JP5363280B2 - Recycled resin composition and heat-shrinkable film comprising crosslinked polyethylene - Google Patents

Recycled resin composition and heat-shrinkable film comprising crosslinked polyethylene Download PDF

Info

Publication number
JP5363280B2
JP5363280B2 JP2009264044A JP2009264044A JP5363280B2 JP 5363280 B2 JP5363280 B2 JP 5363280B2 JP 2009264044 A JP2009264044 A JP 2009264044A JP 2009264044 A JP2009264044 A JP 2009264044A JP 5363280 B2 JP5363280 B2 JP 5363280B2
Authority
JP
Japan
Prior art keywords
resin composition
mfr
polyethylene
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009264044A
Other languages
Japanese (ja)
Other versions
JP2011105882A (en
Inventor
和宏 浜田
敏勝 大山
大 中西
文夫 堀田
徹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOHJIN Holdings Co Ltd
Original Assignee
KOHJIN Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOHJIN Holdings Co Ltd filed Critical KOHJIN Holdings Co Ltd
Priority to JP2009264044A priority Critical patent/JP5363280B2/en
Publication of JP2011105882A publication Critical patent/JP2011105882A/en
Application granted granted Critical
Publication of JP5363280B2 publication Critical patent/JP5363280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Description

本発明は、熱収縮性フィルムや電線被覆等からなる架橋されたポリエチレンを出発原料とした再生樹脂組成物、及びその再生樹脂組成物を用いた熱収縮性フィルムに関するものであり、その再生樹脂組成物を用いても均質な成形物を得る事ができ、特に包装用フィルムに用いても透明性の低下や引き裂き強度の低下がない事を特徴とするものである。 The present invention relates to a regenerated resin composition starting from a crosslinked polyethylene composed of a heat-shrinkable film, a wire coating or the like, and a heat-shrinkable film using the regenerated resin composition, and the regenerated resin composition A homogeneous molded product can be obtained even if the product is used, and in particular, there is no reduction in transparency or tear strength even if it is used in a packaging film.

ポリエチレンを架橋することによって製造される熱収縮フィルムや電線などの絶縁被覆材は、耐熱性の向上、形状記憶効果などの様々な利点を有しているが、その半面、分子の架橋構造や高分子量化に伴う溶融粘度増大により、著しく溶融流動性は低下し、通常の押出成形方法では、再利用することは極めて難しい。具体的には、押出成形時の押出機にかかる負荷が高くなり、押し出し自体が難しくなったり、成形物の中に肉眼でも容易にわかるようなゲル状ブツが多数存在し外観を損ねたり、また高い透明性が望まれる包装用フィルムへの再利用では、白っぽく透明性が低下したり、引き裂き強度が低下する等の種々の問題点が上げられる。これらの問題は、架橋によって増大した局部的な高分子量成分が、通常の押出成形時の溶融、混練では十分な均質化が図れておらず、特に引き裂き強度の低下の抑制に対しては高度な均質化が必要であると本発明者らは推定している。
このため、以下の特許文献のように、これら架橋ポリエチレン樹脂組成物を再利用しようとする幾つかの提案が試みられている。
Insulation coating materials such as heat-shrink films and electric wires produced by crosslinking polyethylene have various advantages such as improved heat resistance and shape memory effect. The melt fluidity is remarkably lowered due to the increase in melt viscosity accompanying the increase in molecular weight, and it is extremely difficult to reuse the conventional extrusion method. Specifically, the load on the extruder at the time of extrusion molding becomes high, making extrusion difficult, and there are many gel-like spots that can be easily seen with the naked eye in the molded product, and the appearance is impaired. Recycling to packaging films where high transparency is desired raises various problems such as whitish transparency and reduced tear strength. These problems are due to the fact that the local high molecular weight component increased by crosslinking is not sufficiently homogenized by melting and kneading at the time of ordinary extrusion molding, and is particularly advanced for suppressing the decrease in tear strength. The inventors presume that homogenization is necessary.
For this reason, several proposals that attempt to reuse these crosslinked polyethylene resin compositions have been attempted as in the following patent documents.

特開2001−269980JP 2001-269980 A 特開平10−250012JP 10-250012 A 特開平10−36600JP-A-10-36600 特開平8−52781JP-A-8-52781 特開平7−47548JP 7-47548 A

これらの試みは、単軸混練押出機、二軸混錬押出機、石臼型混錬押出機をもちいて剪断力をかけながら混練することにより、架橋構造を分断し、分子量を下げて、溶融成形可能な材料を得ようとするものであり、これにより、押出成形は可能になっている。特許文献1、2、4には、包装用フィルムに用いた場合のゲル状ブツの抑制や透明性低下の抑制について記載されているが、具体的な架橋ポリエチレン再生樹脂組成物の性質についての明確な記載や、引き裂き強度低下の抑制に関しては何ら言及されていない。
These attempts were made by using a single-screw kneading extruder, twin-screw kneading extruder, or stone mortar kneading extruder to knead while applying shear force to break the cross-linked structure, lower the molecular weight, and melt molding. An attempt is made to obtain a possible material, which makes extrusion possible. Patent Documents 1, 2, and 4 describe the suppression of gel-like particles and the suppression of a decrease in transparency when used in a packaging film, but it is clear about the specific properties of a crosslinked polyethylene recycled resin composition. There is no mention of any description or suppression of tear strength reduction.

本発明は、架橋フィルムの製造工程で発生するフィルムのスクラップを再利用した際にゲル状ブツや引き裂き強度低下のない架橋ポリエチレン再生樹脂組成物、及びその再生樹脂組成物を使用した熱収縮性フィルムを提供することを目的とする。
The present invention relates to a cross-linked polyethylene regenerated resin composition that does not have gelled or reduced tear strength when film scrap generated in the production process of the cross-linked film is reused, and a heat-shrinkable film using the regenerated resin composition The purpose is to provide.

本発明者らは、上記課題を解決するため鋭意検討を行った。その結果、架橋ポリエチレン系樹脂組成物を押出機を用いて溶融、混練後、冷却固化させ、特定の溶融粘度指数を満足する架橋ポリエチレン再生樹脂組成物とし、その再生樹脂を一定割合で混合する事からなる熱収縮性フィルムによって上記課題が解決できることを見いだし本発明に至った。 The present inventors have intensively studied to solve the above problems. As a result, the crosslinked polyethylene resin composition is melted and kneaded using an extruder, cooled and solidified to obtain a crosslinked polyethylene recycled resin composition satisfying a specific melt viscosity index, and the recycled resin is mixed at a certain ratio. The present inventors have found that the above problems can be solved by a heat-shrinkable film made of

すなわち本発明は、下記(A)の特徴を有する架橋ポリエチレン系樹脂組成物を押出機を用いて溶融、混練後、冷却固化させる事からなり、下記(B)、(C)、(D)の特徴をすべて満足するポリエチレン系再生樹脂組成物、及びポリエチレン系再生樹脂組成物とポリエチレン系樹脂からなり、電子線照射により架橋した後、延伸加工を施された架橋ポリエチレン系熱収縮性フィルムを提供するものである。
(A)温度250℃、荷重21.6kgの条件で測定した溶融粘度指数(以下、H1-MFRと記す)が、0.05g/10分以上である。
(B)温度250℃、荷重21.6kgの条件で測定した溶融粘度指数(以下、H2-MFRと記す)が、90〜280g/10分の範囲である。
(C)温度250℃、荷重2.16kgの条件で測定した溶融粘度指数(以下、L-MFRと記す)が、0.1〜5g/10分である。
(D)(H2-MFR)/(L-MFR)の比が、20〜200の範囲である。
That is, the present invention consists of melting and kneading a crosslinked polyethylene resin composition having the following characteristics (A) using an extruder, and then cooling and solidifying the composition. The following (B), (C), and (D) Provided are a polyethylene-based recycled resin composition satisfying all the characteristics, and a crosslinked polyethylene-based heat-shrinkable film comprising a polyethylene-based recycled resin composition and a polyethylene-based resin, which is crosslinked by electron beam irradiation and then stretched. Is.
(A) The melt viscosity index (hereinafter referred to as H1-MFR) measured under conditions of a temperature of 250 ° C. and a load of 21.6 kg is 0.05 g / 10 min or more.
(B) The melt viscosity index (hereinafter referred to as H2-MFR) measured under conditions of a temperature of 250 ° C. and a load of 21.6 kg is in the range of 90 to 280 g / 10 minutes.
(C) The melt viscosity index (hereinafter referred to as L-MFR) measured under conditions of a temperature of 250 ° C. and a load of 2.16 kg is 0.1 to 5 g / 10 minutes.
(D) The ratio of (H2-MFR) / (L-MFR) is in the range of 20-200.

架橋チューブ状未延伸フィルムや架橋された延伸フィルム等のスクラップである架橋ポリエチレン系樹脂組成物を溶融、混練、押し出しを行い、特定の溶融粘度指数を満足するポリエチレン系再生樹脂組成物とすることで、当該再生樹脂組成物を利用した成型品が極めて均質な製品となるものである。特に、再生樹脂を用いた包装用熱収縮性フィルム製品の引き裂き強度の低下の抑制が出来たことをはじめとし、その他の高い均質性が要求される用途に対しても有用なものである。
By melting, kneading, and extruding a cross-linked polyethylene resin composition that is a scrap such as a cross-linked tubular unstretched film or a cross-linked stretched film, a polyethylene regenerated resin composition that satisfies a specific melt viscosity index is obtained. The molded product using the recycled resin composition becomes a very homogeneous product. In particular, the present invention is useful for other applications that require a high degree of homogeneity, including the ability to suppress a decrease in tear strength of heat-shrinkable film products for packaging using recycled resins.

以下、本発明を詳しく説明する。本発明における架橋ポリエチレンの元となる、つまり架橋前の状態であるポリエチレン系樹脂とは、エチレンの単独重合体、及び/又は、エチレンと少量の他のモノマーとの共重合体である。ここでいう他のモノマーは特に限定されないが、プロピレン、ブテン−1、ヘキセン−1、オクテン−1、4−メチル−ペンテン−1等のα−オレフィン、酢酸ビニル、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸、(メタ)アクリル酸の金属イオン中和物等からなる単独樹脂組成物、或いは混合樹脂組成物、或いは樹脂積層体が挙げられる。
The present invention will be described in detail below. The polyethylene-based resin which is a source of the crosslinked polyethylene in the present invention, that is, in a state before crosslinking, is an ethylene homopolymer and / or a copolymer of ethylene and a small amount of other monomers. Other monomers referred to herein are not particularly limited, but are α-olefins such as propylene, butene-1, hexene-1, octene-1, 4-methyl-pentene-1, vinyl acetate, alkyl (meth) acrylate, A single resin composition comprising a (meth) acrylic acid, a metal ion neutralized product of (meth) acrylic acid, or the like, a mixed resin composition, or a resin laminate.

そして、本発明における架橋ポリエチレン系樹脂組成物とは、前記ポリエチレン系樹脂に架橋助剤を用いて化学的に架橋させたもの、電離放射線を利用して架橋させたもの、及びこれらの架橋方法を組み合わせて架橋させたもの等を意味する。 And the crosslinked polyethylene resin composition in the present invention includes those obtained by chemically crosslinking the polyethylene resin using a crosslinking aid, those crosslinked using ionizing radiation, and these crosslinking methods. It means what was combined and cross-linked.

なお、架橋ポリエチレン系樹脂組成物には、本発明に支障の無い範囲であれば、ポリエチレン系樹脂以外の熱可塑性樹脂を含んでもよく、また、それぞれの有効な作用を具備させる目的で、酸化防止剤、光安定剤、紫外線吸収剤等の安定剤、滑剤、ブロッキング防止剤、帯電防止剤、防曇剤、核剤、架橋促進剤、架橋抑制剤、タルク、炭酸カルシウム、マイカ、酸化チタン等の充填剤、着色剤等を適宜使用することが出来る。 The crosslinked polyethylene-based resin composition may contain a thermoplastic resin other than the polyethylene-based resin as long as it does not hinder the present invention. Stabilizer, light stabilizer, stabilizer such as ultraviolet absorber, lubricant, antiblocking agent, antistatic agent, antifogging agent, nucleating agent, crosslinking accelerator, crosslinking inhibitor, talc, calcium carbonate, mica, titanium oxide, etc. A filler, a coloring agent, etc. can be used suitably.

そして、この架橋ポリエチレン系樹脂組成物は、H1-MFRが、0.05g/10分以上であることが必要である。H1―MFRが、0.05g/10分未満であると均質な再生樹脂組成物を得る事が極めて困難となる。 And this crosslinked polyethylene-type resin composition needs that H1-MFR is 0.05 g / 10min or more. If the H1-MFR is less than 0.05 g / 10 min, it becomes extremely difficult to obtain a homogeneous recycled resin composition.

次に、本発明におけるポリエチレン系再生樹脂組成物は、特定の溶融粘度指数、及び溶融粘度指数の比を満足するものである。具体的には、H2-MFRが、90〜280g/10分の範囲であり、かつL-MFRが、0.1〜5g/10分であり、かつ(H-MFR)/(L-MFR)の比が、20〜200の範囲である事が必要である。このH2−MFR、及びL−MFRが下限値未満であると、均質な再生樹脂組成物が得られず、ゲル状ブツの発生や、フィルムにした場合の透明性の低下や引き裂き強度の低下が生じやすくなり、上限値を超えると、溶融流動性が良くなりすぎて、かえって均質性を低下させたり、成型品に架橋して用いる場合は耐熱性の低下を招く事となる。(H2-MFR)/(L-MFR)の比では、20未満であると溶融流動性が劣りやすくなり、200を超えると架橋によって生成したものと思われるが、ゲル状ブツ、透明性や引き裂き強度の低下の原因となる高分子量成分が残存している可能性が高くなる。 Next, the polyethylene-based recycled resin composition in the present invention satisfies a specific melt viscosity index and a ratio of melt viscosity index. Specifically, H2-MFR is in the range of 90 to 280 g / 10 min, L-MFR is 0.1 to 5 g / 10 min, and (H-MFR) / (L-MFR) The ratio must be in the range of 20-200. If this H2-MFR and L-MFR are less than the lower limit value, a homogeneous regenerated resin composition cannot be obtained, and there is a generation of gel-like spots, a decrease in transparency and a decrease in tear strength when formed into a film. If it exceeds the upper limit, the melt fluidity will be too good, and on the contrary, the homogeneity will be lowered, or the heat resistance will be lowered when the molded product is used after being crosslinked. If the ratio of (H2-MFR) / (L-MFR) is less than 20, the melt fluidity tends to be inferior, and if it exceeds 200, it is thought that it was formed by crosslinking. There is a high possibility that a high molecular weight component that causes a decrease in strength remains.

これらの特定の溶融粘度指数、及び溶融粘度指数の比を満足させる方法としては、架橋ポリエチレン系樹脂組成物を溶融、混練できる方法であれば特に限定はしないが、単軸押出機、同方向回転二軸押出機、異方向回転二軸押出機が一般的に用いられる。溶融、混練にかかわる押出温度、スクリュ形状、スクリュ回転数、押出量等の条件は、架橋ポリエチレン系樹脂組成物の性質や押出機の能力により、本発明の特定の溶融粘度指数、及び溶融粘度指数の比となるように条件を選定すればよい。これらの条件の影響の仕方としては、押出温度は高く、ミキシング部分や高せん断部分を多く有するスクリュ形状であり、スクリュ回転数が高く、押出量は低いほど、混練やせん断が強くなり、溶融粘度指数は高くなる傾向にある。   A method for satisfying these specific melt viscosity indexes and ratios of the melt viscosity indexes is not particularly limited as long as it is a method capable of melting and kneading the cross-linked polyethylene resin composition. A twin-screw extruder and a different-direction rotating twin-screw extruder are generally used. Extrusion temperature, screw shape, screw rotation speed, extrusion amount, etc. related to melting and kneading depend on the properties of the cross-linked polyethylene resin composition and the ability of the extruder, and the specific melt viscosity index and melt viscosity index of the present invention. The conditions may be selected so that the ratio of The influence of these conditions is that the extrusion temperature is high, the screw shape has many mixing parts and high shear parts, the higher the screw rotation speed, the lower the extrusion amount, the stronger the kneading and shearing, and the melt viscosity The index tends to be high.

その中でも、押出機を用いて行う溶融、混練後、冷却固化させる工程を2回以上繰り返す事が、本発明で特定している溶融粘度指数、及び溶融粘度指数の比を満足する再生樹脂組成物が得られやすく好ましい。また、その溶融、混練後、冷却固化させる1回目の工程後の樹脂組成物の温度250℃、荷重21.6kgの条件で測定した溶融粘度指数(以下、H3-MFRと記す)が、20〜90g/10分の範囲である事が最終的な特定の溶融粘度指数、及び溶融粘度指数の比になりやすく好ましい。これらの工程を2回繰り返す事が効果的となる理由については発明者らもよくわからないが、溶融温度以上の高温で、連続的かつ一度に架橋構造をせん断、破壊していくよりも、一旦冷却、固化させた後に再び溶融、混練していく方が、より選択的に架橋点の破壊につながるのではないかと推定している。 Among them, a regenerated resin composition satisfying the ratio of the melt viscosity index and the melt viscosity index specified in the present invention by repeating the steps of melting and kneading using an extruder and cooling and solidifying twice or more. Is preferable because it is easy to obtain. Further, the melt viscosity index (hereinafter referred to as H3-MFR) measured under the conditions of the temperature of the resin composition after the first step of melting and kneading and cooling and solidifying at a temperature of 250 ° C. and a load of 21.6 kg is 20 to 20%. The range of 90 g / 10 minutes is preferable because the final specific melt viscosity index and the ratio of the melt viscosity index are likely to be obtained. The inventors do not know why it is effective to repeat these steps twice, but at a high temperature above the melting temperature, it is cooled once rather than continuously and shearing and breaking the crosslinked structure at once. It is estimated that melting and kneading again after solidification may lead to the destruction of the crosslinking point more selectively.

以上のようにして得られたポリエチレン系再生樹脂組成物は、元のポリエチレン系樹脂と同様に、その性質が適合する様々な用途に再利用する事ができる。中でも、本発明によって得られるポリエチレン系再生樹脂組成物は、均質性が高く、フィルム用途に再利用しても、透明性の低下抑制だけでなく、引き裂き強度の低下がない事が特徴である。 The polyethylene-based recycled resin composition obtained as described above can be reused for various purposes in which the properties are suitable, like the original polyethylene-based resin. Among them, the polyethylene-based recycled resin composition obtained by the present invention has a high homogeneity and is characterized by not only a reduction in transparency but also a reduction in tear strength even when reused for film applications.

具体的には、本発明のポリエチレン系再生樹脂組成物とポリエチレン系樹脂からなり、電子線照射により架橋した後、延伸加工を施された架橋ポリエチレン系熱収縮性フィルムがある。ここでいう、ポリエチレン系樹脂とは、前述の架橋ポリエチレン系樹脂組成物の元となる樹脂、及び樹脂混合物と同様のものである。ポリエチレン系再生樹脂組成物の配合比には特に限定はないが、延々と繰り返し再利用する場合の樹脂自体の熱劣化を考慮すると、5〜70%の範囲が好ましいと考えられる。また、再生樹脂組成物の再生工程における品質のばらつきが懸念される場合等には、再生樹脂を使用する層の両側に再生樹脂を含まない層を配置させた3層以上の多層構成とする事で、バラツキの影響を緩和しやすくなり好ましい。 Specifically, there is a crosslinked polyethylene heat-shrinkable film comprising the polyethylene-based recycled resin composition of the present invention and a polyethylene-based resin, which is crosslinked by electron beam irradiation and then stretched. Here, the polyethylene-based resin is the same as the resin and the resin mixture that are the basis of the above-described crosslinked polyethylene-based resin composition. The blending ratio of the polyethylene-based recycled resin composition is not particularly limited, but it is considered that the range of 5 to 70% is preferable in consideration of the thermal deterioration of the resin itself when it is repeatedly reused. In addition, when there is a concern about variations in quality in the recycling process of the recycled resin composition, a multilayer structure of three or more layers in which layers not containing the recycled resin are arranged on both sides of the layer using the recycled resin is used. Therefore, it is preferable because the influence of variation can be easily reduced.

そして、本発明の熱収縮性フィルムは、架橋された未延伸原反フィルムを二軸延伸加工して得られる。二軸延伸加工は、公知の延伸方法によって行うことができ、例えば、チューブラー同時二軸延伸、テンター同時二軸延伸、テンター逐次二軸延伸法等である。ここでは、チューブラー同時二軸延伸法を例にとって本発明の製造方法を述べるが、これに限定されるものではない。 The heat-shrinkable film of the present invention is obtained by biaxially stretching a cross-linked unstretched raw film. The biaxial stretching process can be performed by a known stretching method, for example, a tubular simultaneous biaxial stretching, a tenter simultaneous biaxial stretching, a tenter sequential biaxial stretching method, or the like. Here, although the tubular simultaneous biaxial stretching method is taken as an example, the production method of the present invention will be described, but the present invention is not limited to this.

前記のような原料組成の樹脂を3台の押出機に供給し、押出機先端に接合された3層構成の環状ダイスより樹脂を溶融して押し出し、冷媒を用いてチューブ状に冷却固化させて未延伸原反フィルムを作製する。次いで、原反フィルムを電子線照射装置に供給して、両面から照射し架橋させる。その後、原反チューブ内にエアーを供給しながら原反を再加熱し、延伸バブルを形成させ、エアーの圧力で縦横同時に延伸する。延伸倍率は、縦、横それぞれ3〜8倍、好ましくは4〜7倍になるように、縦は延伸前後のロール速度比で、横はエアー供給量で延伸バブルの径を調整する。延伸倍率が3倍未満であると、熱収縮率が小さくなり、8倍を越えるとフィルムが破れ易くなるので好ましくない。その時の延伸温度は、延伸ムラが発生せず、延伸バブルが安定した形状を維持出来、熱収縮性が付与される範囲であれば特に限定はしない。原料の種類や組み合わせや各層の厚み構成比、或いは架橋度によって、延伸バブルが安定する延伸温度範囲が狭い場合には、二軸延伸後の熱処理によっても熱収縮力の調整を行う事ができる。その際の熱処理方法としては、公知の方法が用いられ、例えば、熱ロール、テンター、バブル熱処理等が用いられる。熱処理温度と熱処理弛緩率は、要求される熱収縮力の程度に応じて選択すればよいが、熱処理温度としては70〜125℃、弛緩率としては0〜15%の範囲で行うのが好ましい。また、得られたフイルムは、必要に応じて、エージング、コーティング等の後処理を行うことができる。
The resin having the raw material composition as described above is supplied to three extruders, the resin is melted and extruded from a three-layered annular die joined to the tip of the extruder, and cooled and solidified into a tube shape using a refrigerant. An unstretched raw film is produced. Next, the raw film is supplied to an electron beam irradiation apparatus and irradiated from both sides to be crosslinked. Thereafter, the raw fabric is reheated while supplying air into the raw fabric tube to form stretched bubbles, and stretched longitudinally and laterally simultaneously with the pressure of air. The stretch ratio is 3 to 8 times, preferably 4 to 7 times in the longitudinal and lateral directions, and the longitudinal is the roll speed ratio before and after stretching, and the lateral is the diameter of the stretched bubble by the air supply amount. When the draw ratio is less than 3 times, the thermal shrinkage rate is decreased, and when it exceeds 8 times, the film is easily broken, which is not preferable. The stretching temperature at that time is not particularly limited as long as stretching unevenness does not occur, the stretched bubble can maintain a stable shape, and heat shrinkability is imparted. If the stretching temperature range in which stretched bubbles are stable is narrow depending on the type and combination of raw materials, the thickness composition ratio of each layer, or the degree of crosslinking, the heat shrinkage force can be adjusted by heat treatment after biaxial stretching. As a heat treatment method at that time, a known method is used, and for example, a heat roll, a tenter, a bubble heat treatment, or the like is used. The heat treatment temperature and the heat treatment relaxation rate may be selected according to the required degree of heat shrinkage force, but the heat treatment temperature is preferably 70 to 125 ° C. and the relaxation rate is preferably 0 to 15%. In addition, the obtained film can be subjected to post-treatment such as aging and coating as necessary.

以下、実施例により本発明を詳細に説明する。なお、本実施例の中で示した各物性測定や評価は以下の方法によった。
1)H1−MFR、H2−MFR、L―MFR、H3−MFR
JIS−K7210に準拠し測定した。(単位:g/10分)
2)ヘイズ
JIS−K6714により測定した。(単位:%)
3)ゲル状ブツ
フィルムを目視観察し、以下の基準で評価した。
○:ブツがほとんどない。
△:ブツが多い。
×:大きなブツが多い。
4)引き裂き強度
JIS P 8116に準拠し、東洋精機製軽荷重引裂試験機で測定した。
5)耐熱温度
フィルムを木枠(縦×横:20×20mm)に固定し、熱風を発生するトンネル内を5秒間通過させ、フィルムが白化したり溶融したりしない最高温度を測定した。
Hereinafter, the present invention will be described in detail by way of examples. In addition, each physical property measurement and evaluation shown in a present Example were based on the following method.
1) H1-MFR, H2-MFR, L-MFR, H3-MFR
It measured based on JIS-K7210. (Unit: g / 10 minutes)
2) Measured according to haze JIS-K6714. (unit:%)
3) The gel-like film was visually observed and evaluated according to the following criteria.
○: Almost no irregularity.
Δ: Lots of stuff.
X: There are many big stuff.
4) Tear strength Measured with a light load tear tester manufactured by Toyo Seiki in accordance with JIS P8116.
5) Heat-resistant temperature The film was fixed to a wooden frame (vertical x horizontal: 20 x 20 mm), passed through a tunnel generating hot air for 5 seconds, and the maximum temperature at which the film was not whitened or melted was measured.

また製造例、実施例及び比較例に用いたポリエチレン及び添加剤は以下のとおり。
PE−1;直鎖状低密度ポリエチレン、d=0.920g/cm3 、MI=1.0g/10分
PE−2;直鎖状低密度ポリエチレン、d=0.920g/cm3 、MI=0.6g/10分
PE−3;高圧法ポリエチレン、d=0.922g/cm3 、MI=0.5g/10分
酸化防止剤:チバ・スペシャルティ・ケミカルズ株式会社製IRGAFOS168
滑剤:エルカ酸アミドとオレイン酸アミドの混合物(1:1)
ブロッキング防止剤:不定形シリカ微粒子
防曇剤:ジグリセリンオレイン酸エステル
The polyethylene and additives used in the production examples, examples and comparative examples are as follows.
PE-1; linear low density polyethylene, d = 0.920 g / cm 3 , MI = 1.0 g / 10 min PE-2; linear low density polyethylene, d = 0.920 g / cm 3 , MI = 0.6 g / 10 min PE-3; high pressure polyethylene, d = 0.922 g / cm 3 , MI = 0.5 g / 10 min antioxidant: IRGAFOS 168 manufactured by Ciba Specialty Chemicals Co., Ltd.
Lubricant: mixture of erucic acid amide and oleic acid amide (1: 1)
Antiblocking agent: Amorphous silica fine particles Antifogging agent: Diglycerin oleate

(製造例1)PE−1を両表面層、PE−1を70%とPE−3を30%を芯層とし、各層には、酸化防止剤0.15%、及び滑剤0.1%添加し、更に両表面層にはブロッキング防止剤0.5%を添加して、3台の押出機でそれぞれ170℃〜240℃にて溶融、混練し、層比が1:5:1になるように各押出機の押出量を設定し、240℃に保った3層環状ダイスより下向きに共押出した。形成された3層構成チューブを、内側は冷却水が循環している円筒状冷却マンドレルの外表面を摺動させながら、外側は水槽を通すことにより冷却して引き取り、チューブ状未延伸フィルムを得た。このチューブ状未延伸フィルムの両面に、電子線照射装置(日新ハイボルテージ株式会社製)を用いて、照射線量50kGyの電子線照射を行った後、架橋チューブ状未延伸フィルムをチューブラー二軸延伸装置に導き、90〜110℃で縦横それぞれ5倍に延伸した。次いで、得られたチューブ状延伸フィルムを折り畳み、60℃に設定した熱固定ロールでアニーリングした後、両端をトリミングし、上下2枚のフィルムを各々フラットフィルムとして巻き取った。得られた延伸フィルムは、厚み15μで、ゲル状ブツもなく、透明性も良好で、引き裂き強度や耐熱温度も十分なものであった。
(Production Example 1) PE-1 as both surface layers, PE-1 as 70% and PE-3 as 30% core layers, 0.15% antioxidant and 0.1% lubricant added to each layer Further, 0.5% of an antiblocking agent was added to both surface layers, and melted and kneaded at 170 ° C. to 240 ° C. with three extruders so that the layer ratio was 1: 5: 1. The extrusion amount of each extruder was set to, and co-extruded downward from a three-layer annular die maintained at 240 ° C. The formed three-layer tube is cooled by passing through the water tank while the outer surface of the cylindrical cooling mandrel in which the cooling water circulates is slid, and is taken out to obtain a tubular unstretched film. It was. An electron beam irradiation device (manufactured by Nissin High Voltage Co., Ltd.) was used to irradiate an electron beam with an irradiation dose of 50 kGy on both sides of the tubular unstretched film, and then the crosslinked tubular unstretched film was tubular biaxial. It led to the extending | stretching apparatus and it extended | stretched 5 times each 90-110 degreeC in length and width. Next, the obtained tubular stretched film was folded and annealed with a heat fixing roll set at 60 ° C., and then trimmed at both ends, and the two upper and lower films were each wound as a flat film. The obtained stretched film had a thickness of 15 μm, no gelled spots, good transparency, and sufficient tear strength and heat resistance temperature.

(実施例1)製造例1の製造過程で得られた架橋チューブ状未延伸フィルムや架橋された延伸フィルムのスクラップを架橋ポリエチレン系樹脂組成物として使用した。この架橋ポリエチレン系樹脂組成物をフィルム粉砕機により粉砕後、同方向回転2軸押出機(東芝機械株式会社製 TEM−58SS、L/D=49.6、φ=58mm)により、スクリュ回転数400rpm、押出温度230℃、押出量40kg/hにて溶融、混練し、ストランド状に押し出し、水冷後、ストランドカットし、ペレット状のポリエチレン系再生樹脂組成物を得た。これらのH1-、H2−、L−MFR、(H2−MFR)/(L―MFR)比は、表1に示す通りであった。次に、芯層の原料樹脂として、このポリエチレン系再生樹脂組成物を30%とPE−1を49%とPE−3を21%にした以外は製造例1と同様にして延伸フィルムを作った。得られた延伸フィルムは、厚み15μで、ゲル状ブツもなく、透明性も良好で、引き裂き強度や耐熱温度も十分なものであった。 (Example 1) A cross-linked tubular unstretched film obtained in the production process of Production Example 1 or a scrap of a cross-linked stretched film was used as a cross-linked polyethylene resin composition. After this crosslinked polyethylene resin composition was pulverized by a film pulverizer, a screw rotation speed was 400 rpm by a co-rotating twin-screw extruder (TEM-58SS manufactured by Toshiba Machine Co., Ltd., L / D = 49.6, φ = 58 mm). Then, the mixture was melted and kneaded at an extrusion temperature of 230 ° C. and an extrusion rate of 40 kg / h, extruded into a strand, cooled with water, cut into a strand, and a polyethylene regenerated resin composition in the form of a pellet was obtained. These H1-, H2-, L-MFR, (H2-MFR) / (L-MFR) ratios were as shown in Table 1. Next, a stretched film was prepared in the same manner as in Production Example 1 except that the polyethylene-based recycled resin composition was changed to 30%, PE-1 to 49%, and PE-3 to 21% as a raw material resin for the core layer. . The obtained stretched film had a thickness of 15 μm, no gelled spots, good transparency, and sufficient tear strength and heat resistance temperature.

(実施例2)製造例1の製造過程で得られた架橋チューブ状未延伸フィルムや架橋された延伸フィルムのスクラップを架橋ポリエチレン系樹脂組成物として使用した。この架橋ポリエチレン系樹脂組成物を粉砕機を付した単軸押出機(萩原工業株式会社製 NGR再生ペレット製造装置、L/D=37、φ=85mm)により、溶融、混練、押し出し、水冷固化させ、一旦、ペレット状の組成物を得た。次いで、同方向回転2軸押出機(東芝機械株式会社製 TEM−58SS、L/D=49.6、φ=58mm)により、スクリュ回転数300rpm、押出温度230℃、押出量40kg/hにて溶融、混練し、ストランド状に押し出し、水冷後、ストランドカットし、ペレット状のポリエチレン系再生樹脂組成物を得た。これらのH1-、H2−、L−MFR、(H2−MFR)/(L―MFR)比は、表1に示す通りであった。次に、芯層の原料樹脂として、このポリエチレン系再生樹脂組成物を60%とPE−1を28%とPE−3を12%にした以外は製造例1と同様にして延伸フィルムを作った。得られた延伸フィルムは、厚み15μで、ゲル状ブツもなく、透明性も良好で、引き裂き強度や耐熱温度も十分なものであった。 (Example 2) The cross-linked tubular unstretched film obtained in the production process of Production Example 1 or a scrap of a cross-linked stretched film was used as a cross-linked polyethylene resin composition. This cross-linked polyethylene resin composition is melted, kneaded, extruded, and water-cooled and solidified by a single screw extruder equipped with a pulverizer (NGR recycled pellet manufacturing apparatus, L / D = 37, φ = 85 mm). Once, a pellet-like composition was obtained. Next, using a co-rotating twin-screw extruder (TEM-58SS manufactured by Toshiba Machine Co., Ltd., L / D = 49.6, φ = 58 mm) at a screw speed of 300 rpm, an extrusion temperature of 230 ° C., and an extrusion rate of 40 kg / h. Melted, kneaded, extruded into strands, cooled with water, then cut into strands to obtain a polyethylene regenerated resin composition in the form of pellets. These H1-, H2-, L-MFR, (H2-MFR) / (L-MFR) ratios were as shown in Table 1. Next, a stretched film was prepared in the same manner as in Production Example 1 except that the polyethylene-based recycled resin composition was changed to 60%, PE-1 to 28%, and PE-3 to 12% as a raw material resin for the core layer. . The obtained stretched film had a thickness of 15 μm, no gelled spots, good transparency, and sufficient tear strength and heat resistance temperature.

(比較例1)製造例1の製造過程で得られた架橋チューブ状未延伸フィルムや架橋された延伸フィルムのスクラップを架橋ポリエチレン系樹脂組成物として使用した。この架橋ポリエチレン系樹脂組成物を用いて、実施例2と同様に、単軸押出機、次いで同方向回転2軸押出機による押し出しを行い、ポリエチレン系再生樹脂組成物を得た。但し、同方向回転2軸押出機による押し出しは、スクリュ回転数400rpm、押出温度230℃、押出量40kg/hにて行った。これらのH1-、H2−、L−MFR、(H2−MFR)/(L―MFR)比は、表1に示す通りであった。次に、このポリエチレン系再生樹脂組成物を用いて、製造例1と同様に、延伸フィルムを作ったが、チューブラー二軸延伸加工時の延伸バブルはやや白っぽく感じられた。得られた延伸フィルムは、ゲル状ブツはほとんど見られなかったが、透明性がやや劣り、耐熱性が低いものであった。 (Comparative Example 1) A cross-linked tubular unstretched film obtained in the production process of Production Example 1 or a scrap of a cross-linked stretched film was used as a cross-linked polyethylene resin composition. Using this crosslinked polyethylene resin composition, in the same manner as in Example 2, extrusion was carried out by a single screw extruder and then by a co-rotating twin screw extruder to obtain a polyethylene regenerated resin composition. However, extrusion by the same direction rotating twin screw extruder was performed at a screw rotation speed of 400 rpm, an extrusion temperature of 230 ° C., and an extrusion rate of 40 kg / h. These H1-, H2-, L-MFR, (H2-MFR) / (L-MFR) ratios were as shown in Table 1. Next, a stretched film was produced using this polyethylene-based recycled resin composition in the same manner as in Production Example 1, but stretched bubbles during tubular biaxial stretching were felt somewhat whitish. The obtained stretched film had almost no gelled spots, but was slightly inferior in transparency and low in heat resistance.

(製造例2)PE−1を両表面層、PE−2を芯層とし、各層には、酸化防止剤0.15%、及び防曇剤2%添加して、3台の押出機でそれぞれ170℃〜240℃にて溶融、混練し、層比が1:5:1になるように各押出機の押出量を設定し、240℃に保った3層環状ダイスより下向きに共押出した。形成された3層構成チューブを、内側は冷却水が循環している円筒状冷却マンドレルの外表面を摺動させながら、外側は水槽を通すことにより冷却して引き取り、チューブ状未延伸フィルムを得た。このチューブ状未延伸フィルムの両面に、電子線照射装置(日新ハイボルテージ株式会社製)を用いて、照射線量100kGyの電子線照射を行った後、架橋チューブ状未延伸フィルムをチューブラー二軸延伸装置に導き、100〜120℃で縦横それぞれ6倍に延伸した。次いで、得られたチューブ状延伸フィルムを折り畳み、80℃に設定した熱固定ロールでアニーリングした後、両端をトリミングし、上下2枚のフィルムを各々フラットフィルムとして巻き取った。得られた延伸フィルムは、厚み10μで、ゲル状ブツもなく、透明性も良好で、引き裂き強度や耐熱温度も十分なものであった。 (Production Example 2) PE-1 was used as both surface layers and PE-2 was used as a core layer, and 0.15% antioxidant and 2% antifogging agent were added to each layer. Melting and kneading were carried out at 170 ° C. to 240 ° C., the extrusion amount of each extruder was set so that the layer ratio was 1: 5: 1, and co-extrusion was performed downward from a three-layer annular die maintained at 240 ° C. The formed three-layer tube is cooled by passing through the water tank while the outer surface of the cylindrical cooling mandrel in which the cooling water circulates is slid, and is taken out to obtain a tubular unstretched film. It was. An electron beam irradiation device (manufactured by Nisshin High Voltage Co., Ltd.) was used to irradiate the tube-shaped unstretched film on both sides with an electron beam with an irradiation dose of 100 kGy. It led to the extending | stretching apparatus and extended | stretched 6 times each length and width at 100-120 degreeC. Next, the obtained tubular stretched film was folded and annealed with a heat setting roll set at 80 ° C., and then trimmed at both ends, and the two upper and lower films were each wound as a flat film. The obtained stretched film had a thickness of 10 μm, no gelled spots, good transparency, and sufficient tear strength and heat resistance temperature.

(実施例3)製造例2の製造過程で得られた架橋チューブ状未延伸フィルムや架橋された延伸フィルムのスクラップを架橋ポリエチレン系樹脂組成物として使用した。
この架橋ポリエチレン系樹脂組成物を粉砕機を付した単軸押出機(萩原工業株式会社製 NGR再生ペレット製造装置、L/D=37、φ=85mm)により、溶融、混練、押し出し、水冷固化させ、一旦、ペレット状の組成物を得た。次いで、同方向回転2軸押出機(東芝機械株式会社製 TEM−58SS、L/D=49.6、φ=58mm)により、スクリュ回転数400rpm、押出温度230℃、押出量40kg/hにて溶融、混練し、ストランド状に押し出し、水冷後、ストランドカットし、ペレット状のポリエチレン系再生樹脂組成物を得た。これらのH1-、H2−、L−MFR、(H2−MFR)/(L―MFR)比は、表2に示す通りであった。次に、芯層の原料樹脂として、このポリエチレン系再生樹脂組成物を30%とPE−2を70%にした以外は製造例2と同様にして延伸フィルムを作った。得られた延伸フィルムは、厚み10μで、ゲル状ブツもなく、透明性も良好で、引き裂き強度や耐熱温度も十分なものであった。
Example 3 A cross-linked tubular unstretched film obtained in the production process of Production Example 2 or a scrap of a cross-linked stretched film was used as a cross-linked polyethylene resin composition.
This cross-linked polyethylene resin composition is melted, kneaded, extruded, and water-cooled and solidified by a single screw extruder equipped with a pulverizer (NGR recycled pellet manufacturing apparatus, L / D = 37, φ = 85 mm). Once, a pellet-like composition was obtained. Next, using a co-rotating twin screw extruder (TEM-58SS manufactured by Toshiba Machine Co., Ltd., L / D = 49.6, φ = 58 mm) at a screw rotation speed of 400 rpm, an extrusion temperature of 230 ° C., and an extrusion rate of 40 kg / h. Melted, kneaded, extruded into strands, cooled with water, then cut into strands to obtain a polyethylene regenerated resin composition in the form of pellets. These H1-, H2-, L-MFR, (H2-MFR) / (L-MFR) ratios were as shown in Table 2. Next, a stretched film was prepared in the same manner as in Production Example 2 except that the polyethylene-based recycled resin composition was changed to 30% and PE-2 was changed to 70% as the raw material resin for the core layer. The obtained stretched film had a thickness of 10 μm, no gelled spots, good transparency, and sufficient tear strength and heat resistance temperature.

(比較例2)照射線量を130kGyとした以外は、製造例2と同様の製造過程で得られた架橋チューブ状未延伸フィルムや架橋された延伸フィルムのスクラップを架橋ポリエチレン系樹脂組成物として使用した。この架橋ポリエチレン系樹脂組成物を用いて、実施例3と同様に、単軸押出機、次いで同方向回転2軸押出機による押し出しを行い、ポリエチレン系再生樹脂組成物を得た。これらのH1-、H2−、L−MFR、(H2−MFR)/(L―MFR)比は、表2に示す通りであった。次に、このポリエチレン系再生樹脂組成物を用いて、製造例2と同様に(照射線量は100kGy)、延伸フィルムを作った。得られた延伸フィルムは、ゲル状ブツが多く、透明性も劣り、引き裂き強度が低いものであった。 (Comparative Example 2) A cross-linked tubular unstretched film or a cross-linked stretched film scrap obtained in the same production process as in Production Example 2 was used as a cross-linked polyethylene resin composition, except that the irradiation dose was 130 kGy. . Using this crosslinked polyethylene resin composition, in the same manner as in Example 3, extrusion was performed with a single-screw extruder and then with the same-direction rotating twin-screw extruder to obtain a polyethylene-based recycled resin composition. These H1-, H2-, L-MFR, (H2-MFR) / (L-MFR) ratios were as shown in Table 2. Next, a stretched film was produced using this polyethylene-based recycled resin composition in the same manner as in Production Example 2 (irradiation dose was 100 kGy). The obtained stretched film had many gel-like spots, poor transparency, and low tear strength.

(比較例3)製造例2の製造過程で得られた架橋チューブ状未延伸フィルムや架橋された延伸フィルムのスクラップを架橋ポリエチレン系樹脂組成物として使用した。この架橋ポリエチレン系樹脂組成物を用いて、実施例3と同様に、単軸押出機、次いで同方向回転2軸押出機による押し出しを行い、ポリエチレン系再生樹脂組成物を得た。但し、同方向回転2軸押出機による押し出しは、スクリュ回転数150rpm、押出温度230℃、押出量40kg/hにて行った。これらのH1-、H2−、L−MFR、(H2−MFR)/(L―MFR)比は、表2に示す通りであった。次に、このポリエチレン系再生樹脂組成物を用いて、製造例2と同様に、延伸フィルムを作った。得られた延伸フィルムは、ゲル状ブツが多く、透明性も劣り、引き裂き強度が低いものであった。
(Comparative Example 3) A cross-linked tubular unstretched film obtained in the production process of Production Example 2 or a scrap of a cross-linked stretched film was used as a cross-linked polyethylene resin composition. Using this crosslinked polyethylene resin composition, in the same manner as in Example 3, extrusion was performed with a single-screw extruder and then with the same-direction rotating twin-screw extruder to obtain a polyethylene-based recycled resin composition. However, extrusion by the same direction rotating twin screw extruder was performed at a screw rotation speed of 150 rpm, an extrusion temperature of 230 ° C., and an extrusion rate of 40 kg / h. These H1-, H2-, L-MFR, (H2-MFR) / (L-MFR) ratios were as shown in Table 2. Next, a stretched film was made in the same manner as in Production Example 2 using this polyethylene-based recycled resin composition. The obtained stretched film had many gel-like spots, poor transparency, and low tear strength.

Figure 0005363280
Figure 0005363280

Figure 0005363280
Figure 0005363280


Claims (7)

下記(A)の特徴を有する架橋ポリエチレン系樹脂組成物を押出機を用いて溶融、混練後、冷却固化させる事からなり、下記(B)、(C)、(D)の特徴をすべて満足する熱収縮性フィルム用ポリエチレン系再生樹脂組成物。
(A)温度250℃、荷重21.6kgの条件で測定した溶融粘度指数(以下、H1-MFRと記す)が、0.05g/10分以上である。
(B)温度250℃、荷重21.6kgの条件で測定した溶融粘度指数(以下、H2-MFRと記す)が、90〜280g/10分の範囲である。
(C)温度250℃、荷重2.16kgの条件で測定した溶融粘度指数(以下、L-MFRと記す)が、0.1〜5g/10分である。
(D)(H2-MFR)/(L-MFR)の比が、20〜200の範囲である。
The cross-linked polyethylene resin composition having the following characteristics (A) is melted and kneaded using an extruder, and then cooled and solidified, and all the following characteristics (B), (C), and (D) are satisfied. Polyethylene-based recycled resin composition for heat-shrinkable film .
(A) The melt viscosity index (hereinafter referred to as H1-MFR) measured under conditions of a temperature of 250 ° C. and a load of 21.6 kg is 0.05 g / 10 min or more.
(B) The melt viscosity index (hereinafter referred to as H2-MFR) measured under conditions of a temperature of 250 ° C. and a load of 21.6 kg is in the range of 90 to 280 g / 10 minutes.
(C) The melt viscosity index (hereinafter referred to as L-MFR) measured under conditions of a temperature of 250 ° C. and a load of 2.16 kg is 0.1 to 5 g / 10 minutes.
(D) The ratio of (H2-MFR) / (L-MFR) is in the range of 20-200.
押出機を用いて行う溶融、混練後、冷却固化させる工程を2回以上繰り返す事を特徴とする請求項1記載の熱収縮性フィルム用ポリエチレン系再生樹脂組成物。 2. The polyethylene-based regenerated resin composition for heat-shrinkable film according to claim 1, wherein the step of cooling and solidifying after melting and kneading using an extruder is repeated twice or more. 押出機を用いて行う溶融、混練後、冷却固化させる1回目の工程後の樹脂組成物の温度250℃、荷重21.6kgの条件で測定した溶融粘度指数(以下、H3-MFRと記す)が、20〜90g/10分の範囲である事を特徴とする請求項2の熱収縮性フィルム用ポリエチレン系樹脂組成物。 The melt viscosity index (hereinafter referred to as H3-MFR) measured under conditions of a temperature of 250 ° C. and a load of 21.6 kg of the resin composition after the first step of melting and kneading using an extruder and then cooling and solidifying is as follows. The polyethylene-based resin composition for heat-shrinkable film according to claim 2, wherein the range is from 20 to 90 g / 10 minutes. 下記(A)の特徴を有する架橋ポリエチレン系樹脂組成物を押出機を用いて溶融、混練後、冷却固化させる事からなり、下記(B)、(C)、(D)の特徴をすべて満足するポリエチレン系再生樹脂組成物とポリエチレン系樹脂からなり、電子線照射により架橋した後、延伸加工を施された架橋ポリエチレン系熱収縮性フィルム。
(A)温度250℃、荷重21.6kgの条件で測定した溶融粘度指数(以下、H1-MFRと記す)が、0.05g/10分以上である。
(B)温度250℃、荷重21.6kgの条件で測定した溶融粘度指数(以下、H2-MFRと記す)が、90〜280g/10分の範囲である。
(C)温度250℃、荷重2.16kgの条件で測定した溶融粘度指数(以下、L-MFRと記す)が、0.1〜5g/10分である。
(D)(H2-MFR)/(L-MFR)の比が、20〜200の範囲である。
The cross-linked polyethylene resin composition having the following characteristics (A) is melted and kneaded using an extruder, and then cooled and solidified, and all the following characteristics (B), (C), and (D) are satisfied. A crosslinked polyethylene heat-shrinkable film comprising a polyethylene-based recycled resin composition and a polyethylene-based resin, which is crosslinked by electron beam irradiation and then stretched.
(A) The melt viscosity index (hereinafter referred to as H1-MFR) measured under conditions of a temperature of 250 ° C. and a load of 21.6 kg is 0.05 g / 10 min or more.
(B) The melt viscosity index (hereinafter referred to as H2-MFR) measured under conditions of a temperature of 250 ° C. and a load of 21.6 kg is in the range of 90 to 280 g / 10 minutes.
(C) The melt viscosity index (hereinafter referred to as L-MFR) measured under conditions of a temperature of 250 ° C. and a load of 2.16 kg is 0.1 to 5 g / 10 minutes.
(D) The ratio of (H2-MFR) / (L-MFR) is in the range of 20-200.
ポリエチレン系再生樹脂組成物を5〜70%とポリエチレン系樹脂を30〜95%からなる事を特徴とする請求項4記載の架橋ポリエチレン系熱収縮性フィルム。 The cross-linked polyethylene heat-shrinkable film according to claim 4, comprising 5 to 70% of a polyethylene regenerated resin composition and 30 to 95% of a polyethylene resin. 押出機を用いて行う溶融、混練後、冷却固化させる工程を2回以上繰り返す事を特徴とする請求項4又は5記載の架橋ポリエチレン系熱収縮性フィルム。 The cross-linked polyethylene heat-shrinkable film according to claim 4 or 5, wherein the step of cooling and solidifying after melting and kneading using an extruder is repeated twice or more. 押出機を用いて行う溶融、混練後、冷却固化させる1回目の工程後の樹脂組成物の温度250℃、荷重21.6kgの条件で測定した溶融粘度指数(H3-MFRと記す)が、20〜90g/10分の範囲である事を特徴とする請求項6の架橋ポリエチレン系熱収縮性フィルム。 The melt viscosity index (denoted as H3-MFR) measured under conditions of a temperature of 250 ° C. and a load of 21.6 kg of the resin composition after the first step of melting and kneading using an extruder and then cooling and solidifying is 20 The cross-linked polyethylene heat-shrinkable film according to claim 6, which is in a range of ˜90 g / 10 minutes.
JP2009264044A 2009-11-19 2009-11-19 Recycled resin composition and heat-shrinkable film comprising crosslinked polyethylene Active JP5363280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009264044A JP5363280B2 (en) 2009-11-19 2009-11-19 Recycled resin composition and heat-shrinkable film comprising crosslinked polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009264044A JP5363280B2 (en) 2009-11-19 2009-11-19 Recycled resin composition and heat-shrinkable film comprising crosslinked polyethylene

Publications (2)

Publication Number Publication Date
JP2011105882A JP2011105882A (en) 2011-06-02
JP5363280B2 true JP5363280B2 (en) 2013-12-11

Family

ID=44229719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009264044A Active JP5363280B2 (en) 2009-11-19 2009-11-19 Recycled resin composition and heat-shrinkable film comprising crosslinked polyethylene

Country Status (1)

Country Link
JP (1) JP5363280B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455111B1 (en) 2013-09-10 2014-10-27 아이코리아 주식회사 A shrinkable tube and manufacture method of shrinkable tube
CA2968647C (en) 2014-12-22 2018-05-22 Borealis Ag Composition based on recycled polyethylene from cable waste
CN112888738B (en) * 2019-06-17 2023-07-21 塔玛波里股份有限公司 Polyethylene film and dry film resist
JP7288112B1 (en) 2022-02-03 2023-06-06 東洋インキScホールディングス株式会社 Manufacturing method of recycled plastic
JP7425948B1 (en) 2022-08-26 2024-02-01 artience株式会社 How to make recycled plastic

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126835A (en) * 1981-01-30 1982-08-06 Sumitomo Chem Co Ltd Ethylenic resin composition
JPS58194904A (en) * 1982-05-11 1983-11-14 Asahi Chem Ind Co Ltd Modified medium or low-density polyethylene composition
JPH0747548A (en) * 1993-08-04 1995-02-21 Furukawa Electric Co Ltd:The Reutilization of waste crosslinked-polyolefin resin
EP0679487A1 (en) * 1994-04-28 1995-11-02 W.R. Grace & Co.-Conn. Multi-layer polyolefin film containing recycle polymer from cross-linked films
JPH0967413A (en) * 1995-06-22 1997-03-11 Mitsubishi Chem Corp Polyethylene resin for pipe
JPH1036600A (en) * 1996-07-17 1998-02-10 Amuko Enterp Kk Molding material containing crosslinked polyethylene
JP3752759B2 (en) * 1997-01-07 2006-03-08 東ソー株式会社 Ethylene polymer and method for producing the same
JP3679543B2 (en) * 1997-03-10 2005-08-03 株式会社興人 Crosslinked polyethylene heat-shrinkable multilayer film
JP2003505544A (en) * 1999-07-15 2003-02-12 ザ ダウ ケミカル カンパニー High density ethylene homopolymer and blend compositions
JP2001269980A (en) * 2000-03-24 2001-10-02 Okura Ind Co Ltd Method for recycling crosslinked polyethylene resin composition
JP2003327757A (en) * 2002-05-16 2003-11-19 Tosoh Corp Polyethylene resin composition and production method therefor
JP4543706B2 (en) * 2004-03-04 2010-09-15 住友化学株式会社 Heavy goods packaging film and heavy goods packaging bag
CA2558005C (en) * 2004-03-19 2013-04-16 Dow Global Technologies Inc. Film layers made from polymer formulations
KR20080094722A (en) * 2006-02-15 2008-10-23 미쓰이 가가쿠 가부시키가이샤 Ethylene resin and blow-molded article comprising the same
JP4928858B2 (en) * 2006-07-14 2012-05-09 日本ポリエチレン株式会社 Polyethylene resin molding material for containers and container lids

Also Published As

Publication number Publication date
JP2011105882A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP5572364B2 (en) Resin foam sheet
JP5363280B2 (en) Recycled resin composition and heat-shrinkable film comprising crosslinked polyethylene
JP6633908B2 (en) High-strength polyethylene sealant film and package using the same
JP5642957B2 (en) Resin foam sheet
JP5893091B2 (en) Polyethylene-based crosslinked shrink film
CN111070611B (en) Preparation method of anti-aging polyolefin heat-shrinkable film
CN110328942A (en) Antistatic crosslinking heat shrink films of one kind and preparation method thereof
JP5512331B2 (en) Foamed sheet and foamed resin container
JP4919620B2 (en) 3-layer crosslinked film
WO2007049734A1 (en) Polyethylene resin composition and film thereof
JP2010064369A (en) Polypropylene-based multilayered shrink film
JP6372924B2 (en) Polyolefin heat shrinkable film
JPH0899393A (en) Polyolefinic heat-shrinkable laminated film
JP4052707B2 (en) Method for producing multilayer microporous film
JP2021534016A (en) Method for manufacturing thin films containing thermoplastic polymers and inorganic fillers
JP2016215480A (en) Polyethylene crosslinked shrink film
JP5399048B2 (en) Polyethylene-based crosslinked shrink film
JP5722081B2 (en) Polyethylene-based crosslinked shrink film with excellent shrink finish
JP3679543B2 (en) Crosslinked polyethylene heat-shrinkable multilayer film
JP2018035247A (en) Regeneration method of crosslinked polyolefin resin
JP2003145695A (en) Method for manufacturing polyethylenic heat-shrinkable film
JP2007245459A (en) Oriented multilayer crosslinked polyolefin resin film
JP2011240619A (en) Styrene heat-shrinkable film for over-wrap packing
JP2010234656A (en) Polypropylene and polyolefin multilayer shrink film with light shielding property
JP2007260911A (en) Crosslinked multilayered stretched film of polyolefinic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130905

R150 Certificate of patent or registration of utility model

Ref document number: 5363280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250