JP5363058B2 - Storage element and method for manufacturing the same - Google Patents

Storage element and method for manufacturing the same Download PDF

Info

Publication number
JP5363058B2
JP5363058B2 JP2008248471A JP2008248471A JP5363058B2 JP 5363058 B2 JP5363058 B2 JP 5363058B2 JP 2008248471 A JP2008248471 A JP 2008248471A JP 2008248471 A JP2008248471 A JP 2008248471A JP 5363058 B2 JP5363058 B2 JP 5363058B2
Authority
JP
Japan
Prior art keywords
electrode
lead tab
electrode forming
forming surface
terminal lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008248471A
Other languages
Japanese (ja)
Other versions
JP2010080312A (en
Inventor
真孝 松永
高弘 山本
敏男 津端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2008248471A priority Critical patent/JP5363058B2/en
Publication of JP2010080312A publication Critical patent/JP2010080312A/en
Application granted granted Critical
Publication of JP5363058B2 publication Critical patent/JP5363058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power storage element of high volume capacity density, which can reduce a generation rate of a short circuit generated between a lead tab for a terminal of an electrode having a narrow area and an electrode having a wide area. <P>SOLUTION: The power storage element is constituted: to bring a shift amount &alpha; between a side part 6c on which an edge part 6b is formed out of the side parts 6c, 6d of a positive electrode-forming face 6a and a side part 7c positioned between a side part 6c and a lead tab 8 for a positive electrode terminal out of the side parts 7c, 7d of a negative electrode-forming face 7a in parallel to the side part 6c, into 0 mm or more to 3 mm or less; to bring the shortest distance X from one end part of the lead tab 8 for the positive electrode terminal up to the side part 7c of the negative electrode-forming face 7a positioned between the side part 6c of the positive electrode-forming face 6a formed with the edge part 6b and the lead tab 8f or the positive electrode terminal, into 0.5 mm or more to 5.0 mm or less; and to bring the shortest distance Y from one end part of a lead tab 9 for a negative electrode terminal up to the side part 6c of the positive electrode-forming face 6a positioned between the side part 7c of the negative electrode-forming face 7a formed with the edge part 7b and the lead tab 9 for the negative electrode terminal, into 0.5+&alpha; mm or more to 5.0+&alpha; mm or less. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、例えば深夜電力貯蔵システムや分散型蓄電システム、電気自動車用蓄電システムなどに用いられる蓄電素子とその製造方法に関するものである。   The present invention relates to a power storage element used in, for example, a midnight power storage system, a distributed power storage system, a power storage system for an electric vehicle, and the like, and a method for manufacturing the power storage element.

近年、地球環境の保全および省資源を目指したエネルギーの有効利用の観点から、深夜電力貯蔵システム、太陽光や風力などの自然エネルギー発電技術に基づく分散型蓄電システム、電気自動車用蓄電システムなどが注目を集めており、これらの蓄電システムには、蓄電素子として、ニッケル水素二次電池やリチウムイオン二次電池に代表される高エネルギー密度を特徴とする電池、あるいは電気二重層キャパシタに代表される高出力密度、高耐久性を特徴とするキャパシタが使用されている。   In recent years, attention has been focused on midnight power storage systems, distributed power storage systems based on natural energy power generation technologies such as solar and wind power, and electric vehicle power storage systems from the viewpoint of the effective use of energy aimed at preserving the global environment and conserving resources. In these power storage systems, a battery characterized by a high energy density represented by a nickel metal hydride secondary battery or a lithium ion secondary battery, or a high power represented by an electric double layer capacitor is used as a power storage element. Capacitors characterized by power density and high durability are used.

ハイブリッド電気自動車に使用されているニッケル水素二次電池は電気二重層キャパシタと同等の高出力が得られ、160Wh/l程度のエネルギー密度を有しているが、そのエネルギー密度や出力をより一層高め、かつ高温での安定性をさらに改善して耐久性を高めるための研究が現在も精力的に進められている。
また、リチウムイオン二次電池についても高出力化に向けての研究が進められている。例えば、放電深度(素子の放電容量の何%を放電した状態かを表わす値)50%の出力が3kW/lを超えるリチウムイオン二次電池が開発されているが、リチウムイオン二次電池のエネルギー密度は100Wh/l以下であり、リチウムイオン二次電池の最大の特徴である高エネルギー密度を敢えて抑制した設計となっているため、電気二重層キャパシタに比べて耐久性(サイクル特性、高温保存特性)が劣り、実用的な耐久性を持たせるためには、放電深度が0〜100%の範囲よりも狭い範囲でしか使用できないため、実際に使用できる容量はさらに小さくなる。このため、リチウムイオン二次電池の耐久性をより一層向上させるための研究が精力的に進められている。
Nickel metal hydride secondary batteries used in hybrid electric vehicles have the same high output as electric double layer capacitors and have an energy density of about 160 Wh / l, but the energy density and output are further increased. In addition, research to further improve the stability at high temperatures and enhance the durability is ongoing.
In addition, research is also being conducted on increasing the output of lithium ion secondary batteries. For example, lithium ion secondary batteries have been developed in which an output of 50% of the depth of discharge (a value representing how much of the discharge capacity of the element is discharged) exceeds 3 kW / l. The energy of the lithium ion secondary battery The density is 100 Wh / l or less, and it is designed to deliberately suppress the high energy density, which is the biggest feature of lithium ion secondary batteries, so it is more durable (cycle characteristics, high temperature storage characteristics) than electric double layer capacitors. In order to provide practical durability, the discharge depth can be used only in a range narrower than the range of 0 to 100%, so that the actually usable capacity is further reduced. For this reason, research for further improving the durability of lithium ion secondary batteries has been energetically advanced.

一方、高出力の蓄電デバイスとしては、電極に活性炭を用いた電気二重層キャパシタが開発されている。この電気二重層キャパシタは耐久性(サイクル性、高温保存特性)が高く、0.5〜1kW/l程度の出力特性を有していることから、高出力が要求される分野で最適のデバイスとして考えられていたが、そのエネルギー密度は1〜5kW/l程度に過ぎないため、イオン性液体を電解液に使用するなどの工夫により耐電性を向上させてエネルギー密度を増加させる研究が行われている。   On the other hand, an electric double layer capacitor using activated carbon as an electrode has been developed as a high output power storage device. This electric double layer capacitor has high durability (cycleability, high-temperature storage characteristics) and has an output characteristic of about 0.5 to 1 kW / l. Although it was considered, since the energy density is only about 1 to 5 kW / l, research has been conducted to improve the electric resistance and increase the energy density by using an ionic liquid as an electrolytic solution. Yes.

上記のように、ニッケル水素二次電池やリチウムイオン二次電池などの電池では出力密度、耐久性の向上を目指した研究が行われ、電気二重層キャパシタなどのキャパシタではエネルギー密度の向上を目指した研究が行われているが、近年では、電気二重層キャパシタと同等の耐久性を持ちながらエネルギー密度および出力密度が電気二重層キャパシタよりも高い蓄電素子として、電解液にリチウム塩を含む非水系電解液を用いて高耐電圧を向上させた非水系リチウム型蓄電素子も提案されている(例えば、特許文献1及び特許文献2参照)。   As described above, research aimed at improving power density and durability was performed in batteries such as nickel metal hydride secondary batteries and lithium ion secondary batteries, and energy density was aimed at in capacitors such as electric double layer capacitors. In recent years, non-aqueous electrolysis that contains lithium salt in the electrolyte has been used as a storage element that has the same energy durability and higher output density than the electric double layer capacitor while having the same durability as the electric double layer capacitor. Non-aqueous lithium-type energy storage devices that improve the high withstand voltage using a liquid have also been proposed (see, for example, Patent Document 1 and Patent Document 2).

これらの蓄電素子は金属箔からなる集電体に活物質を塗布した複数の正極と負極を、金属箔と樹脂フィルムを積層してなるラミネートフィルムまたは金属缶からなる外装体内に収容し、さらに外装体の中に電解液を注入して製造され、上記外装体が金属缶からなるものとしては、電極の対向面積を増やし、高容量かつ高出力を得るために、正極と負極及びこれらの電極間に介在するセパレータを捲回して形成された電極捲回体を電解液と共に外装体内に収容した構造のものが提案されている。   These power storage elements accommodate a plurality of positive electrodes and negative electrodes obtained by applying an active material to a current collector made of a metal foil in an outer package made of a laminated film or metal can obtained by laminating a metal foil and a resin film. It is manufactured by injecting an electrolyte into the body, and the outer body is made of a metal can. In order to increase the facing area of the electrodes and to obtain a high capacity and high output, the positive electrode and the negative electrode, and between these electrodes There has been proposed a structure in which an electrode winding body formed by winding a separator interposed in a casing is housed in an exterior body together with an electrolytic solution.

一方、外装体がラミネートフィルムからなる薄型パッケージの蓄電素子としては、正極と負極および該電極を分離するセパレータを積層して形成された電極積層体を電解液と共に外装体内に収容し、電極積層体の正極に接続された正極端子用リードタブと電極積層体の負極に接続された負極端子用リードタブとを外装体のヒートシール封口部から外装体外部に引き出した構造のものが提案されている(例えば、特許文献3参照)。
特開2001−229926号公報 特開2003−346801号公報 特開2006−252802号公報
On the other hand, as an energy storage element of a thin package whose outer package is made of a laminate film, an electrode laminate formed by laminating a positive electrode, a negative electrode, and a separator separating the electrodes is housed in the outer package together with an electrolyte, and an electrode laminate A structure in which a lead tab for a positive electrode terminal connected to the positive electrode and a lead tab for a negative electrode terminal connected to the negative electrode of the electrode laminate are drawn out from the heat seal sealing portion of the exterior body to the exterior body (for example, And Patent Document 3).
JP 2001-229926 A JP 2003-346801 A JP 2006-252802 A

本発明者は、外装体が上述のラミネートフィルムからなる蓄電素子を試作し、短絡が発生する各種の原因を検討した。その結果、正極と負極の面積が異なる電極積層体内において、面積の大きい電極の端子用リードタブ側辺と面積の小さい電極の端子用リードタブ側辺間の短絡が一因となっていることを見出した。
本発明の目的は、外装体が上述のラミネートフィルムからなる蓄電素子において、面積の小さい電極の端子用リードタブと面積の大きい電極との間に発生する短絡の発生率が少なく、体積容量密度の高い蓄電素子とその製造方法を提供することにある。
The inventor made a prototype of an electricity storage device whose exterior body is made of the above-described laminate film, and examined various causes of short circuits. As a result, it was found that a short circuit between the terminal lead tab side of the electrode with a large area and the terminal lead tab side of the electrode with a small area contributed to the electrode laminate in which the areas of the positive electrode and the negative electrode were different. .
An object of the present invention is to provide a power storage device in which the outer package is made of the above-described laminate film. An object of the present invention is to provide a storage element and a method for manufacturing the same.

本発明者は、前記課題を解決するために検討した結果、端子用リードタブと電極積層体内の電極との最短距離を規定することで前記課題を解決できることを見出し、本発明をなすに至った。
すなわち、本発明に係る蓄電素子は、ラミネートフィルムからなる外装体と、該外装体内に電解液と共に収容された電極積層体とを備え、前記電極積層体が前記外装体のヒートシール封口部から外装体外部に引き出された第1の電極端子用リードタブと第2の電極端子用リードタブとを有し、前記電極積層体の一方の電極が方形状に形成された第1の電極形成面と該第1の電極形成面の一側辺部に形成された耳部とを有する第1の電極形成板から形成されているとともに、前記電極積層体の他方の電極が前記第1の電極形成面より大きい面積で方形状に形成された第2の電極形成面と該第2の電極形成面の一側辺部に形成された耳部とを有する第2の電極形成板から形成され、平面視で、前記第1の電極形成面は前記第2の電極形成面の内側にあり且つ前記第1の電極形成面に形成された前記耳部の端部は前記第2の電極形成面の外側に位置し、前記第1の電極端子用リードタブの一端部が前記第1の電極形成板の耳部に接続されているとともに、前記第2の電極端子用リードタブの一端部が前記第2の電極形成板の耳部に接続されている蓄電素子であって、前記第1の電極形成面の互いに平行な二つの側辺部のうち前記耳部が形成された側辺部と該側辺部に平行な第2の電極形成面の二つの側辺部のうち前記耳部が形成された第1の電極形成面の側辺部と前記第1の電極端子用リードタブとの間に位置する側辺部とのずれ量をα、前記第1の電極形成板の耳部に接続された第1の電極端子用リードタブの一端部から前記第2の電極形成面の側辺部までの最短距離をX、前記第2の電極形成板の耳部に接続された第2の電極端子用リードタブの一端部から前記第1の電極形成面の側辺部までの最短距離をYとしたとき、αが0mm以上3mm以下、Xが0.5mm以上5.0mm以下、Yが0.5+αmm以上5.0+αmm以下であることを特徴とするものである。
As a result of studies to solve the above-mentioned problems, the present inventor has found that the problems can be solved by defining the shortest distance between the lead tab for terminals and the electrodes in the electrode stack, and has reached the present invention.
That is, the electricity storage device according to the present invention includes an exterior body made of a laminate film, and an electrode laminate housed in the exterior body together with an electrolyte solution, and the electrode laminate is exteriorized from a heat seal sealing portion of the exterior body. A first electrode terminal lead tab and a second electrode terminal lead tab drawn out of the body, wherein one electrode of the electrode laminate is formed in a square shape and the first electrode forming surface; And the other electrode of the electrode stack is larger than the first electrode forming surface. The electrode forming plate is formed of a first electrode forming plate having an ear portion formed on one side of one electrode forming surface. It is formed from a second electrode forming plate having a second electrode forming surface formed in a square shape in area and an ear portion formed on one side of the second electrode forming surface . The first electrode forming surface is inside the second electrode forming surface. There and said first end of said ear portion formed on the electrode formation surface is located outside of the second electrode forming surface, the first end portion of the electrode terminal lead tab said first electrode A power storage element connected to an ear of the forming plate and having one end of the second electrode terminal lead tab connected to an ear of the second electrode forming plate, wherein the first electrode Of the two side portions parallel to each other of the forming surface, the ear portion is formed of the side portion where the ear portion is formed and the two side portions of the second electrode forming surface parallel to the side portion. The shift amount between the side portion of the first electrode forming surface and the side portion located between the first electrode terminal lead tabs is α, and is connected to the ear portion of the first electrode forming plate. the shortest distance from the one end portion of the first electrode terminal lead tab to the side portion of the second electrode forming surface X, the second conductive been When the shortest distance from the one end portion of the second electrode terminal lead tab to the side portion of the first electrode formation surface and the Y connected to the ear portion of the electrode-forming plate, alpha or higher 0 mm 3 mm or less, X Is 0.5 mm or more and 5.0 mm or less, and Y is 0.5 + α mm or more and 5.0 + α mm or less.

また、本発明に係る蓄電素子の製造方法は、ラミネートフィルムからなる外装体と、該外装体内に電解液と共に収容された電極積層体とを備え、前記電極積層体が前記外装体のヒートシール封口部から外装体外部に引き出された第1の電極端子用リードタブと第2の電極端子用リードタブとを有し、前記電極積層体の一方の電極が方形状に形成された第1の電極形成面と該第1の電極形成面の一側辺部に形成された耳部とを有する第1の電極形成板から形成されているとともに、前記電極積層体の他方の電極が前記第1の電極形成面より大きい面積で方形状に形成された第2の電極形成面と該第2の電極形成面の一側辺部に形成された耳部とを有する第2の電極形成板から形成され、平面視で、前記第1の電極形成面は前記第2の電極形成面の内側にあり且つ前記第1の電極形成面に形成された前記耳部の端部は前記第2の電極形成面の外側に位置し、前記第1の電極端子用リードタブの一端部が前記第1の電極形成板の耳部に接続されているとともに、前記第2の電極端子用リードタブの一端部が前記第2の電極形成板の耳部に接続されている蓄電素子を製造する方法であって、前記第1の電極形成面の互いに平行な二つの側辺部のうち前記耳部が形成された側辺部と該側辺部に平行な第2の電極形成面の二つの側辺部のうち前記耳部が形成された第1の電極形成面の側辺部と前記第1の電極端子用リードタブとの間に位置する側辺部とのずれ量をαとしたとき、αが0mm以上3mm以下となるように前記電極積層体を形成する電極積層体形成工程と、前記第1の電極形成板の耳部に接続される第1の電極端子用リードタブの一端部から前記第2の電極形成面の側辺部までの最短距離をX、前記第2の電極形成板の耳部に接続される第2の電極端子用リードタブの一端部から前記第1の電極形成面の側辺部までの最短距離をYとしたとき、Xが0.5mm以上5.0mm以下となるように前記第1の電極端子用リードタブの一端部を前記第1の電極形成板の耳部に接続すると共にYが0.5+αmm以上5.0+αmm以下となるように前記第2の電極端子用リードタブの一端部を前記第2の電極形成板の耳部に接続するリードタブ接続工程と、を含むことを特徴とするものである。 In addition, a method for manufacturing a power storage element according to the present invention includes an exterior body made of a laminate film, and an electrode laminate housed together with an electrolyte in the exterior body, and the electrode laminate is a heat seal seal of the exterior body. A first electrode forming surface having a first electrode terminal lead tab and a second electrode terminal lead tab drawn out from the outer portion of the exterior body, wherein one electrode of the electrode laminate is formed in a square shape And an ear formed on one side of the first electrode formation surface, and the other electrode of the electrode stack is formed as the first electrode. A planar surface formed from a second electrode forming plate having a second electrode forming surface formed in a square shape with an area larger than the surface and an ear formed on one side of the second electrode forming surface. In view, the first electrode forming surface is the second electrode forming surface. End of the ear portion formed in and located inside the first electrode forming surface located on the outer side of the second electrode forming surface, the one end portion of the first electrode terminal lead tab is the first And a method of manufacturing a storage element in which one end portion of the second electrode terminal lead tab is connected to the ear portion of the second electrode forming plate. Of the two side parts parallel to each other of the first electrode formation surface, the side part where the ear part is formed and the two side parts of the second electrode formation surface parallel to the side part Of these, α is 0 mm or more, where α is the amount of shift between the side portion of the first electrode forming surface on which the ear portion is formed and the side portion located between the first electrode terminal lead tabs. An electrode laminate forming step of forming the electrode laminate so as to be 3 mm or less, and an ear of the first electrode forming plate From one end of the first electrode terminal lead tab connected to the shortest distance to the side portion of the second electrode forming surface X, the second being connected to the ear portion of the second electrode forming plate when the shortest distance from one end of the electrode terminal lead tab to the side portion of the first electrode formation surface was Y, for the first electrode terminal so X becomes 0.5mm or more 5.0mm or less One end portion of the lead tab is connected to the ear portion of the first electrode forming plate, and one end portion of the second electrode terminal lead tab is connected to the second electrode so that Y is 0.5 + α mm or more and 5.0 + α mm or less. A lead tab connecting step for connecting to the ear portion of the forming plate.

本発明によると、第1の電極形成板の耳部に接続された第1の電極端子用リードタブの一端部から第2の電極形成面の側辺部までの最短距離XがX<0.5mmのものと比較して、第1の電極形成板により形成される電極と第2の電極端子用リードタブとの間に発生する短絡の発生率を低減することができる。
また、第1の電極形成板の耳部に接続された第1の電極端子用リードタブの一端部から第2の電極形成面の側辺部までの最短距離XがX>5.0mmのものと比較して、体積容量密度の向上を図ることができる。
According to the present invention, the shortest distance X from the one end portion of the first electrode terminal lead tab connected to the ear portion of the first electrode forming plate to the side portion of the second electrode forming surface X <0.5 mm As compared with the above, the rate of occurrence of a short circuit between the electrode formed by the first electrode forming plate and the second electrode terminal lead tab can be reduced.
Also, the shortest distance X from one end of the first electrode terminal lead tab connected to the ear of the first electrode forming plate to the side of the second electrode forming surface is X> 5.0 mm In comparison, the volume capacity density can be improved.

図1は本発明の第1の実施形態に係る蓄電素子を模式的に示す図であり、図1に示される蓄電素子1は、外装体2と、この外装体2内に電解液(図示せず)と共に収容された電極積層体3とを備えている。
外装体2はラミネートフィルムからなり、ラミネートフィルムとしては、金属箔と樹脂フィルムを積層して形成されたものを用いることができ、特に、金属箔の外側と内側に樹脂フィルムを有する三層構造のものを用いることが好ましい。ここで、金属箔は水分やガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス等などからなるものを好適に用いることができる。
FIG. 1 is a diagram schematically showing a power storage element according to the first embodiment of the present invention. A power storage element 1 shown in FIG. 1 includes an exterior body 2 and an electrolyte (not shown) in the exterior body 2. And electrode laminate 3 accommodated together.
The outer package 2 is made of a laminate film, and as the laminate film, one formed by laminating a metal foil and a resin film can be used. Particularly, a three-layer structure having a resin film on the outside and inside of the metal foil. It is preferable to use one. Here, the metal foil is for preventing permeation of moisture and gas, and a metal foil made of copper, aluminum, stainless steel or the like can be suitably used.

一方、金属箔の外側に形成される樹脂フィルムは接触などにより金属箔が損傷を受けることを防止するためのものであり、ナイロンやポリエステル等からなるものを好適に用いることができる。また、金属箔の内側に形成される樹脂フィルムは外装体内に注入される電解液から金属箔を保護すると共にヒートシール時に溶融して外装体を封口させるためのものであり、ポリオレフィンや酸変成ポリオレフィン等からなるものを好適に用いることができる。   On the other hand, the resin film formed on the outer side of the metal foil is for preventing the metal foil from being damaged by contact or the like, and those made of nylon, polyester, or the like can be suitably used. The resin film formed inside the metal foil protects the metal foil from the electrolyte injected into the exterior body and melts it during heat sealing to seal the exterior body. Polyolefin and acid-modified polyolefin What consists of etc. can be used suitably.

電極積層体3は、複数の正極4と負極5とを有している。これらの電極4,5は間にセパレータ(図示せず)を介在させて積層されており、正極4は方形状に形成された正極形成面6aと、この正極形成面6aの一側辺部に形成された耳部6bとを有する第1の電極形成板6から形成されている。
一方、負極5は第2の電極形成板7から形成され、この第2の電極形成板7は第1の電極形成板6の正極形成面6aより大きい面積で方形状に形成された負極形成面7aと、この負極形成面7aの一側辺部に形成された耳部7bとを有している。
The electrode laminate 3 has a plurality of positive electrodes 4 and negative electrodes 5. These electrodes 4 and 5 are laminated with a separator (not shown) interposed therebetween, and the positive electrode 4 is formed on a positive electrode forming surface 6a formed in a square shape and on one side of the positive electrode forming surface 6a. It is formed from a first electrode forming plate 6 having a formed ear portion 6b.
On the other hand, the negative electrode 5 is formed from the second electrode forming plate 7, and the second electrode forming plate 7 is formed in a square shape with a larger area than the positive electrode forming surface 6 a of the first electrode forming plate 6. 7a and an ear portion 7b formed on one side of the negative electrode forming surface 7a.

電極積層体3のセパレータ(図示せず)としては、リチウムイオン二次電池に用いられるポリエチレン製もしくはポリプロピレン製の微多孔膜、または電気二重層コンデンサで用いられるセルロース製の不繊紙などを用いることができる。また、内部のマイクロショートによる自己放電を小さくするという観点から厚みが10μm以上のセパレータを用いることが好ましく、蓄電素子のエネルギー密度の減少を抑えながら出力特性の低下も抑えるという観点からは50μm以下の厚みを持つセパレータを用いることが好ましい。   As a separator (not shown) of the electrode laminate 3, a polyethylene or polypropylene microporous film used for a lithium ion secondary battery, or a cellulose non-woven paper used for an electric double layer capacitor, or the like is used. Can do. In addition, it is preferable to use a separator having a thickness of 10 μm or more from the viewpoint of reducing self-discharge due to internal micro-shorts, and from the viewpoint of suppressing a decrease in output characteristics while suppressing a decrease in energy density of the electricity storage element. It is preferable to use a separator having a thickness.

第1の電極形成板6としては、耳部6bを除いた部分に導電性炭素材からなる結着剤が塗布され、かつ結着剤の上に正極活物質層が形成された厚さ5〜100μm程度の金属箔(例えば、アルミニウム箔)を好適に用いることができる。
また、第2の電極形成板7としては、耳部7bを除いた部分に導電性炭素材からなる結着剤が塗布され、かつ結着剤の上に負極活物質層が形成された厚さ5〜100μm程度の金属箔(例えば、銅箔)を好適に用いることができる。
The first electrode forming plate 6 has a thickness of 5 to 5 where a binder made of a conductive carbon material is applied to a portion excluding the ear portion 6b, and a positive electrode active material layer is formed on the binder. A metal foil (for example, aluminum foil) of about 100 μm can be suitably used.
Moreover, as the 2nd electrode formation board 7, the binder which consists of a conductive carbon material is apply | coated to the part except the ear | edge part 7b, and the negative electrode active material layer was formed on the binder. A metal foil (for example, copper foil) of about 5 to 100 μm can be suitably used.

ここで、上記正極活物質層を形成する正極活物質としては、活性炭などの多孔質炭素材料を好適に用いることができ、正極活物質として活性炭を用いる場合は、直径20〜500Åの細孔に由来するメソ孔量をV1(cc/g)、直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)としたとき、0.3<V1≦0.8、0.5≦V2≦1.0を満たす活性炭を正極活物質として用いることが蓄電素子のエネルギー密度、出力密度の観点から好ましい。   Here, as the positive electrode active material for forming the positive electrode active material layer, a porous carbon material such as activated carbon can be suitably used. When activated carbon is used as the positive electrode active material, pores having a diameter of 20 to 500 mm can be formed. When the amount of mesopores derived is V1 (cc / g) and the amount of micropores derived from pores having a diameter of less than 20 mm is V2 (cc / g), 0.3 <V1 ≦ 0.8, 0.5 ≦ It is preferable to use activated carbon satisfying V2 ≦ 1.0 as the positive electrode active material from the viewpoint of energy density and output density of the power storage element.

また、平均細孔径(細孔径に対して該細孔径を有する全細孔の容積の和を細孔径の小さいものから順に積算したときに積算値が直径20Å未満のマイクロ孔、及び直径20Å以上500Å以下のメソ孔をあわせた合計細孔面積の50%となるときの細孔径)が20Å以上の活性炭を正極活物質として用いることが蓄電素子の出力を大きくする点から好ましく、揚力を大きくする点からは平均細孔径が25Å以下の活性炭を正極活物質として用いることが好ましい。さらに、BET比表面積に関しては、1500m2/g以上、2500m2/g以下の活性炭を用いることが好ましい。 In addition, the average pore diameter (when the sum of the volumes of all pores having the pore diameter with respect to the pore diameter is integrated in order from the smallest pore diameter, the integrated value is a micropore having a diameter of less than 20 mm, and a diameter of 20 to 500 mm. It is preferable to use activated carbon having a pore diameter of 20% or more as a positive electrode active material as the positive electrode active material, and to increase the lift force. Is preferably activated carbon having an average pore diameter of 25 mm or less as the positive electrode active material. Furthermore, regarding the BET specific surface area, it is preferable to use activated carbon of 1500 m 2 / g or more and 2500 m 2 / g or less.

一方、上記負極活物質層を形成する負極活物質としては、特許文献2に開示されているような複合多孔性材料、具体的には、活性炭の表面に炭素質材料を被着させた複合多孔性材料を好適に用いることができ、複合多孔性材料を負極活物質として用いる場合は、直径20〜500Åの細孔に由来するメソ孔量をVml(cc/g)、直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)としたとき、0.01≦Vm1≦0.20、0.01≦Vm2≦0.40を満たすものを用いることが好ましい。   On the other hand, as the negative electrode active material for forming the negative electrode active material layer, a composite porous material as disclosed in Patent Document 2, specifically, a composite porous material in which a carbonaceous material is deposited on the surface of activated carbon. When the composite porous material is used as the negative electrode active material, the amount of mesopores derived from pores having a diameter of 20 to 500 mm is Vml (cc / g), and the pores having a diameter of less than 20 mm When the amount of micropores derived from is Vm2 (cc / g), it is preferable to use those satisfying 0.01 ≦ Vm1 ≦ 0.20 and 0.01 ≦ Vm2 ≦ 0.40.

ここで、複合多孔性材料は活性炭と炭素質材料前駆体とを共存させた状態で熱処理することにより得ることができ、この場合の活性炭としては、平均粒径が1〜500μm程度(より好ましくは1〜50μm)の活性炭粉末を用いることが好ましい。
また、得られる複合多孔性材料が所望の特性を発揮する限り、炭素質材料前駆体と共に熱処理される活性炭の原材料などに特に制限はなく、石油系、石炭系、植物系、高分子系などの各種の原材料から得られた市販の活性炭を使用することができる。
Here, the composite porous material can be obtained by heat treatment in a state where activated carbon and a carbonaceous material precursor coexist, and the activated carbon in this case has an average particle size of about 1 to 500 μm (more preferably It is preferable to use 1-50 μm) activated carbon powder.
In addition, as long as the obtained composite porous material exhibits desired characteristics, there is no particular limitation on the raw material of activated carbon that is heat-treated with the carbonaceous material precursor, such as petroleum-based, coal-based, plant-based, polymer-based, etc. Commercial activated carbon obtained from various raw materials can be used.

炭素質材料前駆体としては、活性炭の表面に炭素質材料を被着させることができる液体または溶剤に溶解可能な有機質材料、例えばピッチ、メソカーボンマイクロビーズ、コークスあるいはフェノール樹脂などの合成樹脂などを用いることができ、これらの中でもピッチを用いることが製造コストの点から好ましい。
ピッチは大別して石油系ピッチと石炭系ピッチに分けられ、石油系ピッチとしては、例えば、原油の蒸留残渣、デカントオイルなどの流動性接触分解残渣、サークルクラッカーからのボトム油、ナフサクラッキングの際に得られるエチレンタールなどを挙げることができる。
Examples of the carbonaceous material precursor include organic materials that can be dissolved in a liquid or solvent that can deposit the carbonaceous material on the surface of activated carbon, such as synthetic resin such as pitch, mesocarbon microbeads, coke, or phenol resin. Among these, it is preferable from the viewpoint of manufacturing cost to use pitch.
The pitch is roughly divided into petroleum pitch and coal pitch, and as petroleum pitch, for example, crude oil distillation residue, fluid catalytic cracking residue such as decant oil, bottom oil from circle cracker, naphtha cracking Examples thereof include ethylene tar obtained.

炭素質材料前駆体として上記ピッチを用いる場合は、ピッチを活性炭の表面で揮発もしくは熱分解させ、活性炭の表面で揮発もしくは熱分解したピッチ成分が活性炭の細孔内に入り込んで被着することにより複合多孔性材料が得られるが、この場合、ピッチを活性炭の表面で200〜500℃程度、好ましくは400℃以上の温度で熱分解させることにより、活性炭の細孔内に入り込んで被着したピッチ成分が炭素質材料となる反応が進行する。   When the pitch is used as the carbonaceous material precursor, the pitch is volatilized or pyrolyzed on the surface of the activated carbon, and the pitch component volatilized or pyrolyzed on the surface of the activated carbon enters the pores of the activated carbon and adheres to it. A composite porous material can be obtained. In this case, the pitch is pyrolyzed at a temperature of about 200 to 500 ° C., preferably 400 ° C. or higher on the surface of the activated carbon, so that the pitch penetrates into and adheres to the pores of the activated carbon. Reaction in which the component becomes a carbonaceous material proceeds.

炭素質材料前駆体を活性炭と共存させた状態で熱処理するときのピーク温度は得られる複合多孔性材料の特性、熱反応パターン、熱反応雰囲気などにより適宜決定されるものであるが、400℃以上であることが好ましく、更に好ましくは450〜1000℃であり、特に500〜800℃程度のピーク温度であることが好ましい。
また、熱処理時のピーク温度を維持する時間は30分から10時間であればよく、好ましくは1時間から7時間、更に好ましくは2時間から5時間である。500〜800℃程度のピーク温度で2時間から5時間熱処理する場合、活性炭表面に被着している炭素質材料は多環芳香族系炭化水素になっているものと考えられる。
The peak temperature when the carbonaceous material precursor is heat-treated in the presence of activated carbon is appropriately determined depending on the characteristics of the composite porous material to be obtained, the thermal reaction pattern, the thermal reaction atmosphere, etc. It is preferable that the temperature is 450 to 1000 ° C., and a peak temperature of about 500 to 800 ° C. is particularly preferable.
The time for maintaining the peak temperature during the heat treatment may be from 30 minutes to 10 hours, preferably from 1 hour to 7 hours, and more preferably from 2 hours to 5 hours. When the heat treatment is performed at a peak temperature of about 500 to 800 ° C. for 2 to 5 hours, the carbonaceous material deposited on the activated carbon surface is considered to be a polycyclic aromatic hydrocarbon.

電極積層体3と共に外装体2内に収容される電解液としては、電解質と溶媒を含む電解液を用いることができ、電解液のかわりに固体電解質を使用することも可能である。
電解液の溶媒としては、炭酸エチレン(EC)、炭酸プロピレン(PC)に代表される環状炭酸エステル、炭酸ジエチル(DEC)、炭酸ジメチル(DMC)、炭酸エチルメチル(MEC)に代表される鎖状炭酸エステル、γ−プチロラクトン(γBL)などのラクトン類や、これらの非水系溶媒を混合したものを用いることができる。
As an electrolytic solution accommodated in the outer package 2 together with the electrode laminate 3, an electrolytic solution containing an electrolyte and a solvent can be used, and a solid electrolyte can be used instead of the electrolytic solution.
As a solvent for the electrolyte solution, a chain carbonate represented by ethylene carbonate (EC), a cyclic carbonate represented by propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (MEC). Lactones such as carbonic acid ester and γ-ptyrolactone (γBL), and a mixture of these non-aqueous solvents can be used.

上記非水系溶媒に溶解する電解質としては、LiBF4、LiPF6、LiN(SO2252、LiN(SO2CF3)(SO225)などのリチウム塩や、これらのリチウム塩を混合した混合塩を用いることができる。
電解液中の電解質濃度は、陰イオンの不足を避け、蓄電素子の容量を最大にする点から、0.5mol/l以上であることが好ましい。また、未溶解の塩が電解液中に析出することを抑え、電解液の粘度が高くなりすぎたりしないようにし、伝導度を上げて出力特性を上げるという点から電解液中の電解質濃度を2.0mol/l以下にすることが好ましい。
Examples of the electrolyte dissolved in the non-aqueous solvent include lithium salts such as LiBF 4 , LiPF 6 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 2 F 5 ), and these A mixed salt obtained by mixing lithium salts of the above can be used.
The electrolyte concentration in the electrolytic solution is preferably 0.5 mol / l or more from the viewpoint of avoiding shortage of anions and maximizing the capacity of the electricity storage element. In addition, the concentration of the electrolyte in the electrolyte is set to 2 in order to prevent the undissolved salt from precipitating in the electrolyte, prevent the viscosity of the electrolyte from becoming too high, and increase the conductivity and output characteristics. It is preferable to make it 0.0 mol / l or less.

電極積層体3は、外装体2のヒートシール封口部(図示せず)から外装体外部に引き出された正極端子用リードタブ8と負極端子用リードタブ9とを有している。これらのリードタブ8,9のうち正極端子用リードタブ8は例えばアルミニウムから形成されており、この正極端子用リードタブ8の一端部は前述した第1の電極形成板6の耳部6bに超音波溶接、抵抗溶接、半田付け、銀ロウ接続などの方法によって接続されている。
一方、負極端子用リードタブ9は例えば銅またはニッケルから形成されており、この負極端子用リードタブ9の一端部は前述した第2の電極形成板7の耳部7bに超音波溶接、抵抗溶接、半田付け、銀ロウ接続などの方法によって接続されている。
The electrode laminate 3 has a positive terminal lead tab 8 and a negative terminal lead tab 9 drawn out of the exterior body from a heat seal sealing portion (not shown) of the exterior body 2. Of these lead tabs 8 and 9, the positive terminal lead tab 8 is made of, for example, aluminum, and one end of the positive terminal lead tab 8 is ultrasonically welded to the ear portion 6b of the first electrode forming plate 6 described above. They are connected by methods such as resistance welding, soldering, and silver solder connection.
On the other hand, the negative terminal lead tab 9 is made of, for example, copper or nickel, and one end of the negative terminal lead tab 9 is ultrasonically welded, resistance welded, or soldered to the ear portion 7b of the second electrode forming plate 7 described above. Are connected by a method such as attachment or silver row connection.

ここで、正極形成面6aの互いに平行な二つの側辺部6c,6dのうち耳部6bが形成された側辺部(例えば、側辺部6c)と該側辺部に平行な負極形成面7aの二つの側辺部7c,7dのうち耳部6bが形成された正極形成面6aの側辺部6cと正極端子用リードタブ8との間に位置する側辺部(例えば、側辺部7c)とのずれ量をα、第1の電極形成板6の耳部6bに接続された正極端子用リードタブ8の一端部から負極形成面7aの互いに平行な二つの側辺部7c,7dのうち耳部6bが形成された正極形成面6aの側辺部と正極端子用リードタブ8との間に位置する側辺部7cまでの最短距離をX、第2の電極形成板7の耳部7bに接続された負極端子用リードタブ9の一端部から正極形成面6aの互いに平行な二つの側辺部6c,6dのうち耳部7bが形成された負極形成面7aの側辺部に近い側の側辺部6cまでの最短距離をYとすると、ずれ量αが0mm以上3mm以下、最短距離Xが0.5mm以上5.0mm以下(好ましくは0.7mm以上4.0mm以下、より好ましくは0.9mm以上3.0mm以下)、最短距離Yが0.5+αmm以上5.0+αmm以下(好ましくは0.7+αmm以上4.0+αmm以下、より好ましくは0.9+αmm以上3.0+αmm以下)となっている。 Here, the side part (for example, side part 6c) in which the ear | edge part 6b was formed among the two side parts 6c and 6d of the positive electrode formation surface 6a parallel to each other, and the negative electrode formation surface parallel to this side part Of the two side parts 7c and 7d of 7a, the side part (for example, the side part 7c) located between the side part 6c of the positive electrode forming surface 6a on which the ear part 6b is formed and the lead tab 8 for positive terminal. ), And one of the two side portions 7c and 7d parallel to each other of the negative electrode forming surface 7a from one end of the positive electrode terminal lead tab 8 connected to the ear 6b of the first electrode forming plate 6 the shortest distance at the side portions 7c or positioned between the side portion and the positive electrode terminal for lead tab 8 of the cathode-formation-face 6a of the ear portion 6b are formed X, ear portion 7b of the second electrode forming plate 7 Two side portions 6c parallel to each other of the positive electrode forming surface 6a from one end portion of the lead tab 9 for negative electrode terminal connected to When the shortest distance of the side side portion at 6 c or close to the side edge portion of the negative electrode forming surface 7a of the ear portions 7b are formed of d and Y, the deviation amount α is more than 0 mm 3 mm or less, the shortest distance X is 0.5 mm or more and 5.0 mm or less (preferably 0.7 mm or more and 4.0 mm or less, more preferably 0.9 mm or more and 3.0 mm or less), and the shortest distance Y is 0.5 + α mm or more and 5.0 + α mm or less (preferably 0.8. 7 + αmm to 4.0 + αmm, more preferably 0.9 + αmm to 3.0 + αmm).

図2は本発明の第2の実施形態に係る蓄電素子を模式的に示す図であり、図2に示される蓄電素子1が第1の実施形態に係る蓄電素子と異なる点は、外装体2が二つのヒートシール封口部を有し、これらのヒートシール封口部のうち一方のヒートシール封口部から正極端子用リードタブ8を外装体外部に引き出し、他方のヒートシール封口部から負極端子用リードタブ9を外装体外部に引き出した点である。   FIG. 2 is a diagram schematically showing a power storage device according to the second embodiment of the present invention. The power storage device 1 shown in FIG. 2 is different from the power storage device according to the first embodiment in that an exterior body 2 Has two heat seal sealing portions, one of the heat seal sealing portions from which one of the heat seal sealing portions pulls out the positive electrode terminal lead tab 8 to the exterior body, and the other heat seal sealing portion from the negative electrode terminal lead tab 9 This is a point that is pulled out of the exterior body.

次に、図1及び図2に示した蓄電素子1の製造方法について説明する。
蓄電素子1の電極積層体3は、以下の工程を含んで作製される。すなわち、表面に導電性炭素材が結着された集電体の両面または片面に活物質層を塗布して電極を形成する塗布工程と、電極を定められた寸法形状に切断する加工工程と、電極をセパレータを介して複数積層して電極積層体とする積層工程とを含む。
Next, the manufacturing method of the electrical storage element 1 shown in FIG.1 and FIG.2 is demonstrated.
The electrode laminate 3 of the electricity storage element 1 is manufactured including the following steps. That is, an application step of forming an electrode by applying an active material layer on both sides or one side of a current collector having a conductive carbon material bound on the surface, a processing step of cutting the electrode into a predetermined dimensional shape, A stacking step in which a plurality of electrodes are stacked via a separator to form an electrode stack.

これらの工程のうち上記塗布工程は、まず、正極活物質または負極活物質を、必要に応じて、微粒子黒鉛、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維などの導電材と混合し、結着剤である樹脂の有機溶剤溶液と混合することでペーストを得る。次に、得られたペーストを集電体上に塗布し、乾燥させることによって活物質層を形成する。ここで、活物質層は必要に応じて集電体の片面または両面に形成することができ、活物質層の片面分の乾燥後の厚みは10〜200μmの範囲であることが好ましい。電極の厚みを均一にするため、必要に応じてプレスしても良い。得られた電極は乾燥後、定められた寸法に打ち抜く加工を行う。
打ち抜かれた電極は、耳部のついた略四辺形形状を有し、耳部以外には活物質が塗布されている。耳部は前述したリードタブを接続するための接続部分に該当し、活物質は塗布されていない。
Of these steps, the coating step is performed by first mixing the positive electrode active material or the negative electrode active material with a conductive material such as fine particle graphite, acetylene black, ketjen black, or vapor grown carbon fiber as necessary. A paste is obtained by mixing with an organic solvent solution of resin as an adhesive. Next, the obtained paste is applied on a current collector and dried to form an active material layer. Here, the active material layer can be formed on one side or both sides of the current collector as required, and the thickness after drying of one side of the active material layer is preferably in the range of 10 to 200 μm. You may press as needed in order to make the thickness of an electrode uniform. The obtained electrode is dried and punched into a predetermined dimension.
The punched electrode has a substantially quadrangular shape with an ear part, and an active material is applied to the part other than the ear part. The ear portion corresponds to a connecting portion for connecting the lead tab described above, and no active material is applied thereto.

次に、積層工程について説明する。
正極4と負極5との間にセパレータを挟み、位置合せをしながら必要に応じた層数の正極4と負極5を積層する。ここで、セパレータは、リチウムイオン二次電池に用いられるポリエチレン製の微多孔膜、もしくはポリプロピレン製の微多孔膜、または電気二重層コンデンサで用いられるセルロース製の不繊紙などを用いることができる。セパレータの厚みは、内部のマイクロショートによる自己放電を小さくさせる点から10μm以上が好ましく、また蓄電素子のエネルギー密度の減少を抑えながら、かつ出力特性の低下も抑えるという点から、50μm以下が好ましい。
Next, the lamination process will be described.
A separator is sandwiched between the positive electrode 4 and the negative electrode 5, and the positive electrode 4 and the negative electrode 5 having the required number of layers are stacked while aligning. Here, as the separator, a polyethylene microporous film used in a lithium ion secondary battery, a polypropylene microporous film, or a cellulose non-woven paper used in an electric double layer capacitor can be used. The thickness of the separator is preferably 10 μm or more from the viewpoint of reducing self-discharge due to internal micro-shorts, and is preferably 50 μm or less from the viewpoint of suppressing a decrease in energy density of the power storage device and suppressing a decrease in output characteristics.

本発明の製造方法により得られる蓄電素子に用いる負極中には、あらかじめリチウムをドープしておくことができる。リチウムをドープしておくことにより、素子の容量および作動電圧を制御することが可能である。リチウムのドープ法は、例えば、電極部以外に設置されたリチウム源と負極を短絡することによって、正極貫通孔、負極貫通孔を経由して積層または捲廻積層された負極郡の活物質層にドープする方法や、負極にリチウム箔を圧着することによって電気化学的に負極の活物質層にドープする方法を挙げることができる。   Lithium can be doped in advance in the negative electrode used for the energy storage device obtained by the production method of the present invention. By doping with lithium, it is possible to control the capacity and operating voltage of the element. In the lithium doping method, for example, by short-circuiting a lithium source and a negative electrode installed other than the electrode part, an active material layer in a negative electrode group that is stacked or wound via a positive electrode through hole and a negative electrode through hole is used. Examples thereof include a method of doping and a method of electrochemically doping the active material layer of the negative electrode by pressing a lithium foil on the negative electrode.

間にセパレータを介在させて正極4と負極5を積層するときには、上記ずれ量αが0mm以上3mm以下となるように、正極4と負極5を積層して電極積層体3を作製する。次に、作製された電極積層体3の正極4に正極端子用リードタブ8を、上記Xが0.5mm以上5.0mm以下(好ましくは0.7mm以上4.0mm以下、より好ましくは0.9mm以上3.0mm以下)になるように接続する。同様にして、負極5に負極端子用リードタブ9を、上記Yが0.5+αmm以上5.0+αmm以下(好ましくは0.7+αmm以上4.0+αmm以下、より好ましくは0.9+αmm以上3.0+αmm以下)になるように接続する。
上記Xが0.5mm以上であれば蓄電素子を製造したときの短絡の発生率が低く、5.0mm以内であれば体積容量密度が高い。
When the positive electrode 4 and the negative electrode 5 are laminated with a separator interposed therebetween, the electrode laminate 3 is produced by laminating the positive electrode 4 and the negative electrode 5 so that the shift amount α is 0 mm or more and 3 mm or less. Next, the positive electrode terminal lead tab 8 is placed on the positive electrode 4 of the produced electrode laminate 3, and the X is 0.5 mm to 5.0 mm (preferably 0.7 mm to 4.0 mm, more preferably 0.9 mm). To be 3.0 mm or less). Similarly, lead tab 9 for negative electrode terminal is connected to negative electrode 5 so that Y is 0.5 + α mm or more and 5.0 + α mm or less (preferably 0.7 + α mm or more and 4.0 + α mm or less, more preferably 0.9 + α mm or more and 3.0 + α mm or less). Connect to be.
If X is 0.5 mm or more, the occurrence rate of short circuit when the electricity storage device is manufactured is low, and if it is within 5.0 mm, the volume capacity density is high.

例示した非水系リチウム型蓄電素子の場合は、負極にリチウム箔を貼り付けて活物質に吸収させるために面積が大きいことが好ましいため、第1の電極形成板6により形成される電極は正極であることが好ましい。
上述の工程を経て製造された電極積層体中の、積層された全ての正極の耳部をまとめて正極リードタブに接続し、積層された全ての負極の耳部をまとめて負極リードタブに接続することでタブ付き積層体を得る。接続方法は超音波溶接、抵抗溶接または半田付けや銀ロウ接続が好ましい。
In the case of the exemplified non-aqueous lithium storage element, it is preferable that the area is large in order to attach the lithium foil to the negative electrode and absorb it in the active material. Therefore, the electrode formed by the first electrode forming plate 6 is a positive electrode. Preferably there is.
In the electrode laminate manufactured through the above steps, all the stacked positive electrode ears are connected together to the positive electrode lead tab, and all the stacked negative electrode ears are connected together to the negative electrode lead tab. A tabbed laminate is obtained. The connection method is preferably ultrasonic welding, resistance welding, soldering or silver solder connection.

正極リードタブの材料はアルミニウムが好ましく、負極リードタブの材料は銅またはニッケルが好ましい。また、リードタブのラミネートフィルム外装体のヒートシール封口部位に位置する部分には該ヒートシール封口部の樹脂と相溶する樹脂からなる接合部を設けてもよい。
タブ付き積層体は、ラミネートフィルムからなる外装体内に、正極に接続した正極リードタブの一端と負極に接続した負極リードタブの一端とを外装体の外側に引き出した状態で収容し、正極リードタブと負極リードタブとをヒートシールにより外装体に固定する。
次に、正極端子用リードタブと負極端子用リードタブとを接続した電極積層体をラミネートフィルムからなる外装体内に、正極端子用リードタブの他端と負極端子用リードタブの他端とが外装体外部に引き出された状態で収容する。
The material of the positive electrode lead tab is preferably aluminum, and the material of the negative electrode lead tab is preferably copper or nickel. Moreover, you may provide the junction part which consists of resin compatible with resin of this heat seal sealing part in the part located in the heat seal sealing site | part of the laminate film exterior body of a lead tab.
The laminated body with tabs is housed in an outer package made of a laminate film with one end of the positive electrode lead tab connected to the positive electrode and one end of the negative electrode lead tab connected to the negative electrode pulled out of the outer package, and the positive electrode lead tab and the negative electrode lead tab. Are fixed to the exterior body by heat sealing.
Next, the electrode laminate in which the positive electrode terminal lead tab and the negative electrode terminal lead tab are connected is drawn out into the outer package made of a laminate film, and the other end of the positive electrode terminal lead tab and the other end of the negative electrode terminal lead tab are pulled out of the outer package. To be stored.

ここで、ラミネートフィルムとしては、金属箔と樹脂フィルムを積層したフィルムが好ましく、外層樹脂フィルム/金属箔/内層樹脂フィルムからなる三層構成のものが例示される。外層樹脂フィルムは接触などにより金属箔が損傷を受けることを防止するためのものであり、ナイロンやポリエステル等の樹脂を好適に使用できる。金属箔は水分やガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス鋼などからなるものを好適に使用できる。内層樹脂フィルムは内部に収容する電解液から金属箔を保護すると共にヒートシール時に溶融封口させるためのものであり、ポリオレフィン、酸変成ポリオレフィンが好適に使用できる。
次に、外装体内に電解液を注液し、外装体をヒートシールすることによって蓄電素子を製造することができる。
Here, the laminate film is preferably a film in which a metal foil and a resin film are laminated, and an example of a three-layer structure composed of an outer layer resin film / a metal foil / an inner layer resin film is exemplified. The outer layer resin film is for preventing the metal foil from being damaged by contact or the like, and a resin such as nylon or polyester can be suitably used. The metal foil is for preventing moisture and gas permeation, and a metal foil made of copper, aluminum, stainless steel, or the like can be suitably used. The inner layer resin film is for protecting the metal foil from the electrolyte contained therein and melting and sealing at the time of heat sealing, and polyolefins and acid-modified polyolefins can be preferably used.
Next, an electrolytic solution can be injected into the exterior body, and the exterior body can be heat-sealed to manufacture the power storage element.

以下、本発明の実施例及び比較例を表1に基づいて説明する。   Examples of the present invention and comparative examples will be described below with reference to Table 1.

Figure 0005363058
Figure 0005363058

<実施例1>
<電極の作製>
市販のピッチ系活性炭(BET比表面積1955m2/g)150gをステンレススティールメッシュ製の籠に入れ、石炭系ピッチ300gを入れたステンレス製バットの上に置き、電気炉(炉内有効寸法300mm×300mm×300mm)内に設置して、熱処理を行った。熱処理は窒素雰囲気下で、670℃まで4時間で昇温し、同温度で4時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出した。得られた複合多孔性材料はBET比表面積245m2/gであった。
<Example 1>
<Production of electrode>
150 g of commercially available pitch-based activated carbon (BET specific surface area 1955 m 2 / g) is placed in a stainless steel mesh basket and placed on a stainless steel bat containing 300 g of coal-based pitch, and an electric furnace (effective size in the furnace 300 mm × 300 mm) × 300 mm) and heat treatment was performed. In the heat treatment, the temperature was raised to 670 ° C. in 4 hours in a nitrogen atmosphere, maintained at the same temperature for 4 hours, then cooled to 60 ° C. by natural cooling, and then removed from the furnace. The obtained composite porous material had a BET specific surface area of 245 m 2 / g.

次いで、上記で得た複合多孔性材料83.4重量部、アセチレンブラック8.3重量部およびPVdF(ポリフッ化ビニリデン)8.3重量部とNMP(N−メチルピロリドン)を混合して、スラリーを得た。次いで、得られたスラリーを厚さ15μmの銅箔の両面に塗布し、乾燥し、プレスして、厚さ約135μmの負極5(第2の電極形成板7)を得た。
また、負極5の複合多孔性材料の原料と同一の市販のピッチ系活性炭81.6重量部、ケッチェンブラック6.1重量部およびPVdF12.3重量部とNMPを混合したものを、厚さ30μmのアルミニウム箔の両面に塗布し、乾燥し、厚さ約270μmの正極4(第1の電極形成板6)を得た。
Next, 83.4 parts by weight of the composite porous material obtained above, 8.3 parts by weight of acetylene black, 8.3 parts by weight of PVdF (polyvinylidene fluoride) and NMP (N-methylpyrrolidone) were mixed, and the slurry was mixed. Obtained. Next, the obtained slurry was applied to both sides of a 15 μm thick copper foil, dried and pressed to obtain a negative electrode 5 (second electrode forming plate 7) having a thickness of about 135 μm.
Further, 81.6 parts by weight of commercially available pitch-based activated carbon same as the raw material of the composite porous material of the negative electrode 5, 6.1 parts by weight of ketjen black, 12.3 parts by weight of PVdF, and NMP were mixed with a thickness of 30 μm. The aluminum foil was coated on both surfaces and dried to obtain a positive electrode 4 (first electrode forming plate 6) having a thickness of about 270 μm.

<電極積層体の作製>
上記で得られた負極及び正極を用いて、タブ付き積層体の長辺、短辺それぞれの長さが120mm、70mmである電極積層体3を作製した。なお、この長辺、短辺の長さは負極由来のものであり、正極の長辺、短辺は118mm、68mmと負極の長辺、短辺よりも2mmずつ小さい。積層に少なく負極の中心と正極の中心が一致するように積層した。すなわち、正極の端子用リードタブ側辺と負極の端子用リードタブ側辺とのずれ量αはα=1.0mmである。
まず、負極の複合多孔性材料に接するように同面積で厚み20μmのリチウム金属を圧着し、正極と負極の間にポリエチレン製のセパレータ(厚み30μm)を挟み込んで正極7枚負極6枚を積層し、厚さ3.0mmの電極積層体3を作製した。
<Preparation of electrode laminate>
Using the negative electrode and the positive electrode obtained above, an electrode laminate 3 in which the lengths of the long side and the short side of the tabbed laminate were 120 mm and 70 mm, respectively, was produced. The lengths of the long side and the short side are derived from the negative electrode, and the long side and the short side of the positive electrode are 118 mm and 68 mm, which are 2 mm smaller than the long side and the short side of the negative electrode. Lamination was performed so that the center of the negative electrode and the center of the positive electrode coincided with each other. That is, the shift amount α between the positive terminal lead tab side and the negative terminal lead tab side is α = 1.0 mm.
First, a 20 μm thick lithium metal having the same area is pressed against the composite porous material of the negative electrode, and a polyethylene separator (thickness of 30 μm) is sandwiched between the positive electrode and the negative electrode to laminate seven positive electrodes and six negative electrodes. An electrode laminate 3 having a thickness of 3.0 mm was produced.

<端子用リードタブの溶接>
上記の電極積層体において、図1に示すように、正極端子用リードタブ8の一端と負極5の最短距離(X)が0.5mm、負極端子用リードタブ9の一端と正極4の最短距離(Y)が1.5mmになるように端子用リードタブの溶接を行い、タブ付き積層体を作製した。
<非水電解液>
この電極積層体3をラミネートフィルム(外側より25μm厚のナイロンフィルム、40μm厚のアルミニウム箔、40μm厚のマレイン酸変成ポリプロピレンフィルムの三層構成)からなる外装体2内に入れ、EC(炭酸エチレン)とEMC(炭酸エチルメチル)を1:4の体積比率で混合した非水溶媒に1mol/Lの濃度でLiN(SO2252を溶解した非水電解液を注入して、ヒートシールにより密閉し、蓄電素子を作製した。
<Welding of lead tab for terminal>
In the above electrode laminate, as shown in FIG. 1, the shortest distance (X) between one end of the positive electrode terminal lead tab 8 and the negative electrode 5 is 0.5 mm, and the shortest distance between one end of the negative electrode lead tab 9 and the positive electrode 4 (Y ) Was welded to lead tabs for terminals so as to be 1.5 mm, and a laminated body with tabs was produced.
<Non-aqueous electrolyte>
This electrode laminate 3 is placed in an outer package 2 made of a laminate film (a three-layer structure of a nylon film having a thickness of 25 μm, an aluminum foil having a thickness of 40 μm and a maleic acid-modified polypropylene film having a thickness of 40 μm) from the outside, and EC (ethylene carbonate). A nonaqueous electrolyte solution in which LiN (SO 2 C 2 F 5 ) 2 is dissolved at a concentration of 1 mol / L is injected into a nonaqueous solvent in which 1: 4 and EMC (ethyl methyl carbonate) are mixed at a volume ratio of 1: 4. It was sealed with a seal to produce a storage element.

<体積容量密度の算出>
作製した蓄電素子を、4Vまで最大電流5Aで10分充電し、ついで50Aの電流で2Vまで放電を行い、体積容量密度を算出した。5Aはこの素子の10C相当、50Aは100C相当の電流に相当する。なお、蓄電素子の外装体において、電極積層体やリードタブが入らずにヒートシールされている部分については、折り曲げることが可能であるので体積容量密度の算出時にはその影響を考える必要はない。
作製した蓄電素子の体積容量密度は16.0Wh/Lであった。
また、作製した蓄電素子を市販のテスターで抵抗値や電圧を測定し短絡を判断した。作製した300セル中の短絡した蓄電素子は9個であり、短絡発生率は3%であった。
<Calculation of volume capacity density>
The produced storage element was charged to 4 V with a maximum current of 5 A for 10 minutes, and then discharged to 50 V with a current of 2 A, and the volume capacity density was calculated. 5 A corresponds to a current equivalent to 10 C of this element, and 50 A corresponds to a current equivalent to 100 C. Note that in the exterior body of the electricity storage element, a portion that is heat-sealed without the electrode laminate or the lead tab can be bent, so that it is not necessary to consider the influence when calculating the volume capacity density.
The produced storage element had a volume capacity density of 16.0 Wh / L.
Moreover, the resistance value and voltage of the produced electrical storage element were measured with a commercially available tester to judge a short circuit. Nine short-circuited power storage elements in the manufactured 300 cells were provided, and the occurrence rate of the short circuit was 3%.

<実施例2>
正極端子用リードタブ8の一端と負極5の最短距離(X)が0.7mm、負極端子用リードタブ9の一端と正極4の最短距離(Y)が1.7mmである以外は実施例1と同様にして蓄電素子を作製し、短絡の割合と体積容量密度を算出した。
作製した蓄電素子の体積容量密度は16.0Wh/Lであった。作製した300セル中の短絡した蓄電素子は4個であり、短絡発生率は1.3%であった。
<Example 2>
Example 1 except that the shortest distance (X) between one end of the positive electrode terminal tab 8 and the negative electrode 5 is 0.7 mm and the shortest distance (Y) between one end of the negative electrode terminal tab 9 and the positive electrode 4 is 1.7 mm. Thus, an electricity storage device was produced, and the ratio of short circuit and the volume capacity density were calculated.
The produced storage element had a volume capacity density of 16.0 Wh / L. There were four short-circuited power storage elements in the manufactured 300 cells, and the short-circuit occurrence rate was 1.3%.

<実施例3>
正極端子用リードタブ8の一端と負極5の最短距離(X)が0.9mm、負極端子用リードタブ9の一端と正極4の最短距離(Y)が1.9mmである以外は実施例1と同様にして蓄電素子を作製し、短絡の割合と体積容量密度を算出した。
作製した蓄電素子の体積容量密度は15.9Wh/Lであった。作製した300セル中の短絡した蓄電素子は0個であり、短絡発生率は0%であった。
<Example 3>
Example 1 except that the shortest distance (X) between one end of the positive electrode terminal lead tab 8 and the negative electrode 5 is 0.9 mm, and the shortest distance (Y) between one end of the negative electrode terminal lead tab 9 and the positive electrode 4 is 1.9 mm. Thus, an electricity storage device was produced, and the ratio of short circuit and the volume capacity density were calculated.
The produced storage element had a volume capacity density of 15.9 Wh / L. There were 0 short-circuited storage elements in the manufactured 300 cells, and the short-circuit occurrence rate was 0%.

<実施例4>
正極端子用リードタブ8の一端と負極5の最短距離(X)が3.5mm、負極端子用リードタブ9の一端と正極4の最短距離(Y)が4.5mmである以外は実施例1と同様にして蓄電素子を作製し、短絡の割合と体積容量密度を算出した。
作製した蓄電素子の体積容量密度は15.3Wh/Lであった。作製した300セル中の短絡した蓄電素子は0個であり、短絡発生率は0%であった。
<Example 4>
Same as Example 1 except that the shortest distance (X) between one end of the lead terminal 8 for positive electrode terminal and the negative electrode 5 is 3.5 mm and the shortest distance (Y) between one end of the lead tab 9 for negative electrode terminal and the positive electrode 4 is 4.5 mm. Thus, an electricity storage device was produced, and the ratio of short circuit and the volume capacity density were calculated.
The produced storage element had a volume capacity density of 15.3 Wh / L. There were 0 short-circuited storage elements in the manufactured 300 cells, and the short-circuit occurrence rate was 0%.

<実施例5>
正極端子用リードタブ8の一端と負極5の最短距離(X)が4.0mm、負極端子用リードタブ9の一端と正極4の最短距離(Y)が5.0mmである以外は実施例1と同様にして蓄電素子を作製し、短絡の割合と体積容量密度を算出した。
作製した蓄電素子の体積容量密度は15.2Wh/Lであった。作製した300セル中の短絡した蓄電素子は0個であり、短絡発生率は0%であった。
<Example 5>
The shortest distance (X) between one end of the positive electrode terminal lead tab 8 and the negative electrode 5 is 4.0 mm, and the shortest distance (Y) between one end of the negative electrode terminal tab 9 and the positive electrode 4 is 5.0 mm. Thus, an electricity storage device was produced, and the ratio of short circuit and the volume capacity density were calculated.
The produced storage element had a volume capacity density of 15.2 Wh / L. There were 0 short-circuited storage elements in the manufactured 300 cells, and the short-circuit occurrence rate was 0%.

<実施例6>
正極端子用リードタブ8の一端と負極5の最短距離(X)が5.0mm、負極端子用リードタブ9の一端と正極4の最短距離(Y)が6.0mmである以外は実施例1と同様にして蓄電素子を作製し、短絡の割合と体積容量密度を算出した。
作製した蓄電素子の体積容量密度は15.0Wh/Lであった。作製した300セル中の短絡した蓄電素子は0個であり、短絡発生率は0%であった。
<Example 6>
Same as Example 1 except that the shortest distance (X) between one end of the positive electrode terminal lead tab 8 and the negative electrode 5 is 5.0 mm and the shortest distance (Y) between one end of the negative electrode terminal lead tab 9 and the positive electrode 4 is 6.0 mm. Thus, an electricity storage device was produced, and the ratio of short circuit and the volume capacity density were calculated.
The produced storage element had a volume capacity density of 15.0 Wh / L. There were 0 short-circuited storage elements in the manufactured 300 cells, and the short-circuit occurrence rate was 0%.

<比較例1>
正極端子用リードタブの一端と負極の最短距離(X)が0.4mm、負極端子用リードタブの一端と正極の最短距離(Y)が1.4mmである以外は実施例1と同様にして蓄電素子を作製し、短絡の割合と体積容量密度を算出した。
作製した蓄電素子の体積容量密度は16.0Wh/Lであった。作製した300セル中の短絡した蓄電素子は228個であり、短絡発生率は76%であった。
<Comparative Example 1>
A storage element in the same manner as in Example 1 except that the shortest distance (X) between one end of the lead tab for positive electrode terminal and the negative electrode is 0.4 mm and the shortest distance (Y) between one end of the lead tab for negative electrode terminal and the positive electrode is 1.4 mm. The ratio of short circuit and volume capacity density were calculated.
The produced storage element had a volume capacity density of 16.0 Wh / L. There were 228 short-circuited power storage elements in the manufactured 300 cells, and the short-circuit occurrence rate was 76%.

<比較例2>
正極端子用リードタブの一端と負極の最短距離(X)が6.0mm、負極端子用リードタブの一端と正極の最短距離(Y)が7.0mmである以外は実施例1と同様にして蓄電素子を作製し、短絡の割合と体積容量密度を算出した。
作製した蓄電素子の体積容量密度は14.8Wh/Lであった。作製した300セル中の短絡した蓄電素子は0個であり、短絡発生率は0%であった。
<Comparative example 2>
A storage element in the same manner as in Example 1 except that the shortest distance (X) between one end of the lead tab for positive electrode terminal and the negative electrode is 6.0 mm, and the shortest distance (Y) between one end of the lead tab for negative electrode terminal and positive electrode is 7.0 mm. The ratio of short circuit and volume capacity density were calculated.
The produced storage element had a volume capacity density of 14.8 Wh / L. There were 0 short-circuited storage elements in the manufactured 300 cells, and the short-circuit occurrence rate was 0%.

本発明の蓄電素子は、自動車において、内燃機関または燃料電池、モーター、及び蓄電素子を組み合せたハイブリット駆動システムの分野、OA機器、瞬時電圧降下対策、さらには瞬間電力ピークのアシスト用途などで好適に利用できる。   The power storage device of the present invention is suitable for use in automobiles, in the field of hybrid drive systems combining an internal combustion engine or fuel cell, a motor, and a power storage device, OA equipment, countermeasures for instantaneous voltage drop, and assisting instantaneous power peak. Available.

本発明に係る蓄電素子の第1の実施形態を模式的に示す図である。It is a figure showing typically a 1st embodiment of an electrical storage element concerning the present invention. 本発明に係る蓄電素子の第2の実施形態を模式的に示す図である。It is a figure which shows typically 2nd Embodiment of the electrical storage element which concerns on this invention.

符号の説明Explanation of symbols

1 蓄電素子
2 外装体
3 電極積層体
4 正極
5 負極
6 第1の電極形成板
6a 正極形成面(第1の電極形成面)
6b 耳部
6c,6d 正極形成面の側辺部
7 第2の電極形成板
7a 負極形成面(第2の電極形成面)
7b 耳部
7c,7d 負極形成面の側辺部
8 正極端子用リードタブ
9 負極端子用リードタブ
DESCRIPTION OF SYMBOLS 1 Electrical storage element 2 Exterior body 3 Electrode laminated body 4 Positive electrode 5 Negative electrode 6 1st electrode formation board 6a Positive electrode formation surface (1st electrode formation surface)
6b Ear part 6c, 6d Side part of positive electrode forming surface 7 Second electrode forming plate 7a Negative electrode forming surface (second electrode forming surface)
7b Ear part 7c, 7d Side part of negative electrode forming surface 8 Lead tab for positive terminal 9 Lead tab for negative terminal

Claims (3)

ラミネートフィルムからなる外装体と、該外装体内に電解液と共に収容された電極積層体とを備え、
前記電極積層体が前記外装体のヒートシール封口部から外装体外部に引き出された第1の電極端子用リードタブと第2の電極端子用リードタブとを有し、
前記電極積層体の一方の電極が方形状に形成された第1の電極形成面と該第1の電極形成面の一側辺部に形成された耳部とを有する第1の電極形成板から形成されているとともに、前記電極積層体の他方の電極が前記第1の電極形成面より大きい面積で方形状に形成された第2の電極形成面と該第2の電極形成面の一側辺部に形成された耳部とを有する第2の電極形成板から形成され、平面視で、前記第1の電極形成面は前記第2の電極形成面の内側にあり且つ前記第1の電極形成面に形成された前記耳部の端部は前記第2の電極形成面の外側に位置し、
前記第1の電極端子用リードタブの一端部が前記第1の電極形成板の耳部に接続されているとともに、前記第2の電極端子用リードタブの一端部が前記第2の電極形成板の耳部に接続されている蓄電素子であって、
前記第1の電極形成面の互いに平行な二つの側辺部のうち前記耳部が形成された側辺部と該側辺部に平行な第2の電極形成面の二つの側辺部のうち前記耳部が形成された第1の電極形成面の側辺部と前記第1の電極端子用リードタブとの間に位置する側辺部とのずれ量をα、前記第1の電極形成板の耳部に接続された第1の電極端子用リードタブの一端部から前記第2の電極形成面の側辺部までの最短距離をX、前記第2の電極形成板の耳部に接続された第2の電極端子用リードタブの一端部から前記第1の電極形成面の側辺部までの最短距離をYとしたとき、αが0mm以上3mm以下、Xが0.5mm以上5.0mm以下、Yが0.5+αmm以上5.0+αmm以下であることを特徴とする蓄電素子。
An exterior body made of a laminate film, and an electrode laminate housed together with an electrolyte in the exterior body,
The electrode laminate has a first electrode terminal lead tab and a second electrode terminal lead tab drawn out of the exterior body from a heat seal sealing portion of the exterior body,
From a first electrode forming plate having a first electrode forming surface in which one electrode of the electrode laminate is formed in a square shape and an ear portion formed on one side of the first electrode forming surface A second electrode forming surface formed on the other side of the electrode stack and having a larger area than the first electrode forming surface, and one side of the second electrode forming surface. The first electrode forming surface is formed on the inner side of the second electrode forming surface in a plan view, and the first electrode forming surface is formed. An end of the ear formed on the surface is located outside the second electrode forming surface;
One end portion of the first electrode terminal lead tab is connected to the ear portion of the first electrode forming plate, and one end portion of the second electrode terminal lead tab is the ear portion of the second electrode forming plate. A power storage element connected to the unit,
Of the two side portions parallel to each other of the first electrode formation surface, the side portion where the ear portion is formed and the two side portions of the second electrode formation surface parallel to the side portion The shift amount between the side part of the first electrode forming surface where the ear part is formed and the side part located between the first electrode terminal lead tabs is α, The shortest distance from one end of the first electrode terminal lead tab connected to the ear to the side of the second electrode forming surface is X, and the first distance connected to the ear of the second electrode forming plate is X. when the shortest distance from the one end portion of a second electrode terminal lead tab to the side portion of the first electrode formation surface was Y, alpha is 0mm or less than 3mm, X is 0.5mm or 5.0mm or less, Y Is 0.5 + α mm or more and 5.0 + α mm or less.
前記電極積層体の一方の電極が正極、前記電極積層体の他方の電極が負極、前記第1の電極端子用リードタブが正極端子用リードタブ、前記第2の電極端子用リードタブが負極端子用リードタブ、前記第1の電極形成面が正極形成面、前記第2の電極形成面が負極形成面であることを特徴とする請求項1記載の蓄電素子。   One electrode of the electrode laminate is a positive electrode, the other electrode of the electrode laminate is a negative electrode, the first electrode terminal lead tab is a positive terminal lead tab, the second electrode terminal lead tab is a negative terminal lead tab, The power storage device according to claim 1, wherein the first electrode formation surface is a positive electrode formation surface and the second electrode formation surface is a negative electrode formation surface. ラミネートフィルムからなる外装体と、該外装体内に電解液と共に収容された電極積層体とを備え、前記電極積層体が前記外装体のヒートシール封口部から外装体外部に引き出された第1の電極端子用リードタブと第2の電極端子用リードタブとを有し、前記電極積層体の一方の電極が方形状に形成された第1の電極形成面と該第1の電極形成面の一側辺部に形成された耳部とを有する第1の電極形成板から形成されているとともに、前記電極積層体の他方の電極が前記第1の電極形成面より大きい面積で方形状に形成された第2の電極形成面と該第2の電極形成面の一側辺部に形成された耳部とを有する第2の電極形成板から形成され、平面視で、前記第1の電極形成面は前記第2の電極形成面の内側にあり且つ前記第1の電極形成面に形成された前記耳部の端部は前記第2の電極形成面の外側に位置し、前記第1の電極端子用リードタブの一端部が前記第1の電極形成板の耳部に接続されているとともに、前記第2の電極端子用リードタブの一端部が前記第2の電極形成板の耳部に接続されている蓄電素子を製造する方法であって、
前記第1の電極形成面の互いに平行な二つの側辺部のうち前記耳部が形成された側辺部と該側辺部に平行な第2の電極形成面の二つの側辺部のうち前記耳部が形成された第1の電極形成面の側辺部と前記第1の電極端子用リードタブとの間に位置する側辺部とのずれ量をαとしたとき、αが0mm以上3mm以下となるように前記電極積層体を形成する電極積層体形成工程と、
前記第1の電極形成板の耳部に接続される第1の電極端子用リードタブの一端部から前記第2の電極形成面の側辺部までの最短距離をX、前記第2の電極形成板の耳部に接続される第2の電極端子用リードタブの一端部から前記第1の電極形成面の側辺部までの最短距離をYとしたとき、Xが0.5mm以上5.0mm以下となるように前記第1の電極端子用リードタブの一端部を前記第1の電極形成板の耳部に接続すると共にYが0.5+αmm以上5.0+αmm以下となるように前記第2の電極端子用リードタブの一端部を前記第2の電極形成板の耳部に接続するリードタブ接続工程と、
を含むことを特徴とする蓄電素子の製造方法。
A first electrode comprising an exterior body made of a laminate film and an electrode laminate housed in the exterior body together with an electrolyte solution, wherein the electrode laminate is drawn out of the exterior body from a heat seal sealing portion of the exterior body A first electrode forming surface having a terminal lead tab and a second electrode terminal lead tab, wherein one electrode of the electrode laminate is formed in a square shape, and one side portion of the first electrode forming surface; The second electrode is formed from a first electrode forming plate having an ear portion formed on the second electrode, and the other electrode of the electrode laminate is formed in a square shape with an area larger than that of the first electrode forming surface. The electrode forming surface is formed from a second electrode forming plate having an ear portion formed on one side of the second electrode forming surface, and the first electrode forming surface is the first electrode forming surface in a plan view. 2 on the inside of the electrode forming surface and formed on the first electrode forming surface. By end of the ear portion is located outside of the second electrode forming surface, one end portion of the first electrode terminal lead tab is connected to the ear portion of the first electrode forming plate , A method of manufacturing a power storage device in which one end of the second electrode terminal lead tab is connected to an ear of the second electrode forming plate,
Of the two side portions parallel to each other of the first electrode formation surface, the side portion where the ear portion is formed and the two side portions of the second electrode formation surface parallel to the side portion When the shift amount between the side part of the first electrode forming surface on which the ear part is formed and the side part located between the lead tabs for the first electrode terminal is α, α is 0 mm or more and 3 mm. An electrode laminate forming step of forming the electrode laminate so as to become:
Said first shortest distance X from the one end portion of the first electrode terminal lead tab connected to the ear portion of the electrode formed plate to the side portion of the second electrode forming surface, the second electrode forming plate the shortest distance from the one end portion of the second electrode terminal lead tab connected to the ear portion to the side portion of the first electrode forming surface when the Y of, and X is 0.5mm or more 5.0mm or less The one end of the first electrode terminal lead tab is connected to the ear of the first electrode forming plate so that Y is 0.5 + α mm or more and 5.0 + α mm or less. A lead tab connection step of connecting one end of the lead tab to the ear portion of the second electrode forming plate;
The manufacturing method of the electrical storage element characterized by the above-mentioned.
JP2008248471A 2008-09-26 2008-09-26 Storage element and method for manufacturing the same Active JP5363058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008248471A JP5363058B2 (en) 2008-09-26 2008-09-26 Storage element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008248471A JP5363058B2 (en) 2008-09-26 2008-09-26 Storage element and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2010080312A JP2010080312A (en) 2010-04-08
JP5363058B2 true JP5363058B2 (en) 2013-12-11

Family

ID=42210501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008248471A Active JP5363058B2 (en) 2008-09-26 2008-09-26 Storage element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5363058B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5527176B2 (en) * 2010-11-25 2014-06-18 ソニー株式会社 Non-aqueous electrolyte battery
JP5852881B2 (en) * 2011-12-28 2016-02-03 旭化成株式会社 LAMINATE TYPE ELECTRIC STORAGE ELEMENT AND MANUFACTURING METHOD THEREOF
US20160087249A1 (en) * 2013-05-31 2016-03-24 Panasonic Intellectual Property Mamagement Co., Ltd. Thin battery
EP3118966B1 (en) * 2014-03-14 2019-01-02 Murata Manufacturing Co., Ltd. Charging circuit and module using same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235852A (en) * 1999-02-16 2000-08-29 Hitachi Maxell Ltd Polymer electrolyte battery
JP4485614B2 (en) * 1999-03-31 2010-06-23 パナソニック株式会社 Non-aqueous electrolyte battery and manufacturing method thereof
JP4273369B2 (en) * 1999-06-14 2009-06-03 株式会社ジーエス・ユアサコーポレーション Battery with frame
JP4568928B2 (en) * 1999-07-26 2010-10-27 株式会社Gsユアサ Non-aqueous electrolyte battery
JP2002075324A (en) * 2000-09-04 2002-03-15 Mitsubishi Chemicals Corp Battery
JP4124972B2 (en) * 2001-02-23 2008-07-23 Necトーキン株式会社 Stacked lithium-ion battery
JP3904935B2 (en) * 2002-01-29 2007-04-11 三菱化学株式会社 Method for producing lithium polymer secondary battery
JP2004253562A (en) * 2003-02-19 2004-09-09 Tdk Corp Electrochemical capacitor
JP4961673B2 (en) * 2005-03-08 2012-06-27 住友電気工業株式会社 Method for producing tab lead for non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JP2010080312A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP5351481B2 (en) Electrode laminate and manufacturing method thereof
KR100409210B1 (en) Nonaqueous secondary cell and method for controlling the same
JP5008637B2 (en) Method for producing non-aqueous lithium secondary battery
JP4738042B2 (en) Non-aqueous lithium storage element and method for manufacturing the same
JP6357708B2 (en) Electrode assembly
KR101862433B1 (en) Lithium-ion capacitor
JP6262432B2 (en) Method for manufacturing lithium ion capacitor
JP2014232666A (en) Nonaqueous electrolyte secondary battery
JP2009076248A (en) Power storage device and its manufacturing method
JP2010161249A (en) Lithium ion capacitor
JP2010080326A (en) Power storage element and method for manufacturing the same
JP5297132B2 (en) Non-aqueous lithium storage element and method for manufacturing the same
JPWO2015034080A1 (en) Separator and power storage device using the same
JP5681351B2 (en) Electrode current collector and method for producing the same, electrode and power storage device
JP2008305928A (en) Nonaqueous electrical storage device
JP5363058B2 (en) Storage element and method for manufacturing the same
JP2013140825A (en) Laminate type electrical storage element
KR20140016917A (en) Power storage device
JP4527931B2 (en) Non-aqueous lithium storage element
JP5840429B2 (en) Lithium ion capacitor
JP6601951B2 (en) Non-aqueous secondary battery
JP2009009858A (en) Electrode for lithium ion secondary battery
JP2014216452A (en) Power storage device
JP5637199B2 (en) Electrode for lithium ion secondary battery
JP2013135186A (en) Method for manufacturing laminate type storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130905

R150 Certificate of patent or registration of utility model

Ref document number: 5363058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350