JP5358273B2 - Inorganic hollow powder, its production method and its use - Google Patents

Inorganic hollow powder, its production method and its use Download PDF

Info

Publication number
JP5358273B2
JP5358273B2 JP2009111835A JP2009111835A JP5358273B2 JP 5358273 B2 JP5358273 B2 JP 5358273B2 JP 2009111835 A JP2009111835 A JP 2009111835A JP 2009111835 A JP2009111835 A JP 2009111835A JP 5358273 B2 JP5358273 B2 JP 5358273B2
Authority
JP
Japan
Prior art keywords
hollow
powder
volume
mass
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009111835A
Other languages
Japanese (ja)
Other versions
JP2010260755A (en
Inventor
亮治 稲葉
亨 梅崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009111835A priority Critical patent/JP5358273B2/en
Publication of JP2010260755A publication Critical patent/JP2010260755A/en
Application granted granted Critical
Publication of JP5358273B2 publication Critical patent/JP5358273B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic hollow powder which is made fine and has high heat resistance and mechanical strength and in which the segregation of the hollow ratio is small, to provide a method for producing the same, to provide a partition material for a plasma display panel containing the powder, and to provide a resin composition containing the powder. <P>SOLUTION: The inorganic hollow powder contains, by mass, 10-20% of a powder of hollow particles having a hollow ratio of &ge;60 and &lt;80 vol.%, 75-89.9% of a powder of hollow particles having a hollow ratio of &ge;20 and &lt;60 vol.%, and 0.1-5% of a powder of hollow particles having a hollow ratio of &ge;0 and &lt;20 vol.%, and has a maximum particle diameter of &le;10 &mu;m, a specific surface area, measured by a BET method, of &le;20 m<SP>2</SP>/g, and an average sphericity of &ge;0.85. The method for producing the inorganic hollow powder includes feeding an inorganic raw material powder having a moisture content of 5-30 mass%, a pore volume of 0.1-1.0 mL/g, a maximum particle diameter of &le;10 &mu;m and an SiO<SB>2</SB>content of &ge;99.0 mass% into a flame at a discharge speed of &ge;200 m/s to make the raw material powder hollow. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、無機質中空粉体に関する。 The present invention relates to an inorganic hollow powder.

無機質中空粉体の典型として微小中空ガラス球状体がある。一般にガラスマイクロバルーンと呼ばれ、非中空無機質粉体と比較して比重が軽く、耐熱性、断熱性、耐衝撃性、耐圧性などの特徴を活かし、各種素材に添加することにより、軽量化、断熱性能、寸法安定性の付与のために使用されている。例えば軽量化目的のため、携帯電子機器や自動車などのモールディングコンパウンド等の樹脂成形部品、移動体用塗料や部材、各種建築材料などに用いられている。 As a typical inorganic hollow powder, there is a fine hollow glass sphere. Generally called a glass microballoon, it has a lighter specific gravity than non-hollow inorganic powders, making use of features such as heat resistance, heat insulation, impact resistance, pressure resistance, etc. Used for imparting thermal insulation performance and dimensional stability. For example, for the purpose of weight reduction, it is used for resin molded parts such as molding compounds for portable electronic devices and automobiles, paints and members for moving bodies, various building materials, and the like.

また、プラズマディスプレイパネルにおいては、電極に印加されて生じたプラズマ放電によって発生した紫外線が蛍光体に照射されて発光している。しかし、消費電力が高くなるという問題があり、消費電力を低減するために、隔壁材料の誘電率を低くすることが効果的であると考えられ検討されている。この分野においても中空粒子という形態に起因した低誘電率効果を有することから、プラズマディスプレイパネル用隔壁材料への利用が期待されている。 Further, in the plasma display panel, ultraviolet rays generated by plasma discharge generated by being applied to the electrodes are irradiated on the phosphor to emit light. However, there is a problem that the power consumption becomes high, and in order to reduce the power consumption, it is considered that it is effective to lower the dielectric constant of the partition wall material and has been studied. Also in this field, since it has a low dielectric constant effect due to the form of hollow particles, it is expected to be used as a partition material for plasma display panels.

しかし、プラズマディスプレイ用隔壁材料への利用のためには、隔壁を成型する際の焼成温度で中空粒子が軟化してしまっては、目的の低誘電率効果が得られず、また、空洞を有していることで隔壁の機械的強度が低くては、出ガス等の影響により輝度劣化や点灯不良が生じてしまうため、近年、更なる中空ガラス球状粉末の微細化や、耐熱性、機械的強度の高い無機質酸化物中空粉体の出現等が強く要求されてきている。 However, for use as a partition material for a plasma display, if the hollow particles are softened at the firing temperature at the time of molding the partition, the desired low dielectric constant effect cannot be obtained, and there is a cavity. However, if the mechanical strength of the partition walls is low, brightness deterioration and lighting failure may occur due to the influence of outgas, etc., and in recent years, further refinement of hollow glass spherical powder, heat resistance, mechanical The emergence of high strength inorganic oxide hollow powder has been strongly demanded.

微小中空ガラス球状体の製造方法としては、シリカゲルにガラス形成成分および発泡剤成分を担持させた微粉末を炉内で焼成して、微小中空ガラス球状体を得る方法である(特許文献1)。この方法により得られた中空ガラス球状体の物性としては、粒子密度0.3g/cm程度であり、また平均粒子径は70μm程度であることが示されている。しかしながら、このような製法で得られる中空ガラス球状体においては、軽量化効果や断熱効果等を付与するに十分な中空度は得られるものの、発泡剤成分が必須であり、また発泡剤成分が残存してしまうなど、純度が高まらず、耐熱性の低いものとなってしまう。 As a method for producing a fine hollow glass sphere, a fine powder in which a glass forming component and a foaming agent component are supported on silica gel is fired in a furnace to obtain a fine hollow glass sphere (Patent Document 1). The physical properties of the hollow glass spheres obtained by this method are shown to have a particle density of about 0.3 g / cm 3 and an average particle size of about 70 μm. However, in the hollow glass spheres obtained by such a production method, a sufficient foaming degree to provide a lightening effect and a heat insulating effect can be obtained, but the foaming agent component is essential, and the foaming agent component remains. For example, the purity does not increase and the heat resistance is low.

微小無機質中空粉体の製造方法としては、比表面積の高いシリカ微粉末を炉内で焼成して、微小無機質中空粉体を得る方法である(特許文献2、3)。この方法により得られた微小無機質中空粉体の物性としては、平均中空率20〜85体積%程度であることが示されているが、中空粒子の中空率の分布や耐熱性、機械的強度については記載されておらず、プラズマディスプレイパネル用隔壁材料への利用は検討されていない。   As a method for producing a fine inorganic hollow powder, a fine silica hollow powder having a high specific surface area is baked in a furnace to obtain a fine inorganic hollow powder (Patent Documents 2 and 3). The physical properties of the fine inorganic hollow powder obtained by this method are shown to have an average hollowness of about 20 to 85% by volume, but the hollowness distribution, heat resistance, and mechanical strength of the hollow particles Is not described, and its use as a partition material for plasma display panels has not been studied.

また、プラズマディスプレイパネル用隔壁材料の低誘電率化として、使用しているガラス粉末に添加フィラー粉末として、誘電率の低い多孔質構造粉末や中空構造粒子を利用することが検討されているが、焼成時に上記構造をとるような有機無機複合材料を用いており、粒子自体の強度が脆く、緻密で強度を有する隔壁形成ができない可能性が高い。   In addition, as a low dielectric constant of the partition material for the plasma display panel, the use of porous structure powder and hollow structure particles having a low dielectric constant as an additive filler powder to the glass powder being used has been studied. An organic-inorganic composite material having the above structure at the time of firing is used, and the strength of the particles themselves is brittle, and there is a high possibility that dense and strong partition walls cannot be formed.

特公平4−37017号公報Japanese Examined Patent Publication No. 4-37017 特開2005−206436号公報JP 2005-206436 A 特開2006−62902号公報JP 2006-62902 A 特開2007−324098号公報JP 2007-324098 A

本発明の目的は、従来の中空ガラス球状体よりも更に微細化された無機質中空粉体、特に微細化と共に耐熱性、機械的強度の高い無機質中空粉体と、その製造方法及びそれを含有したプラズマディスプレイパネル用隔壁形成材料を提供することである。   An object of the present invention is to provide an inorganic hollow powder further refined than conventional hollow glass spheres, in particular, an inorganic hollow powder having high heat resistance and mechanical strength as well as refinement, a production method thereof, and the same It is to provide a partition wall forming material for a plasma display panel.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)粒子の中空率が60体積%以上〜80体積%未満の中空粒子の粉末が10〜20質量%、粒子の中空率が20体積%以上〜60体積%未満の中空粒子の粉末が75〜89.9質量%、粒子の中空率0体積%〜20体積%未満の中空粒子の粉末が0.1〜5質量%で、最大粒子径が10μm以下、BET法により求めた比表面積が20m/g以下、平均球形度0.85以上、SiO 含有量が99.0質量%以上、非晶質シリカである無機質中空粉体
(2)無機質中空粉体が表面処理剤で処理されてなる前記(1)に記載の無機質中空粉体。
(3)耐熱温度が900℃以上である前記(1)又は(2)に記載の無機質中空粉体。
(4)前記(1)〜()のいずれか一項に記載の無機質中空粉体を含有してなる樹脂組成物。
(5)前記(1)〜()のいずれか一項に記載の無機質中空粉体を用いたプラズマディスプレイパネル用隔壁形成材料。
(6)外側から助燃性ガス供給管、可燃性ガス供給管、助燃性ガス供給管、原料供給管の順に組まれた四重管部分を少なくとも備えたバーナーによって形成された火炎中に、水分含有率が5〜30質量%、細孔容積0.1〜1.0ml/g、最大粒子径10μm以下、SiO含有量が99.0質量%以上の無機質原料粉末を、上記原料供給管から200m/s以上の吐出速度で供給して、中空化させた、粒子の中空率が60体積%以上〜80体積%未満の中空粒子の粉末が10〜20質量%、粒子の中空率が20体積%以上〜60体積%未満の中空粒子の粉末が75〜89.9質量%、粒子の中空率0体積%〜20体積%未満の中空粒子の粉末が0.1〜5質量%で、最大粒子径が10μm以下、BET法により求めた比表面積が20m /g以下、平均球形度0.85以上である無機質中空粉体の製造方法。
(7)無機質中空粉体が非晶質シリカ中空粉体であり、SiO 含有量が99.0質量%以上である前記(6)に記載の無機質中空粉体の製造方法。
The present invention employs the following means in order to solve the above problems.
(1) 10-20% by mass of hollow particle powder having a particle hollow ratio of 60% by volume to less than 80% by volume, and 75% hollow particle powder having a particle hollow ratio of 20% by volume to less than 60% by volume. ˜89.9% by mass, hollow particle powder of 0% by volume to less than 20% by volume of particles is 0.1 to 5% by mass, maximum particle size is 10 μm or less, specific surface area determined by BET method is 20 m 2 / g or less, average sphericity of 0.85 or more , SiO 2 content of 99.0% by mass or more, inorganic hollow powder which is amorphous silica (2) The inorganic hollow powder is treated with a surface treatment agent. The inorganic hollow powder according to ( 1) above.
(3) The inorganic hollow powder according to (1) or (2), wherein the heat resistant temperature is 900 ° C. or higher.
(4) A resin composition comprising the inorganic hollow powder according to any one of (1) to ( 3 ).
(5) A partition forming material for a plasma display panel using the inorganic hollow powder according to any one of (1) to ( 3 ).
(6) Moisture contained in a flame formed by a burner provided with at least a quadruple tube part assembled in this order from an auxiliary combustion gas supply pipe, an inflammable gas supply pipe, an auxiliary combustion gas supply pipe, and a raw material supply pipe An inorganic raw material powder having a rate of 5 to 30% by mass, a pore volume of 0.1 to 1.0 ml / g, a maximum particle size of 10 μm or less, and a SiO 2 content of 99.0% by mass or more is 200 m from the raw material supply pipe. 10% to 20% by mass of hollow particles having a particle hollow rate of 60% by volume to less than 80% by volume and 20% by volume. The maximum particle size is 75 to 89.9% by mass of hollow particle powder of ˜60% by volume or less and 0.1 to 5% by mass of hollow particle powder of 0% by volume to less than 20% by volume of particles. Is 10 μm or less, and the specific surface area determined by the BET method is 20 m 2. / G or less, the manufacturing method of the inorganic hollow powder whose average sphericity is 0.85 or more .
(7) The method for producing an inorganic hollow powder according to (6), wherein the inorganic hollow powder is an amorphous silica hollow powder, and the SiO 2 content is 99.0% by mass or more.

本発明によれば、耐熱性、機械的強度の高く、中空率の偏析のすくない無機質中空粉体を提供することができる。   According to the present invention, it is possible to provide an inorganic hollow powder having high heat resistance, high mechanical strength, and low seizure of the hollow ratio.

本発明の無機質中空粉体は粒子の中空率が60体積%以上〜80体積%未満の中空粒子の粉末が10〜20質量%、粒子の中空率が20体積%以上〜60体積%未満の中空粒子の粉末が75〜89.9質量%、粒子の中空率0体積%〜20体積%未満の中空粒子の粉末が0.1〜5質量%である。中空率が80体積%を超えると粒子の殻厚が薄くなり粒子強度が弱くなり、粉体のハンドリング中や混合中に粒子が破壊する恐れがある。また、粒子の中空率が60体積%以上〜80体積%未満の中空粒子の粉末が20質量%を超えると、中空率ごとの中空粒子の偏析が起こった際、均一な成型体を製造することが難しくなる。粒子の中空率が20体積%以上〜60体積%未満の中空粒子の粉末が75質量%未満、または、粒子の中空率が0〜20体積%の中空粒子が5質量%を超えると、中空粒子の特徴である低誘電特性の効果を十分に発現しない。 In the inorganic hollow powder of the present invention, the hollow particle powder having a particle hollow ratio of 60% by volume to less than 80% by volume is 10 to 20% by mass, and the particle hollow ratio is 20% by volume to less than 60% by volume. The particle powder is 75 to 89.9% by mass, and the hollow particle powder having a particle hollow ratio of 0% by volume to less than 20% by volume is 0.1 to 5% by mass. When the hollow ratio exceeds 80% by volume, the shell thickness of the particles becomes thin and the particle strength becomes weak, and there is a possibility that the particles are broken during handling or mixing of the powder. Moreover, when the hollow particle powder having a particle hollow ratio of 60% by volume to less than 80% by volume exceeds 20% by mass, a uniform molded body is produced when segregation of the hollow particles for each hollow ratio occurs. Becomes difficult. When the hollow particle powder having a hollow ratio of 20% by volume to less than 60% by volume is less than 75% by mass, or the hollow particle having a particle hollow ratio of 0 to 20% by volume exceeds 5% by mass, the hollow particle The effect of the low dielectric property, which is the feature of, is not sufficiently exhibited.

本願発明の中空粒子は粒子の表層に殻を持ち、粒子内部が中空の構造になっているものである。基本的に単孔であり、多孔質の中空粒子とは、構造の異なるものである。多孔質の中空粒子では、本願発明の中空粒子の特徴である低誘電特性の効果を十分に発現しない。   The hollow particles of the present invention have a shell on the particle surface and a hollow structure inside the particles. Basically, it is single-pored and has a different structure from porous hollow particles. Porous hollow particles do not sufficiently exhibit the effect of low dielectric properties, which is a feature of the hollow particles of the present invention.

中空率は粒子中の独立気泡含有率と定義することができ、粒子の理論密度に対する粒子密度の実測値との比から算出することができる。たとえばシリカ中空粒子の密度の測定値(B)に対して、その非晶質シリカの理論密度(A)である場合、中空率(C)はC=(A−B)/A×100、から求めることができる。密度は、例えばセイシン企業社製ピクノメーター法自動粉粒体真比重測定器(商品名「オートトゥルーデンサーMAT−7000」)を用いて測定することができる。   The hollow ratio can be defined as the content of closed cells in the particle, and can be calculated from the ratio of the measured value of the particle density to the theoretical density of the particle. For example, in the case of the theoretical density (A) of the amorphous silica with respect to the measured value (B) of the density of the hollow silica particles, the hollow ratio (C) is C = (A−B) / A × 100. Can be sought. The density can be measured using, for example, a pycnometer automatic powder particle true specific gravity measuring instrument (trade name “Auto True Densor MAT-7000”) manufactured by Seishin Enterprise Co., Ltd.

中空粒子の中空の度合いは走査型電子顕微鏡による粒子と膜厚との関係からも測定することができる。たとえば、粒子径8μm、中空率70体積%の球状シリカ中空粒子である場合、独立気泡に相当する部分が70体積%であるから、その体積は187.65μm、半径は3.55μmとなる。したがって、独立気泡を含んでいる殻の厚さは、中空粒子の半径と独立気泡の半径との差から、0.45μmと算出される。このような粒子と殻厚との関係は、本発明の無機質中空粉体を樹脂と混合・硬化して得られた樹脂成形物を切断・研磨し、研磨面に表出した無機質中空粒子の切断面を走査型電子顕微鏡にて撮影し、任意の500個の粒子について、殻厚を測定することによって求めることができる。 The degree of hollowness of the hollow particles can also be measured from the relationship between the particles and the film thickness by a scanning electron microscope. For example, in the case of spherical silica hollow particles having a particle diameter of 8 μm and a hollow ratio of 70% by volume, the portion corresponding to closed cells is 70% by volume, so that the volume is 187.65 μm 3 and the radius is 3.55 μm. Therefore, the thickness of the shell containing closed cells is calculated as 0.45 μm from the difference between the radius of the hollow particles and the radius of the closed cells. The relationship between such particles and shell thickness is that the resin hollow product obtained by mixing and curing the inorganic hollow powder of the present invention with resin is cut and polished, and the inorganic hollow particles exposed on the polished surface are cut. The surface can be imaged with a scanning electron microscope, and can be determined by measuring the shell thickness of any 500 particles.

中空率分布の測定は、液比重1.46のトリクロルエチレンに粉末を攪拌分散・沈降分級し、浮遊物と沈降物を分集・洗浄・乾燥・計量し、30体積%以上と未満の分布を算出する。次に沈降物の断面を走査型電子顕微鏡で観察し、粒子径と膜厚から中空率を求め、20体積%以下の質量頻度を算出する。浮遊物は更に液比重0.9のアルコール水溶液に攪拌分散・沈降分級し、浮遊物と沈降物を分集・洗浄・乾燥・計量し、60体積%以上と未満の分布を算出する。更に、浮遊物の断面を走査型電子顕微鏡で観察し、粒子径と膜厚から中空率を求め、80体積%以下の質量頻度を算出する。   The hollowness distribution is measured by stirring and dispersing / sedimenting the powder in trichlorethylene having a liquid specific gravity of 1.46, and collecting, washing, drying and weighing the suspended matter and sediment, and calculating a distribution of 30% or more by volume. To do. Next, the cross section of the sediment is observed with a scanning electron microscope, the hollow ratio is obtained from the particle diameter and film thickness, and the mass frequency of 20% by volume or less is calculated. The suspended matter is further stirred and dispersed and settled in an alcohol aqueous solution having a liquid specific gravity of 0.9, and the suspended matter and sediment are collected, washed, dried and weighed to calculate a distribution of 60% by volume or more and less. Furthermore, the cross section of the suspended matter is observed with a scanning electron microscope, the hollow ratio is obtained from the particle diameter and film thickness, and the mass frequency of 80% by volume or less is calculated.

本発明の無機質中空粉体の最大粒子径は10μm以下である。最大粒子径が10μmを超えると、たとえば成型体とした場合に表面の平滑性が損なわれ、外観の悪化や凹凸部を起点とした劣化の原因となり、また多層基板用層間絶縁材料やレジスト材料用フィラーとして使用した場合には、所定の層厚中に収まりきれなくなり、導通部の短絡や断線等様々な不具合を招く恐れがある。最大粒子径は、たとえばベックマン・コールター社製レーザー回折散乱法粒度分布測定装置(商品名「LS−230」)を用いて測定することができる。平均粒子径においては特に制約はないが、最大粒子径の1/5倍程度が好ましい。   The maximum particle size of the inorganic hollow powder of the present invention is 10 μm or less. When the maximum particle diameter exceeds 10 μm, for example, when it is formed into a molded body, the smoothness of the surface is impaired, resulting in deterioration of the appearance and deterioration starting from uneven portions, and for interlayer insulating materials for multilayer substrates and resist materials When used as a filler, it may not be able to fit within a predetermined layer thickness, which may lead to various problems such as short-circuiting or disconnection of the conductive part. The maximum particle diameter can be measured, for example, using a laser diffraction scattering method particle size distribution measuring apparatus (trade name “LS-230”) manufactured by Beckman Coulter. The average particle size is not particularly limited, but is preferably about 1/5 times the maximum particle size.

本発明の無機質中空粉体の比表面積は20m/g以下である。比表面積が20m/g以上を超えると、たとえばペーストにした際に増粘してしまい、高充填することが困難になる等、成形性が低下する恐れがあるからである。また、比表面積の増大に伴い、吸水性も増大してしまい、樹脂形成した際に耐湿信頼性が低下する恐れがあるからである。 The specific surface area of the inorganic hollow powder of the present invention is 20 m 2 / g or less. This is because if the specific surface area exceeds 20 m 2 / g or more, for example, when it is made into a paste, the viscosity increases and it becomes difficult to achieve a high filling, and the moldability may be lowered. Further, as the specific surface area increases, the water absorption also increases, and the moisture resistance reliability may be lowered when the resin is formed.

本発明の無機質中空粉体の平均球形度は0.85以上である。平均球形度が0.85未満では、混合性及びペーストや樹脂組成物の流動性に難がある。特に好ましくは平均球形度0.90以上である。平均球形度は、走査型電子顕微鏡写真から粒子の投影面積(A)と周囲長(PM)を測定し、周囲長(PM)に対する真円の面積を(B)とすると、その粒子の球形度はA/Bとして表される。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、この粒子の球形度は、球形度=A/B=A×4π/(PM)として算出される。100個の粒子について球形度を測定し、その平均値でもって平均球形度とする。 The average sphericity of the inorganic hollow powder of the present invention is 0.85 or more. When the average sphericity is less than 0.85, the mixing property and the fluidity of the paste and the resin composition are difficult. Particularly preferably, the average sphericity is 0.90 or more. The average sphericity is measured by measuring the projected area (A) and perimeter (PM) of a particle from a scanning electron micrograph, and assuming that the area of a perfect circle with respect to the perimeter (PM) is (B), the sphericity of the particle Is represented as A / B. Therefore, assuming a perfect circle having the same circumference as that of the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 . The sphericity is calculated as sphericity = A / B = A × 4π / (PM) 2 . The sphericity is measured for 100 particles, and the average value is taken as the average sphericity.

無機質中空粉体の材質には特に制限はなく、例えばシリカ、アルミナ、ジルコニア、チタニア等、更にこれらの少なくとも一成分を構成成分とする複合酸化物などを例示することができる。なかでも、非晶質シリカは強度、低熱膨張性、低誘電特性に優れるので好ましい。非晶質シリカの純度は、二酸化ケイ素の含有量が99.0質量%以上であることが好ましい。成分数が2以上の複合酸化物である場合は、複合酸化物を構成している成分は不純物とはしない。   The material of the inorganic hollow powder is not particularly limited, and examples thereof include silica, alumina, zirconia, titania and the like, and composite oxides containing at least one of these components as constituents. Among these, amorphous silica is preferable because it is excellent in strength, low thermal expansion, and low dielectric properties. The purity of the amorphous silica is preferably such that the content of silicon dioxide is 99.0% by mass or more. In the case of a complex oxide having two or more components, the component constituting the complex oxide is not an impurity.

SiO含有量は、例えばエネルギー分散型蛍光X線分析装置(EDX)、原子吸光光度計(AAS)、プラズマ発光分光分析装置(ICP)、蛍光X線分析装置(XRF)等によって測定する。本発明では、無機質中空粉体をフッ化水素と過塩素酸の混合溶液(20:1の体積比)で加熱溶解し、純水で希釈してから、島津製作所社製原子吸光光度計を用いて測定した。 The SiO 2 content is measured by, for example, an energy dispersive X-ray fluorescence analyzer (EDX), an atomic absorption photometer (AAS), a plasma emission spectrometer (ICP), a fluorescent X-ray analyzer (XRF), or the like. In the present invention, the inorganic hollow powder is heated and dissolved with a mixed solution of hydrogen fluoride and perchloric acid (20: 1 volume ratio) and diluted with pure water, and then an atomic absorption photometer manufactured by Shimadzu Corporation is used. Measured.

本発明の無機質中空粉体が非晶質シリカの場合、非晶質率は、100〜99.0%であることが好ましい。非晶質シリカの非晶質率は、粉末X線回折装置(例えばRIGAKU社製(「モデルMini Flex」)を用い、CuKα線の2θが26°〜27.5°の範囲においてX線回折分析を行い、特定回折ピークの強度比から測定する。たとえば、シリカの場合、結晶質シリカは26.7°に主ピークがあるが、非晶質シリカではピークはない。非晶質シリカと結晶質シリカが混在する場合、結晶質シリカの割合に応じた26.7°のピーク高さが得られる。そこで、結晶質シリカ標準試料のX線強度に対応する試料のX線強度の比から、結晶質シリカ混在比を算出し、式、非晶質率(%)=(1−結晶質シリカ混在比)×100、から非晶質率を求める。 When the inorganic hollow powder of the present invention is amorphous silica, the amorphous ratio is preferably 100 to 99.0%. The amorphous ratio of amorphous silica is determined by X-ray diffraction analysis using a powder X-ray diffractometer (for example, RIGAKU (“Model Mini Flex”)) in the range of 2θ of CuKα ray of 26 ° to 27.5 °. For example, in the case of silica, crystalline silica has a main peak at 26.7 °, but there is no peak in amorphous silica. When silica is mixed, a peak height of 26.7 ° corresponding to the ratio of crystalline silica is obtained, so that the ratio of the X-ray intensity of the sample corresponding to the X-ray intensity of the crystalline silica standard sample indicates that the crystal The amorphous silica mixing ratio is calculated, and the amorphous ratio is obtained from the formula, amorphous ratio (%) = (1-crystalline silica mixing ratio) × 100.

耐熱温度が900℃以上である。耐熱温度が900℃未満では焼成処理した際に、軟化、変形してしまい成型し難くなる。この耐熱温度は形状に起因したもので多孔質物質では細孔の閉塞等による形状変化が進行し、また中空粒子の中空率が80体積%を超えると、殻の厚さが薄く、表面水分との反応により軟化温度が600℃になってしまうが、本発明の無機質中空粉体は単孔でありながら、中空粒子の中空率を80体積%未満に制御することで900℃以上の耐熱性を保持している。上限は膜を形成している物質の軟化温度である。 The heat resistant temperature is 900 ° C. or higher. When the heat-resistant temperature is less than 900 ° C., it is softened and deformed during the baking treatment, making it difficult to mold. This heat-resistant temperature is caused by the shape, and when the porous material undergoes a shape change due to pore clogging, etc., and the hollowness of the hollow particles exceeds 80% by volume, the shell is thin, Although the softening temperature becomes 600 ° C. due to the reaction of the above, the inorganic hollow powder of the present invention has a single hole, and the heat resistance of 900 ° C. or more is controlled by controlling the hollow ratio of the hollow particles to less than 80% by volume. keeping. The upper limit is the softening temperature of the material forming the film.

粒子の機械的強度が30MPa以上である。粒子に加圧された圧力が、粒子の接線方向に圧力を分散するが、中空粒子が70μm程度であるとその接線方向が加圧方向に対して垂直方向側であり、機械的強度が低いが、本発明の無機質中空粉体は最大粒子径を10μm以下にすることで、粒子に加圧される局所的圧力を加圧方向側に分散させることができ、機械的強度を向上させることができる。粒子の機械的強度が30MPa未満ではハンドリング時に粒子が割れてしまい、目的の低誘電率効果を十分に発現できない。特に好ましくは50MPa以上である。粒子の機械的強度は、例えば島津製作所製微小圧縮試験機(商品名「MCT−W201」)をもちいて測定することができる。   The mechanical strength of the particles is 30 MPa or more. The pressure applied to the particles disperses the pressure in the tangential direction of the particles. If the hollow particles are about 70 μm, the tangential direction is on the side perpendicular to the pressurizing direction and the mechanical strength is low. The inorganic hollow powder of the present invention has a maximum particle size of 10 μm or less, whereby the local pressure applied to the particles can be dispersed in the pressurizing direction side, and the mechanical strength can be improved. . If the mechanical strength of the particles is less than 30 MPa, the particles are broken during handling, and the desired low dielectric constant effect cannot be sufficiently exhibited. Particularly preferably, it is 50 MPa or more. The mechanical strength of the particles can be measured using, for example, a micro compression tester (trade name “MCT-W201”) manufactured by Shimadzu Corporation.

本発明の無機質中空粉体は、例えばシランカップリング剤等の表面処理剤で処理されていることが好ましい。通常、無機質粉体の表面は親水性であるので、樹脂や有機溶剤などの疎水性分散媒への分散性が良くないので、表面処理剤で処理しておくと分散性が改善される。また、ゴム又は樹脂との密着性、ピール強度等も向上する。表面処理剤の使用率は、無機質中空粉体100質量部に対して0.05〜5質量部であることが好ましく、0.1〜3質量部であることがより好ましい。 The inorganic hollow powder of the present invention is preferably treated with a surface treatment agent such as a silane coupling agent. Usually, since the surface of the inorganic powder is hydrophilic, the dispersibility in a hydrophobic dispersion medium such as a resin or an organic solvent is not good. Therefore, when the surface is treated with a surface treatment agent, the dispersibility is improved. In addition, adhesion to rubber or resin, peel strength and the like are improved. The usage rate of the surface treatment agent is preferably 0.05 to 5 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the inorganic hollow powder.

表面処理剤としては、シランカップリング剤、アルミニウム系カップリング剤、チタネートカップリング剤、Zrキレートなどを用いることができる。シランカップリング剤を例示すれば、例えばγ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン;アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン等のアミノシラン;フェニルトリメトキシシラン、メチルトリメトキシシラン、オクタデシルトリメトキシシラン等の疎水性シラン化合物;ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニルシラン;メルカプトシランなどである。   As the surface treatment agent, a silane coupling agent, an aluminum coupling agent, a titanate coupling agent, a Zr chelate, or the like can be used. Examples of silane coupling agents include epoxy silanes such as γ-glycidoxypropyltrimethoxysilane and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane; aminopropyltriethoxysilane, ureidopropyltriethoxysilane Aminosilanes such as N-phenylaminopropyltrimethoxysilane; hydrophobic silane compounds such as phenyltrimethoxysilane, methyltrimethoxysilane and octadecyltrimethoxysilane; vinylsilanes such as vinyltriethoxysilane and vinyltrimethoxysilane; mercaptosilane It is.

本発明のプラズマディスプレイパネル用隔壁形成材料は、形状維持・低誘電率化の目的で、ガラス粉末に加えて無機質中空粉体を含有する。ガラス粉末としては、特に制約はないが、熱膨張係数が60〜90×10−7/℃(30〜300℃)、25℃で1MHzにおける誘電率が11以下で、450〜650℃の軟化点を有するガラスであることが好ましく、この場合、その混合割合はガラス粉末50〜99質量%、無機質中空粉体1〜50質量%、特にガラス粉末60〜90質量%、無機質中空粉体10〜40質量%であることが好ましい。無機質中空粉体が50質量%より多いと焼結性が不十分になって緻密な隔壁を形成することが困難になり、1質量%より少ないと形状維持効果が小さく、また低誘電率効果が十分に得られなくなる。なおガラス粉末と無機質中空粉体に、さらに形状維持の目的でセラミックス粉末を添加することも可能である。 The partition wall forming material for a plasma display panel of the present invention contains inorganic hollow powder in addition to glass powder for the purpose of maintaining the shape and reducing the dielectric constant. The glass powder is not particularly limited, but has a thermal expansion coefficient of 60 to 90 × 10 −7 / ° C. (30 to 300 ° C.), a dielectric constant at 1 MHz at 25 ° C. of 11 or less, and a softening point of 450 to 650 ° C. In this case, the mixing ratio is 50 to 99% by weight of glass powder, 1 to 50% by weight of inorganic hollow powder, particularly 60 to 90% by weight of glass powder, and 10 to 40% of inorganic hollow powder. It is preferable that it is mass%. If the amount of the inorganic hollow powder is more than 50% by mass, the sinterability becomes insufficient and it becomes difficult to form a dense partition, and if it is less than 1% by mass, the shape maintaining effect is small, and the low dielectric constant effect is obtained. Not enough. In addition, it is also possible to add ceramic powder to the glass powder and the inorganic hollow powder for the purpose of maintaining the shape.

本発明の製造方法の特徴は、外側から助燃性ガス供給管、可燃性ガス供給管、助燃性ガス供給管、原料供給管の順に組まれた四重管部分を少なくとも備えたバーナーによって形成された火炎中に、水分含有率が5〜30質量%、細孔容積0.1〜1.0ml/g、最大粒子径10μm以下の無機質原料粉末を、上記原料供給管から200m/s以上の吐出速度で供給して、中空化させることによって製造することができる。   The feature of the production method of the present invention is formed by a burner having at least a quadruple tube portion assembled in order of an auxiliary combustion gas supply pipe, an inflammable gas supply pipe, an auxiliary combustion gas supply pipe, and a raw material supply pipe from the outside. In the flame, an inorganic raw material powder having a water content of 5 to 30% by mass, a pore volume of 0.1 to 1.0 ml / g, and a maximum particle size of 10 μm or less is discharged from the raw material supply pipe at a rate of 200 m / s or more. It can manufacture by supplying by making it hollow.

水分含有率が5質量%未満では気泡膨張効果が得られず、中空化を達成することができない。30質量%を超えると気泡膨張効果が得られ過ぎ、脱泡してしまう。水分含有率の調整は例えば、無機質原料粉末を水スラリーとし、噴霧乾燥もしくは加熱乾燥するなど多くの公知の方法を利用して調整することができる。水分含有率は無機質原料粉末を900℃まで加熱し、その際の質量変化から算出することができる。   If the moisture content is less than 5% by mass, the bubble expansion effect cannot be obtained, and hollowing cannot be achieved. When it exceeds 30% by mass, the bubble expansion effect is obtained too much and defoaming occurs. The water content can be adjusted using many known methods such as spraying or heat drying the inorganic raw material powder as water slurry. The moisture content can be calculated from the mass change at the time of heating the inorganic raw material powder to 900 ° C.

また、無機質原料粉末の細孔容積が1.0ml/gを超えると、球状化又は中空化のいずれか又は両方を達成することができず多孔化してしまい、細孔容積が0.1ml/g未満では中空化を達成することができず、中実化してしまう。好ましい細孔容積は0.2〜0.8ml/gである。最大粒子径は10μmを超えると中空化した際の粒子径が10μmを越えてしまい本発明の無機質中空粉体を製造することができない。好ましい最大粒子径は1.0〜8.0μmである。   In addition, when the pore volume of the inorganic raw material powder exceeds 1.0 ml / g, either or both of spheroidization and hollowing cannot be achieved and the pore volume becomes 0.1 ml / g. If it is less than this, hollowing cannot be achieved, and it becomes solid. A preferable pore volume is 0.2 to 0.8 ml / g. When the maximum particle diameter exceeds 10 μm, the particle diameter when hollowed exceeds 10 μm, and the inorganic hollow powder of the present invention cannot be produced. A preferred maximum particle size is 1.0 to 8.0 μm.

無機質原料粉末は、原料供給管より供給される。無機質原料粉末の担持ガスへの担持方法としては、例えば、テーブルフィーダーから切込まれた無機質原料粉末を担持ガスと共に原料供給管より供給する等の公知の方法で実施すれば良い。無機質原料粉末は、可燃性ガスと支燃性ガスのいずれか一方、あるいは両方に担持させることができる。いずれか一方に担持する方法については、本発明者らは検討の結果、支燃性ガスに担持する方法が好ましく、本発明の目的を達成することが容易である。支燃性ガスは、酸素を含むガスであればどのようなガスであっても使用可能である。吐出速度は200m/s以上で火炎中に噴出させる。吐出速度が200m/s未満では無機質原料粉末が過熱状態となり、中実粒子が発生してしまう。好ましくは250〜500m/sである。   The inorganic raw material powder is supplied from a raw material supply pipe. As a method for supporting the inorganic raw material powder on the supporting gas, for example, a known method such as supplying the inorganic raw material powder cut from the table feeder together with the supporting gas from the raw material supply pipe may be used. The inorganic raw material powder can be supported on one or both of a combustible gas and a combustion-supporting gas. As a result of studies by the present inventors on the method of supporting either one, the method of supporting on a combustion-supporting gas is preferable, and it is easy to achieve the object of the present invention. As the combustion-supporting gas, any gas containing oxygen can be used. The discharge speed is 200 m / s or more and is ejected into the flame. When the discharge speed is less than 200 m / s, the inorganic raw material powder is overheated and solid particles are generated. Preferably it is 250-500 m / s.

火炎を形成させるバーナーとしては、火炎温度を調整制御し易い外側から助燃性ガス供給管、可燃性ガス供給管、助燃性ガス供給管、原料供給管の順に組まれた四重管部分を少なくとも備えたバーナーを用いることが好ましい。可燃性ガスとしては、例えばメタン、エタン、アセチレン、プロパン、ブタン、プロピレン等の炭化水素ガス及び水素ガスから選ばれた1種又は2種以上の混合ガスが用いられる。助燃性ガスとしては酸素を含むガスであればどのようなガスであっても使用可能である。火炎温度の調整制御は、可燃性ガス量と助燃性ガス量との比を調整することによって制御することができる。また、助燃性ガス中の酸素濃度を調整制御することによっても可能である。 As a burner for forming a flame, at least a quadruple pipe portion assembled in the order of an auxiliary combustion gas supply pipe, an inflammable gas supply pipe, an auxiliary combustion gas supply pipe, and a raw material supply pipe from the outside that is easy to adjust and control the flame temperature. It is preferable to use a burner. As the combustible gas, for example, one or more mixed gases selected from hydrocarbon gases such as methane, ethane, acetylene, propane, butane, and propylene, and hydrogen gas are used. Any gas that contains oxygen can be used as the auxiliary combustion gas. The adjustment control of the flame temperature can be controlled by adjusting the ratio of the combustible gas amount and the auxiliary combustible gas amount. It is also possible by adjusting and controlling the oxygen concentration in the auxiliary combustion gas.

火炎を形成させる炉は、縦型炉、横型炉などのいずれでも良いが、無機質中空粉体の炉体への付着抑制、火炎の安定性、操業安定性の点から、上記バーナーを炉頂に配し、下部が捕集系に接続されてなる縦型炉が好ましい。捕集系には集塵機が設置されており、製造された無機質中空粉体は、排気側に設けられたブロワーによって捕集系に吸引輸送捕集され、必要に応じ分級される。集塵機としては、例えばサイクロン、電気集塵機、バッグフィルター等がある。このような縦型炉の製造については、バーナー構造を除き、多くの公知があるので、それを用いることができる。   The furnace for forming the flame may be either a vertical furnace or a horizontal furnace, but the above burner is used at the top of the furnace from the viewpoint of suppressing adhesion of inorganic hollow powder to the furnace body, flame stability, and operational stability. A vertical furnace in which the lower part is connected to the collection system is preferable. A dust collector is installed in the collection system, and the produced inorganic hollow powder is sucked, transported and collected in the collection system by a blower provided on the exhaust side, and classified as necessary. Examples of the dust collector include a cyclone, an electric dust collector, and a bag filter. Regarding the manufacture of such a vertical furnace, there are many known ones except for the burner structure, which can be used.

無機質中空粉体の平均球形度、比表面積は、主に火炎の温度制御によって調整制御することができる。また、最大粒子径、粒子の機械的強度、粉体の50%破壊強度は、主に無機質原料粉末の最大粒子径によって調整制御することができる。中空率は、無機質原料粉末の水分含有率によって調整制御することができる。耐熱温度は、無機質原料粉末の細孔容積によって調製制御することができる。具体的には、火炎バーナーの可燃性ガスの流量を多くすると、火炎温度が高くなり原料が十分に加熱されるため、平均球形度の高く、比表面積の小さい無機質中空粉体が得られる。また、無機質原料粉末の水分含有率を高くすると、気泡膨張効果が高まり、中空率の大きい無機質中空粒子が得られるが、無機質原料粉末の細孔容積を大きくしすぎると多孔化してしまい、中空率が小さく、耐熱温度の低い無機質中空粒子が発生してしまう。 The average sphericity and specific surface area of the inorganic hollow powder can be adjusted and controlled mainly by controlling the temperature of the flame. The maximum particle size, the mechanical strength of the particles, and the 50% breaking strength of the powder can be adjusted and controlled mainly by the maximum particle size of the inorganic raw material powder. The hollow ratio can be adjusted and controlled by the moisture content of the inorganic raw material powder. The heat-resistant temperature can be controlled by adjusting the pore volume of the inorganic raw material powder. Specifically, when the flow rate of the combustible gas in the flame burner is increased, the flame temperature is increased and the raw material is sufficiently heated, so that an inorganic hollow powder having a high average sphericity and a small specific surface area can be obtained. In addition, when the moisture content of the inorganic raw material powder is increased, the bubble expansion effect is increased, and inorganic hollow particles having a large hollow ratio are obtained. Is small and inorganic hollow particles having a low heat-resistant temperature are generated.

本発明の組成物は、本発明の無機質中空粉体をゴム又は樹脂の少なくとも一方に含有させたものである。無機質中空粉体の含有率は目的に応じて異なり、例示すると1〜97質量%である。   The composition of the present invention contains the inorganic hollow powder of the present invention in at least one of rubber and resin. The content of the inorganic hollow powder varies depending on the purpose and is, for example, 1 to 97% by mass.

ゴムを例示すれば、天然ゴム、ポリブタジエンゴム(BR)、スチレン−ブタジエン共重合体ゴム(SBR)、ポリイソプレンゴム(IR)、ブチルゴム(IIR)、ニトリル−ブタジエン共重合体ゴム(NBR)などがある。   Examples of rubber include natural rubber, polybutadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), polyisoprene rubber (IR), butyl rubber (IIR), and nitrile-butadiene copolymer rubber (NBR). is there.

樹脂としては、エポキシ樹脂、フェノール樹脂、フラン樹脂、不飽和エステル樹脂、キシレン樹脂、シリコーン樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、BTレジン、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネイト、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル−アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム−スチレン)樹脂などがある。   Examples of the resin include epoxy resin, phenol resin, furan resin, unsaturated ester resin, xylene resin, silicone resin, melamine resin, urea resin, unsaturated polyester, fluororesin, BT resin, polyimide, polyamideimide, polyetherimide, etc. Polyester such as polyamide, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (Acrylonitrile / ethylene / propylene / diene rubber-styrene) resin.

多層基板用樹脂としては、例えば変性ポリイミド系樹脂などのポリイミド系樹脂、フッ素系樹脂、ポリフェニレンオキサイド、ポリフェニレンエーテル、BTレジンなどの低誘電率樹脂、例えばポリイミド、ポリエステル、ポリアミド、特に芳香族ポリアミド、ポリアミドイミド、ポリエーテルイミド等の良好な耐熱性と機械強度を有する樹脂などを使用することができる。   Examples of the resin for multilayer substrates include polyimide resins such as modified polyimide resins, fluorine resins, low dielectric constant resins such as polyphenylene oxide, polyphenylene ether, and BT resin, such as polyimide, polyester, polyamide, especially aromatic polyamide, polyamide. Resins having good heat resistance and mechanical strength such as imide and polyetherimide can be used.

半導体封止材料用樹脂としては、1分子中にエポキシ基を2個以上有するエポキシ樹脂が好ましい。その具体例をあげれば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA 、ビスフェノールF 及びビスフェノールS などのグリシジルエーテル、フタル酸やダイマー酸などの多塩基酸とエポクロルヒドリンとの反応により得られるグリシジルエステル酸エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、アルキル変性多官能エポキシ樹脂、β−ナフトールノボラック型エオキシ樹脂、1,6−ジヒドロキシナフタレン型エポキシ樹脂、2,7−ジヒドロキシナフタレン型エポキシ樹脂、ビスヒドロキシビフェニル型エポキシ樹脂、更には難燃性を付与するために臭素などのハロゲンを導入したエポキシ樹脂等である。中でも、耐湿性や耐ハンダリフロー性の点からは、オルソクレゾールノボラック型エポキシ樹脂、ビスヒドロキシビフェニル型エポキシ樹脂、ナフタレン骨格のエポキシ樹脂等が好適である。   As resin for semiconductor sealing materials, the epoxy resin which has 2 or more of epoxy groups in 1 molecule is preferable. Specific examples include phenol novolac epoxy resins, orthocresol novolac epoxy resins, epoxidized phenol and aldehyde novolac resins, glycidyl ethers such as bisphenol A, bisphenol F and bisphenol S, phthalic acid, Glycidyl ester acid epoxy resin, linear aliphatic epoxy resin, alicyclic epoxy resin, heterocyclic epoxy resin, alkyl-modified polyfunctional epoxy resin obtained by reaction of polybasic acid such as dimer acid and epochlorohydrin, β-naphthol novolac-type epoxy resin, 1,6-dihydroxynaphthalene-type epoxy resin, 2,7-dihydroxynaphthalene-type epoxy resin, bishydroxybiphenyl-type epoxy resin, and bromine and other halogen compounds to impart flame retardancy. An epoxy resin obtained by introducing a Gen. Among these, from the viewpoint of moisture resistance and solder reflow resistance, orthocresol novolac type epoxy resins, bishydroxybiphenyl type epoxy resins, epoxy resins having a naphthalene skeleton, and the like are preferable.

エポキシ樹脂の硬化剤については、エポキシ樹脂と反応して硬化させるものであれば特に限定されず、例えば、フェノール、クレゾール、キシレノール、レゾルシノール、クロロフェノール、t−ブチルフェノール、ノニルフェノール、イソプロピルフェノール、オクチルフェノール等の群から選ばれた1種又は2種以上の混合物をホルムアルデヒド、パラホルムアルデヒド又はパラキシレンとともに酸化触媒下で反応させて得られるノボラック型樹脂、ポリパラヒドロキシスチレン樹脂、ビスフェノールA やビスフェノールS 等のビスフェノール化合物、ピロガロールやフロログルシノール等の3官能フェノール類、無水マレイン酸、無水フタル酸や無水ピロメリット酸等の酸無水物、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン等をあげることができる。 The curing agent for the epoxy resin is not particularly limited as long as it is cured by reacting with the epoxy resin. For example, phenol, cresol, xylenol, resorcinol, chlorophenol, t-butylphenol, nonylphenol, isopropylphenol, octylphenol, etc. Bisphenol compounds such as novolak-type resin, polyparahydroxystyrene resin, bisphenol A and bisphenol S obtained by reacting one or a mixture selected from the group with formaldehyde, paraformaldehyde or paraxylene under an oxidation catalyst , Trifunctional phenols such as pyrogallol and phloroglucinol, acid anhydrides such as maleic anhydride, phthalic anhydride and pyromellitic anhydride, metaphenylenediamine, diaminodiphenylmeta , It may be mentioned aromatic amines such as diaminodiphenyl sulfone.

本発明の組成物がエポキシ樹脂である場合、エポキシ樹脂と硬化剤との反応を促進させるために硬化促進剤を配合することができる。その硬化促進剤としては、1,8−ジアザビシクロ(5,4 ,0)ウンデセン−7、トリフェニルホスフィン、ベンジルジメチルアミン、2−メチルイミダゾール等がある。   When the composition of the present invention is an epoxy resin, a curing accelerator can be blended to accelerate the reaction between the epoxy resin and the curing agent. Examples of the curing accelerator include 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, benzyldimethylamine, 2-methylimidazole and the like.

本発明の組成物には、次の成分を必要に応じて配合することができる。すなわち、低応力化剤として、シリコーンゴム、ポリサルファイドゴム、アクリル系ゴム、ブタジエン系ゴム、スチレン系ブロックコポリマーや飽和型エラストマー等のゴム状物質、各種熱可塑性樹脂、シリコーン樹脂等の樹脂状物質、更にはエポキシ樹脂、フェノール樹脂の一部又は全部をアミノシリコーン、エポキシシリコーン、アルコキシシリコーンなどで変性した樹脂など、シランカップリング剤として、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン等のアミノシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン、オクタデシルトリメトキシシラン等の疎水性シラン化合物やメルカプトシランなど、表面処理剤として、Zrキレート、チタネートカップリング剤、アルミニウム系カップリング剤など、難燃助剤として、Sb、Sb、Sbなど、難燃剤として、ハロゲン化エポキシ樹脂やリン化合物など、着色剤として、カーボンブラック、酸化鉄、染料、顔料などである。更には、ワックス等の離型剤を添加することができる。その具体例をあげれば、天然ワックス類、合成ワックス類、直鎖脂肪酸塩の金属塩、酸アミド類、エステル類、パラフィンなどである。 The composition of the present invention may contain the following components as necessary. That is, as a low stress agent, silicone rubber, polysulfide rubber, acrylic rubber, butadiene rubber, rubbery substances such as styrene block copolymers and saturated elastomers, various thermoplastic resins, resinous substances such as silicone resins, Is an epoxy resin, a resin obtained by modifying a part or all of a phenol resin with aminosilicone, epoxysilicone, alkoxysilicone, or the like. As a silane coupling agent, γ-glycidoxypropyltrimethoxysilane, β- (3,4- Epoxy cyclohexyl) Epoxy silanes such as ethyltrimethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxysilane, aminosilanes such as N-phenylaminopropyltrimethoxysilane, phenyltrimethoxysilane, methyltri Hydrophobic silane compounds such as methoxysilane and octadecyltrimethoxysilane, mercaptosilane and the like, surface treatment agents such as Zr chelates, titanate coupling agents and aluminum coupling agents, and flame retardant aids such as Sb 2 O 3 and Sb Examples of the flame retardant include 2 O 4 and Sb 2 O 5 , halogenated epoxy resins and phosphorus compounds, and examples of the colorant include carbon black, iron oxide, dye, and pigment. Furthermore, a release agent such as wax can be added. Specific examples include natural waxes, synthetic waxes, metal salts of linear fatty acid salts, acid amides, esters, paraffins and the like.

耐湿信頼性や高温放置安定性が要求される場合には、各種イオントラップ剤の添加が有効である。イオントラップ剤の具体例としては、協和化学社製商品名「DHF−4A」、「KW−2000」、「KW−2100」や東亜合成化学工業社製商品名「IXE−600」などである。   Addition of various ion trapping agents is effective when moisture resistance reliability and high temperature storage stability are required. Specific examples of the ion trapping agent include Kyowa Chemical Co., Ltd. trade names “DHF-4A”, “KW-2000”, “KW-2100”, and Toa Gosei Kagaku Kogyo Co., Ltd. trade names “IXE-600”.

本発明の組成物は、例えば上記各材料の所定量をブレンダーやヘンシェルミキサー等によりブレンドした後、加熱ロール、ニーダー、一軸又は二軸押し出し機等により混練したものを冷却後、粉砕することによって製造することができる。多層プリント基板用途や塗料用途においては、上記各材料と有機溶剤とを混合してワニスとするが、これにはらいかい機、ビーズミル、3本ロール、攪拌ミキサーなどの混合機が使用される。ワニスとした後は真空脱気によりワニス中の気泡を除去しておくことが好ましい。消泡機能、破泡機能を持たせるために、例えばシリコーン系、アクリル系、フッ素系の消泡剤の添加は有効である。   The composition of the present invention is produced by, for example, blending a predetermined amount of each of the above materials with a blender, a Henschel mixer, etc., then cooling and pulverizing what is kneaded with a heating roll, kneader, uniaxial or biaxial extruder, etc. can do. In multilayer printed circuit board applications and paint applications, the above materials and an organic solvent are mixed to form a varnish. However, a mixer such as a non-stick machine, a bead mill, a three roll roll, and a stirring mixer is used. After forming the varnish, it is preferable to remove bubbles in the varnish by vacuum degassing. In order to provide an antifoaming function and an antifoaming function, for example, addition of a silicone-based, acrylic-based, or fluorine-based antifoaming agent is effective.

用いた装置は、外側より助燃性ガス供給管A、可燃性ガス供給管、助燃性ガス供給管B、原料供給管の順に組まれた四重管構造ノズルからなるバーナーを縦型炉の炉頂部に4本設置する一方、炉の下部を捕集系(サイクロン、バッグフィルター)に接続されており、無機質中空粉体は燃焼排ガスと共にブロワーで吸引輸送され、サイクロン及びバッグフィルターで捕集されるものである。   The equipment used is a burner consisting of a quadruple tube structure nozzle assembled from the outside in the order of auxiliary combustion gas supply pipe A, inflammable gas supply pipe, auxiliary combustion gas supply pipe B, and raw material supply pipe. In addition, the lower part of the furnace is connected to the collection system (cyclone, bag filter), and the inorganic hollow powder is sucked and transported by the blower together with the combustion exhaust gas, and collected by the cyclone and the bag filter. It is.

実施例1〜10 比較例1〜7
バーナー一本あたり、助燃性ガス供給管Aから酸素を3〜10Nm/Hr、可燃性ガス供給管からLPGを2〜7Nm/Hr、助燃性ガス供給管Bから酸素富化空気を3〜20Nm/Hr供給して火炎を形成する一方、表1に示される無機質原料粉末を原料供給管より2〜10kg/Hrを担持ガス(酸素富化空気)に同伴させて噴霧した。このときの無機質原料粉末の特性とLPG供給量、助燃性ガス(酸素、酸素富化空気)供給量の違いに応じ、特性の異なる種々の無機質中空粉体(球状シリカ中空粉体)がサイクロンから捕集された。それらの粒子の中空率が60体積%以上〜80体積%未満と粒子の中空率が20体積%以上〜60体積%未満と粒子の中空率が0体積%〜20体積%未満の中空粒子の含有量、最大粒子径、比表面積、平均球形度、純度を下記に従って測定した。それらの結果を表1及び表2に示す。また、非晶質率は前記の方法により測定した結果、ピークはなく非晶質であることを確認した。
なお、表1及び表2のA中空粉末は粒子の中空率が60体積%以上〜80体積%未満の中空粒子の粉末、B中空粉末は粒子の中空率が20体積%以上〜60体積%未満の中空粒子の粉末、C中空粉末は粒子の中空率が0〜20体積%未満の中空粒子の粉末である。
各種物性の測定方法
(1)細孔容積
細細孔容積は自動比表面積/ 細孔分布測定装置( マイクロメリティックス社製、TriStar3000) を用いて78K における窒素の吸着等温線を作成し、該吸着等温線から、B J H 法により細孔分布曲線を得て求めた。
(2)最大粒子径
最大粒子径は、ベックマン・コールター社製レーザー回折散乱法粒度分布測定装置(商品名「LS−230」)を用いて測定した。屈折率には実数部1.5を虚数部には0を使用した。
(3)二酸化珪素の含有量
中空粉末の二酸化珪素の含有量は段落(0020)に記載の方法により、測定した。
(4)中空粒子の中空率分布
中空粒子の中空率分布は、段落(0015)に記載の方法により、測定した。
(5)比表面積
比表面積は前処理装置(バキュプレップ061形)で200℃、6時間真空排気を行い、自動比表面積/ 細孔分布測定装置( マイクロメリティックス社製、TriStar3000) を用いて、窒素ガスを使用してBET法による多点法比表面積を測定した。
(6)平均球形度
中空粒子の平均球形度は、段落(0018)に記載の方法により、測定した。
(7)水分含有率
水分含有率は、段落(0028)に記載の方法により、測定した。
(8)耐熱温度
耐熱温度の測定は、無機質中空粉体を電気炉で焼成し、BET比表面積の50%減少、もしくは走査型電子顕微鏡で形状変化を確認して測定した。
(9)粒子の機械的強度
粒子の機械的強度は、Aの中空粉末から任意の一粒子において島津製作所製微小圧縮試験機(商品名「MCT−W201」)を用いて試験力を加え、急激な変位点の試験力を測定し、式、機械的強度(MPa)=2.8×試験力(N)/(π×粒子径)にて求めた。この測定を20回行い、平均の機械的強度を求めた。
Examples 1-10 Comparative Examples 1-7
For each burner, oxygen is supplied from the auxiliary combustion gas supply pipe A to 3 to 10 Nm 3 / Hr, from the inflammable gas supply pipe to LPG from 2 to 7 Nm 3 / Hr, and from the auxiliary combustion gas supply pipe B to 3 oxygen-enriched air. While 20 Nm 3 / Hr was supplied to form a flame, 2 to 10 kg / Hr of the inorganic raw material powder shown in Table 1 was sprayed from the raw material supply pipe along with the carrier gas (oxygen-enriched air). Various inorganic hollow powders (spherical silica hollow powders) with different characteristics can be obtained from the cyclone according to differences in the characteristics of the inorganic raw material powder, LPG supply amount, and auxiliary combustion gas (oxygen, oxygen-enriched air) supply amount. It was collected. Inclusion of hollow particles in which the hollowness of the particles is 60% by volume to less than 80% by volume, the hollowness of the particles is 20% by volume to less than 60% by volume, and the hollowness of the particles is 0% by volume to less than 20% by volume. The amount, maximum particle size, specific surface area, average sphericity and purity were measured according to the following. The results are shown in Tables 1 and 2. Further, the amorphous ratio was measured by the above method, and as a result, it was confirmed that there was no peak and it was amorphous.
In Tables 1 and 2, the A hollow powder is a hollow particle powder having a particle hollow ratio of 60 volume% to less than 80 volume%, and the B hollow powder is a particle hollow ratio of 20 volume% to less than 60 volume%. The hollow particle powder, C hollow powder, is a hollow particle powder having a particle hollow ratio of 0 to less than 20% by volume.
Method for measuring various physical properties (1) Pore volume The fine pore volume is an automatic specific surface area / pore distribution measuring device (manufactured by Micromeritics, Inc., TriStar 3000). The pore distribution curve was obtained from the adsorption isotherm by the BJH method.
(2) Maximum particle size The maximum particle size was measured using a laser diffraction scattering method particle size distribution analyzer (trade name "LS-230") manufactured by Beckman Coulter. The real part 1.5 was used for the refractive index and 0 was used for the imaginary part.
(3) Content of silicon dioxide The content of silicon dioxide in the hollow powder was measured by the method described in paragraph (0020).
(4) Hollow ratio distribution of hollow particles The hollow ratio distribution of the hollow particles was measured by the method described in paragraph (0015).
(5) Specific surface area The specific surface area is evacuated at 200 ° C. for 6 hours with a pretreatment device (vacuprep 061 type), and using an automatic specific surface area / pore distribution measuring device (MicroStar 3000, TriStar 3000). The specific surface area by the BET method was measured using nitrogen gas.
(6) Average sphericity The average sphericity of the hollow particles was measured by the method described in paragraph (0018).
(7) Water content The water content was measured by the method described in paragraph (0028).
(8) Heat-resistant temperature The heat-resistant temperature was measured by firing an inorganic hollow powder with an electric furnace and reducing the BET specific surface area by 50%, or confirming a shape change with a scanning electron microscope.
(9) Mechanical strength of the particles The mechanical strength of the particles was determined by applying a test force to any one particle from the hollow powder of A using a micro compression tester manufactured by Shimadzu Corporation (trade name “MCT-W201”). The test force at the various displacement points was measured and determined by the formula: mechanical strength (MPa) = 2.8 × test force (N) / (π × particle diameter 2 ). This measurement was performed 20 times to obtain an average mechanical strength.

また、プラズマディスプレイパネル用隔壁材料に用いる場合は、BaO35質量%、ZnO45質量%、B20質量%からなる組成のガラス粉末を調合し、均一に混合した後、白金坩堝に入れて、1250℃で2時間溶融して均一なガラス体を得た。これをアルミナボールで粉砕、分級を行い、最大粒子径が15μmのガラス粉末を得た。得られたガラス粉末の軟化点、誘電率及び熱膨張係数を測定したところ、軟化点は600℃、誘電率10.5、熱膨張係数が85×10−7/℃(30〜300℃)であった。 In the case of using the rib material for a plasma display panel, BaO35 wt%, ZnO45 wt%, B 2 O 3 to prepare a glass powder having a composition consisting of 20 wt% were uniformly mixed, placed in a platinum crucible, A uniform glass body was obtained by melting at 1250 ° C. for 2 hours. This was pulverized and classified with an alumina ball to obtain a glass powder having a maximum particle size of 15 μm. When the softening point, dielectric constant, and thermal expansion coefficient of the obtained glass powder were measured, the softening point was 600 ° C., the dielectric constant was 10.5, and the thermal expansion coefficient was 85 × 10 −7 / ° C. (30 to 300 ° C.). there were.

更にガラス粉末80質量%に対して無機質中空粉体を20質量%加え、混合して隔壁形成材料とした。得られた隔壁材料について軟化点、誘電率、熱膨張係数、機械的強度(クラック発生荷重)を評価した。その結果を表1及び表2に示す。
(1)軟化点:マクロ型示差熱分析計を用いて測定し、第四の変曲点の値を軟化点とした。
(2)誘電率:各試料を粉末プレス成形し、焼成した後に、ガラス体を、2.0mm厚、直径30mmの円盤状に研磨加工し、この円盤状ガラスの両面に、直径20mmの電極を形成し、LCRメーターを用いて25℃、1MHzで測定した。
(3)熱膨張係数:各試料を粉末プレス成形し、焼成した後に、直径4mm、長さ40mmの円柱状に研磨加工し、JIS R3102に基づいて測定した後、30〜300℃の温度範囲における値を求めた。
(4)クラック発生荷重:隔壁材料の軟化点で10分間焼成した各試料の焼成体の表面にビッカース硬度計によるダイヤモンド圧子を押し付けて、正方形に生じる圧痕のコーナー部にクラックが発生する荷重を測定したものである、なお、この数値が大きいほど、機械的強度は大きい。
Furthermore, 20% by mass of an inorganic hollow powder was added to 80% by mass of the glass powder and mixed to obtain a partition wall forming material. The obtained partition wall material was evaluated for softening point, dielectric constant, thermal expansion coefficient, and mechanical strength (cracking load). The results are shown in Tables 1 and 2.
(1) Softening point: Measured using a macro differential thermal analyzer, and the value of the fourth inflection point was taken as the softening point.
(2) Dielectric constant: After each sample was powder-pressed and fired, the glass body was polished into a disc shape having a thickness of 2.0 mm and a diameter of 30 mm, and electrodes having a diameter of 20 mm were formed on both sides of the disc-like glass. Formed and measured at 25 ° C. and 1 MHz using an LCR meter.
(3) Thermal expansion coefficient: After each sample was powder press-molded and fired, polished into a cylindrical shape having a diameter of 4 mm and a length of 40 mm, measured according to JIS R3102, and then in a temperature range of 30 to 300 ° C. The value was determined.
(4) Crack generation load: Press the diamond indenter with a Vickers hardness tester on the surface of the fired body of each sample fired for 10 minutes at the softening point of the partition wall material, and measure the load at which cracks occur at the corners of the indentation generated in the square In addition, mechanical strength is so large that this figure is large.

他方、シランカップリング剤で表面処理を施す場合は、無機質中空粉体100質量部に対し0.5質量部のビニルトリエトキシシランを用いた。混合にはヘンシェルミキサーを用い、混合時間を10分とした。 On the other hand, when surface treatment was performed with a silane coupling agent, 0.5 parts by mass of vinyltriethoxysilane was used with respect to 100 parts by mass of the inorganic hollow powder. A Henschel mixer was used for mixing, and the mixing time was 10 minutes.

得られた無機質中空粉体の特性を評価するため、臭素化ビスフェノールA型液状エポキシ樹脂100質量部、ジシアンジアミド4質量部、2−エチル4−メチルイミダゾール0.2質量部をメチルエチルケトン200質量部に溶解した後、3−グリシドキシプロピルトリメトキシシラン1質量部、無機質中空粉体を上記エポキシ樹脂100体積部に対して100体積部を加え、高速ミキサーで10分間攪拌してワニスを製造した。 In order to evaluate the properties of the obtained inorganic hollow powder, 100 parts by mass of brominated bisphenol A liquid epoxy resin, 4 parts by mass of dicyandiamide, and 0.2 parts by mass of 2-ethyl 4-methylimidazole were dissolved in 200 parts by mass of methyl ethyl ketone. Thereafter, 1 part by mass of 3-glycidoxypropyltrimethoxysilane and 100 parts by volume of the inorganic hollow powder were added to 100 parts by volume of the epoxy resin, and stirred for 10 minutes with a high-speed mixer to produce a varnish.

ワニスの粘度を測定してから、ワニスをガラスクロスに含浸させ150℃の電気炉で5分間加熱した後、切断してプリプレグを得た。このプリプレグを必要な厚さになるように重ね、圧力5.0MPa、温度180℃で200分の加熱成型プレスをして積層板を製造し、その熱膨張係数と難燃性と比誘電率を測定した。それらの結果を表1及び表2に示す。なお、ワニスを積層板に用いる場合には、ワニス粘度が800mPa・s以下、特に700mPa・s以下であることが積層板を成形する点から好ましい。 After measuring the viscosity of the varnish, the glass cloth was impregnated with varnish, heated in an electric furnace at 150 ° C. for 5 minutes, and then cut to obtain a prepreg. This prepreg is piled up to the required thickness, and a laminated board is manufactured by heating molding press at a pressure of 5.0 MPa and a temperature of 180 ° C. for 200 minutes, and its thermal expansion coefficient, flame retardancy and relative dielectric constant are set. It was measured. The results are shown in Tables 1 and 2. In addition, when using a varnish for a laminated board, it is preferable from a point which shape | molds a laminated board that varnish viscosity is 800 mPa * s or less, especially 700 mPa * s or less.

(1)ワニス粘度:トキメック社製E型粘度計を用い、3°R14のコーンローター、温度30℃、ローター回転数2.5rpmの条件で測定した。
(2)積層板の熱膨張係数:積層板から、直径5mm×高さ10mmのテストピースを作製し、島津製作所社製熱機械分析装置(TMA)を用い、JIS K7197規格に準じて測定した。
(3)積層板の難燃性:積層板から、12.7mm×127mm×1mmのテストピースを作製し、UL−94規格に準じて測定した。
(4)積層板の比誘電率:積層板から、直径100mm×厚み2mmのテストピースを作製し、ヒューレット・パッカード社製誘電率測定器を用いて、JIS K6911規格に準じて測定した。
(1) Varnish viscosity: Measured using an E-type viscometer manufactured by Tokimec Co., Ltd. under conditions of a cone rotor of 3 ° R14, a temperature of 30 ° C., and a rotor rotational speed of 2.5 rpm.
(2) Thermal expansion coefficient of laminated plate: A test piece having a diameter of 5 mm and a height of 10 mm was prepared from the laminated plate, and measured according to JIS K7197 standard using a thermomechanical analyzer (TMA) manufactured by Shimadzu Corporation.
(3) Flame retardancy of laminate: A test piece of 12.7 mm × 127 mm × 1 mm was prepared from the laminate and measured according to UL-94 standards.
(4) Relative dielectric constant of the laminate: A test piece having a diameter of 100 mm and a thickness of 2 mm was prepared from the laminate, and measured according to the JIS K6911 standard using a dielectric constant measuring device manufactured by Hewlett-Packard Company.

Figure 0005358273
Figure 0005358273

Figure 0005358273


実施例と比較例の対比から明らかなように、本発明の実施例によれば、熱膨張係数が65〜85×10−7/℃、誘電率が8.5以下、(25℃、1MHz)、機械的強度の高い隔壁を形成することが可能である。また、熱膨張係数が30ppm以下、難燃性がV−0、比誘電率が3.3以下(25℃、1GHz)の積層板を製造することができる。
Figure 0005358273


As is clear from the comparison between the example and the comparative example, according to the example of the present invention, the thermal expansion coefficient is 65 to 85 × 10 −7 / ° C., the dielectric constant is 8.5 or less, (25 ° C., 1 MHz). It is possible to form a partition wall having high mechanical strength. In addition, a laminate having a thermal expansion coefficient of 30 ppm or less, a flame retardance of V-0, and a relative dielectric constant of 3.3 or less (25 ° C., 1 GHz) can be manufactured.

本発明の無機質中空粉体は、自動車、携帯電子機器、家庭電化製品等のモールディングコンパウンドなどの樹脂成型部品、更にはパテ、シーリング材、軽量外壁材などの充填材として使用される。また、プラズマディスプレイパネル用隔壁材料として使用され、さらに、本発明の組成物は、ガラス織布、ガラス不織布、その他有機基材に含浸硬化させてなる例えばプリント基板用プリプレグや、プリプレグの1枚又は複数枚を銅箔等と共に加熱成型された電子部品、更には電線被覆材、半導体封止材、ワニスなどの製造に使用される。
The inorganic hollow powder of the present invention is used as a filler for resin molded parts such as molding compounds for automobiles, portable electronic devices, home appliances and the like, as well as putty, sealing materials and lightweight outer wall materials. Further, it is used as a partition wall material for a plasma display panel, and the composition of the present invention is formed by impregnating and curing a glass woven fabric, a glass nonwoven fabric, or other organic base material, for example, a prepreg for a printed circuit board, It is used for the production of electronic parts that have been heat-molded together with copper foil or the like, as well as electric wire coating materials, semiconductor encapsulants, varnishes, and the like.

Claims (7)

粒子の中空率が60体積%以上〜80体積%未満の中空粒子の粉末が10〜20質量%、粒子の中空率が20体積%以上〜60体積%未満の中空粒子の粉末が75〜89.9質量%、粒子の中空率0体積%〜20体積%未満の中空粒子の粉末が0.1〜5質量%で、最大粒子径が10μm以下、BET法により求めた比表面積が20m/g以下、平均球形度0.85以上、SiO 含有量が99.0質量%以上、非晶質シリカである無機質中空粉体 The hollow particle powder having a particle hollow ratio of 60% by volume to less than 80% by volume is 10 to 20% by mass, and the hollow particle powder having a particle hollow ratio of 20% by volume to less than 60% by volume is 75 to 89.%. 9% by mass, 0.1% to 5% by mass of hollow particles having a particle hollow ratio of 0% by volume to less than 20% by volume, a maximum particle size of 10 μm or less, and a specific surface area determined by the BET method of 20 m 2 / g Hereinafter, an inorganic hollow powder having an average sphericity of 0.85 or more , an SiO 2 content of 99.0% by mass or more, and an amorphous silica 無機質中空粉体が表面処理剤で処理されてなる請求項1に記載の無機質中空粉体。 The inorganic hollow powder according to claim 1, wherein the inorganic hollow powder is treated with a surface treatment agent. 耐熱温度が900℃以上である請求項1又は2に記載の無機質中空粉体。 The inorganic hollow powder according to claim 1 or 2 , wherein the heat resistant temperature is 900 ° C or higher. 請求項1〜のいずれか一項に記載の無機質中空粉体を含有してなる樹脂組成物。 The resin composition formed by containing the inorganic hollow powder as described in any one of Claims 1-3 . 請求項1〜のいずれか一項に記載の無機質中空粉体を用いたプラズマディスプレイパネル用隔壁形成材料。 A partition wall forming material for a plasma display panel using the inorganic hollow powder according to any one of claims 1 to 3 . 外側から助燃性ガス供給管、可燃性ガス供給管、助燃性ガス供給管、原料供給管の順に組まれた四重管部分を少なくとも備えたバーナーによって形成された火炎中に、水分含有率が5〜30質量%、細孔容積0.1〜1.0ml/g、最大粒子径10μm以下、SiO含有量が99.0質量%以上の無機質原料粉末を、上記原料供給管から200m/s以上の吐出速度で供給して、中空化させた、粒子の中空率が60体積%以上〜80体積%未満の中空粒子の粉末が10〜20質量%、粒子の中空率が20体積%以上〜60体積%未満の中空粒子の粉末が75〜89.9質量%、粒子の中空率0体積%〜20体積%未満の中空粒子の粉末が0.1〜5質量%で、最大粒子径が10μm以下、BET法により求めた比表面積が20m /g以下、平均球形度0.85以上である無機質中空粉体の製造方法。 Moisture content is 5 in the flame formed by the burner provided with at least a quadruple pipe portion assembled in this order from the auxiliary combustion gas supply pipe, the combustible gas supply pipe, the auxiliary combustion gas supply pipe, and the raw material supply pipe. ~ 30 mass%, pore volume 0.1-1.0 ml / g, maximum particle diameter 10 μm or less, SiO 2 content 99.0 mass% or more inorganic raw material powder 200 m / s or more from the raw material supply pipe 10 to 20% by mass of a hollow particle powder having a hollow ratio of 60% by volume to less than 80% by volume and a hollow ratio of 20% by volume to 60% by volume. The hollow particle powder of less than volume% is 75 to 89.9% by mass, the hollow particle powder of particle volume is 0 to 20% by volume, 0.1 to 5% by mass, and the maximum particle size is 10 μm or less. The specific surface area determined by the BET method is 20 m 2 / g or more Below, the manufacturing method of the inorganic hollow powder whose average sphericity is 0.85 or more . 無機質中空粉体が非晶質シリカ中空粉体であり、SiOThe inorganic hollow powder is an amorphous silica hollow powder, and SiO 2 含有量が99.0質量%以上である請求項6に記載の無機質中空粉体の製造方法。Content is 99.0 mass% or more, The manufacturing method of the inorganic hollow powder of Claim 6.
JP2009111835A 2009-05-01 2009-05-01 Inorganic hollow powder, its production method and its use Expired - Fee Related JP5358273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009111835A JP5358273B2 (en) 2009-05-01 2009-05-01 Inorganic hollow powder, its production method and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009111835A JP5358273B2 (en) 2009-05-01 2009-05-01 Inorganic hollow powder, its production method and its use

Publications (2)

Publication Number Publication Date
JP2010260755A JP2010260755A (en) 2010-11-18
JP5358273B2 true JP5358273B2 (en) 2013-12-04

Family

ID=43359168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009111835A Expired - Fee Related JP5358273B2 (en) 2009-05-01 2009-05-01 Inorganic hollow powder, its production method and its use

Country Status (1)

Country Link
JP (1) JP5358273B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5438407B2 (en) * 2009-07-14 2014-03-12 花王株式会社 Low dielectric resin composition
JP2011225756A (en) * 2010-04-21 2011-11-10 Kao Corp Low dielectric resin composition
JP5513364B2 (en) * 2010-12-24 2014-06-04 花王株式会社 Hollow silica particles
JP2013133406A (en) * 2011-12-27 2013-07-08 Hitachi Ltd Composite insulating resin, and insulating spacer and gas insulation instrument using the same
KR102104097B1 (en) * 2012-02-13 2020-04-23 가부시키가이샤 도쿠야마 Silica balloon material having novel characteristic profiles
JP6389431B2 (en) * 2014-12-24 2018-09-12 太平洋セメント株式会社 Fine aluminosilicate hollow particles
KR20210016533A (en) * 2018-05-28 2021-02-16 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, metal foil coated laminate, resin composite sheet, and printed wiring board
JP2020084128A (en) * 2018-11-30 2020-06-04 花王株式会社 Sealant for electronic material
JPWO2021172294A1 (en) * 2020-02-27 2021-09-02

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3471514B2 (en) * 1996-02-01 2003-12-02 水澤化学工業株式会社 Resin composition for semiconductor encapsulation and hygroscopic filler used therein
JP4244323B2 (en) * 2004-01-26 2009-03-25 電気化学工業株式会社 Spherical inorganic hollow powder, method for producing the same, and resin composition
JP4112540B2 (en) * 2004-08-26 2008-07-02 電気化学工業株式会社 Manufacturing method of spherical inorganic hollow powder.
WO2007125891A1 (en) * 2006-04-24 2007-11-08 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic hollow particle, process for producing the same, and composition containing the same
JP2007324098A (en) * 2006-06-05 2007-12-13 Matsushita Electric Ind Co Ltd Plasma display panel

Also Published As

Publication number Publication date
JP2010260755A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP5358273B2 (en) Inorganic hollow powder, its production method and its use
JP5414027B2 (en) Inorganic hollow powder, method for producing the same, and composition using the same
JP4112540B2 (en) Manufacturing method of spherical inorganic hollow powder.
JP5411497B2 (en) Inorganic hollow powder, method for producing the same, and composition containing the inorganic hollow powder
JP5294015B2 (en) Ceramic powder and its use
JP4244323B2 (en) Spherical inorganic hollow powder, method for producing the same, and resin composition
JP5519489B2 (en) Method for producing inorganic hollow powder and resin composition used therefor
WO2009139425A1 (en) Amorphous siliceous powder, process for production of the same, and use thereof
JP2006273969A (en) Curable resin composition and its use
JP5259500B2 (en) Amorphous siliceous powder and its production method and application
JP5310472B2 (en) High heat-resistant aluminum hydroxide particles, production method thereof, resin composition containing the particles, and printed wiring board using the resin composition
US8048817B2 (en) Amorphous silica powder, process for its production, and sealing material for semiconductors
JP5606740B2 (en) Siliceous powder, production method and use thereof
JP2019182715A (en) Amorphous silica powder, resin composition, and semiconductor encapsulation material
JP2006273948A (en) Thermally-conductive resin composition and use of the same
JP5345787B2 (en) Method for producing silica-alumina composite oxide ultrafine powder for semiconductor encapsulant
KR20240037979A (en) Globular silica powder and method for producing spherical silica powder
WO2023199802A1 (en) Liquid composition, prepreg, resin-including metal substrate, wiring board, and silica particles
TW202407016A (en) Liquid composition, prepreg, metal substrate with resin, wiring board, and silica particles
WO2022202583A1 (en) Inorganic oxide powder, resin composition, and compression molded article
JP2023156242A (en) Liquid composition, prepreg, metal substrate with resin, wiring board and silica particle
JP2023164317A (en) Liquid composition, prepreg, resin-coated metallic substrate, wiring board, and silica particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R151 Written notification of patent or utility model registration

Ref document number: 5358273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees