JP5363117B2 - Surface-treated steel sheet - Google Patents

Surface-treated steel sheet Download PDF

Info

Publication number
JP5363117B2
JP5363117B2 JP2008550086A JP2008550086A JP5363117B2 JP 5363117 B2 JP5363117 B2 JP 5363117B2 JP 2008550086 A JP2008550086 A JP 2008550086A JP 2008550086 A JP2008550086 A JP 2008550086A JP 5363117 B2 JP5363117 B2 JP 5363117B2
Authority
JP
Japan
Prior art keywords
mass
cationic
surface treatment
film
polycondensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008550086A
Other languages
Japanese (ja)
Other versions
JPWO2008075553A1 (en
Inventor
郁夫 菊池
俊之 勝見
公隆 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008550086A priority Critical patent/JP5363117B2/en
Publication of JPWO2008075553A1 publication Critical patent/JPWO2008075553A1/en
Application granted granted Critical
Publication of JP5363117B2 publication Critical patent/JP5363117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0809Manufacture of polymers containing ionic or ionogenic groups containing cationic or cationogenic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6648Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/086Organic or non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • C08G2150/90Compositions for anticorrosive coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/27Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]
    • Y10T428/273Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.] of coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31605Next to free metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

A surface treated steel sheet has a surface treatment film including a metallic compound containing titanium, a metallic compound containing magnesium, a cationic urethane resin having at least one cationic functional group selected from primary to tertiary amino groups and quaternary ammonium bases, and a cationic phenol polycondensate which is a polycondensate of a phenol compound with an aldehyde and has a cationic functional group, wherein the titanium content in the surface treatment film is in the range of 1 mass % to 4 mass % based on a total solid content; the magnesium content in the surface treatment film is in the range of 0.2 mass % to 2 mass % based on a total solid content; the cationic urethane resin content in the surface treatment film is in the range of 20 mass % to 35 mass % based on a total solid content; the cationic phenol polycondensate content in the surface treatment film is in the range of 25 mass % to 40 mass % based on a total solid content; and the mass ratio of the cationic urethane resin to the cationic phenol polycondensate is in the range of 33.3:66.7 to 49:51.

Description

本発明は、家電、建材用途等に好適な表面処理鋼板であって、特に、製造時にクロムを使用せず、且つ製品中にクロムを全く含まない環境適応型表面処理鋼板に関する。
本出願は、特願2006−343531号を基礎出願とし、その内容を取り込む。
The present invention relates to a surface-treated steel sheet suitable for home appliances, building materials, and the like, and particularly relates to an environment-adaptive surface-treated steel sheet that does not use chromium at the time of manufacture and does not contain any chromium in the product.
This application takes Japanese Patent Application No. 2006-343531 as its basic application and incorporates the contents thereof.

家電や建材に使用される亜鉛系めっき鋼板は、海水等の塩分を含む雰囲気または高温多湿の雰囲気においては、表面に白錆が発生することがある。その場合、外観を著しく損ねたり、素地鉄面に対する保護力が低下したりする。従来では、白錆を防止するために、クロムを含有したクロメート系の表面処理剤が用いられてきた。しかしながら、環境及び人体への影響の問題からクロムに対する規制が著しく強化されようとしており、これに対応すべく、クロムを含有しない表面処理剤の開発が進められている。   Zinc-based plated steel sheets used for home appliances and building materials may have white rust on the surface in an atmosphere containing salt such as seawater or in a hot and humid atmosphere. In that case, the external appearance is remarkably impaired, or the protective power against the base iron surface is reduced. Conventionally, in order to prevent white rust, chromate-based surface treatment agents containing chromium have been used. However, restrictions on chromium have been remarkably strengthened due to problems with the environment and the human body, and in order to cope with this, development of surface treatment agents not containing chromium has been promoted.

クロムを含有しない表面処理剤による金属材料表面処理方法として、特許文献1には、特定のシランカップリング剤と特定構造のフェノール樹脂系重合体とを含有する金属表面処理剤を用いた表面処理方法が開示されている。また、特許文献2には、シランカップリング剤と、シリカと、特定の金属化合物を必須成分として含み、更にチオカルボニル基含有化合物及び/又は水溶性アクリル樹脂を含んでもよい金属表面処理剤を用いた表面処理方法が開示されている。また、特許文献3には、特定の水溶性樹脂もしくは水系エマルジョン樹脂と、特定構造のフェノール樹脂系重合体と、特定の金属化合物と、を含んだ金属表面処理剤を用いた表面処理方法が開示されている。   As a metal material surface treatment method using a surface treatment agent containing no chromium, Patent Document 1 discloses a surface treatment method using a metal surface treatment agent containing a specific silane coupling agent and a phenol resin polymer having a specific structure. Is disclosed. Patent Document 2 uses a metal surface treatment agent that contains a silane coupling agent, silica, and a specific metal compound as essential components, and may further contain a thiocarbonyl group-containing compound and / or a water-soluble acrylic resin. A surface treatment method was disclosed. Patent Document 3 discloses a surface treatment method using a metal surface treatment agent containing a specific water-soluble resin or aqueous emulsion resin, a phenol resin polymer having a specific structure, and a specific metal compound. Has been.

しかしながら、上記の方法は、クロメート系表面処理剤に代替できるような高い耐食性を付与する皮膜を形成し得るものではない。特に、傷部、加工部、アルカリ脱脂後の耐食性は、クロメート皮膜と比べて劣っている。よって、クロメート皮膜と同等以上の耐食性を有し、なおかつクロムを含まない表面処理方法の開発が望まれていた。   However, the above-described method cannot form a film that imparts high corrosion resistance that can be replaced by a chromate surface treatment agent. In particular, the corrosion resistance after scratches, processed parts, and alkaline degreasing is inferior to that of chromate films. Therefore, it has been desired to develop a surface treatment method that has a corrosion resistance equivalent to or higher than that of a chromate film and that does not contain chromium.

更に、クロムを含有しない金属材料表面処理方法として、特許文献4には、カチオン性ウレタン樹脂とカチオン性フェノール重縮合物、ジルコニウム化合物及び/又はチタン化合物を水性媒体に配合してなる金属表面処理剤、並びに表面処理方法及び表面処理金属材料が開示されている。また、特許文献5には、カチオン性ウレタン樹脂とカチオン性フェノール重縮合物、ジルコニウム化合物、及びLi,Mg,Al,Ca,Mn,Co,Ni,Zn,Sr,W,Ce及びMoから選ばれる少なくとも1種類の金属を含有する化合物を水性媒体に配合してなる金属表面処理剤、並びに表面処理方法及び表面処理金属材料が開示されている。また、特許文献6には、カチオン性ウレタン樹脂とカチオン性フェノール重縮合物、チタン化合物、及びLi,Mg,Al,Ca,Mn,Co,Ni,Zn,Sr,W,Ce及びMoから選ばれる少なくとも1種類の金属を含有する化合物を水性媒体に配合してなる金属表面処理剤、並びに表面処理方法及び表面処理金属材料等が開示されている。   Further, as a surface treatment method of a metal material not containing chromium, Patent Document 4 discloses a metal surface treatment agent comprising a cationic urethane resin, a cationic phenol polycondensate, a zirconium compound and / or a titanium compound in an aqueous medium. And a surface treatment method and a surface-treated metal material are disclosed. In Patent Document 5, a cationic urethane resin and a cationic phenol polycondensate, a zirconium compound, and Li, Mg, Al, Ca, Mn, Co, Ni, Zn, Sr, W, Ce, and Mo are selected. Disclosed are a metal surface treatment agent, a surface treatment method and a surface-treated metal material obtained by blending an aqueous medium with a compound containing at least one kind of metal. Patent Document 6 is selected from cationic urethane resins and cationic phenol polycondensates, titanium compounds, and Li, Mg, Al, Ca, Mn, Co, Ni, Zn, Sr, W, Ce, and Mo. A metal surface treatment agent, a surface treatment method, a surface treatment metal material, and the like obtained by blending a compound containing at least one metal into an aqueous medium are disclosed.

特開平9−241576号公報JP-A-9-241576 特開2001−31684号公報JP 2001-31684 A 特開2003−13252号公報JP 2003-13252 A 特開2006−118012号公報JP 2006-1118012 A 特開2006−152435号公報JP 2006-152435 A 特開2006−152436号公報JP 2006-152436 A

しかしながら、上記の3つの方法は、平面部耐食性(耐白錆性)と耐エタノール性、特に単純張り出し成形よりも実使用に近いカップ成形のような加工後の耐食性が不足していた。したがって、例えば、モーターケースや、灯油ストーブ用カートリッジタンクに必要とされる加工後耐食性を有し、なおかつクロムを含まない表面処理方法の開発が望まれていた。   However, the above-mentioned three methods lacked the corrosion resistance after processing such as cup molding, which is closer to actual use than simple overhang molding, as well as the flat surface corrosion resistance (white rust resistance) and ethanol resistance. Therefore, for example, it has been desired to develop a surface treatment method having corrosion resistance after processing required for a motor case or a kerosene stove cartridge tank and not containing chromium.

そこで,本発明は、上記の従来技術の抱える問題点を解決するためのものであり、亜鉛系めっき鋼板の表面に、加工後の耐食性に優れた皮膜を形成することができ、なおかつクロムを含有しない金属表面処理を施した鋼板の提供を目的とする。   Therefore, the present invention is for solving the above-mentioned problems of the prior art, and can form a film with excellent corrosion resistance after processing on the surface of a zinc-based plated steel sheet, and also contains chromium. It aims at providing the steel plate which performed the metal surface treatment which does not.

本発明者らは、上記問題点を解決するために表面処理鋼板の皮膜構成について検討を行った。その結果、チタンを含有する金属化合物と、マグネシウムを含有する金属化合物と、特定のカチオン性官能基を有するウレタン樹脂と、特定の化学構造を有するカチオン性フェノール系重縮合物とを含有する表面処理皮膜を亜鉛系めっき鋼板の表面に形成させることで、加工後の耐食性に優れた表面処理鋼板が得られることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have studied the film configuration of the surface-treated steel sheet. As a result, the surface treatment contains a metal compound containing titanium, a metal compound containing magnesium, a urethane resin having a specific cationic functional group, and a cationic phenol-based polycondensate having a specific chemical structure. By forming a film on the surface of a zinc-based plated steel sheet, it was found that a surface-treated steel sheet having excellent corrosion resistance after processing was obtained, and the present invention was completed.

すなわち本発明は、チタンを含有する金属化合物(A)(以下、チタン化合物(A)と称する)と、マグネシウムを含有する金属化合物(B)(以下、マグネシウム化合物(B)と称する)と、第1級〜第3級アミノ基および第4級アンモニウム塩基から選ばれる少なくとも一種のカチオン性官能基を有するカチオン性ウレタン樹脂(C)と、フェノール化合物とアルデヒド類との重縮合物であってカチオン性官能基を有するカチオン性フェノール系重縮合物(D)と、を含有し、前記チタンを含有する金属化合物または前記マグネシウムを含有する金属化合物のいずれか一方又は両方がリン酸との塩である表面処理皮膜を有し;前記表面処理皮膜中のチタンの含有量が、全固形分に対して1質量%〜4質量%であり;前記表面処理皮膜中のマグネシウムの含有量が、全固形分に対して0.2質量%〜2質量%であり;前記表面処理皮膜中の前記カチオン性ウレタン樹脂(C)の含有量が、全固形分に対して20質量%〜35質量%であり、前記表面処理皮膜中の前記カチオン性フェノール系重縮合物(D)の含有量が、全固形分に対して25質量%〜40質量%であり;前記カチオン性ウレタン樹脂(C)と前記カチオン性フェノール系重縮合物(D)との質量比率が、33.3:66.7〜49:51である; That is, the present invention includes a metal compound (A) containing titanium (hereinafter referred to as titanium compound (A)), a metal compound (B) containing magnesium (hereinafter referred to as magnesium compound (B)), A polycondensate of a cationic urethane resin (C) having at least one cationic functional group selected from primary to tertiary amino groups and quaternary ammonium bases, a phenol compound and aldehydes, and is cationic. cationic phenolic polycondensates having a functional group and (D), containing either one or both of the metal compound containing the titanium or metal compound containing the magnesium Ru Shiodea with phosphoric acid A surface-treated film; the titanium content in the surface-treated film is 1% by mass to 4% by mass with respect to the total solid content; The content of gnesium is 0.2% by mass to 2% by mass with respect to the total solid content; the content of the cationic urethane resin (C) in the surface treatment film is 20 with respect to the total solid content. The cationic phenol polycondensate (D) content in the surface treatment film is 25% by mass to 40% by mass with respect to the total solid content; The mass ratio of the urethane resin (C) and the cationic phenol polycondensate (D) is 33.3: 66.7 to 49:51;

前記表面処理皮膜の皮膜量が、0.1g/m〜3g/mであってもよい。
また、前記表面処理皮膜の上層に、皮膜量が0.2g/m〜5g/mである有機無機複合皮膜を更に形成してもよい。
Coating amount of the surface treatment film may be 0.1g / m 2 ~3g / m 2 .
Further, the upper layer of the surface treatment film, coating weight may be further formed an organic-inorganic composite coating film is 0.2g / m 2 ~5g / m 2 .

本発明に係る非クロム系表面処理鋼板は、クロメート系表面処理剤と同等以上の加工後耐食性を有する。更に、その製造方法も簡易であり、低コストで製造可能である。   The non-chromium surface-treated steel sheet according to the present invention has post-processing corrosion resistance equal to or higher than that of the chromate-based surface treatment agent. Furthermore, the manufacturing method is also simple and can be manufactured at low cost.

以下に、本発明の好適な実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明における表面処理用組成物中のチタン化合物(A)としては、特に対となるアニオンを限定するものではないが、例えば、チタンの酸化物、水酸化物、錯化合物、無機酸もしくは有機酸との塩等であり、カチオン性ウレタン樹脂(C)及びカチオン性フェノール系重縮合物(D)と相溶性の良いものであることが好ましい。具体的に、チタン化合物(A)としては、例えば、硫酸チタニルTiOSO、ジイソプロポキシチタニウムビスアセチルアセトン(CTi[OCH(CH、乳酸とチタニウムアルコキシドとの反応物、チタンラウレート、チタニウムアセチルアセトネートTi(OC(=CH)CHCOCH))、酢酸チタン、硝酸チタン、硫酸チタン、リン酸チタン、炭酸チタン、チタンフッ化水素酸、チタンフッ化アンモニウムなどを用いることができる。The titanium compound (A) in the composition for surface treatment in the present invention is not particularly limited to a pair of anions, but examples thereof include titanium oxide, hydroxide, complex compound, inorganic acid or organic acid. And the like, and preferably have good compatibility with the cationic urethane resin (C) and the cationic phenol polycondensate (D). Specifically, examples of the titanium compound (A) include titanyl sulfate TiOSO 4 , diisopropoxytitanium bisacetylacetone (C 5 H 7 O 2 ) 2 Ti [OCH (CH 3 ) 2 ] 2 , lactic acid and titanium alkoxide, Reaction product, titanium laurate, titanium acetylacetonate Ti (OC (= CH 2 ) CH 2 COCH 3 )) 3 , titanium acetate, titanium nitrate, titanium sulfate, titanium phosphate, titanium carbonate, titanium hydrofluoric acid, titanium fluoride Ammonium fluoride or the like can be used.

チタン化合物(A)は、全固形分に対するチタンとして1質量%〜4質量%含有する。1質量%未満では平面部耐食性(耐白錆性)が不十分であり、4質量%を越えると塗布液の状態のまま樹脂がゲル化しやすくなり、成膜性不足による円筒加工後耐食性低下が生じる。   A titanium compound (A) contains 1 mass%-4 mass% as titanium with respect to the total solid. If it is less than 1% by mass, the corrosion resistance (white rust resistance) of the flat portion is insufficient, and if it exceeds 4% by mass, the resin tends to gel in the state of the coating solution, and the corrosion resistance decreases after cylindrical processing due to insufficient film-forming properties. Arise.

本発明における表面処理組成物中のマグネシウム化合物(B)としては、特に対となるアニオンを限定するものではないが、例えば、マグネシウムの酸化物、水酸化物、錯化合物、無機酸もしくは有機酸との塩等であり、カチオン性ウレタン樹脂(C)及びカチオン性フェノール系重縮合物(D)と相溶性の良いものであることが好ましい。具体例を挙げると、例えば、硝酸マグネシウム、硫酸マグネシウム、重リン酸マグネシウム、炭酸マグネシウム、酢酸マグネシウム、フッ化マグネシウム、酸化マグネシウム、水酸化マグネシウムなどが使用できる。   The magnesium compound (B) in the surface treatment composition in the present invention is not particularly limited to the anion to be paired. For example, magnesium oxide, hydroxide, complex compound, inorganic acid or organic acid and It is preferable that they are good compatibility with the cationic urethane resin (C) and the cationic phenol polycondensate (D). Specific examples include magnesium nitrate, magnesium sulfate, magnesium biphosphate, magnesium carbonate, magnesium acetate, magnesium fluoride, magnesium oxide, and magnesium hydroxide.

マグネシウム化合物(B)は、全固形分に対してマグネシウムとして0.2〜2質量%含有する。0.2質量%未満では平面部耐食性(耐白錆性)が不十分であり、2質量%を越えると塗布液の状態で樹脂がゲル化しやすくなり、成膜性不足による円筒加工後耐食性低下が生じる。また、上塗り塗装性も低下する傾向が見られる。   A magnesium compound (B) contains 0.2-2 mass% as magnesium with respect to the total solid. If the amount is less than 0.2% by mass, the corrosion resistance (white rust resistance) of the flat portion is insufficient, and if it exceeds 2% by mass, the resin tends to gel in the state of the coating solution, and the corrosion resistance is reduced after cylindrical processing due to insufficient film formability. Occurs. In addition, there is a tendency for the top coatability to decrease.

なお、上記の表面処理組成物中のチタンおよびマグネシウムの含有量は、例えばICP(Inductively Coupled Plasma:誘導結合高周波プラズマ)発光分析法等を用いて定量することが可能である。   The contents of titanium and magnesium in the surface treatment composition can be quantified by using, for example, ICP (Inductively Coupled Plasma) emission analysis.

本発明の金属表面処理剤中に配合するカチオン性ウレタン樹脂(C)における「カチオン性」とは、分子構造中にカチオン性官能基を有することを意味する。かかるカチオン性官能基としては、下記一般式(I)〜(IV)で表される基などが挙げられる。かかるカチオン性官能基の量は、カチオン性ウレタン樹脂(C)が本発明の金属表面処理剤中に溶解もしくは分散状態で安定に存在し得る量であればよい。   “Cationic” in the cationic urethane resin (C) blended in the metal surface treating agent of the present invention means having a cationic functional group in the molecular structure. Examples of the cationic functional group include groups represented by the following general formulas (I) to (IV). The amount of the cationic functional group may be an amount that allows the cationic urethane resin (C) to stably exist in a dissolved or dispersed state in the metal surface treatment agent of the present invention.

Figure 0005363117
Figure 0005363117

ここで、上記の各一般式におけるR、R、R、R、及びRは、それぞれ互いに独立に水素原子、炭素数1〜10好ましくは1〜6の直鎖もしくは分枝鎖のアルキル基、又は炭素数1〜10好ましくは1〜6の直鎖もしくは分枝鎖のヒドロキシアルキル基を表す。また、R及びRは、それぞれ互いに独立に炭素数2〜10好ましくは2〜6の直鎖もしくは分枝鎖のアルキレン基を表す。また、A及びBは、水酸イオン又は酸イオンを表す。Here, R 1 , R 2 , R 3 , R 6 , and R 7 in each of the above general formulas are each independently a hydrogen atom, a linear or branched chain having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms. Or a linear or branched hydroxyalkyl group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms. R 4 and R 5 each independently represent a linear or branched alkylene group having 2 to 10 carbon atoms, preferably 2 to 6 carbon atoms. A and B represent a hydroxide ion or an acid ion.

上記一般式(I)、(II)、(III)及び(IV)において、R、R、R、R、及びRが表す、炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。また、炭素数1〜10のヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、2−ヒドロキシエチル基、1−ヒドロキシエチル基、3−ヒドロキシプロピル基、4−ヒドロキシブチル基、5−ヒドロキシペンチル基、6−ヒドロキシヘキシル基、7−ヒドロキシヘプチル基、8−ヒドロキシオクチル基、9−ヒドロキシノニル基、10−ヒドロキシデシル基等が挙げられる。一般式(III)及び(IV)において、R及びRが表す、炭素数2〜10のアルキレン基としては、例えば、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、2−エチル−ヘキシレン基、デカメチレン基等が挙げられる。また、一般式(II)及び(IV)において、A及びBが表す酸イオンとしては、例えば、ハロゲンイオン(塩素イオン、臭素イオン、フッ素イオン等)、硫酸イオン、硝酸イオン、リン酸イオン等の無機酸イオン、酢酸イオン、ギ酸イオン等の有機酸イオンが挙げられる。Examples of the alkyl group having 1 to 10 carbon atoms represented by R 1 , R 2 , R 3 , R 6 , and R 7 in the general formulas (I), (II), (III), and (IV) include, for example, , Methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and the like. Examples of the hydroxyalkyl group having 1 to 10 carbon atoms include a hydroxymethyl group, a 2-hydroxyethyl group, a 1-hydroxyethyl group, a 3-hydroxypropyl group, a 4-hydroxybutyl group, a 5-hydroxypentyl group, Examples include 6-hydroxyhexyl group, 7-hydroxyheptyl group, 8-hydroxyoctyl group, 9-hydroxynonyl group, 10-hydroxydecyl group and the like. In the general formulas (III) and (IV), the alkylene group having 2 to 10 carbon atoms represented by R 4 and R 5 includes, for example, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, hexa Examples include methylene group, octamethylene group, 2-ethyl-hexylene group, decamethylene group and the like. In the general formula (II) and (IV), A - and B - Examples of the acid ion represented by, for example, a halogen ion (chloride ion, bromide ion, fluoride ion, etc.), sulfate ion, nitrate ion, phosphate ion Organic acid ions such as inorganic acid ions such as acetate ions and formate ions.

また、本発明で用いるカチオン性ウレタン樹脂(C)は、例えば、水溶性のもの又は水系エマルジョン形態のものである。   Moreover, the cationic urethane resin (C) used by this invention is a thing of a water-soluble thing or a water-system emulsion form, for example.

本発明で用いるカチオン性ウレタン樹脂(C)は、上記のようなカチオン性官能基を有することが必要であるが、かかるカチオン性官能基は、カチオン性フェノール系重縮合物(D)(すなわち、フェノール系化合物とアルデヒド類との重縮合物であってカチオン性のもの(D))やチタン化合物(A)やマグネシウム化合物(B)との相溶性に寄与する。カチオン性ウレタン樹脂(C)の水への溶解性又は分散性は、該樹脂の水への自己溶解性又は自己分散性に基づいて達成されてもよく、またカチオン性界面活性剤(例えばアルキル4級アンモニウム塩等)及び/又はノニオン性界面活性剤(例えばアルキルフェニルエーテル等)の助けを借りて達成されてもよい。   The cationic urethane resin (C) used in the present invention needs to have a cationic functional group as described above, and such a cationic functional group is a cationic phenol-based polycondensate (D) (that is, It is a polycondensate of a phenolic compound and an aldehyde and contributes to compatibility with a cationic compound (D)), a titanium compound (A), and a magnesium compound (B). The solubility or dispersibility of the cationic urethane resin (C) in water may be achieved based on the self-solubility or self-dispersibility of the resin in water, and a cationic surfactant (for example, alkyl 4 Quaternary ammonium salts and the like) and / or nonionic surfactants (such as alkyl phenyl ethers).

カチオン性ウレタン樹脂(C)としては、例えば、ポリオール、ポリエーテルポリオール、ポリエステルポリオール等のポリオール類と脂肪族、脂環式もしくは芳香族ポリイソシアネートとの縮重合物であるウレタン樹脂において、用いるポリオールの一部として、(置換)アミノ基を有するポリオール又は窒素原子を主鎖中に有するポリオールを用いることによって得られるウレタン樹脂、該ウレタン樹脂の窒素原子を4級化剤で4級化したウレタン樹脂などが挙げられる。   As the cationic urethane resin (C), for example, in a urethane resin which is a polycondensation product of polyols such as polyols, polyether polyols and polyester polyols and aliphatic, alicyclic or aromatic polyisocyanates, For example, a urethane resin obtained by using a polyol having a (substituted) amino group or a polyol having a nitrogen atom in the main chain, a urethane resin in which the nitrogen atom of the urethane resin is quaternized with a quaternizing agent, etc. Is mentioned.

上記において、ポリオールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、ネオペンチルグリコール、1,2−ブチレングリコール、1,3−ブチレングリコール、1,4−ブチレングリコール、ヘキサメチレングリコール、ビスフェノールA、水添ビスフェノールA、トリメチロールプロパン、1,2−プロパンジオール、1,3−プロパンジオール、2−メチル−1,3−プロパンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、1,4−ブタンジオール、ネオペンチルグリコール、3−メチル−2,4−ペンタンジオール、2,4−ペンタンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2,4−ジエチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、3,5−ヘプタンジオール、1,8−オクタンジオール、2−メチル−1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール等の脂肪族ジオール化合物、トリメチロールエタン、トリメチロールプロパン、ヘキシトール類、ペンチトール類、グリセリン、ジグリセリン、ポリグリセリン、ペンタエリスリトール、ジペンタエリスリトール、テトラメチロールプロパン等の三価以上の脂肪族又は脂環族アルコール化合物等が挙げられる。   In the above, as the polyol, for example, ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, neopentyl glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, hexamethylene glycol, bisphenol A, hydrogenated bisphenol A, trimethylolpropane, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2- Butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3 -Methyl-1,5-pe Tandiol, 2-methyl-2,4-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 3,5-heptanediol, 1,8 -Aliphatic diol compounds such as octanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, trimethylolethane, trimethylolpropane, hexitols, pentitols, Examples thereof include trivalent or higher aliphatic or alicyclic alcohol compounds such as glycerin, diglycerin, polyglycerin, pentaerythritol, dipentaerythritol, and tetramethylolpropane.

上記において、ポリエーテルポリオールとしては、例えば、エチレングリコール、ジエチレングリコ−ル、トリエチレングリコール等のエチレンオキサイド付加物、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール等のプロピレンオキサイド付加物、上記のポリオールのエチレンオキサイド及び/又はプロピレンオキサイド付加物、ポリテトラメチレングリコール等が挙げられる。   In the above, examples of the polyether polyol include ethylene oxide adducts such as ethylene glycol, diethylene glycol and triethylene glycol, propylene oxide adducts such as propylene glycol, dipropylene glycol and tripropylene glycol, and ethylene of the above polyol. Examples thereof include oxides and / or propylene oxide adducts, polytetramethylene glycol and the like.

上記において、ポリエステルポリオールとしては、例えば、上記ポリオールとその化学量論的量より少ない量の、多価カルボン酸又はその無水物、ハライド、エステル等のエステル形成性誘導体との直接エステル化反応及び/又はエステル交換反応により得られるものや、ラクトン類を上記ポリオールにより開環して得られるものや、ポリカーボネートポリオールなどが挙げられる。多価カルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、2−メチルコハク酸、2−メチルアジピン酸、3−メチルアジピン酸、3−メチルペンタン二酸、2−メチルオクタン二酸、3,8−ジメチルデカン二酸、3,7−ジメチルデカン二酸、ダイマー酸、水添ダイマー酸等の脂肪族ジカルボン酸類や、シクロヘキサンジカルボン酸等の脂環式ジカルボン酸類や、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸類や、トリメリット酸、トリメシン酸、ひまし油脂肪酸の三量体等のトリカルボン酸類や、ピロメリット酸等のテトラカルボン酸などが挙げられる。そのエステル形成性誘導体としては、例えば、これらの多価カルボン酸の酸無水物や、該多価カルボン酸のクロライドやブロマイド等のハライドや、該多価カルボン酸のメチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、アミルエステル等の低級脂肪族エステル等が挙げられる。上記ラクトン類としては、例えば、γ−カプロラクトン、δ−カプロラクトン、ε−カプロラクトン、ジメチル−ε−カプロラクトン、δ−バレロラクトン、γ−バレロラクトン、γ−ブチロラクトン等のラクトン類等が挙げられる。   In the above, as the polyester polyol, for example, a direct esterification reaction between the polyol and an ester-forming derivative such as a polyvalent carboxylic acid or an anhydride thereof, a halide, an ester or the like in an amount less than the stoichiometric amount and / or Or what is obtained by transesterification, what is obtained by ring-opening lactones with the said polyol, polycarbonate polyol, etc. are mentioned. Examples of the polyvalent carboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, 2-methylsuccinic acid, and 2-methyladipic acid. Aliphatic such as 3-methyladipic acid, 3-methylpentanedioic acid, 2-methyloctanedioic acid, 3,8-dimethyldecanedioic acid, 3,7-dimethyldecanedioic acid, dimer acid, hydrogenated dimer acid, etc. Dicarboxylic acids, cycloaliphatic dicarboxylic acids such as cyclohexanedicarboxylic acid, aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, trimellitic acid, trimesic acid, castor oil fatty acid trimer, etc. And tetracarboxylic acids such as pyromellitic acid. Examples of the ester-forming derivatives include acid anhydrides of these polyvalent carboxylic acids, halides such as chlorides and bromides of the polyvalent carboxylic acids, methyl esters, ethyl esters, and propyl esters of the polyvalent carboxylic acids. , Lower aliphatic esters such as isopropyl ester, butyl ester, isobutyl ester, and amyl ester. Examples of the lactones include lactones such as γ-caprolactone, δ-caprolactone, ε-caprolactone, dimethyl-ε-caprolactone, δ-valerolactone, γ-valerolactone, and γ-butyrolactone.

上記において、(置換)アミノ基を有するポリオール又は窒素原子を主鎖中に有するポリオールとしては、例えば、下記一般式(V)又は(VI)で表されるポリオールなどが挙げられる。かかるポリオールの具体例として、N,N−ジメチルアミノジメチロールプロパン、N−メチル−N,N−ジエタノールアミンなどが挙げられる。また、4級化剤としては、RCl、RBr、RCl、RBr(式中、R及びRは一般式(II)及び(IV)におけると同義である)などが挙げられる。In the above, examples of the polyol having a (substituted) amino group or the polyol having a nitrogen atom in the main chain include polyols represented by the following general formula (V) or (VI). Specific examples of such polyols include N, N-dimethylaminodimethylolpropane, N-methyl-N, N-diethanolamine and the like. Further, as the quaternizing agent, R 3 Cl, R 3 Br, R 7 Cl, R 7 Br (wherein R 3 and R 7 are as defined in the general formulas (II) and (IV)), etc. Is mentioned.

Figure 0005363117
Figure 0005363117

ここで、上記の一般式におけるR、R、R、R及びRは、上記の一般式(I)及び(III)において定義したものと同義である。また、Rは、炭素数2〜10好ましくは2〜6の直鎖もしくは分枝鎖のアルキレン基を表すが、そのいずれかの炭素上に−NR基が置換している。Here, R 1 , R 2 , R 4 , R 5 and R 6 in the above general formula are synonymous with those defined in the above general formulas (I) and (III). R 8 represents a linear or branched alkylene group having 2 to 10 carbon atoms, preferably 2 to 6 carbon atoms, and —NR 1 R 2 group is substituted on any carbon thereof.

カチオン性ウレタン樹脂(C)に関し、脂肪族、脂環式もしくは芳香族ポリイソシアネートとしては、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネートエステル、水添キシリレンジイソシアネート、1,4−シクロヘキシレンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、2,4’−ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、3,3’−ジメトキシ−4,4’−ビフェニレンジイソシアネート、1,5−ナフタレンジイソシアネート、1,5−テトラヒドロナフタレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、2,4’−ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等が挙げられる。これらの中でも、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネートエステル、水添キシリレンジイソシアネート、1,4−シクロヘキシレンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、2,4’−ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂肪族または脂環式ポリイソシアネート化合物を用いる場合には、得られる皮膜が耐候性にも優れたものとなるので好ましい。   Regarding the cationic urethane resin (C), examples of the aliphatic, alicyclic or aromatic polyisocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate ester, hydrogenated xylylene diisocyanate, and 1,4-cyclohexylene diisocyanate. 4,4'-dicyclohexylmethane diisocyanate, 2,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, 3,3'-dimethoxy-4,4'-biphenylene diisocyanate, 1,5-naphthalene diisocyanate, 1,5-tetrahydronaphthalene Diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'- Phenyl diisocyanate, phenylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, and the like. Among these, for example, tetramethylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate ester, hydrogenated xylylene diisocyanate, 1,4-cyclohexylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, 2,4′-dicyclohexylmethane diisocyanate, When an aliphatic or alicyclic polyisocyanate compound such as isophorone diisocyanate is used, the resulting film is preferable because it has excellent weather resistance.

本発明のカチオン性ウレタン樹脂(C)は、例えば、シリル変性した、カチオン性の水溶性もしくは水系エマルジョンウレタン樹脂であってもよい。かかるシリル変性ウレタン樹脂を用いる場合には、形成される皮膜の耐食性及び耐アルカリ性が、さらに向上する。このシリル変性は、水溶性もしくは水系エマルジョンウレタン樹脂の合成段階でシランカップリング剤を用いることにより行われ、より具体的な変性方法については特に制限されないが、例えば、ポリオール類(一部に(置換)アミノ基を有するポリオール又は窒素原子を主鎖中に有するポリオールを使用)とシランカップリング剤とを反応させた後に脂肪族、脂環式もしくは芳香族ポリイソシアネートを縮重合させたり、ポリオール類(一部に(置換)アミノ基を有するポリオール又は窒素原子を主鎖中に有するポリオールを使用)と脂肪族、脂環式もしくは芳香族ポリイソシアネートとの縮重合物にシランカップリング剤を反応させたりすることにより、行われる。   The cationic urethane resin (C) of the present invention may be, for example, a silyl-modified cationic water-soluble or aqueous emulsion urethane resin. When such a silyl-modified urethane resin is used, the corrosion resistance and alkali resistance of the formed film are further improved. This silyl modification is performed by using a silane coupling agent in the synthesis step of a water-soluble or water-based emulsion urethane resin, and a more specific modification method is not particularly limited. For example, polyols (partly (substitution ) Use a polyol having an amino group or a polyol having a nitrogen atom in the main chain) and a silane coupling agent, and then reacting an aliphatic, alicyclic or aromatic polyisocyanate with a polycondensation or a polyol ( A silane coupling agent may be reacted with a polycondensation product of an aliphatic, alicyclic or aromatic polyisocyanate with a polyol having a (substituted) amino group or a polyol having a nitrogen atom in the main chain) Is done.

シリル変性する際のシランカップリング剤の種類については、特に制限はない。シリル変性する際のシランカップリング剤として好ましいものは、例えば、アミノ基(1級もしくは2級アミノ基)又はエポキシ基を有するシランカップリング剤である。   There are no particular restrictions on the type of silane coupling agent used in the silyl modification. A preferable silane coupling agent for silyl modification is, for example, a silane coupling agent having an amino group (primary or secondary amino group) or an epoxy group.

シリル変性する際のシランカップリング剤の使用量としては特に制限はないが、ポリオール類(一部に(置換)アミノ基を有するポリオール又は窒素原子を主鎖中に有するポリオールを使用)と脂肪族、脂環式もしくは芳香族ポリイソシアネートとシランカップリング剤との合計質量を基準にして、例えば、0.05質量%〜10質量%であることが上記効果の発現上好ましく、例えば、0.5質量%〜5質量%であることが、上記効果の発現上より好ましい。シランカップリング剤を反応させる際の反応温度については特に制限はなく、例えば0℃〜50℃で反応を行えばよい。   The amount of the silane coupling agent used for the silyl modification is not particularly limited, but polyols (a polyol having a (substituted) amino group or a polyol having a nitrogen atom in the main chain) and an aliphatic group are used. On the basis of the total mass of the alicyclic or aromatic polyisocyanate and the silane coupling agent, it is preferably 0.05% by mass to 10% by mass in view of the above effect, for example 0.5 It is more preferable that the content is 5% by mass to 5% by mass in terms of expression of the above effects. There is no restriction | limiting in particular about the reaction temperature at the time of making a silane coupling agent react, For example, what is necessary is just to react at 0 to 50 degreeC.

シリル変性により耐食性が向上する理由は定かではないが、シリル変性にすることより、カチオン性ウレタン樹脂(C)の金属基材との密着性が高まったり、さらには酸素や塩素等の腐食因子の透過が抑制されることによりバリア性が高まったりすることによると推測される。   The reason why the corrosion resistance is improved by the silyl modification is not clear, but by using the silyl modification, the adhesion of the cationic urethane resin (C) to the metal substrate is increased, and further, corrosion factors such as oxygen and chlorine are added. It is presumed that the barrier property is increased by suppressing the transmission.

上記のカチオン性ウレタン樹脂(C)の中で、皮膜の金属材料への密着性や皮膜の耐水性へ悪影響を及ぼす恐れがある可溶化剤もしくは乳化剤としての界面活性剤を使用しないソープフリーのもの或いはその使用量を抑えたものが、より好ましい。   Among the above cationic urethane resins (C), soap-free products that do not use a surfactant as a solubilizer or emulsifier that may adversely affect the adhesion of the film to the metal material and the water resistance of the film Or what suppressed the usage-amount is more preferable.

カチオン性ウレタン樹脂(C)は、全固形分に対して20〜35質量%含有する。カチオン性ウレタン樹脂(C)を特定比率含有させることにより、円筒加工後耐食性を向上できる。この含有量が20質量%未満では円筒加工後の耐食性の低下が起こり、35質量%を超えると耐エタノール性が著しく低下し、且つ塗布液の状態で樹脂がゲル化しやすい等の不具合が生じるため、望ましくない。   Cationic urethane resin (C) contains 20-35 mass% with respect to the total solid. By containing a specific proportion of the cationic urethane resin (C), the corrosion resistance after cylindrical processing can be improved. If this content is less than 20% by mass, the corrosion resistance after cylindrical processing will decrease, and if it exceeds 35% by mass, ethanol resistance will remarkably decrease, and problems such as the resin being easily gelled in the state of the coating solution will occur. Is not desirable.

本発明の金属表面処理剤中に含有させるカチオン性フェノール系重縮合物(D)(すなわち、フェノール系化合物とアルデヒド類との重縮合物であってカチオン性のもの(D))における「カチオン性」とは、カチオン性官能基を有することを意味する。かかるカチオン性官能基としては、例えば、前記一般式(I)又は(II)で表されるものを挙げることができる。カチオン性フェノール系重縮合物(D)は、かかるカチオン性官能基の少なくとも1種を有していればよい。これらのカチオン性官能基は、例えば、フェノール系化合物とアルデヒド類とを重縮合させる際に、前記一般式(I)で表される(置換)アミノ基に対応するアンモニアもしくはアミンを共存させることにより導入することができる。本発明で使用するカチオン性フェノール系重縮合物(D)は、例えば、上記重縮合反応を酸性触媒の存在下に行って得られるノボラック型フェノール系重縮合物であることが好ましい。また本発明で使用するカチオン性フェノール系重縮合物(D)は、例えば上記ノボラック型フェノール系重縮合物をホウ素変性、ケイ素変性、リン変性、重金属変性、窒素変性、イオウ変性、油変性、ロジン変性等の公知の手法により変性したものであってもよい。   “Cationicity” in the cationic phenol-based polycondensate (D) to be contained in the metal surface treatment agent of the present invention (that is, a polycondensate of a phenolic compound and an aldehyde that is cationic (D)) "Means having a cationic functional group. Examples of the cationic functional group include those represented by the general formula (I) or (II). The cationic phenol-based polycondensate (D) only needs to have at least one kind of such a cationic functional group. These cationic functional groups are obtained by, for example, coexisting ammonia or amine corresponding to the (substituted) amino group represented by the general formula (I) when polycondensation of a phenolic compound and an aldehyde. Can be introduced. The cationic phenol polycondensate (D) used in the present invention is preferably, for example, a novolak type phenol polycondensate obtained by performing the polycondensation reaction in the presence of an acidic catalyst. The cationic phenol polycondensate (D) used in the present invention is, for example, the above-mentioned novolak type phenol polycondensate modified with boron, silicon, phosphorus, heavy metal, nitrogen, sulfur, oil, rosin. It may be modified by a known method such as modification.

本発明で用いるカチオン性フェノール系重縮合物(D)を得るために使用されるフェノール系化合物は、酸性触媒及び上記の一般式(I)で表される(置換)アミノ基に対応するアンモニアもしくはアミンの存在下にアルデヒド類と重縮合してカチオン性フェノール系重縮合物(D)を生ずることができる限り、特に限定されない。かかるフェノール系化合物として、例えば、フェノール、m−クレゾール、m−エチルフェノール、m−プロピルフェノール、m−ブチルフェノール、p−ブチルフェノール、o−ブチルフェノール、レゾルシノール、ハイドロキノン、カテコール、3−メトキシフェノール、4−メトキシフェノール、3−メチルカテコール、4−メチルカテコール、メチルハイドロキノン、2−メチルレゾルシノール、2,3−ジメチルハイドロキノン、2,5−ジメチルレゾルシノール、2−エトキシフェノール、4−エトキシフェノール、4−エチルレゾルシノール、3−エトキシ−4−メトキシフェノール、2−プロペニルフェノール、2−イソプロピルフェノール、3−イソプロピルフェノール、4−イソプロピルフェノール、3,4,5−トリメチルフェノール、2−イソプロポキシフェノール、4−ピロポキシフェノール、2−アリルフェノール、3,4,5−トリメトキシフェノール、4−イソプロピル−3−メチルフェノール、ピロガロール、フロログリシノール、1,2,4−ベンゼントリオール、5−イソプロピル−3−メチルフェノール、4−ブトキシフェノール、4−t−ブチルカテコール、t−ブチルハイドロキノン、4−t−ペンチルフェノール、2−t−ブチル−5−メチルフェノール、2−フェニルフェノール、3−フェニルフェノール、4−フェニルフェノール、3−フェノキシフェノール、4−フェノキシフェノール、4−へキシルオキシフェノール、4−ヘキサノイルレゾルシノール、3,5−ジイソプロピルカテコール、4−ヘキシルレゾルシノール、4−ヘプチルオキシフェノール、3,5−ジ−t−ブチルフェノール、3,5−ジ−t−ブチルカテコール、2,5−ジ−t−ブチルハイドロキノン、ジ−sec−ブチルフェノール、4−クミルフェノール、ノニルフェノール、2−シクロペンチルフェノール、4−シクロペンチルフェノール、ビスフェノールA、ビスフェノールFなどが挙げられる。これらは、各単独で用いても、または2種以上組み合わせて用いてもよい。これらのうちフェノール、o−クレゾール、m−クレゾール、p−クレゾール、ビスフェノールA、2,3−キシレノール、3,5−キシレノール、m−ブチルフェノール、p−ブチルフェノール、o−ブチルフェノール、4−フェニルフェノール、レゾルシノールが好ましく、例えば、フェノール、ビスフェノールAが最も好ましい。   The phenolic compound used to obtain the cationic phenolic polycondensate (D) used in the present invention includes an acidic catalyst and ammonia corresponding to the (substituted) amino group represented by the above general formula (I) or There is no particular limitation as long as it can be polycondensed with aldehydes in the presence of an amine to give a cationic phenol polycondensate (D). Examples of such phenolic compounds include phenol, m-cresol, m-ethylphenol, m-propylphenol, m-butylphenol, p-butylphenol, o-butylphenol, resorcinol, hydroquinone, catechol, 3-methoxyphenol, 4-methoxy. Phenol, 3-methylcatechol, 4-methylcatechol, methylhydroquinone, 2-methylresorcinol, 2,3-dimethylhydroquinone, 2,5-dimethylresorcinol, 2-ethoxyphenol, 4-ethoxyphenol, 4-ethylresorcinol, 3 -Ethoxy-4-methoxyphenol, 2-propenylphenol, 2-isopropylphenol, 3-isopropylphenol, 4-isopropylphenol, 3,4,5-tri Tylphenol, 2-isopropoxyphenol, 4-pyropoxyphenol, 2-allylphenol, 3,4,5-trimethoxyphenol, 4-isopropyl-3-methylphenol, pyrogallol, phloroglicinol, 1,2,4 -Benzenetriol, 5-isopropyl-3-methylphenol, 4-butoxyphenol, 4-t-butylcatechol, t-butylhydroquinone, 4-t-pentylphenol, 2-t-butyl-5-methylphenol, 2- Phenylphenol, 3-phenylphenol, 4-phenylphenol, 3-phenoxyphenol, 4-phenoxyphenol, 4-hexyloxyphenol, 4-hexanoylresorcinol, 3,5-diisopropylcatechol, 4-hexylresorcinol 4-heptyloxyphenol, 3,5-di-t-butylphenol, 3,5-di-t-butylcatechol, 2,5-di-t-butylhydroquinone, di-sec-butylphenol, 4-cumylphenol, Nonylphenol, 2-cyclopentylphenol, 4-cyclopentylphenol, bisphenol A, bisphenol F, etc. are mentioned. These may be used singly or in combination of two or more. Of these, phenol, o-cresol, m-cresol, p-cresol, bisphenol A, 2,3-xylenol, 3,5-xylenol, m-butylphenol, p-butylphenol, o-butylphenol, 4-phenylphenol, resorcinol For example, phenol and bisphenol A are most preferable.

本発明で用いるカチオン性フェノール系重縮合物(B)を得るために使用されるアルデヒド類は、酸性触媒及び上記の一般式(I)で表される(置換)アミノ基に対応するアンモニアもしくはアミンの存在下に前記フェノール系化合物と重縮合してカチオン性フェノール系重縮合物(B)を生ずることができる限り、特に限定されない。かかるアルデヒド類として、例えば、ホルムアルデヒド、トリオキサン、フルフラール、パラホルムアルデヒド、ベンズアルデヒド、メチルヘミホルマール、エチルへミホルマール、プロピルへミホルマール、ブチルヘミホルマール、フェニルへミホルマール、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、α−フェニルプロピルアルデヒド、β−フェニルプロピルアルデヒド、o−ヒドロキシベンズアルデヒド、m−ヒドロキシベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−クロロベンズアルデヒド、o−ニトロベンズアルデヒド、m−ニトロベンズアルデヒド、p−ニトロベンズアルデヒド、o−メチルベンズアルデヒド、m−メチルベンズアルデヒド、p−メチルベンズアルデヒド、p−エチルベンズアルデヒド、p−n−ブチルベンズアルデヒドなどが挙げられる。これらの化合物は、各単独で用いても2種以上組み合わせて用いてもよい。これらの化合物うち、例えば、ホルムアルデヒド、パラホルムアルデヒド、フルフラール、ベンズアルデヒド、サリチルアルデヒドが好ましく、ホルムアルデヒド、パラホルムアルデヒドが最も好ましい。   The aldehydes used to obtain the cationic phenol-based polycondensate (B) used in the present invention are an acidic catalyst and ammonia or amine corresponding to the (substituted) amino group represented by the above general formula (I) Is not particularly limited as long as it can be polycondensed with the phenolic compound in the presence of water to produce a cationic phenolic polycondensate (B). Examples of such aldehydes include formaldehyde, trioxane, furfural, paraformaldehyde, benzaldehyde, methyl hemiformal, ethyl hemiformal, propyl hemiformal, butyl hemiformal, phenyl hemiformal, acetaldehyde, propylaldehyde, phenylacetaldehyde, α-phenylpropyl. Aldehyde, β-phenylpropylaldehyde, o-hydroxybenzaldehyde, m-hydroxybenzaldehyde, p-hydroxybenzaldehyde, o-chlorobenzaldehyde, o-nitrobenzaldehyde, m-nitrobenzaldehyde, p-nitrobenzaldehyde, o-methylbenzaldehyde, m- Methylbenzaldehyde, p-methylbenzaldehyde, p-ethylbenzen Examples include zaldehyde and pn-butylbenzaldehyde. These compounds may be used alone or in combination of two or more. Among these compounds, for example, formaldehyde, paraformaldehyde, furfural, benzaldehyde, and salicylaldehyde are preferable, and formaldehyde and paraformaldehyde are most preferable.

本発明で用いるカチオン性フェノール系重縮合物(D)を得るために使用されるアミンとしては、例えば、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、イソプロピルアミン、ジイソプロピルアミン、n−ブチルアミン、ジ−n−ブチルアミン、トリ−n−ブチルアミン、イソブチルアミン、ジイソブチルアミン、sec−ブチルアミン、n−アミルアミン、ジ−n−アミルアミン、トリ−n−アミルアミン、sec−アミルアミン、sec−ヘキシルアミン、2−エチルヘキシルアミン、ジオクチルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルエタノールアミン、N−エチルエタノールアミン、N−ブチルエタノールアミン、N,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミン、N−エチルジエタノールアミン、N−n−ブチルジエタノールアミン、N,N−ジ−n−ブチルエタノールアミン、N−メチルプロパノールアミン、トリイソプロパノールアミンなどが挙げられる。また、4級化剤としては、例えばカチオン性ウレタン樹脂(C)の製造において記載したような4級化剤を用いることができる。   Examples of the amine used for obtaining the cationic phenol polycondensate (D) used in the present invention include monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, isopropylamine, diisopropylamine, n- Butylamine, di-n-butylamine, tri-n-butylamine, isobutylamine, diisobutylamine, sec-butylamine, n-amylamine, di-n-amylamine, tri-n-amylamine, sec-amylamine, sec-hexylamine, 2 -Ethylhexylamine, dioctylamine, ethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, N-ethylethanolamine, N-butylethanolamine, N N-dimethylethanolamine, N, N-diethylethanolamine, N-ethyldiethanolamine, Nn-butyldiethanolamine, N, N-di-n-butylethanolamine, N-methylpropanolamine, triisopropanolamine, etc. It is done. As the quaternizing agent, for example, a quaternizing agent described in the production of the cationic urethane resin (C) can be used.

本発明で用いるカチオン性フェノール系重縮合物(D)を得るために使用される酸性触媒としては、以下の例示に限定されるものではないが、例えば、塩酸、硫酸、リン酸、ギ酸、酢酸、シュウ酸、酪酸、乳酸、ベンゼンスルホン酸、p−トルエンスルホン酸、酒石酸、ホウ酸等、又は、塩化亜鉛や酢酸亜鉛のような金属との塩を用いることができる。これらの触媒は、各単独で用いても2種以上組み合わせて用いてもよい。   The acidic catalyst used for obtaining the cationic phenol-based polycondensate (D) used in the present invention is not limited to the following examples. For example, hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid , Oxalic acid, butyric acid, lactic acid, benzenesulfonic acid, p-toluenesulfonic acid, tartaric acid, boric acid, or a salt with a metal such as zinc chloride or zinc acetate can be used. These catalysts may be used alone or in combination of two or more.

本発明で用いるカチオン性フェノール系重縮合物(D)は、全固形分に対して25質量%〜40質量%含有する。カチオン性フェノール系重縮合物(D)の含有量が25質量%未満では、耐エタノール性が低下し、且つ塗布液の状態で樹脂がゲル化する等の不具合が生じ、カチオン性フェノール系重縮合物(D)の含有量が40質量%を超えると、円筒加工後耐食性が低下する。   The cationic phenol polycondensate (D) used in the present invention contains 25% by mass to 40% by mass with respect to the total solid content. If the content of the cationic phenol-based polycondensate (D) is less than 25% by mass, the ethanol resistance is lowered, and problems such as resin gelation occur in the state of the coating solution, and the cationic phenol-based polycondensation occurs. When content of a thing (D) exceeds 40 mass%, corrosion resistance will fall after cylindrical processing.

更に、本発明の金属表面処理剤中に含有させるカチオン性ウレタン樹脂(C)とカチオン性フェノール系重縮合物(D)の質量比率(質量%)は、好ましくは40:60〜49:51の範囲であり、より好ましくは42:58〜48:52の範囲であり、最も好ましくは45:55である。カチオン性ウレタン樹脂(C)の質量比率が49質量%を超えると、耐エタノール性が低下する。   Furthermore, the mass ratio (mass%) of the cationic urethane resin (C) and the cationic phenol polycondensate (D) contained in the metal surface treatment agent of the present invention is preferably 40:60 to 49:51. The range is more preferably 42:58 to 48:52, and most preferably 45:55. When the mass ratio of the cationic urethane resin (C) exceeds 49% by mass, the ethanol resistance is lowered.

以上説明の表面処理用組成物には、必要に応じて他の成分、例えば塗布外観の黄色味低減を目的としてリン酸、リン酸アンモニウム等のリン酸塩を含有させてもよく、その他塗工性を考慮して、例えば、有機溶剤、界面活性剤等を含有させてもよい。なお、表面皮膜処理には金属化合物のチタン、マグネシウムを除くカチオン成分が含まれ、かつ選択的添加物成分を含有してもよい。   The surface treatment composition described above may contain other components as necessary, for example, phosphates such as phosphoric acid and ammonium phosphate for the purpose of reducing the yellowness of the coating appearance. In consideration of the properties, for example, an organic solvent, a surfactant or the like may be contained. The surface film treatment includes a cationic component excluding titanium and magnesium, which are metal compounds, and may contain a selective additive component.

本発明の表面処理用組成物を用いて表面処理される亜鉛系めっき鋼板としては、特に限定されず、例えば、亜鉛めっき鋼板、亜鉛−ニッケルめっき鋼板、亜鉛−コバルトめっき鋼板、亜鉛−アルミニウムめっき鋼板、亜鉛−マグネシウムめっき鋼板、亜鉛−アルミニウム−マグネシウムめっき鋼板、亜鉛−鉄めっき鋼板、亜鉛−クロムめっき鋼板、亜鉛−マンガンめっき鋼板等の亜鉛系の電気めっき、溶融めっき、蒸着めっき鋼板等の亜鉛又は亜鉛系合金めっき鋼板等を挙げることができる。   It does not specifically limit as a zinc system plating steel plate surface-treated using the composition for surface treatment of this invention, For example, a zinc plating steel plate, a zinc-nickel plating steel plate, a zinc-cobalt plating steel plate, a zinc-aluminum plating steel plate Zinc-magnesium-plated steel sheet, zinc-aluminum-magnesium-plated steel sheet, zinc-iron-plated steel sheet, zinc-chromium-plated steel sheet, zinc-manganese-plated steel sheet, etc. A zinc-based alloy-plated steel sheet can be used.

次に、本発明の表面処理鋼板の製造方法について、説明する。亜鉛系めっき鋼板の表面に上記表面処理皮膜を形成するには、上述した組成の皮膜を形成する表面処理剤を、乾燥皮膜量が所定値となるように塗布し、水洗することなく加熱乾燥させる。塗布方法としては、例えば、ロールコーター塗布、ディッピング塗布、スプレー塗布等の一般の公知の方法が用いられる。塗布後の加熱乾燥手段としては、例えば、ドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉などを用いることができる。乾燥温度は、到達板温で50℃〜250℃程度で行うことが好ましい。この加熱温度が50℃未満では、皮膜中の水分が多量に残り、平面部耐食性が不十分となる。また、加熱温度が250℃を越えると、非経済的であるばかりでなく、皮膜中の樹脂成分の一部が熱分解し、皮膜に欠陥が生じる可能性がある。なお、上述した表面処理皮膜は、鋼板の片面、両面のいずれに形成してもよい。   Next, the manufacturing method of the surface treatment steel plate of this invention is demonstrated. In order to form the surface treatment film on the surface of the galvanized steel sheet, the surface treatment agent for forming the film having the composition described above is applied so that the amount of the dry film becomes a predetermined value, and is heated and dried without being washed with water. . As a coating method, for example, a commonly known method such as roll coater coating, dipping coating, spray coating or the like is used. As the heating and drying means after coating, for example, a dryer, a hot air furnace, a high frequency induction heating furnace, an infrared furnace or the like can be used. The drying temperature is preferably about 50 to 250 ° C. at the ultimate plate temperature. If this heating temperature is less than 50 ° C., a large amount of moisture remains in the film, and the flat surface corrosion resistance becomes insufficient. Further, when the heating temperature exceeds 250 ° C., not only is it uneconomical, but also a part of the resin component in the film may be thermally decomposed and defects may occur in the film. In addition, you may form the surface treatment film | membrane mentioned above on either the single side | surface of a steel plate, or both surfaces.

本発明の表面処理剤から形成された乾燥後の皮膜量は、例えば0.1g/m〜3g/mである。皮膜量が0.1g/m未満では、円筒加工後耐食性が不十分であり、一方、皮膜量が3g/mを超えると、円筒加工後外観が悪くなる。Coating amount after drying was formed from the surface treatment agent of the present invention is, for example 0.1g / m 2 ~3g / m 2 . When the coating amount is less than 0.1 g / m 2 , the corrosion resistance after cylindrical processing is insufficient, and when the coating amount exceeds 3 g / m 2 , the appearance after cylindrical processing is deteriorated.

更に、家電用途の中には、例えば灯油ストーブ用カートリッジタンクのようなしごき成形を伴い、皮膜損傷を受ける用途向けに優れた潤滑性能を有し、且つ優れた加工後耐食性も併せ持つ表面処理鋼板が要求される。そこで、本発明者らは、しごき加工後の耐食性を確保するために、更に上記の表面処理鋼板において、表面処理皮膜の上層に公知の有機無機複合皮膜を被覆することが有効であることを見出した。   Furthermore, among the household appliances, there is a surface-treated steel sheet that has excellent lubrication performance for applications subject to film damage, including iron molding such as a kerosene stove cartridge tank, and also has excellent post-processing corrosion resistance. Required. Therefore, the present inventors have found that, in order to ensure the corrosion resistance after ironing, it is effective to coat a known organic-inorganic composite film on the surface-treated film in the surface-treated steel sheet. It was.

以下に、有機無機複合皮膜を形成させる皮膜剤について説明する。   Below, the film | membrane agent which forms an organic inorganic composite film is demonstrated.

有機無機複合皮膜に用いる樹脂としては、例えば、アクリル系樹脂、エチレン−アクリル酸系共重合樹脂、エポキシ系樹脂、ポリオール系ウレタン樹脂、ポリカーボネート系ウレタン樹脂、アクリル変性シリコーン系樹脂、シリコーン変性ウレタン系樹脂、メラミン−アルキッド系樹脂、フッ素系樹脂類及びこれら樹脂の2種以上の混合物若しくは付加重合体などが挙げられる。無機成分としては、耐食性向上を目的としてシリカ等が用いられる。また、プレス成形において、鋼板に対して摺動や摩耗に対する抵抗性を付与し、表面かじりや金型の損傷を防止するため、その機能を付与する固形潤滑剤としてポリオレフィン系ワックスやテトラフルオロエチレン系ワックス等を使用してもよい。その他、例えば、無機/有機顔料や染料などの着色剤、水溶性エポキシ、シランカップリング剤等の硬化剤、溶剤、界面活性剤等を含有させてもよい。   Examples of the resin used for the organic / inorganic composite film include acrylic resins, ethylene-acrylic acid copolymer resins, epoxy resins, polyol urethane resins, polycarbonate urethane resins, acrylic modified silicone resins, and silicone modified urethane resins. Melamine-alkyd resins, fluorine resins, and mixtures or addition polymers of two or more of these resins. As the inorganic component, silica or the like is used for the purpose of improving the corrosion resistance. Also, in press molding, polyolefin wax and tetrafluoroethylene are used as solid lubricants to give the function to provide resistance to sliding and abrasion to the steel sheet and to prevent surface galling and damage to the mold. Wax or the like may be used. In addition, for example, coloring agents such as inorganic / organic pigments and dyes, water-soluble epoxies, curing agents such as silane coupling agents, solvents, surfactants, and the like may be included.

また、有機無機複合皮膜剤の塗布後の乾燥温度は、到達板温で100℃〜250℃程度の範囲で行う。加熱温度が100℃未満では、硬化が不十分で平面部耐食性が低下し、また、加熱温度が250℃を越えると、非経済的であるばかりでなく、樹脂分解起因の皮膜欠陥が生じ平面部耐食性が低下する。なお、上述した樹脂皮膜も、表面処理皮膜同様に、鋼板の片面、両面のいずれに形成してもよい。   Moreover, the drying temperature after application | coating of an organic inorganic composite coating agent is performed in the range of about 100 degreeC-250 degreeC by ultimate board temperature. If the heating temperature is less than 100 ° C., the curing is insufficient and the corrosion resistance of the flat surface portion is lowered, and if the heating temperature exceeds 250 ° C., not only is it uneconomical, but also a film defect caused by resin decomposition occurs and the flat surface portion. Corrosion resistance decreases. In addition, the resin film mentioned above may be formed on either one side or both sides of the steel plate, similarly to the surface treatment film.

有機無機複合皮膜の皮膜量は、例えば0.2g/m〜5g/mである。この皮膜量が0.2g/m未満では、しごき加工後耐食性が不十分となる。一方、皮膜量が5g/mを超えると、しごき加工時にカスが発生しやすくなり、連続プレス時に成形不良等の問題が発生する。Coating amount of the organic-inorganic composite coating is, for example 0.2g / m 2 ~5g / m 2 . When the coating amount is less than 0.2 g / m 2 , the corrosion resistance after ironing becomes insufficient. On the other hand, when the coating amount exceeds 5 g / m 2 , residue is easily generated during ironing, and problems such as molding defects occur during continuous pressing.

本発明のクロメートフリー表面処理鋼板の表面処理鋼板表面に、チタン化合物と、マグネシウム化合物と、第1〜3級アミノ基および第4級アンモニウム塩基から選ばれる少なくとも一種のカチオン性官能基を有するカチオン性ウレタン樹脂(以下、ウレタン樹脂)と、ビスフェノールAとアミン類とホルムアルデヒドとのフェノール重縮合化合物(以下、フェノール樹脂)とを含有した表面処理(後処理)皮膜及び/又は有機無機複合皮膜を付与することで、格段の耐白錆性と加工後耐食性、耐エタノール性が得られる。この性能の発現機構については定かではないが、以下に、推定されうる発現機構について説明する。ただし、本発明はこれに縛られるものではない。   Cationicity having at least one cationic functional group selected from a titanium compound, a magnesium compound, a primary to tertiary amino group, and a quaternary ammonium base on the surface-treated steel sheet surface of the chromate-free surface-treated steel sheet of the present invention. A surface treatment (post-treatment) film and / or an organic-inorganic composite film containing a urethane resin (hereinafter referred to as urethane resin) and a phenol polycondensation compound (hereinafter referred to as phenol resin) of bisphenol A, amines and formaldehyde is applied. Thus, exceptional white rust resistance, post-processing corrosion resistance, and ethanol resistance can be obtained. Although the expression mechanism of this performance is not certain, the expression mechanism that can be estimated will be described below. However, the present invention is not limited to this.

表面処理鋼板の表面に本発明の後処理剤を塗布し、焼き付けを行う際に、以下の成膜反応と性能発現が起こるものと考えられる。   When the post-treatment agent of the present invention is applied to the surface of the surface-treated steel sheet and baked, it is considered that the following film formation reaction and performance expression occur.

まず、本発明の表面処理(後処理)剤中の上記フェノール樹脂のベンゼン環上のOH基は、水中では電気陰性度の差異によりH(水素)がδ+、O(酸素)がδ−に分極し、同様に、チタンやマグネシウムを含有する金属化合物中のチタン、マグネシウムはδ+、残部がδ−となる。成膜反応の際に双方の間で組み替えが起こるため、正電荷に帯電したチタンやマグネシウムは、ベンゼン環上のOと電気的な相互作用により、結合を形成する。更に、上記正電荷に帯電したチタンやマグネシウムは、表面処理鋼板の表面と、負電荷に帯電した酸素を介して結合し、皮膜全体としては強固な架橋構造を形成する。特にチタンは共有結合性が強く、架橋構造の強化に寄与している。   First, the OH group on the benzene ring of the phenol resin in the surface treatment (post-treatment) agent of the present invention is polarized in water such that H (hydrogen) is δ + and O (oxygen) is δ− due to the difference in electronegativity. Similarly, titanium and magnesium in a metal compound containing titanium or magnesium are δ +, and the balance is δ−. Since recombination occurs between the two during the film formation reaction, positively charged titanium or magnesium forms a bond by electrical interaction with O on the benzene ring. Furthermore, the positively charged titanium or magnesium is bonded to the surface of the surface-treated steel plate via oxygen charged to a negative charge, and forms a strong cross-linked structure as a whole film. In particular, titanium has a strong covalent bond and contributes to strengthening of the crosslinked structure.

ここで、架橋構造の形成で、表面処理鋼板/後処理皮膜界面に、強固な密着力が発生するものと考えられる。界面の密着性が良いということは、界面への水、塩分等の腐食因子が侵入しづらく、且つ、上記のように強固な架橋構造によって形成された後処理皮膜自体の腐食因子のバリア効果は、未加工平板の平面部耐食性(後処理を伴うめっき鋼板の基本となる耐食性)発現の基本要因である。   Here, it is considered that a strong adhesion is generated at the interface of the surface-treated steel sheet / post-treatment film due to the formation of the crosslinked structure. Good interfacial adhesion means that it is difficult for corrosion factors such as water and salt to enter the interface, and the barrier effect of the corrosion factor of the post-treatment film itself formed by a strong cross-linked structure as described above is This is a basic factor for developing the corrosion resistance of the flat portion of the unprocessed flat plate (corrosion resistance that is the basis of the plated steel sheet with post-treatment).

これに加え、下記の表面電位均一効果も、平面部耐食性発現の要因となっていると考えられる。   In addition to this, the following surface potential uniformity effect is also considered to be a factor in developing the corrosion resistance of the flat surface.

フェノール樹脂は、共鳴安定化構造を有する化合物であり、チタン化合物は、遷移金属化合物である。チタンの電子配置は3d4sであり、内側の3d軌道に電子受容が起こるものの、最外殻4s軌道の電子状態は変わらない。このため、チタンは、3d軌道の電子バッファー効果を有し、電子を受容しても電気化学的性質は変化しづらい。フェノール樹脂やチタン化合物を含有し形成された皮膜は、金属表面と反応し固着することによって、表面処理鋼板の腐食によって生ずる電子をチタンの3d軌道及び/又は、フェノール樹脂のベンゼン環内で非局在化する作用を持ち、このことによって表面電位が均一に保たれ、平面部耐食性を付与する要因となっていると考えられる。The phenol resin is a compound having a resonance stabilizing structure, and the titanium compound is a transition metal compound. The electron configuration of titanium is 3d 2 4s 2 and electron acceptance occurs in the inner 3d orbital, but the electronic state of the outermost shell 4s orbital does not change. For this reason, titanium has an electron buffer effect of 3d orbitals, and its electrochemical properties are hardly changed even when electrons are received. A film formed containing a phenolic resin or a titanium compound reacts with and adheres to the metal surface, thereby causing electrons generated by corrosion of the surface-treated steel sheet to be non-localized within the 3d orbital of titanium and / or the benzene ring of the phenolic resin. It is considered that the surface potential is kept uniform and this is a factor for imparting corrosion resistance to the flat surface.

しかしながら、上記の要因だけでは表面処理鋼板の平面部耐食性、特に亜鉛系めっき鋼板の平面部の耐白錆性は不充分であった。後処理皮膜中にマグネシウムを添加することで、性能向上が図られた。その発現機構は、以下の通りである。   However, the above-described factors alone are insufficient for the corrosion resistance of the flat surface portion of the surface-treated steel sheet, particularly the white rust resistance of the flat surface portion of the galvanized steel sheet. The performance was improved by adding magnesium to the post-treatment film. The expression mechanism is as follows.

上記架橋構造中のマグネシウムが表面処理鋼板の表面に近接して存在することで、表面処理鋼板、特に亜鉛系めっきの最表層に生成した塩基性塩化亜鉛に代表する緻密な初期腐食生成物の安定化を図り、この緻密な腐食生成物がバリア皮膜となり、白錆発生の抑制効果を発現するものと考えられる。そこで、本発明では、フェノール樹脂とチタン化合物及びマグネシウム化合物との共存が必須であり、これらの共存によってはじめて格段の平面部耐食性向上効果が得られることを見出した。   Due to the presence of magnesium in the cross-linked structure close to the surface of the surface-treated steel sheet, it is possible to stabilize a dense initial corrosion product typified by basic zinc chloride formed on the outermost surface layer of the surface-treated steel sheet, particularly zinc-based plating. It is considered that this dense corrosion product becomes a barrier film and exhibits the effect of suppressing the occurrence of white rust. Therefore, in the present invention, it has been found that the coexistence of the phenol resin with the titanium compound and the magnesium compound is indispensable, and it has been found that a remarkable effect of improving the corrosion resistance of the flat portion can be obtained only by these coexistence.

ここで補足すると、後処理剤中に添加されたチタン及びマグネシウムを含有する金属化合物によって供給されたチタン及びマグネシウムは、過不足なく架橋構造内に取り込まれなくても、余剰分が後処理皮膜中やめっき鋼板表面に金属塩として分布し、腐食環境での経時において、めっき鋼板表面に塩又はカチオンの形で泳動し、チタンの不動態化機能、及びマグネシウムの塩基性塩化亜鉛に代表する緻密な初期腐食生成物の安定化作用の相乗効果により、めっき鋼板の発銹、特に亜鉛系めっきの白錆発生の抑制に寄与しているものと考えられる。   Supplementing here, even if titanium and magnesium supplied by the metal compound containing titanium and magnesium added in the post-treatment agent are not taken into the crosslinked structure without excess or deficiency, the surplus is in the post-treatment film. It is distributed as a metal salt on the surface of the plated steel plate, migrates in the form of salt or cation on the surface of the plated steel plate over time in a corrosive environment, has a passivating function of titanium, and a dense representative of magnesium basic zinc chloride. It is thought that the synergistic effect of the stabilization action of the initial corrosion product contributes to the suppression of the occurrence of white rust in the galvanized steel sheet, particularly zinc-based plating.

更に、上記のチタン及びマグネシウムの耐食性発現効果は、加工による後処理皮膜の割れや脱落により発生する下地めっき鋼板のめっき露出部にも及ぶ。特に、亜鉛系めっきの場合には、めっきの露出部に後処理皮膜中に存在するマグネシウムが塩又はカチオンの形で泳動し、且つ作用するため、塩基性塩化亜鉛に代表する緻密な初期腐食生成物を安定化し、白錆発生抑制による加工後の耐食性が向上する。   Furthermore, the above-mentioned corrosion resistance expression effect of titanium and magnesium extends to the exposed exposed portion of the base plated steel sheet which is generated by cracking or dropping off of the post-treatment film by processing. In particular, in the case of zinc-based plating, magnesium present in the post-treatment film migrates and acts in the form of a salt or a cation on the exposed part of the plating, so that a dense initial corrosion generation typified by basic zinc chloride is generated. Stabilizes the product and improves the corrosion resistance after processing by suppressing the occurrence of white rust.

他方、後処理皮膜の割れや表面こすれが伴う円筒成形等の加工後耐食性は、上記だけでは充分とは言えない。このため、本発明者らは、加工後耐食性の向上を目指し、割れや伸びへの柔軟性に富む上記ウレタン樹脂の後処理皮膜への導入を試みた。後処理剤へウレタン樹脂を適当量添加することで、後処理剤の塗布後焼き付けの際に、ウレタン樹脂の側鎖官能基とフェノール樹脂のOH基等の極性基との間で水素結合やファンデルワールス力、強い相互作用等を介して、架橋構造が形成される。これに加え、ウレタン樹脂とフェノール樹脂がランダムに絡み合った状態で皮膜全体に分布することにより、皮膜全体が柔軟性を有し、円筒成形時にも皮膜の割れや脱落に耐えるため、後処理皮膜が有する水、塩分等の腐食因子侵入の抑制効果を保持し、優れた加工後耐食性を発現できたと考えられる。
なお、円筒成形加工品の外観評価は、後述のように、円筒成形加工の外観評価(試験前後におけるΔL値)にて行うのが好ましい。ここで言うΔL値とは、ハンター方式に準じた測色法で測定したL値の、試験前後における差を示す。この場合、以下のような基準で評価することができる。
<評価基準>
VG=白錆発生面積が5%未満
G =白錆発生面積が5%以上かつ15%未満
NG=白錆発生面積が15%以上かつ30%未満
B =白錆発生面積が30%以上かつ50%未満
VB=白錆発生面積が50%以上
On the other hand, it cannot be said that the above-mentioned corrosion resistance after processing such as cylindrical molding with cracking of the post-treatment film or surface rubbing is sufficient. For this reason, the present inventors tried to introduce into the post-treatment film of the urethane resin, which aims to improve the post-processing corrosion resistance and is rich in flexibility to cracks and elongation. When an appropriate amount of urethane resin is added to the post-treatment agent, a hydrogen bond or a fan is generated between the side chain functional group of the urethane resin and a polar group such as an OH group of the phenol resin when baking after application of the post-treatment agent. A cross-linked structure is formed through Delwars force, strong interaction, and the like. In addition, urethane resin and phenolic resin are randomly entangled and distributed throughout the film, so that the entire film has flexibility and resists cracking and falling off of the film even during cylindrical molding. It is thought that it was possible to maintain the effect of inhibiting the penetration of corrosion factors such as water and salt, and to exhibit excellent post-processing corrosion resistance.
In addition, it is preferable to perform the external appearance evaluation of the cylindrical molded product by the external appearance evaluation (ΔL value before and after the test) of the cylindrical molding process, as will be described later. Here, the ΔL value indicates a difference between before and after the test of the L value measured by the color measurement method according to the Hunter method. In this case, evaluation can be made according to the following criteria.
<Evaluation criteria>
VG = White rust generation area is less than 5% G = White rust generation area is 5% or more and less than 15% NG = White rust generation area is 15% or more and less than 30% B = White rust generation area is 30% or more and 50 Less than% VB = White rust generation area is 50% or more

ただし、ウレタン樹脂は、一般にエタノール等のアルコールとの相溶性に富むため、アルコールと接すると樹脂の膨潤が起こる性質を有する。このため、後処理皮膜の軟化や皮膜強度低下、腐食因子の皮膜内透過を促す等の皮膜性能低下を誘発する。本発明において、本発明者らは、皮膜中でのウレタン樹脂の質量比率がフェノール樹脂の質量比率を超えないように抑えることで、耐エタノール性低下を防止できることを見出した。ウレタン樹脂とフェノール樹脂がランダムに絡み合った状態、且つフェノール樹脂が主体の皮膜では、ウレタン樹脂の膨潤による皮膜の緩みを抑制する作用が発揮されるため、ラビングを伴うエタノールとの接触条件下でも皮膜の脱落損傷は起こりづらく、極めて良好な耐エタノール性が発現されるものと考えられる。
なお、摺動試験に際しては、市販のバウデン試験機を用いて、摺動面が20mm径の平坦な摺動子に市販のガーゼを取り付け、エタノールを充分に含ませた後、100g/cmの加圧、100mmの振幅、そして20mm/secのスピードの試験条件において、10回往復摺動を行い、その後の処理板摺動部の外観変化を、以下の基準で評価することができる。
<評価基準>
VG=外観変化なし
G =微かな外観変化あり
NG=明らかな外観変化あり
B =下地の部分露出あり
VB=下地完全露出
However, since urethane resins are generally highly compatible with alcohols such as ethanol, they have the property of causing resin swelling when in contact with alcohols. For this reason, it induces film performance deterioration such as softening of the post-treatment film, film strength reduction, and promotion of permeation of corrosion factors in the film. In the present invention, the present inventors have found that a decrease in ethanol resistance can be prevented by suppressing the mass ratio of the urethane resin in the film so as not to exceed the mass ratio of the phenol resin. In a film in which urethane resin and phenol resin are randomly intertwined, and a film mainly composed of phenol resin, it acts to suppress the loosening of the film due to swelling of the urethane resin, so the film can be used even in contact with ethanol with rubbing. It is considered that the drop-off damage is not likely to occur, and extremely good ethanol resistance is expressed.
In the sliding test, a commercially available bowden tester was used to attach a commercially available gauze to a flat slider having a sliding surface of 20 mm in diameter, and after sufficiently containing ethanol, 100 g / cm 2 Under the test conditions of pressure, amplitude of 100 mm, and speed of 20 mm / sec, reciprocating sliding is performed 10 times, and the appearance change of the processed plate sliding portion thereafter can be evaluated according to the following criteria.
<Evaluation criteria>
VG = No change in appearance G = There is a slight change in appearance NG = There is a clear change in appearance B = There is partial exposure of the background VB = Full exposure of the background

以上より、本発明者らは、鋭意検討を行った結果、めっき鋼板の上にチタン化合物およびマグネシウム化合物およびウレタン樹脂およびフェノール樹脂を含む後処理剤を塗布してなる後処理皮膜を付与することで、耐エタノール性、平面部耐食性(耐白錆性)、加工後耐食性が両立して良好となることを見出した。加工後耐食性向上の観点から、本発明で見出したような後処理に上記4成分を適当比、適当量含有させることを必須とした公知技術は無く、本発明ではじめて見出した技術である。   As described above, the present inventors have conducted extensive studies, and as a result, provided a post-treatment film formed by applying a post-treatment agent containing a titanium compound, a magnesium compound, a urethane resin, and a phenol resin on a plated steel sheet. It has been found that ethanol resistance, flat surface corrosion resistance (white rust resistance), and post-processing corrosion resistance are compatible. From the standpoint of improving post-processing corrosion resistance, there is no known technique that makes it necessary to contain the above four components in an appropriate ratio and an appropriate amount in the post-treatment as found in the present invention.

更に、めっき鋼板の鋼板厚み変化が生じるような、表面皮膜損傷を伴うしごき等の厳しい成形が加わった後の耐食性は、上記だけでは充分とは言えない。本発明においては、上記後処理皮膜の上に有機無機複合皮膜を付与することで、しごき等の厳しい加工後の耐食性に対する格段の向上が得られた。この性能の推定されうる発現機構について説明する。   Furthermore, the corrosion resistance after severe forming such as ironing accompanied by surface film damage that causes changes in the thickness of the plated steel sheet cannot be said to be sufficient. In the present invention, by providing the organic-inorganic composite coating on the post-treatment coating, a marked improvement in the corrosion resistance after severe processing such as ironing was obtained. The expression mechanism that can be estimated for this performance will be described.

有機無機複合処理剤の塗布後焼き付けの際に、下層後処理皮膜のウレタン樹脂の極性を有する側鎖官能基およびフェノール樹脂のOH基や側鎖官能基の極性基と、上層有機無機複合皮膜の極性を有する側鎖官能基との間で、水素結合やファンデルワールス力、強い相互作用等を介して架橋構造が形成される。その結果、界面密着力に富む後処理皮膜と有機無機複合皮膜との複層皮膜が成膜される。有機無機複合皮膜は、後処理皮膜の諸性能に加え、しごき等の厳しい加工による後処理皮膜の損傷や剥離を抑制する機能を有し、且つ皮膜自体の腐食因子のバリア効果も有するため、優れた加工後耐食性を発現すると考えられる。   During baking after application of the organic-inorganic composite treatment agent, the side chain functional group having the polarity of the urethane resin of the lower layer post-treatment film and the polar group of the OH group or side chain functional group of the phenol resin, and the upper layer organic-inorganic composite film A cross-linked structure is formed between the side chain functional groups having polarity through hydrogen bonding, van der Waals force, strong interaction, and the like. As a result, a multi-layered film of a post-process film and an organic-inorganic composite film having a high interface adhesion is formed. The organic / inorganic composite film has excellent functions because it has a function to suppress damage and peeling of the post-processed film due to severe processing such as ironing in addition to various performances of the post-processed film, and also has a barrier effect of the corrosion factor of the film itself. It is considered that the corrosion resistance is developed after processing.

以下に、本発明について実施例及び比較例を掲げて更に詳しく説明するが、本発明は、これらの実施例のみに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to only these examples.

実施例および比較例において使用した被処理金属材料を表1に、表面処理組成物の成分(A)を表2に、成分(B)を表3に、成分(C)及び成分(D)を下記に、それぞれ示す。有機無機複合皮膜組成は、表4に示す。また、処理液の塗布処理方法及び評価方法を以下に記載し、評価結果を表5〜表14に示す。   The metal materials to be treated used in Examples and Comparative Examples are shown in Table 1, the component (A) of the surface treatment composition in Table 2, the component (B) in Table 3, the component (C) and the component (D). Each is shown below. The organic / inorganic composite coating composition is shown in Table 4. Moreover, the coating processing method and evaluation method of a process liquid are described below, and an evaluation result is shown in Tables 5-14.

Figure 0005363117
Figure 0005363117

Figure 0005363117
Figure 0005363117

Figure 0005363117
Figure 0005363117

(表面処理組成物の成分)
(1)カチオン性ウレタン樹脂(C)
(1−1)カチオン性ウレタン樹脂(C−1)
ポリエーテルポリオール(合成成分:テトラメチレングリコール及びエチレングリコール、分子量1500)150質量部、トリメチロールプロパン6質量部、N−メチル−N,N−ジエタノールアミン24質量部、イソホロンジイソシアネート94質量部及びメチルエチルケトン135質量部を反応容器に入れ、70〜75℃に保ちながら1時間反応させてウレタンプレポリマーを生成した。ついで、この反応容器にジメチル硫酸15質量部を入れ、50℃〜60℃で30分間〜60分間反応させて、カチオン性ウレタンプレポリマーを生成した。ついで、この反応容器に水576質量部を入れ、混合物を均一に乳化させた後、メチルエチルケトンを回収して、水溶性のカチオン性ウレタン樹脂(C−1)を得た。
(Components of surface treatment composition)
(1) Cationic urethane resin (C)
(1-1) Cationic urethane resin (C-1)
150 parts by mass of polyether polyol (synthesis components: tetramethylene glycol and ethylene glycol, molecular weight 1500), 6 parts by mass of trimethylolpropane, 24 parts by mass of N-methyl-N, N-diethanolamine, 94 parts by mass of isophorone diisocyanate and 135 parts by mass of methyl ethyl ketone Part was put into a reaction vessel and reacted for 1 hour while maintaining at 70 to 75 ° C. to produce a urethane prepolymer. Next, 15 parts by mass of dimethyl sulfuric acid was placed in the reaction vessel and reacted at 50 ° C. to 60 ° C. for 30 minutes to 60 minutes to produce a cationic urethane prepolymer. Next, 576 parts by mass of water was added to the reaction vessel to uniformly emulsify the mixture, and then methyl ethyl ketone was recovered to obtain a water-soluble cationic urethane resin (C-1).

(1−2)カチオン性ウレタン樹脂(C−2)
ポリエステルポリオール(合成成分:イソフタル酸、アジピン酸及び1,6−へキサンジオール、エチレングリコール、分子量1700)135質量部、トリメチロールプロパン5質量部、N−メチル−N,N−ジエタノールアミン22質量部、イソホロンジイソシアネート86質量部及びメチルエチルケトン120質量部を反応容器に入れ、70℃〜75℃に保ちながら1時間反応させてウレタンプレポリマーを生成した。該反応容器にジメチル硫酸17質量部を入れ、50℃〜60℃で30分間〜60分間反応させてカチオン性ウレタンプレポリマーを生成した。ついで、この反応容器に水615質量部を入れ、混合物を均一に乳化させた後、メチルエチルケトンを回収して、水溶性のカチオン性ウレタン樹脂(C−2)を得た。
(1-2) Cationic urethane resin (C-2)
135 parts by mass of polyester polyol (synthesis components: isophthalic acid, adipic acid and 1,6-hexanediol, ethylene glycol, molecular weight 1700), 5 parts by mass of trimethylolpropane, 22 parts by mass of N-methyl-N, N-diethanolamine, 86 parts by mass of isophorone diisocyanate and 120 parts by mass of methyl ethyl ketone were placed in a reaction vessel and reacted for 1 hour while maintaining at 70 to 75 ° C. to produce a urethane prepolymer. 17 parts by mass of dimethyl sulfuric acid was placed in the reaction vessel and reacted at 50 to 60 ° C. for 30 to 60 minutes to produce a cationic urethane prepolymer. Next, 615 parts by mass of water was added to the reaction vessel to uniformly emulsify the mixture, and then methyl ethyl ketone was recovered to obtain a water-soluble cationic urethane resin (C-2).

(1−3)カチオン性ポリウレタン樹脂(C−3)
ポリカーボネートポリオール(合成成分:1,6−ヘキサンカーボネートジオール、エチレングリコール、分子量2000)130質量部、トリメチロールプロパン4質量部、N−メチル−N,N−ジエタノールアミン21質量部、イソホロンジイソシアネート75質量部及びメチルエチルケトン115質量部を反応容器に入れ、70℃〜75℃に保ちながら1時間反応をさせてウレタンプレポリマーを生成した。ついで、この反応容器にジメチル硫酸22質量部を入れ、50℃〜60℃で30分間〜60分間反応させてカチオン性ウレタンプレポリマーを生成した。ついで、この反応容器に水633質量部を入れ、混合物を均一に乳化させた後、メチルエチルケトンを回収して、水溶性のカチオン性ポリウレタン樹脂(C−3)を得た。
(1-3) Cationic polyurethane resin (C-3)
130 parts by mass of polycarbonate polyol (synthesis component: 1,6-hexane carbonate diol, ethylene glycol, molecular weight 2000), 4 parts by mass of trimethylolpropane, 21 parts by mass of N-methyl-N, N-diethanolamine, 75 parts by mass of isophorone diisocyanate and 115 parts by mass of methyl ethyl ketone was put in a reaction vessel and reacted for 1 hour while maintaining at 70 to 75 ° C. to produce a urethane prepolymer. Next, 22 parts by mass of dimethylsulfuric acid was placed in the reaction vessel and reacted at 50 to 60 ° C. for 30 to 60 minutes to produce a cationic urethane prepolymer. Next, 633 parts by mass of water was added to the reaction vessel to uniformly emulsify the mixture, and then methyl ethyl ketone was recovered to obtain a water-soluble cationic polyurethane resin (C-3).

(1−4)カチオン性ポリウレタン樹脂(C−4)
ポリエステルポリオール(合成成分:イソフタル酸、アジピン酸、1,6−ヘキサンジオール及びエチレングリコール、分子量2000)135質量部、トリメチロールプロパン5質量部、N−メチル−N,N−ジエタノールアミン22質量部、イソホロンジイソシアネート86質量部、γ−アミノプロピルトリエトキシシラン1質量部及びメチルエチルケトン120質量部を反応容器に入れ、70〜75℃に保ちながら1時間反応をさせてウレタンプレポリマーを生成した。ついで、この反応容器にジメチル硫酸17質量部を入れ、50℃〜60℃で30分間〜60分間反応させてカチオン性ウレタンプレポリマーを生成した。ついで、この反応容器に水615質量部を入れ、混合物を均一に乳化させた後、メチルエチルケトンを回収して、シリル変性した水溶性のカチオン性ポリウレタン樹脂(C−4)を得た。
(1-4) Cationic polyurethane resin (C-4)
Polyester polyol (synthesis components: isophthalic acid, adipic acid, 1,6-hexanediol and ethylene glycol, molecular weight 2000) 135 parts by mass, trimethylolpropane 5 parts by mass, N-methyl-N, N-diethanolamine 22 parts by mass, isophorone 86 parts by mass of diisocyanate, 1 part by mass of γ-aminopropyltriethoxysilane and 120 parts by mass of methyl ethyl ketone were placed in a reaction vessel, and reacted for 1 hour while maintaining at 70 to 75 ° C. to produce a urethane prepolymer. Next, 17 parts by mass of dimethyl sulfuric acid was placed in the reaction vessel and reacted at 50 to 60 ° C. for 30 to 60 minutes to produce a cationic urethane prepolymer. Next, 615 parts by mass of water was added to the reaction vessel to uniformly emulsify the mixture, and then methyl ethyl ketone was recovered to obtain a silyl-modified water-soluble cationic polyurethane resin (C-4).

(1−5)カチオン性ポリウレタン樹脂(C−5)
ポリカーボネートポリオール(合成成分:1,3−ジオキソラン−2−オン及び1,6−ヘキサンジオール、分子量1700)150質量部、トリメチロールプロパン6質量部、N−メチル−N,N−ジエタノールアミン24質量部、イソホロンジイソシアネート94質量部、N−(β−アミノエチル)γ−アミノプロピルトリメトキシシラン2質量部及びメチルエチルケトン135質量部を反応容器に入れ、70℃〜75℃に保ちながら1時間反応をさせてウレタンプレポリマーを生成した。ついで、この反応容器にジメチル硫酸15質量部を入れ、50℃〜60℃で30分間〜60分間反応させてカチオン性ウレタンプレポリマーを生成した。ついで、この反応容器に水576質量部を入れ、混合物を均一に乳化させた後、メチルエチルケトンを回収して、シリル変性した水溶性のカチオン性ポリウレタン樹脂(C−5)を得た。
(1-5) Cationic polyurethane resin (C-5)
150 parts by mass of polycarbonate polyol (synthesis components: 1,3-dioxolan-2-one and 1,6-hexanediol, molecular weight 1700), 6 parts by mass of trimethylolpropane, 24 parts by mass of N-methyl-N, N-diethanolamine, 94 parts by mass of isophorone diisocyanate, 2 parts by mass of N- (β-aminoethyl) γ-aminopropyltrimethoxysilane, and 135 parts by mass of methyl ethyl ketone are placed in a reaction vessel and reacted for 1 hour while maintaining at 70 ° C. to 75 ° C. for urethane. A prepolymer was produced. Next, 15 parts by mass of dimethyl sulfuric acid was placed in the reaction vessel and reacted at 50 to 60 ° C. for 30 to 60 minutes to produce a cationic urethane prepolymer. Next, 576 parts by mass of water was added to the reaction vessel to uniformly emulsify the mixture, and then methyl ethyl ketone was recovered to obtain a silyl-modified water-soluble cationic polyurethane resin (C-5).

(2)カチオン性フェノール系重縮合物(D)
(2−1)カチオン性フェノール系重縮合物(D−1)
還流冷却機を備えた1000mLのフラスコ内に、ビスフェノールA1モル(228g)及び触媒としてp−トルエンスルホン酸0.3gを仕込み、内部温度を100℃まで上げ、ホルムアルデヒド水溶液0.85モル(69g)を1時間かけて添加し、100℃で2時間還流下に反応させた。その後、反応容器を水冷静置し、上層に分離する水層の濁りがなくなってから、デカンテーションして水層を除去し、さらに170℃〜175℃になるまで加熱攪拌して、未反応分及び水分を除去した。
(2) Cationic phenolic polycondensate (D)
(2-1) Cationic phenolic polycondensate (D-1)
A 1000 mL flask equipped with a reflux condenser was charged with 1 mol (228 g) of bisphenol A and 0.3 g of p-toluenesulfonic acid as a catalyst, the internal temperature was raised to 100 ° C., and 0.85 mol (69 g) of an aqueous formaldehyde solution was added. The mixture was added over 1 hour and reacted at 100 ° C. for 2 hours under reflux. Thereafter, the reaction vessel is left to cool with water, and after the aqueous layer separated into the upper layer is no longer turbid, the aqueous layer is removed by decantation and further heated and stirred until the temperature reaches 170 ° C. to 175 ° C. And water was removed.

次に、100℃まで温度を下げ、ブチルセロソルブ234gを添加して重縮合物を完全に溶解させた後、純水234gを加え、系内の温度が50℃まで下がったところで、ジエタノールアミン1モル(75g)を添加し、これにホルムアルデヒド水溶液1モル(81.1g)を50℃で約1時間かけて滴下した。さらに、80℃まで温度を上げ、約3時間攪拌しながら反応を続け、カチオン性フェノール系重縮合物(D−1)を得た。   Next, the temperature was lowered to 100 ° C., 234 g of butyl cellosolve was added to completely dissolve the polycondensate, 234 g of pure water was added, and when the temperature in the system dropped to 50 ° C., 1 mol of diethanolamine (75 g ) And 1 mol (81.1 g) of an aqueous formaldehyde solution was added dropwise thereto at 50 ° C. over about 1 hour. Furthermore, the temperature was raised to 80 ° C., and the reaction was continued with stirring for about 3 hours to obtain a cationic phenol polycondensate (D-1).

(2−2)カチオン性フェノール系重縮合物(D−2)
還流冷却機を備えた1000mLのフラスコ内に、フェノール1モル(96g)及び触媒としてp−トルエンスルホン酸0.3gを仕込み、内部温度を100℃まで上げ、ホルムアルデヒド水溶液0.7モル(56.8g)を1時間かけて添加し、100℃で2時間還流下に反応させた。その後、反応容器を水冷静置し、上層に分離する水層の濁りがなくなってから、デカンテーションして水層を除去し、さらに170℃〜175℃になるまで加熱攪拌して、未反応分及び水分を除去した。
(2-2) Cationic phenolic polycondensate (D-2)
In a 1000 mL flask equipped with a reflux condenser, 1 mol (96 g) of phenol and 0.3 g of p-toluenesulfonic acid as a catalyst were charged, the internal temperature was raised to 100 ° C., and 0.7 mol (56.8 g) of an aqueous formaldehyde solution was added. ) Was added over 1 hour and reacted at 100 ° C. under reflux for 2 hours. Thereafter, the reaction vessel is left to cool with water, and after the aqueous layer separated into the upper layer is no longer turbid, the aqueous layer is removed by decantation and further heated and stirred until the temperature reaches 170 ° C. to 175 ° C. And water was removed.

次に、100℃まで温度を下げ、ブチルセロソルブ234gを添加して重縮合物を完全に溶解させた後、純水234gを加え、系内の温度が50℃まで下がったところで、N−メチルプロパノールアミン1モル(89g)を添加し、これにホルムアルデヒド水溶液0.7モル(56.8g)を50℃で約1時間かけて滴下した。さらに、80℃まで温度を上げ、約3時間攪拌しながら反応を続け、カチオン性フェノール系重縮合物(D−2)を得た。   Next, the temperature was lowered to 100 ° C., 234 g of butyl cellosolve was added to completely dissolve the polycondensate, 234 g of pure water was added, and when the temperature in the system dropped to 50 ° C., N-methylpropanolamine 1 mol (89 g) was added, and 0.7 mol (56.8 g) of an aqueous formaldehyde solution was added dropwise thereto at 50 ° C. over about 1 hour. Furthermore, the temperature was raised to 80 ° C. and the reaction was continued with stirring for about 3 hours to obtain a cationic phenol-based polycondensate (D-2).

(2−3)カチオン性フェノール系重縮合物(D−3)
還流冷却機を備えた1000mLのフラスコ内に、o−クレゾール1モル(108g)及び触媒としてp−トルエンスルホン酸0.3gを仕込み、内部温度を100℃まで上げ、ホルムアルデヒド水溶液0.85モル(69g)を1時間かけて添加し、100℃で2時間還流下に反応させた。その後、反応容器を水冷静置し、上層に分離する水層の濁りがなくなってから、デカンテーションして水層を除去し、さらに170℃〜175℃になるまで加熱攪拌して、未反応分及び水分を除去した。
(2-3) Cationic phenolic polycondensate (D-3)
In a 1000 mL flask equipped with a reflux condenser, 1 mol (108 g) of o-cresol and 0.3 g of p-toluenesulfonic acid as a catalyst were charged, the internal temperature was raised to 100 ° C., and 0.85 mol (69 g) of an aqueous formaldehyde solution was added. ) Was added over 1 hour and reacted at 100 ° C. under reflux for 2 hours. Thereafter, the reaction vessel is left to cool with water, and after the aqueous layer separated into the upper layer is no longer turbid, the aqueous layer is removed by decantation and further heated and stirred until the temperature reaches 170 ° C. to 175 ° C. And water was removed.

次に、100℃まで温度を下げ、ブチルセロソルブ234gを添加して重縮合物を完全に溶解させた後、純水234gを加え、系内の温度が50℃まで下がったところで、N,N−ジエチルエタノールアミン1モル(117g)を添加し、これにホルムアルデヒド水溶液1モル(81.1g)を50℃で約1時間かけて滴下した。さらに、80℃まで温度を上げ、約3時間攪拌しながら反応を続け、カチオン性フェノール系重縮合物(D−3)を得た。   Next, the temperature was lowered to 100 ° C., 234 g of butyl cellosolve was added to completely dissolve the polycondensate, 234 g of pure water was added, and when the temperature in the system dropped to 50 ° C., N, N-diethyl 1 mol (117 g) of ethanolamine was added, and 1 mol (81.1 g) of an aqueous formaldehyde solution was added dropwise thereto at 50 ° C. over about 1 hour. Furthermore, the temperature was raised to 80 ° C., and the reaction was continued with stirring for about 3 hours to obtain a cationic phenol polycondensate (D-3).

Figure 0005363117
Figure 0005363117

(処理方法)
(1)脱脂
日本パーカライジング(株)製アルカリ脱脂剤パルクリーンN364S(20g/L建浴、60℃、10秒スプレー、スプレー圧0.5kg/cm)で被処理金属材料を脱脂した後、スプレー水洗を10秒行った。
(2)塗布及び乾燥
表5〜表10および表11〜表14に記載の表面処理用組成物及び有機無機複合皮膜用処理液は、共に、これをロールコーターで亜鉛系めっき鋼板に塗布し、各条件の鋼板到達板温で加熱乾燥した。皮膜量は、処理液の固形分濃度または塗布条件(ロールの圧化力、回転速度など)により調整した。
(Processing method)
(1) Degreasing After degreasing the metal material to be treated with Alkali degreasing agent Pulclean N364S (20 g / L building bath, 60 ° C., 10 seconds spray, spray pressure 0.5 kg / cm 2 ) manufactured by Nippon Parkerizing Co., Ltd., spray Washing with water was performed for 10 seconds.
(2) Coating and drying Both the composition for surface treatment and the treatment liquid for organic-inorganic composite film described in Tables 5 to 10 and Tables 11 to 14 were applied to a zinc-based plated steel sheet with a roll coater, It heat-dried at the steel plate arrival board temperature of each condition. The coating amount was adjusted by the solid content concentration of the treatment liquid or coating conditions (roll pressing force, rotational speed, etc.).

(皮膜付着量の測定方法)
鋼板への表面処理用組成物及び有機無機複合皮膜用処理液の塗布乾燥前後の重量差を重量法により求め、塗布面積で除して皮膜付着量とした。
(Measurement method of coating amount)
The weight difference before and after coating and drying of the composition for surface treatment and the treatment liquid for organic-inorganic composite coating on the steel sheet was determined by a weight method, and divided by the coating area to obtain the coating amount.

(チタン含有量およびマグネシウム含有量の測定方法)
また、表面処理用組成物中のチタン含有量およびマグネシウム含有量は、ICP発光分析法を用いて測定した。
(Method for measuring titanium content and magnesium content)
Further, the titanium content and the magnesium content in the surface treatment composition were measured by using an ICP emission analysis method.

(評価方法)
(1)耐エタノール性
実施例1〜90、比較例1〜31において作製した処理板試料について、無加工(平面部)のままで耐エタノール性試験を行った。評価方法は次の通りである。
(Evaluation method)
(1) Ethanol resistance About the process board sample produced in Examples 1-90 and Comparative Examples 1-31, the ethanol resistance test was done with no processing (plane part). The evaluation method is as follows.

前述のように、摺動試験に際しては、市販のバウデン試験機を用いて、摺動面が20mm径の平坦な摺動子に市販のガーゼを取り付け、エタノールを充分に含ませた後、100g/cmの加圧、100mmの振幅、そして20mm/secのスピードの試験条件において、10回往復摺動を行い、その後の処理板摺動部の外観変化を、以下の基準で評価した。As described above, in the sliding test, using a commercially available Bowden testing machine, a commercially available gauze was attached to a flat slider having a sliding surface of 20 mm in diameter, and ethanol was sufficiently contained. Under the test conditions of cm 2 pressurization, 100 mm amplitude, and 20 mm / sec speed, reciprocating sliding was performed 10 times, and the appearance change of the treated plate sliding portion thereafter was evaluated according to the following criteria.

<評価基準>
VG=外観変化なし
G =微かな外観変化あり
NG=明らかな外観変化あり
B =下地の部分露出あり
VB=下地完全露出
<Evaluation criteria>
VG = No change in appearance G = There is a slight change in appearance NG = There is a clear change in appearance B = There is partial exposure of the background VB = Full exposure of the background

(2)平面部耐食性(耐白錆性)
実施例1〜90、比較例1〜31において作製した処理板試料について、無加工(平面部)のままで耐食性試験を行った。評価方法は次の通りである。
(2) Flat surface corrosion resistance (white rust resistance)
About the processing board sample produced in Examples 1-90 and Comparative Examples 1-31, the corrosion resistance test was done with no processing (plane part). The evaluation method is as follows.

塩水噴霧試験法JIS−Z−2371に基づき、塩水噴霧120時間後の白錆発生面積を求め評価した。   Based on the salt spray test method JIS-Z-2371, the white rust generation area after 120 hours of salt spray was determined and evaluated.

<評価基準>
VG=白錆発生面積が5%未満
G =白錆発生面積が5%以上かつ15%未満
NG=白錆発生面積が15%以上かつ30%未満
B =白錆発生面積が30%以上かつ50%未満
VB=白錆発生面積が50%以上
<Evaluation criteria>
VG = White rust generation area is less than 5% G = White rust generation area is 5% or more and less than 15% NG = White rust generation area is 15% or more and less than 30% B = White rust generation area is 30% or more and 50 Less than% VB = White rust generation area is 50% or more

(3)円筒加工後外観評価および耐食性
実施例1〜90、比較例1〜31において作製した処理板試料について、円筒成形加工を実施し、外観評価および耐食性試験を行った。評価方法は次の通りである。
(3) Appearance Evaluation and Corrosion Resistance after Cylindrical Processing Cylindrical molding was performed on the processed plate samples prepared in Examples 1 to 90 and Comparative Examples 1 to 31, and appearance evaluation and corrosion resistance tests were performed. The evaluation method is as follows.

円筒成形加工は、実施例1〜90、比較例1〜31において作製した処理板試料について、ブランク直径60mmの円形に打抜き、加工油(日本工作油(株)製PG3080)を塗布して、ダイス径32mm、ダイスR2mmの円筒成形加工用金型を用い、クランクプレス機で30spmの条件で加工した。   Cylindrical forming is performed by punching a processed plate sample prepared in Examples 1 to 90 and Comparative Examples 1 to 31 into a circle having a blank diameter of 60 mm, applying a processing oil (PG 3080 manufactured by Nippon Tool Oil Co., Ltd.), Using a cylindrical molding die having a diameter of 32 mm and a die R of 2 mm, it was processed with a crank press machine at 30 spm.

円筒成形加工品の外観評価は、試験前後のΔL値にて評価した。前述のように、ΔL値は、黒(0)から白(100)までの明るさ度合いをL値とした場合の、試験前後におけるL値の差を示すものであり、具体的には、色彩色差計CR−300(ミノルタ製)を用いて測定することができる。   The appearance evaluation of the cylindrical molded product was evaluated by the ΔL value before and after the test. As described above, the ΔL value indicates the difference between the L values before and after the test when the brightness level from black (0) to white (100) is the L value. It can be measured using a color difference meter CR-300 (manufactured by Minolta).

<評価基準>
VG=ΔLが2未満
G =ΔLが2以上かつ5未満
NG=ΔLが5以上かつ10未満
B =ΔLが10以上
<Evaluation criteria>
VG = ΔL is less than 2 G = ΔL is 2 or more and less than 5 NG = ΔL is 5 or more and less than 10 B = ΔL is 10 or more

円筒成形加工品の耐食性は、塩水噴霧試験法JIS−Z−2371に基づき、塩水噴霧24時間後の白錆発生面積を求め評価した。   The corrosion resistance of the cylindrical molded product was evaluated by obtaining the white rust occurrence area after 24 hours of salt spray, based on the salt spray test method JIS-Z-2371.

<評価基準>
VG=白錆発生面積が10%未満
G =白錆発生面積が10%以上かつ20%未満
NG=白錆発生面積が20%以上かつ40%未満
B =白錆発生面積が40%以上かつ80%未満
VB=白錆発生面積が80%以上
<Evaluation criteria>
VG = White rust generation area is less than 10% G = White rust generation area is 10% or more and less than 20% NG = White rust generation area is 20% or more and less than 40% B = White rust generation area is 40% or more and 80 Less than% VB = White rust generation area is 80% or more

(4)しごき加工後外観評価および耐食性
実施例、比較例において作製した処理板試料について、しごき成形加工を実施し、外観(カス発生)評価および耐食性試験を行った。評価方法は次の通りである。
(4) Appearance evaluation after ironing and corrosion resistance The treated plate samples produced in the examples and comparative examples were ironed and subjected to appearance (debris generation) evaluation and corrosion resistance test. The evaluation method is as follows.

しごき加工成形は、実施例91〜135、比較例34〜78において作製した処理板試料について、ブランク直径60mmの円形に打抜き、加工油(日本工作油(株)製PG3080)を塗布して、ダイス径30mm、ダイスR2mmの円筒成形加工用金型を用い、クランクプレス機で30spmの条件で加工した後、ダイス径25mm、ダイスR1mmで、かつクリアランスが元板厚みに対して15%マイナス側になるポンチとダイスの組合せで、二度目の加工を行なった。   For ironing and forming, the processed plate samples prepared in Examples 91 to 135 and Comparative Examples 34 to 78 were punched into a circle with a blank diameter of 60 mm, coated with processing oil (PG 3080 manufactured by Nippon Tool Oil Co., Ltd.), and dies After using a cylindrical mold with a diameter of 30 mm and a die R2 mm and processing with a crank press machine at 30 spm, the die diameter is 25 mm, the die R1 mm, and the clearance is 15% minus the original plate thickness. A second process was performed with a combination of punch and die.

しごき加工成形時のカスは、炭化水素系溶剤にて発生カスを脱脂除去し、試験前後の重量増減でカス発生量を評価すると同時に、試験前後のΔL値増減にて評価した。   The residue at the time of ironing and forming was degreased and removed with a hydrocarbon solvent, and the amount of residue generated was evaluated by the weight increase and decrease before and after the test, and at the same time the ΔL value increase and decrease before and after the test.

<評価基準>
VG=重量減が0.05g/m未満、もしくは、ΔLが2未満
G =重量減が0.05以上0.1g/m未満、もしくは、ΔLが2以上5未満
NG=重量減が0.1以上かつ0.5g/m未満、もしくは、ΔLが5以上10未満
B =重量減が0.5g/m以上、もしくは、ΔLが10以上
<Evaluation criteria>
VG = weight loss is less than 0.05 g / m 2, or, [Delta] L is G = weight loss is less than 0.05 or more 0.1 g / m 2 less than 2, or, [Delta] L is 5 less than NG = weight loss more 0 1 or more and less than 0.5 g / m 2 or ΔL is 5 or more and less than 10 B = Weight loss is 0.5 g / m 2 or more, or ΔL is 10 or more

しごき加工成形品の耐食性は、塩水噴霧試験法JIS−Z−2371に基づき、塩水噴霧16時間後の白錆発生面積を求め評価した。   The corrosion resistance of the ironing-processed molded product was evaluated by determining the white rust generation area after 16 hours of salt spray, based on the salt spray test method JIS-Z-2371.

<評価基準>
VG=白錆発生面積が10%未満
G =白錆発生面積が10%以上かつ20%未満
NG=白錆発生面積が20%以上かつ40%未満
B =白錆発生面積が40%以上かつ80%未満
VB=白錆発生面積が80%以上
<Evaluation criteria>
VG = White rust generation area is less than 10% G = White rust generation area is 10% or more and less than 20% NG = White rust generation area is 20% or more and less than 40% B = White rust generation area is 40% or more and 80 Less than% VB = White rust generation area is 80% or more

以下に評価結果を示す。   The evaluation results are shown below.

Figure 0005363117
Figure 0005363117

Figure 0005363117
Figure 0005363117

Figure 0005363117
Figure 0005363117

Figure 0005363117
Figure 0005363117

Figure 0005363117
Figure 0005363117

Figure 0005363117
Figure 0005363117

Figure 0005363117
Figure 0005363117

Figure 0005363117
Figure 0005363117

Figure 0005363117
Figure 0005363117

Figure 0005363117
Figure 0005363117

表5及び表6の評価結果に示す通り、本発明表面処理皮膜の製造方法で作製した本発明鋼板(実施例No.1〜90)は、耐エタノール性、平面部耐食性、円筒加工後耐食性、円筒加工後外観の全てが良好であった。それに比較して、表11及び表12の評価結果に示す通り、本発明範囲を逸脱する場合(比較例No.1〜31)は、上記評価の1つ以上が不良であった。   As shown in the evaluation results of Tables 5 and 6, the steel sheet of the present invention (Example Nos. 1 to 90) produced by the method for producing a surface treatment film of the present invention has ethanol resistance, flat surface corrosion resistance, corrosion resistance after cylindrical processing, All of the appearance after cylindrical processing was good. In contrast, as shown in the evaluation results of Tables 11 and 12, when the values deviated from the scope of the present invention (Comparative Examples No. 1 to 31), one or more of the above evaluations were defective.

更に、表9及び表10の評価結果に示す通り、上記表面処理皮膜の上に有機無機複合皮膜を被覆した本発明鋼板(実施例No.91〜135)は、しごき加工後耐食性、しごき加工後外観において優れている。それに比較して、表6−2の評価結果に示す通り、本発明範囲を逸脱する場合(比較例No.34〜78)は、上記評価の1つ以上が不良であった。   Furthermore, as shown in the evaluation results of Table 9 and Table 10, the steel sheet of the present invention (Example Nos. 91 to 135) coated with an organic-inorganic composite film on the above-mentioned surface treatment film is corrosion resistance after ironing, after ironing Excellent in appearance. In comparison, as shown in the evaluation results of Table 6-2, when the values deviated from the scope of the present invention (Comparative Examples Nos. 34 to 78), one or more of the above evaluations were defective.

すなわち、本発明は、亜鉛系めっき鋼板表面にそれぞれ前出の構成からなる皮膜を所定量有することで優れた耐エタノール性、平面部耐食性、円筒加工後耐食性、円筒加工後外観、しごき加工後耐食性、しごき加工後外観の全てを具備できることがわかった。なお、実施例4,14、24,34,44,54,64,74,84,94,104,114,124,134は参考例である。 That is, the present invention has excellent ethanol resistance, flat surface corrosion resistance, corrosion resistance after cylindrical processing, appearance after cylindrical processing, and corrosion resistance after ironing processing by having a predetermined amount of the coating composed of the above-described composition on the surface of the galvanized steel sheet. It was found that all the appearance after ironing can be provided. Examples 4, 14, 24, 34, 44, 54, 64, 74, 84, 94, 104, 114, 124, and 134 are reference examples.

以上説明したように、本発明に係る表面処理鋼板は、非クロム系表面処理組成物であり、クロメート系表面処理剤と同等以上の加工後耐食性を有する。更に、製造方法も簡易で、低コストで製造できるため家電、建材等の各種用途に好適である。   As described above, the surface-treated steel sheet according to the present invention is a non-chromium-based surface treatment composition and has a post-processing corrosion resistance equal to or higher than that of a chromate-based surface treatment agent. Furthermore, since the manufacturing method is simple and can be manufactured at low cost, it is suitable for various uses such as home appliances and building materials.

以上,本発明の好適な実施形態について説明したが,本発明はかかる例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明のクロムを含有しない金属表面処理を施した亜鉛系めっき鋼板は、優れた耐エタノール性、平面部耐食性、円筒加工後耐食性、円筒加工後外観、しごき加工後耐食性、しごき加工後外観の全てを具備しており、環境保全などの社会問題の対策案の一つとして有効である。本発明は、特にモーターケースや、灯油ストーブ用カートリッジタンクのような加工を伴う家電用途、及びガードレール等の加工を伴う建材用途分野での利用が期待できる。   The zinc-based plated steel sheet with chromium-free metal surface treatment of the present invention has all of excellent ethanol resistance, flat surface corrosion resistance, corrosion resistance after cylindrical processing, appearance after cylindrical processing, corrosion resistance after ironing processing, and appearance after ironing processing. It is effective as one of measures for social problems such as environmental conservation. The present invention can be expected to be used particularly in household appliances with processing such as motor cases and cartridge tanks for kerosene stoves, and in building material applications with processing of guard rails and the like.

Claims (3)

チタンを含有する金属化合物と、
マグネシウムを含有する金属化合物と、
第1級〜第3級アミノ基および第4級アンモニウム塩基から選ばれる少なくとも一種のカチオン性官能基を有するカチオン性ウレタン樹脂と、
フェノール化合物とアルデヒド類との重縮合物であってカチオン性官能基を有するカチオン性フェノール系重縮合物と、
を含有し、前記チタンを含有する金属化合物または前記マグネシウムを含有する金属化合物のいずれか一方又は両方がリン酸との塩である表面処理皮膜を有し;
前記表面処理皮膜中のチタンの含有量が、全固形分に対して1質量%〜4質量%であり;
前記表面処理皮膜中のマグネシウムの含有量が、全固形分に対して0.2質量%〜2質量%であり;
前記表面処理皮膜中の前記カチオン性ウレタン樹脂の含有量が、全固形分に対して20質量%〜35質量%であり、
前記表面処理皮膜中の前記カチオン性フェノール系重縮合物の含有量が、全固形分に対して25質量%〜40質量%であり;
前記カチオン性ウレタン樹脂と前記カチオン性フェノール系重縮合物との質量比率が、33.3:66.7〜49:51である;
ことを特徴とする表面処理鋼板。
A metal compound containing titanium;
A metal compound containing magnesium;
A cationic urethane resin having at least one cationic functional group selected from primary to tertiary amino groups and quaternary ammonium bases;
A cationic phenol-based polycondensate having a cationic functional group, which is a polycondensate of a phenol compound and aldehydes;
Containing either one or both of the metal compound containing titanium or a metal compound containing the magnesium has a Shiodea Ru surface treatment film of the phosphoric acid;
The titanium content in the surface treatment film is 1% by mass to 4% by mass with respect to the total solid content;
The magnesium content in the surface treatment film is 0.2% by mass to 2% by mass with respect to the total solid content;
The content of the cationic urethane resin in the surface treatment film is 20% by mass to 35% by mass with respect to the total solid content,
The content of the cationic phenol polycondensate in the surface treatment film is 25% by mass to 40% by mass with respect to the total solid content;
The mass ratio of the cationic urethane resin to the cationic phenolic polycondensate is 33.3: 66.7 to 49:51;
A surface-treated steel sheet characterized by that.
請求項1に記載の表面処理鋼板であって、
前記表面処理皮膜の皮膜量が、0.1g/m〜3g/mである。
The surface-treated steel sheet according to claim 1,
Coating amount of the surface treatment film is a 0.1g / m 2 ~3g / m 2 .
請求項1または請求項2に記載の表面処理鋼板であって、
前記表面処理皮膜の上層に、皮膜量が0.2g/m〜5g/mである有機無機複合皮膜がさらに形成されている。
The surface-treated steel sheet according to claim 1 or 2,
The upper layer of the surface treatment film, an organic-inorganic composite film is further formed coating weight of 0.2g / m 2 ~5g / m 2 .
JP2008550086A 2006-12-20 2007-12-03 Surface-treated steel sheet Active JP5363117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008550086A JP5363117B2 (en) 2006-12-20 2007-12-03 Surface-treated steel sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006343531 2006-12-20
JP2006343531 2006-12-20
PCT/JP2007/073347 WO2008075553A1 (en) 2006-12-20 2007-12-03 Surface-treated steel sheet
JP2008550086A JP5363117B2 (en) 2006-12-20 2007-12-03 Surface-treated steel sheet

Publications (2)

Publication Number Publication Date
JPWO2008075553A1 JPWO2008075553A1 (en) 2010-04-08
JP5363117B2 true JP5363117B2 (en) 2013-12-11

Family

ID=39536187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008550086A Active JP5363117B2 (en) 2006-12-20 2007-12-03 Surface-treated steel sheet

Country Status (8)

Country Link
US (1) US8163391B2 (en)
JP (1) JP5363117B2 (en)
KR (1) KR101121338B1 (en)
CN (1) CN101563481B (en)
MX (1) MX2009005823A (en)
MY (1) MY153417A (en)
TW (1) TW200902760A (en)
WO (1) WO2008075553A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5499773B2 (en) * 2010-02-26 2014-05-21 Jfeスチール株式会社 Surface treatment liquid for galvanized steel sheet, galvanized steel sheet and method for producing the same
EP2614175B1 (en) * 2010-09-10 2018-01-03 Chemetall GmbH Method for coating metallic surfaces with a polymer-containing coating agent, the coating agent and use thereof
KR101223817B1 (en) 2010-12-28 2013-01-17 주식회사 포스코 Resin Composition for Organic and Inorganic Complex Film and Surface Treated Steel Sheet
KR102033918B1 (en) * 2013-03-22 2019-10-18 주식회사 쿠라레 Composition having excellent transparency
JPWO2015162837A1 (en) * 2014-04-24 2017-04-13 Jfeスチール株式会社 Chromium-free insulation coating solution for grain-oriented electrical steel sheet and grain-oriented electrical steel sheet with chromium-free insulation film
JP6552768B2 (en) * 2017-05-11 2019-07-31 日本パーカライジング株式会社 Metal surface treatment agent, metal surface treatment method and metal material
WO2021009186A1 (en) * 2019-07-15 2021-01-21 Chemetall Gmbh Compositions and methods for metal pre-treatment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003093533A1 (en) * 2002-04-16 2003-11-13 Nippon Steel Corporation Thermostabilized metal plate of high corrosion resistance, metal plate with organic coating and phosphated galvanized metal plate
JP2005288730A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk Weldable organic coated steel sheet for automobile
JP2006152436A (en) * 2004-10-26 2006-06-15 Nippon Parkerizing Co Ltd Agent for treating metal surface, method of treating surface of metallic material, and surface-treated metallic material
JP2006152435A (en) * 2004-10-26 2006-06-15 Nippon Parkerizing Co Ltd Agent for treating metal surface, method of treating surface of metallic material, and surface-treated metallic material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4007627B2 (en) 1996-03-11 2007-11-14 日本パーカライジング株式会社 Surface treatment agent composition for metal material and treatment method
JP2001031684A (en) 1999-07-14 2001-02-06 Shin Etsu Chem Co Ltd Production of fluorine-containing organosilicon compound
JP4078044B2 (en) 2001-06-26 2008-04-23 日本パーカライジング株式会社 Metal surface treatment agent, surface treatment method of metal material, and surface treatment metal material
JP2006118012A (en) 2004-10-22 2006-05-11 Nippon Parkerizing Co Ltd Surface treatment agent for metal, surface treatment method for metallic material, and surface-treated metallic material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003093533A1 (en) * 2002-04-16 2003-11-13 Nippon Steel Corporation Thermostabilized metal plate of high corrosion resistance, metal plate with organic coating and phosphated galvanized metal plate
JP2005288730A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk Weldable organic coated steel sheet for automobile
JP2006152436A (en) * 2004-10-26 2006-06-15 Nippon Parkerizing Co Ltd Agent for treating metal surface, method of treating surface of metallic material, and surface-treated metallic material
JP2006152435A (en) * 2004-10-26 2006-06-15 Nippon Parkerizing Co Ltd Agent for treating metal surface, method of treating surface of metallic material, and surface-treated metallic material

Also Published As

Publication number Publication date
WO2008075553A1 (en) 2008-06-26
KR20090089434A (en) 2009-08-21
MX2009005823A (en) 2009-07-24
CN101563481A (en) 2009-10-21
JPWO2008075553A1 (en) 2010-04-08
KR101121338B1 (en) 2012-03-09
TW200902760A (en) 2009-01-16
US8163391B2 (en) 2012-04-24
US20100068513A1 (en) 2010-03-18
MY153417A (en) 2015-02-13
CN101563481B (en) 2011-05-11

Similar Documents

Publication Publication Date Title
JP4975999B2 (en) Metal surface treatment agent, surface treatment method of metal material, and surface treatment metal material
JP4969831B2 (en) Metal surface treatment agent, surface treatment method of metal material, and surface treatment metal material
JP5363117B2 (en) Surface-treated steel sheet
JP2006118012A (en) Surface treatment agent for metal, surface treatment method for metallic material, and surface-treated metallic material
KR20070069169A (en) Agent for treating metal surface, method of treating surface of metallic material, and surface-treated metallic material
JP4685162B2 (en) Chromium-free low-temperature curing metal surface treatment composition and surface-treated steel sheet using the same
KR101786392B1 (en) Solution composition for surface treating of steel sheet, zinc-based metal plated steel sheet using the same, and manufacturing method of the same
JP5342718B2 (en) Metal surface treatment agent, surface treatment method of metal material, and surface treatment metal material
JP4607969B2 (en) Surface treatment agent for metal material, surface treatment method and surface treatment metal material
EP1959030B1 (en) Aqueous surface-treating agent for metal material and surface-coated metal material
JP4470874B2 (en) Surface-treated galvanized steel sheet
JP5457611B1 (en) Surface-treated galvanized steel sheet excellent in scratch and end face corrosion resistance and method for producing the same
KR100984935B1 (en) Metal Surface Treatment Solution And Method of Manufacturing Steel Sheet Using The Same
CN102574157B (en) Two-stage method for the corrosion protection treatment of metal surfaces
JP5498634B2 (en) Water-based metal surface treatment agent, surface treatment method and surface treatment metal material
JP2016527402A (en) Metal pretreatment with silane-containing acidic aqueous composition
JP5518398B2 (en) Post-treatment liquid for autodeposition coating on metal surface and method for producing metal material with post-processed autodeposition coating
JP2016528387A (en) Metal pretreatment composition comprising silane and organophosphoric acid
KR101190425B1 (en) METAL SURFACE TREATMENT SOLUTION AND METHOD OF MANUFACTURING Cr-FREE HOT-ROLLED GALVANIZED STEEL SHEETS USING THE SAME
JP2007204769A (en) Surface treated steel sheet having excellent corrosion resistance, flawing resistance, discoloration resistance and water resistance and its production method
JP5518307B2 (en) Self-deposited coating treatment liquid for metal material, and self-deposited coating treatment method
JP5441102B2 (en) High corrosion resistance surface-treated steel sheet
JP7163151B2 (en) Aqueous antirust surface treatment composition
KR100681664B1 (en) Cr-free coating material for metal coated steel sheet representing excellent adhesion to paints and a process for producing cr-free coated steel sheet using the coating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5363117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250