や平面表示)に基づいて信号を取得した任意のコイル208を特定し、その信号を使って、先程と同様に所定の振幅値、位相角に設定する。ここでは、スリット210の信号を検出した任意のコイルをコイル3と仮定する。   FIG. 16 shows the movement of an arbitrary coil 208 inside the contrast test piece 209 at that time. At that time, it cannot be predicted which of the plurality of coils passes through the vicinity of the end of the slit 210 to acquire a signal due to the slit 210. Therefore, an arbitrary coil 208 that has acquired a signal is identified based on the flaw detection result (flaw detection waveform or planar display), and the predetermined amplitude value and phase angle are set using the signal as in the previous case. Here, an arbitrary coil that detects the signal of the slit 210 is assumed to be the coil 3.

図17Aは、スリット210に起因する信号をコイル3で検出したときのX振幅、Y振幅の一例を示している。上記信号を、例えば図17Bのように、振幅値:1.0V、位相角:90deg等の所定の振幅値、位相角に設定したときの探傷器感度、探傷器位相角が演算部303によって算出され、補正されたコイル3の探傷器感度、探傷器位相角が、表2に示すスリット探傷時の各コイルの探傷器感度、探傷器位相角のイメージでモニタ307に表示され、各値がメモリ304へ保存される。ここで、スリットを有する対比試験片を用いる理由は、対比試験片の周方向に軸方向と直交して設けたスリットを用いると、試験対象物に発生しやすいきずの形状に近く、正確な補正が可能になることによる。なお、スリット210の信号を検出した任意のコイルを特定する方法として、スリット210に起因する信号の振幅値を所定の値に設定したときの探傷器感度が最小のコイルを、スリット210を検出した当該コイルと特定する方法もある。   FIG. 17A shows an example of the X amplitude and the Y amplitude when a signal caused by the slit 210 is detected by the coil 3. For example, as shown in FIG. 17B, the calculation unit 303 calculates the flaw detector sensitivity and flaw detector phase angle when the signal is set to a predetermined amplitude value and phase angle such as an amplitude value of 1.0 V and a phase angle of 90 degg. The corrected flaw detector sensitivity and flaw detector phase angle of the coil 3 are displayed on the monitor 307 as images of flaw detector sensitivities and flaw detector phase angles at the time of slit flaw detection shown in Table 2, and each value is stored in the memory. Stored in 304. Here, the reason for using a contrast test piece having a slit is that if a slit provided in the circumferential direction of the contrast test specimen is perpendicular to the axial direction, it is close to the shape of a flaw that is likely to occur in the test object, and is accurately corrected. By becoming possible. As a method for identifying an arbitrary coil that has detected the signal of the slit 210, the coil having the smallest flaw detector sensitivity when the amplitude value of the signal caused by the slit 210 is set to a predetermined value is detected. There is also a method for identifying the coil.

Figure 0005364643
Figure 0005364643

(3)ステップ3
ステップ3として、探傷器感度、探傷器位相角の補正S110を実施する。この手順は、全コイルにおける探傷S103での探傷器感度、探傷器位相角を決定することを目的としている。例えば、手順S108でメモリ304に保存したコイル3の探傷器感度(A3)、探傷器位相角(B3)と、手順S109でメモリ304に保存したコイル3の探傷器感度(C3)、探傷器位相角(D3)から、コイル3における螺旋溝207とスリット210を検出したときの探傷器感度の補正値(Δ=C3−A3)、探傷器位相角の補正値(δ=D3−B3)を算出することができる。
(3) Step 3
As Step 3, the flaw detector sensitivity and flaw detector phase angle correction S110 is performed. This procedure is intended to determine the flaw detector sensitivity and flaw detector phase angle in flaw detection S103 in all coils. For example, the flaw detector sensitivity (A3) and flaw detector phase angle (B3) stored in the memory 304 in step S108, and the flaw detector sensitivity (C3) and flaw detector phase stored in the memory 304 in step S109. From the angle (D3), the correction value (Δ = C3-A3) of the flaw detector sensitivity and the correction value (δ = D3-B3) of the flaw detector phase angle when the spiral groove 207 and the slit 210 in the coil 3 are detected are calculated. can do.

次に、手順S108でメモリ304に保存した全コイルの探傷器感度、探傷器位相角に、上記で求めた補正値を各々のコイルで加算または減算すれば、表3に示す探傷時の探傷器感度、探傷器位相角のイメージのように、探傷時に使用する各コイルの探傷器感度、探傷器位相角を決定することができる。   Next, if the correction values obtained above are added to or subtracted from each coil in the flaw detector sensitivity and flaw detector phase angle stored in the memory 304 in step S108, the flaw detectors at the time of flaw detection shown in Table 3 are obtained. Like the image of sensitivity and flaw detector phase angle, the flaw detector sensitivity and flaw detector phase angle of each coil used during flaw detection can be determined.

Figure 0005364643
Figure 0005364643

なぜなら、螺旋溝207は対比試験片206に一様に付与されているため、試験条件は各コイルで同じであり、手順109にて代表してコイル3で探傷器感度、探傷器位相角の補正値を求めておけば、他のコイルへの適用が可能だからである。
(4)ステップ4
最後にステップ4として、螺旋溝207を検出したときの振幅値、位相角の記録S111を実施する。この手順は、探傷作業の前後で同一探傷条件で探傷を行って、螺旋溝207に起因する信号を検出したときの探傷前後における各コイルの信号振幅値、位相角の違いが所定の範囲内に収まっていることを確認するために行う。
Because the spiral groove 207 is uniformly applied to the contrast test piece 206, the test conditions are the same for each coil. The representative of the procedure 109 is the correction of the flaw detector sensitivity and flaw detector phase angle with the coil 3. If the value is obtained, it can be applied to other coils.
(4) Step 4
Finally, as step 4, recording S111 of the amplitude value and phase angle when the spiral groove 207 is detected is performed. In this procedure, flaw detection is carried out under the same flaw detection conditions before and after flaw detection work, and when the signal caused by the spiral groove 207 is detected, the difference in signal amplitude value and phase angle of each coil before and after flaw detection is within a predetermined range. This is done to confirm that it is in place.

先程算出した探傷器感度、探傷器位相で手順S108と同様の探傷を実施し、表4Aに示す螺旋溝に起因する信号の振幅値、位相角のイメージをモニタ307に表示し、螺旋溝207に起因する信号の振幅値、位相角をメモリ304へ保存する。   The flaw detector sensitivity and flaw detector phase calculated earlier are subjected to flaw detection in the same manner as in step S108, and the signal amplitude value and phase angle image resulting from the spiral groove shown in Table 4A are displayed on the monitor 307. The resulting amplitude value and phase angle of the signal are stored in the memory 304.

Figure 0005364643
Figure 0005364643

〔探傷後の補正(S104)〕
最後に、実施例4における、探傷後の校正S104の手順について述べる。まず、螺旋溝207を検出したときの振幅値、位相角の記録S112を実施する。探傷S103で使用した探傷器感度、探傷器位相のままで手順S108と同様の探傷を実施し、表4Bのようにモニタ307に表示された螺旋溝207に起因する信号の振幅値、位相角の記録をメモリ304へ保存する。
[Correction after flaw detection (S104)]
Finally, the procedure of calibration S104 after the flaw detection in the fourth embodiment will be described. First, recording S112 of the amplitude value and the phase angle when the spiral groove 207 is detected is performed. Flaw detection similar to that in step S108 was performed with the flaw detector sensitivity and flaw detector phase used in flaw detection S103, and the amplitude value and phase angle of the signal caused by the spiral groove 207 displayed on the monitor 307 as shown in Table 4B. The record is saved in the memory 304.

Figure 0005364643
Figure 0005364643

次に、探傷前後における螺旋溝207の振幅値、位相角差の確認S113として、手順S111とS112で記録した螺旋溝207に起因する信号の振幅値、位相角の記録を使って、表5に示すように、探傷前後の校正での各コイルの振幅値の差、位相角の差を算出し、それらが所定の違い以内に収まっていることを確認する。   Next, as the confirmation S113 of the amplitude value and phase angle difference of the spiral groove 207 before and after the flaw detection, Table 5 shows the recording of the amplitude value and phase angle of the signal caused by the spiral groove 207 recorded in steps S111 and S112. As shown in the figure, the difference between the amplitude values and the phase angles of the coils in the calibration before and after the flaw detection is calculated, and it is confirmed that they are within a predetermined difference.

Figure 0005364643
Figure 0005364643

探傷前の校正S102における実施例10の探傷器感度、探傷器位相角の設定において、螺旋溝207を使った設定と、スリット210を使った設定の順序を入れ替えて実施することも可能であり、同等の結果を得ることができる。   In the setting of the flaw detector sensitivity and flaw detector phase angle of the tenth embodiment in the calibration S102 before flaw detection, it is possible to change the setting order using the spiral groove 207 and the setting order using the slit 210, and Equivalent results can be obtained.

実施例4は、上記のようにマルチコイルの各コイル間の探傷器感度、探傷器位相角のばらつきが少ない校正が実現可能となり、信頼性の高い円筒管マルチコイル渦電流探傷が可能となる。   In the fourth embodiment, as described above, calibration with little variation in the flaw detector sensitivity and flaw detector phase angle between the coils of the multi-coil can be realized, and a highly reliable cylindrical tube multi-coil eddy current flaw can be realized.

図18は、実施例5で用いる対比試験片316を示している。対比試験片316は、軸方向へ位置をずらして複数の短いスリット317が付与されている。また、短いスリット317は、すべてを足し合わせると、軸方向から見て円筒管の全周を覆うように設けられている。なお、短いスリット317は、円周方向に足し合わせて円筒管の全周を覆っていれば良く、軸方向、円周方向の配置位置は任意である。また、特に螺旋状配置でなくてもよい。   FIG. 18 shows a contrast test piece 316 used in Example 5. The contrast test piece 316 is provided with a plurality of short slits 317 at different positions in the axial direction. Further, the short slit 317 is provided so as to cover the entire circumference of the cylindrical tube when viewed from the axial direction when all are added. The short slits 317 may be added in the circumferential direction so as to cover the entire circumference of the cylindrical tube, and the arrangement positions in the axial direction and the circumferential direction are arbitrary. Further, the spiral arrangement is not particularly required.

図19は、実施例5における円筒管マルチコイル渦電流探傷のフローチャートを示している。対比試験片316に付与した短いスリット317は短く、各コイルで短いスリット317に起因する信号を検出できるため、実施例4で必要な螺旋溝207を付与した対比試験片206が不要になり、1本の対比試験片316のみで校正が可能となる。その結果、探傷器感度、探傷器位相角の補正が不要になり、各手順における探傷器感度、探傷器位相角の一時記録がなくなるので、作業効率が向上するという利点がある。   FIG. 19 shows a flowchart of cylindrical tube multi-coil eddy current flaw detection in the fifth embodiment. Since the short slit 317 provided to the contrast test piece 316 is short and a signal due to the short slit 317 can be detected by each coil, the contrast test piece 206 provided with the spiral groove 207 required in the fourth embodiment is not necessary. Calibration is possible with only the contrast test piece 316 of the book. As a result, there is no need to correct the flaw detector sensitivity and flaw detector phase angle, and there is no advantage that the flaw detector sensitivity and flaw detector phase angle are temporarily recorded in each procedure.

本発明は、原子力発電プラント等の円筒管を有するシステムにおける、マルチコイル渦電流探傷検査に広く適用することができる。   The present invention can be widely applied to multi-coil eddy current flaw inspection in a system having a cylindrical tube such as a nuclear power plant.

10、305 コンピュータ
11 位置制御回路
12 巻き取り機
13 渦電流探傷器
14 渦電流探傷プローブ
15、307 モニタ
21、204 励磁コイル
22。205 検出コイル
31、81、91 対比試験片
32 スリット
52 スリットによる検出信号
82、207 螺旋溝
92 左回り螺旋溝
93 右回り螺旋溝
S102 探傷前の校正
S108 螺旋溝を使った探傷器感度、探傷器位相の設定
S109 スリットを使った探傷器感度、探傷器位相角の設定
S110 探傷器感度、探傷器位相角の補正
206 螺旋溝を付与した対比試験片
208 任意のコイル
209 スリットを付与した対比試験片
210 スリット
301 マルチコイル式プローブ
302 渦電流探傷器
303 演算部
304 メモリ
311 螺旋溝の信号
316 対比試験片(複数の短いスリット)
DESCRIPTION OF SYMBOLS 10,305 Computer 11 Position control circuit 12 Winder 13 Eddy current flaw detector 14 Eddy current flaw probe 15, 307 Monitor 21, 204 Excitation coil 22. 205 Detection coil 31, 81, 91 Contrast test piece 32 Slit 52 Detection by slit Signals 82 and 207 Spiral groove 92 Left-hand spiral groove 93 Right-hand spiral groove S102 Calibration before flaw detection S108 Flaw detector sensitivity and flaw detector phase setting using a spiral groove S109 Flaw detector sensitivity and flaw detector phase angle using a slit Setting S110 Flaw detector sensitivity and flaw detector phase angle correction 206 Comparison test piece 208 provided with spiral groove Arbitrary coil 209 Comparison test piece 210 provided with slit Slit 301 Multi-coil probe 302 Eddy current flaw detector 303 Calculation unit 304 Memory 311 Spiral groove signal 316 Contrast specimen (multiple short sleeves) )

Claims (4)

マルチコイル式プローブを用いた円筒管の渦電流探傷法において、単一の円筒管に一定の幅と深さを持つ連続的な溝を、人工きずとして等間隔の軸方向ピッチで螺旋状に加工した対比試験片を用いて、マルチコイル式プローブの探傷条件の設定、探傷装置の性能確認及び点検をするとともに、さらに、外周に軸方向と直交する単一のスリットを設けた対比試験片を用いて、前記マルチコイル式プローブの探傷条件の設定、探傷装置の性能確認、及び点検を行い、前記連続的な溝を有する対比試験片による前記マルチコイル式プローブの出力を、前記単一のスリットを有する対比試験片による前記マルチコイル式プローブの出力により補正し、探傷時に使用する前記マルチコイル式プローブの各コイルの探傷器感度、探傷器位相角を決定することを特徴とする渦電流探傷法。 In a cylindrical tube eddy current flaw detection method using a multi-coil probe, a continuous groove with a constant width and depth is machined into a single cylindrical tube in a spiral shape at equal axial pitches as artificial flaws. In addition to setting the flaw detection conditions of the multi-coil probe, checking the performance of the flaw detection device, and inspecting the multi-coil probe, and using a contrast test piece with a single slit perpendicular to the axial direction on the outer periphery Then, the flaw detection conditions of the multi-coil probe are set, the performance of the flaw detection apparatus is confirmed, and the inspection is performed. The output of the multi-coil probe by the contrast test piece having the continuous groove is applied to the single slit. the corrected by the output of the multi-coil probe, flaw detector sensitivity of each coil of the multi-coil probe to be used for flaw, flaw detector phase angle decision child by comparison specimens with Eddy current testing method according to claim. 請求項に記載された渦電流探傷法において、
前記螺旋溝を有する対比試験片を用いてマルチコイル式プローブの探傷器感度及び探傷器位相角を設定し、
前記外周に軸方向と直交する単一のスリットを設けた対比試験片を用いてマルチコイル式プローブの任意のコイルの探傷器感度及び探傷器位相角を設定し、
前記単一のスリットを設けた対比試験片により設定された前記マルチコイル式プローブの探傷器感度及び探傷器位相角により、前記マルチコイル式プローブの全コイルの探傷器感度及び探傷器位相角を補正することを特徴とする渦電流探傷法。
In the eddy current flaw detection method according to claim 1 ,
Using the contrast test piece having the spiral groove to set the flaw detector sensitivity and flaw detector phase angle of the multi-coil probe,
The flaw detector sensitivity and flaw detector phase angle of an arbitrary coil of a multi-coil probe using a contrast test piece provided with a single slit perpendicular to the axial direction on the outer periphery,
The flaw detector sensitivity and flaw detector phase angle of all coils of the multi-coil probe are corrected by the flaw detector sensitivity and flaw detector phase angle of the multi-coil probe set by the contrast test piece provided with the single slit. An eddy current flaw detection method characterized by
請求項に記載された渦電流探傷法において、
螺旋溝を付与した対比試験片を探傷し、全コイルにおける螺旋溝に起因する信号の振幅値、位相角を所定の値に合わせ、そのときの全コイルの探傷器感度、探傷器位相角を記録し、
スリットを付与した対比試験片を探傷し、スリットに起因する信号を検出した任意のコイルの振幅値や位相角を所定の値に合わせ、同時にそのときの任意のコイルにおける探傷器感度、探傷器位相角を記録し、
上記スリットを付与した対比試験片を探傷して記録した任意のコイルの探傷器感度、探傷器位相角と、前記螺旋溝を付与した対比試験片を探傷して記録した前記任意のコイルと同じコイルの探傷器感度、探傷器位相角の差を補正値とし、その補正値を、前記螺旋溝を付与した対比試験片を探傷して記録した全コイルの探傷器感度、探傷器位相角に加算または減算して、探傷時に使用する探傷器感度、探傷器位相角とすることを特徴とする渦電流探傷法。
In the eddy current flaw detection method according to claim 1 ,
Flaw detection is performed on the contrast specimen with the spiral groove, and the amplitude value and phase angle of the signal caused by the spiral groove in all coils are adjusted to the specified values, and then the flaw detector sensitivity and flaw detector phase angle of all coils are recorded. And
A test specimen with a slit is flawed, and the amplitude and phase angle of any coil that detects the signal due to the slit is adjusted to the specified value. At the same time, the flaw detector sensitivity and flaw detector phase in any coil Record the corners,
Flaw detector sensitivity, flaw detector phase angle of an arbitrary coil recorded by flaw detection and recording of the contrast test piece provided with the slit, and the same coil as the arbitrary coil recorded by flaw detection of the test specimen provided with the spiral groove The difference between the flaw detector sensitivity and flaw detector phase angle is used as a correction value, and the correction value is added to the flaw detector sensitivity and flaw detector phase angle of all the coils recorded by flaw detection of the contrast test piece provided with the spiral groove or recorded. An eddy current flaw detection method characterized by subtracting the flaw detector sensitivity and flaw detector phase angle used during flaw detection.
渦電流探傷法のマルチコイル式プローブの探傷条件の設定、探傷装置の性能確認及び点検に用いる対比試験片において、単一の円筒管に一定の幅と深さを持つ連続的な溝を、人工きずとして等間隔の軸方向ピッチで螺旋状に加工するとともに、単一の円筒管に一定の幅と深さを持つ連続的な溝を、人工きずとして等間隔の軸方向ピッチで螺旋状に加工し、少なくとも左回り螺旋溝及び右回り螺旋溝の2つを形成したことを特徴とする渦電流探傷法に用いる対比試験片。 In a comparative test piece used for setting the flaw detection conditions of the multi-coil probe for eddy current flaw detection, checking the performance of the flaw detector, and checking it, a continuous groove with a certain width and depth is artificially formed in a single cylindrical tube. Processes spirals at equal intervals in the axial pitch as flaws, and processes a continuous groove with a constant width and depth in a single cylindrical tube into spirals at equal intervals as the artificial scratches And at least two counterclockwise spiral grooves and a clockwise spiral groove, a comparative test piece used for an eddy current flaw detection method.
JP2010122656A 2009-09-07 2010-05-28 Eddy current flaw detection method and contrast specimen used therefor Expired - Fee Related JP5364643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010122656A JP5364643B2 (en) 2009-09-07 2010-05-28 Eddy current flaw detection method and contrast specimen used therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009205496 2009-09-07
JP2009205496 2009-09-07
JP2010122656A JP5364643B2 (en) 2009-09-07 2010-05-28 Eddy current flaw detection method and contrast specimen used therefor

Publications (2)

Publication Number Publication Date
JP2011075540A JP2011075540A (en) 2011-04-14
JP5364643B2 true JP5364643B2 (en) 2013-12-11

Family

ID=44019668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010122656A Expired - Fee Related JP5364643B2 (en) 2009-09-07 2010-05-28 Eddy current flaw detection method and contrast specimen used therefor

Country Status (1)

Country Link
JP (1) JP5364643B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5710536B2 (en) * 2012-03-29 2015-04-30 日立Geニュークリア・エナジー株式会社 Calibration check method for eddy current flaw detector and eddy current flaw detector
JP5535296B2 (en) * 2012-11-07 2014-07-02 株式会社Ihi検査計測 Test piece for eddy current testing, eddy current testing method using the same, and manufacturing method thereof
KR102049524B1 (en) * 2018-03-08 2020-01-08 주식회사 한국공업엔지니어링 Contrast test specimens for measuring defects in tube expansion using eddy current test and method for measuring defects using the same
KR102052849B1 (en) * 2019-03-14 2019-12-04 에디웍스(주) APPARATUS FOR DETECTING RAIL DEFECT BY USING MULTI-CHANNEL EDDY CURRENT SENSOR AND Sensor calibrating METHOD THEREOF AND RAIL DEFECT DETECTING METHOD

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860252A (en) * 1981-10-06 1983-04-09 Kubota Ltd Sensitivity inspection of flaw detector
JPS63233363A (en) * 1987-03-20 1988-09-29 Sumitomo Metal Ind Ltd Detecting method for flaw by eddy current
JPH0943204A (en) * 1995-08-03 1997-02-14 Touden Kogyo Kk Coil for detecting defect in circumferential direction
US6252393B1 (en) * 1998-06-23 2001-06-26 General Electric Company System and method for normalizing and calibrating a sensor array

Also Published As

Publication number Publication date
JP2011075540A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
US4673877A (en) Zirconium liner thickness measuring method and an apparatus therefor for a zirconium alloy tube
US10132779B2 (en) Eddy current inspection device
EP2131190B1 (en) Eddy current examination method and use of apparatus
JP5562629B2 (en) Flaw detection apparatus and flaw detection method
JP5383597B2 (en) Eddy current inspection apparatus and inspection method
JP5364643B2 (en) Eddy current flaw detection method and contrast specimen used therefor
US7304474B2 (en) Eddy current inspection device with arrays of magnetoresistive sensors
KR102049524B1 (en) Contrast test specimens for measuring defects in tube expansion using eddy current test and method for measuring defects using the same
CN101281169B (en) Method and algorithms for inspection of longitudinal defects in an eddy current inspection system
US7782048B2 (en) Eddy current testing method, eddy current testing differential coil and eddy current testing probe for internal finned pipe or tube
JP2013164317A (en) Method for detecting inspection position, inspection method, and inspection device
JP2001056317A (en) Eddy cufrrent flaw detection method and apparatus
JP5372866B2 (en) Eddy current flaw detection method and eddy current flaw detection system
JP2006138784A (en) Eddy current flaw detection probe and eddy current flaw detection system
JP2009031311A (en) Eddy current flaw detection method
WO2023037664A1 (en) Scale thickness measuring method
JP2006162288A (en) Method and apparatus for inspecting warpage of rod
JP5145073B2 (en) Eddy current flaw detection method and eddy current flaw detection apparatus
JP5907750B2 (en) Inspection position detection method, inspection range confirmation method, inspection method and inspection apparatus
US20060202688A1 (en) Detection system and method thereof
Vijayachandrika et al. Efficient Design of Remote Field Eddy Current Array Probe for Imaging of Defects in Small Diameter Ferromagnetic Tube
JP7215076B2 (en) Creep Remaining Life Diagnosis Method and Creep Remaining Life Diagnosis System
WO2019003329A1 (en) X-ray in-line inspection method and device
KR100397350B1 (en) Eddy current inspection device and method for inspecting defections of a tube
JP2007333630A (en) Eddy current flaw detecting method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5364643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees