JP5353952B2 - Method for producing catalyst for methanation reaction of carbon oxide - Google Patents

Method for producing catalyst for methanation reaction of carbon oxide Download PDF

Info

Publication number
JP5353952B2
JP5353952B2 JP2011124681A JP2011124681A JP5353952B2 JP 5353952 B2 JP5353952 B2 JP 5353952B2 JP 2011124681 A JP2011124681 A JP 2011124681A JP 2011124681 A JP2011124681 A JP 2011124681A JP 5353952 B2 JP5353952 B2 JP 5353952B2
Authority
JP
Japan
Prior art keywords
catalyst
group element
iron group
atomic
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011124681A
Other languages
Japanese (ja)
Other versions
JP2011206770A (en
Inventor
功二 橋本
裕之 高野
宏一 泉屋
直和 熊谷
善大 加藤
博之 四宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Ataka Engineering Co Ltd
Original Assignee
Daiki Ataka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Ataka Engineering Co Ltd filed Critical Daiki Ataka Engineering Co Ltd
Priority to JP2011124681A priority Critical patent/JP5353952B2/en
Publication of JP2011206770A publication Critical patent/JP2011206770A/en
Application granted granted Critical
Publication of JP5353952B2 publication Critical patent/JP5353952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、二酸化炭素、一酸化炭素および二酸化炭素、またはこれらを主成分とする混合ガスと、水素とを反応させてメタンを製造するための触媒の製造方法に関する。本発明はまた、その方法により製造した触媒を使用するメタン化方法にも関する。 The present invention relates to a method for producing a catalyst for producing methane by reacting carbon dioxide, carbon monoxide and carbon dioxide, or a mixed gas containing these as main components with hydrogen. The invention also relates to a methanation process using a catalyst produced by the process.

化石燃料を燃焼することによって排出される二酸化炭素が引き起こす、地球温暖化の問題が深刻となり、排出量を削減する対策が検討されている。その一つの方法として、二酸化炭素を水素と反応させてメタンを生成させる方法が、エネルギー生産法としても期待されている。それとともに、コークス、石炭、バイオマス燃料、汚泥廃棄物などのガス化で得られる水素、一酸化炭素、二酸化炭素からなる低カロリーガスをメタン化して、高カロリーのガスを製造する技術にも、期待がかかっている。 The problem of global warming caused by carbon dioxide emitted by burning fossil fuels becomes serious, and measures to reduce emissions are being studied. As one of the methods, a method of producing methane by reacting carbon dioxide with hydrogen is also expected as an energy production method. At the same time, the technology for producing high-calorie gas by methanation of low-calorie gas consisting of hydrogen, carbon monoxide and carbon dioxide obtained by gasification of coke, coal, biomass fuel, sludge waste, etc. is also expected. Is on.

二酸化炭素および一酸化炭素を含む混合ガスと水素とを接触的に反応させ、メタンを製造する反応の触媒として、これまで、ラネーニッケル、アルミナおよびシリカを担体とした触媒を用いることが試みられていた。しかしながら、既知のこの種の触媒では、メタンヘの転化の反応速度が遅いため、反応圧力を高圧にする必要があった。 Attempts have been made to use Raney nickel, alumina, and silica-supported catalysts as catalysts for the reaction of producing methane by catalytically reacting a mixed gas containing carbon dioxide and carbon monoxide with hydrogen. . However, with this type of known catalyst, the reaction rate of methane conversion was slow, so that the reaction pressure had to be increased.

メタン合成を効率よく行なうことができる触媒として、筆頭発明者を中心とする研究グループは、Ni,Coなどの鉄族金属と、Zr,Ti,Nb,Taなどのバルブメタルとの合金の溶湯を、液体急冷法によってリボン状のアモルファス合金にしたものが、すぐれた触媒性能を有することを見出し、すでに開示した。(特許文献1、特許文献2,特許文献3)。この触媒は、メタンヘの選択率がほぼ100%であり、大気圧下においてもきわめて高い転化率を示す。しかしながら、液体急冷法による触媒製造は、量産性に欠けるほか、触媒がリボン形状であるため、触媒反応システムが制限されるという問題がある。 As a catalyst that can efficiently synthesize methane, a research group led by the leading inventor uses a molten alloy of an iron group metal such as Ni and Co and a valve metal such as Zr, Ti, Nb, and Ta. The inventors have found that a ribbon-like amorphous alloy obtained by a liquid quenching method has excellent catalytic performance and has already been disclosed. (Patent Document 1, Patent Document 2, Patent Document 3). This catalyst has a selectivity to methane of almost 100% and exhibits a very high conversion even under atmospheric pressure. However, the catalyst production by the liquid quenching method has problems that it lacks mass productivity and the catalyst reaction system is limited because the catalyst has a ribbon shape.

そこで発明者のグループは、上述の触媒を基礎にして、リボン状触媒に代わる、量産性の高い粉末触媒を製造する方法を開発し、これも開示した(特許文献4)。この触媒は、正方晶系ジルコニア担体にNiおよび(または)Coを担持した触媒であって、Zrの酸化物中に正方晶を形成し安定化するための安定化元素(Y,La,Ce,Pr,Nd,Sm,Gd,Tb,Dy,Eu,MgおよびCa)のいずれかを加えた正方晶系ジルコニア担体を焼成により用意し、それにNiおよび(または)Coの化合物の溶液を含浸させ、加熱して乾燥した後、還元してNiおよび(または)Coを金属状態にしたものである。
特開平10−43594 特開平10−244158 特開平10−263400 特開2000−254508
Therefore, the inventor's group has developed a method for producing a powder catalyst with high mass productivity, which is an alternative to the ribbon catalyst, based on the above-mentioned catalyst, and also disclosed this (Patent Document 4). This catalyst is a catalyst in which Ni and / or Co is supported on a tetragonal zirconia support, and a stabilizing element (Y, La, Ce, or the like) for forming and stabilizing a tetragonal crystal in an oxide of Zr. A tetragonal zirconia support added with any of Pr, Nd, Sm, Gd, Tb, Dy, Eu, Mg and Ca) is prepared by calcination, and impregnated with a solution of a compound of Ni and / or Co. After drying by heating, it is reduced to reduce Ni and / or Co to a metallic state.
JP 10-43594 A JP 10-244158 A JP 10-263400 A JP 2000-254508 A

特許文献4に記載されている触媒とその製造方法は、つぎのとおりである。
[触媒] 正方晶ジルコニア系担体にNi及び/又はCoを担持してなる二酸化炭素メタン化用触媒において、該正方晶ジルコニア系担体は、Y,La,Ce,Pr,Nd,Sm,Gd,Tb,Dy,Eu、MgおよびCaよりなる群から選ばれる1種又は2種以上の安定化元素を含み、該ジルコニア担体中の安定化元素の含有量が、Zrと安定化元素との合計に対して15原子%以下であり、Ni及び/又はCoの担持量が、Zrと安定化元素とNi及び/又はCoとの合計に対して5〜50%であることを特徴とする二酸化炭素メタン化用触媒。
The catalyst described in Patent Document 4 and the production method thereof are as follows.
[Catalyst] In the catalyst for carbon dioxide methanation formed by supporting Ni and / or Co on a tetragonal zirconia carrier, the tetragonal zirconia carrier is Y, La, Ce, Pr, Nd, Sm, Gd, Tb. , Dy, Eu, Mg and Ca, one or more kinds of stabilizing elements selected from the group consisting of, and the content of the stabilizing elements in the zirconia support is based on the total of Zr and stabilizing elements Carbon dioxide methanation, characterized in that the amount of Ni and / or Co supported is 5 to 50% with respect to the sum of Zr, stabilizing element and Ni and / or Co. Catalyst.

[製造方法] 上記の二酸化炭素メタン化用触媒を製造する方法において、
ジルコニアゾル水溶液に、Y,La,Ce,Pr,Nd,Sm,Gd,Tb,Dy,Eu,MgおよびCaよりなる群から選ばれる1種又は2種以上の塩を添加し、撹拌下、加熱蒸発乾固させて主成分が正方晶系構造のジルコニア系担体を製造する工程と、得られたジルコニア系担体をNi及び/又はCoの水溶液に添加し、撹拌下、加熱蒸発乾固させた後焼成し、その後還元処理することを特徴とする二酸化炭素メタン化用触媒の製造方法。
[Production Method] In the method for producing the carbon dioxide methanation catalyst,
One or more salts selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Eu, Mg, and Ca are added to the zirconia sol aqueous solution, and the mixture is heated with stirring. A step of producing a zirconia-based support having a tetragonal structure as a main component by evaporating to dryness, and adding the obtained zirconia-based support to an aqueous solution of Ni and / or Co, followed by heating to dryness with stirring A method for producing a catalyst for methanation of carbon dioxide, characterized by calcining and then reduction treatment.

さらに二酸化炭素メタン化用触媒の改良を進めた発明者らは、特許文献4に開示したような、あらかじめ正方晶系ジルコニア構造の担体を用意して、それにNiおよび(または)Coを担持するという工程によるよりも、触媒を構成する上で必要な成分をすべて含む酸化物混合物をまず製造し、ついで還元処理を施すという工程による方が、高性能の触媒が得られることを見出し、本発明に到達した。 Further, the inventors who have further improved the catalyst for carbon dioxide methanation prepare a support having a tetragonal zirconia structure in advance as disclosed in Patent Document 4, and support Ni and / or Co on the support. It has been found that a high-performance catalyst can be obtained by first producing an oxide mixture containing all the components necessary for constituting the catalyst and then subjecting it to a reduction treatment, rather than by the process. Reached.

したがって本発明の目的は、炭素酸化物のメタン化反応において250℃またはそれ以下の低温でも高い活性を示す触媒であって、同時に、バイオマスその他をガス化して得られる二酸化炭素、一酸化炭素および水素からなる混合ガスからメタンを製造する場合にも好適な触媒の製造方法を提供することにある。 Accordingly, an object of the present invention is a catalyst exhibiting high activity even at a low temperature of 250 ° C. or lower in carbon oxide methanation reaction, and at the same time, carbon dioxide, carbon monoxide and hydrogen obtained by gasifying biomass and others. It is another object of the present invention to provide a catalyst production method suitable for producing methane from a mixed gas comprising:

本発明のメタン化反応用触媒の製造方法は、二酸化炭素、一酸化炭素と二酸化炭素との混合物、またはこれらを主成分とする混合物を水素化してメタンを得るためのメタン化反応用触媒を製造する方法であって、下記の諸工程からなり、
1)ジルコニアのヒドロゾルに、Y,La,Ce,Pr,Nd,Sm,Gd,Dy,Ca,およびMgからなるグループから選んだ1種または2種以上の安定化元素の塩の水溶液、ならびに鉄族元素の塩の水溶液を混合すること、
2)混合物を濃縮乾固させて焼成すること、および
3)混合物を還元処理すること、
元素状態の金属を基準とした原子%で、
A)Zr:18〜70原子%、
B)上記安定化元素の1種または2種以上(2種以上の場合は合計で):1〜20原子%、および
C)鉄族元素:25〜80原子%、
からなる組成を有し、安定化元素とともに鉄族元素の一部をも結晶構造に取り込んで安定化された正方晶系ジルコニア構造の酸化物からなる担体に、金属状態の鉄族元素が触媒活性を担う活性種として担持された触媒を得ることを特徴とするメタン化反応用触媒の製造方法である。
The method for producing a catalyst for methanation reaction of the present invention produces a methanation reaction catalyst for obtaining methane by hydrogenating carbon dioxide, a mixture of carbon monoxide and carbon dioxide, or a mixture containing these as main components. Comprising the following steps:
1) An aqueous solution of a salt of one or more stabilizing elements selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ca, and Mg, and iron Mixing an aqueous solution of a salt of a group element,
2) concentrating the mixture to dryness and calcining; and 3) reducing the mixture.
Atomic% based on elemental metal,
A) Zr: 18-70 atomic%,
B) One or more of the above stabilizing elements (in the case of two or more): 1 to 20 atomic%, and C) an iron group element: 25 to 80 atomic%,
The metal-state iron group element has catalytic activity on a support made of a tetragonal zirconia structure oxide that is stabilized by incorporating a part of the iron group element together with the stabilizing element into the crystal structure. It is a method for producing a catalyst for methanation reaction, characterized in that a catalyst supported as an active species that bears the above is obtained.

本発明の方法により製造した、正方晶系ジルコニア構造の複酸化物を担体とし、金属状態のNiまたはNiとFeおよび(または)Coである鉄族元素を活性成分として担持した触媒は、反応選択率がほぼ100%メタンであって、反応平衡は、常圧でも極端に生成物側に片寄っているため、反応混合物から不純物を除去して未反応原料を循環させ、反応を高圧で何度も繰り返さなければならない、という問題は解消した。したがって、メタンとともに生成する水を除去するだけで、原料循環のための複雑な設備を要せずに、かつ、高圧でなく常圧で操業する単純な装置を用いて、迅速に、二酸化炭素または一酸化炭素と二酸化炭素との混合ガスを水素と反応させ、メタンに転換させることができる。 The catalyst produced by the method of the present invention using a tetragonal zirconia-structured double oxide as a support and supporting an iron group element as Ni or Ni and Fe and / or Co in the metal state as active components is selected by reaction. The rate is almost 100% methane, and the reaction equilibrium is extremely shifted to the product side even at normal pressure. Therefore, impurities are removed from the reaction mixture, unreacted raw materials are circulated, and the reaction is repeated many times at high pressure. The problem of having to repeat was solved. Therefore, simply removing the water produced with methane, without the need for complicated equipment for material circulation, and using simple equipment operating at normal pressure instead of high pressure, carbon dioxide or A mixed gas of carbon monoxide and carbon dioxide can be reacted with hydrogen and converted to methane.

本発明の方法により製造した触媒を用いれば、対象が一酸化炭素と二酸化炭素との混合ガスである場合、有毒な一酸化炭素をまずすべてメタンに転換し、残る水素で二酸化炭素をメタンに転換する、という理想的な機構を実現することができる。この触媒の製造は、きわめて容易である。 When the catalyst produced by the method of the present invention is used, when the target is a mixed gas of carbon monoxide and carbon dioxide, all toxic carbon monoxide is first converted to methane, and the remaining hydrogen is used to convert carbon dioxide to methane. This makes it possible to realize an ideal mechanism. The production of this catalyst is very easy.

本発明の触媒の製造方法の特徴は、既知の、すなわち特許文献4に開示した製造方法のように、まず正方晶系ジルコニアからなる担体を形成した後に、活性金属の塩の水溶液を混合し、還元するという二段の工程によるのではなく、必要な成分をすべて水溶液の形で混合し、この混合物を蒸発乾固し、還元処理するという、一段の焼成プロセスによって触媒を得ることにある。 The characteristics of the catalyst production method of the present invention are known, ie, as in the production method disclosed in Patent Document 4, first, after forming a support made of tetragonal zirconia, an aqueous solution of an active metal salt is mixed, Rather than the two-step process of reducing, the catalyst is obtained by a one-step calcination process in which all necessary components are mixed in the form of an aqueous solution, this mixture is evaporated to dryness and subjected to a reduction treatment.

この一段プロセスによるときは、蒸発乾固から焼成までの過程で、安定化元素だけでなく鉄族元素の一部も含んだ正方晶系ジルコニア構造の複酸化物と、鉄族元素の酸化物との混合物が生成する。続く還元によって、鉄族元素の酸化物が還元され、その結果、金属状態の鉄族元素が、正方晶系ジルコニア構造の複酸化物に担持された構造の触媒ができる。このように、還元処理後も、担体である正方晶系ジルコニア構造の複酸化物には、安定化元素とともに鉄族元素の一部が含まれたままである。 In this one-stage process, during the process from evaporation to dryness to firing, a double oxide of tetragonal zirconia structure containing not only a stabilizing element but also a part of an iron group element, an oxide of an iron group element, A mixture of Subsequent reduction reduces the oxide of the iron group element. As a result, a catalyst having a structure in which the iron group element in the metal state is supported on a double oxide having a tetragonal zirconia structure is formed. As described above, even after the reduction treatment, the tetragonal zirconia structure double oxide as a carrier still contains a part of the iron group element together with the stabilizing element.

上述した触媒製造方法において、ジルコニアヒドロゾルに正方晶ジルコニア構造安定化元素の塩と鉄族元素の塩とを添加したものに、触媒粒子の核となるアルミナ、シリカなどの粒子とバインダーとなるケイ酸塩、チタン酸塩、アルミン酸塩、ジルコン酸塩などを混合し、蒸発乾固し焼成することによって、最大3mm径の粒状触媒を形成することが可能である。バインダーの使用は、いったん製造した粉末状の触媒に対して混合し、加熱焼成するという手順によって行なうことも可能である。 In the catalyst production method described above, particles of alumina, silica, etc., which are the core of the catalyst particles, and silica, which is the binder, are added to the zirconia hydrosol to which a tetragonal zirconia structure stabilizing element salt and an iron group element salt are added. By mixing acid salt, titanate, aluminate, zirconate, etc., evaporating to dryness and firing, it is possible to form a granular catalyst having a maximum diameter of 3 mm. The use of the binder can also be performed by a procedure in which the binder is once mixed with the powdered catalyst that has been manufactured and then heated and fired.

以下、本発明の触媒の構成について説明する。安定化元素である、Y,La,Ce,Pr,Nd,Sm,Gd,Dy,CaおよびMgからなるグループから選んだ1種または2種以上は、酸化ジルコニウムがゾルから結晶に変化する際に、正方晶系ジルコニア構造を安定化する作用をする成分である。1原子%以上添加する必要があるが、過剰に存在すると、安定化元素独自の酸化物を形成し触媒活性にとって有害になるため、添加量は20原子%以下にする必要がある。 Hereinafter, the structure of the catalyst of this invention is demonstrated. One or more selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ca and Mg, which are stabilizing elements, are used when zirconium oxide changes from sol to crystal. It is a component that acts to stabilize the tetragonal zirconia structure. Although it is necessary to add 1 atomic% or more, if it is present in excess, an oxide unique to the stabilizing element is formed, which is harmful to the catalytic activity, so the addition amount needs to be 20 atomic% or less.

Zrは、いうまでもなく正方晶系ジルコニア構造をもつ担体を構成する基本の成分であって、18原子%以上添加する必要がある。しかし、過剰に添加すると、触媒活性に必要な鉄族元素の濃度を十分に高くできなくなるため、70原子%を上限とする。 Needless to say, Zr is a basic component constituting a support having a tetragonal zirconia structure, and it is necessary to add 18 atomic% or more. However, if added excessively, the concentration of the iron group element necessary for the catalytic activity cannot be made sufficiently high, so 70 atomic% is made the upper limit.

鉄族元素は、触媒活性を担う重要な成分であって、25原子%以上存在する必要があるが、過剰に添加すると、それ自体で凝集して分散が悪くなり、かえって十分な活性が得られなくなるから、80原子%以下とする必要がある。鉄族元素としてはNiが必要であるが、その一部を他の鉄族元素であるFeおよびCoの1種または2種で置換することができる。ただしその場合、原子比にして鉄族元素全体の少なくも6割を、Niが占めなければならない。 The iron group element is an important component responsible for the catalytic activity and needs to be present in an amount of 25 atomic% or more. However, if added excessively, it itself aggregates and disperses, resulting in sufficient activity. Therefore, it is necessary to make it 80 atomic% or less. Ni is required as the iron group element, but a part thereof can be substituted with one or two of Fe and Co, which are other iron group elements. However, in that case, Ni must occupy at least 60% of the total iron group element in terms of atomic ratio.

本発明の製造方法により得られる触媒が高活性を有し、かつその高活性が長期にわたって維持される理由として、発明者らは以下のように考えている。すなわち、ジルコニアの安定相は単斜晶系であるが、それを単独では安定でない正方晶系とし、これに鉄族元素を担持した触媒が、二酸化炭素および一酸化炭素のメタン化に対して高活性を呈する。このことは、特許文献4に明らかにした。本発明はそれから進んで、ジルコニアゾルに安定化元素の塩と鉄族元素の塩とを混合して焼成すると、酸化ジルコニウム結晶格子中に、酸化状態の安定化元素と酸化状態の鉄族元素の一部を含んだ正方晶系ジルコニア構造の複酸化物と、鉄族元素の酸化物とが均一に混じり合った酸化物混合体が得られ、この酸化物混合体に水素処理による還元を施すと、酸素との親和力が高いジルコニウムや安定化元素が主体の複酸化物は酸化状態に止まり、水素と直接接した鉄族元素の酸化物のみが金属状態に還元される、という事実を利用する。このようにして、正方晶系ジルコニア構造の複酸化物上に、触媒活性点である金属状態の鉄族元素が微細に分散した触媒が形成される。 The inventors consider the following as the reason why the catalyst obtained by the production method of the present invention has high activity and the high activity is maintained over a long period of time. In other words, the stable phase of zirconia is a monoclinic system, but it is a tetragonal system that is not stable by itself, and a catalyst that supports an iron group element is highly resistant to methanation of carbon dioxide and carbon monoxide. Exhibits activity. This is clarified in Patent Document 4. The present invention is further advanced, and when a stabilizing element salt and an iron group element salt are mixed and fired in a zirconia sol, an oxidized state stabilizing element and an oxidized state iron group element are contained in a zirconium oxide crystal lattice. When an oxide mixture is obtained in which a mixed oxide of a tetragonal zirconia structure containing a part of the oxide and an oxide of an iron group element are uniformly mixed. When this oxide mixture is reduced by hydrogen treatment, The fact that zirconium oxide, which has a high affinity with oxygen, and a double oxide mainly composed of a stabilizing element remains in an oxidized state, and only the oxide of an iron group element in direct contact with hydrogen is reduced to a metal state is utilized. In this way, a catalyst is formed in which a metallic iron group element, which is a catalytic active point, is finely dispersed on a double oxide having a tetragonal zirconia structure.

このような触媒は、反応ガスによって攪乱され、表面が摩耗して外表面にある金属状態の鉄族元素が失われても、その下から現れる酸化状態の鉄族元素が反応ガス中の水素によって還元されて金属状態になり、触媒活性点として働くため、常に担体上に十分な量の活性点が分散した、高活性の状態を維持することができる。 Such a catalyst is disturbed by the reaction gas, and even if the surface wears and the iron group element in the metallic state on the outer surface is lost, the iron group element in the oxidized state that appears from below is lost by the hydrogen in the reaction gas. Since it is reduced to a metal state and serves as a catalyst active site, a high activity state in which a sufficient amount of active sites are always dispersed on the support can be maintained.

本発明の触媒の製造工程を一般的に説明すれば、Zrのヒドロゾルに、Y,La,Ce,Pr,Nd,Sm,Gd,Dy,CaおよびMgからなるグループから選んだ1種または2種以上の水可溶性の塩を混合し、これに、水に溶解したNiの塩、またはNiの塩と、Feおよび(または)Coを含む鉄族元素の塩の水溶液を添加する。この混合物を濃縮し、蒸発乾固したのち、大気中で約500℃に加熱焼成して、正方晶系ジルコニア構造の複酸化物と、鉄族元素の酸化物との混合物を得る。ついでこの混合酸化物を、水素気流中で約300℃に加熱し、還元処理することにより、正方晶ジルコニア構造の複酸化物担体に金属状態の鉄族金属が担持された触媒を得る。 The process for producing the catalyst of the present invention will be generally described. One or two kinds selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ca and Mg are added to the Zr hydrosol. The above water-soluble salt is mixed, and an aqueous solution of an Ni salt dissolved in water, or an Ni salt and an iron group element salt containing Fe and / or Co is added thereto. The mixture is concentrated, evaporated to dryness, and then heated and fired at about 500 ° C. in the atmosphere to obtain a mixture of a tetragonal zirconia double oxide and an iron group element oxide. Then, the mixed oxide is heated to about 300 ° C. in a hydrogen stream and subjected to a reduction treatment to obtain a catalyst in which a metallic iron group metal is supported on a double oxide support having a tetragonal zirconia structure.

本発明の触媒元素の構成を一覧すれば、表1に示すとおりであり、各成分の組成を、Zr,安定化元素および鉄族元素の三成分で表したダイアグラムは、図1に示すとおりである。 The composition of the catalytic element of the present invention is listed as shown in Table 1, and the diagram showing the composition of each component with three components of Zr, stabilizing element and iron group element is as shown in FIG. is there.

表1

Figure 0005353952
Table 1
Figure 0005353952

ジルコニアのヒドロゾル「Zr30AH」(日産化学工業(株)製、Zr:30重量%、pH=4.0)15.0gに、硝酸サマリウム六水和物の固体を1.969g加え、ガラス棒で、均一なクリーム状スラッジになるまで撹拌した。別に硝酸ニッケル六水和物19.806gを20mlの純水に溶解し、硝酸ニッケル水溶液を用意した。この水溶液を上記のスラッジに加え、均一な溶液になるまで撹拌した。この溶液を1時間静置したのちマッフル炉に入れ、150℃で4時間保持し、水分および自由水を除去し、乾固した。ついで500℃で8時間焼成し、灰黒色の固形物10.3gを得た。固形物をメノウ乳鉢で粉砕し、100μmメッシュのふるいにかけて通過分を採取することにより、触媒の前駆体となる酸化物を得た。この前駆体は、元素構成が、金属状態の元素を基準にしてNiを62.5原子%含む、
NiO0.625(Zr0.892Sm0.1081.9460.375
の組成を有する。ジルコニアが正方晶系であることは、Cu−Kα線を用いたX線回折により確認した。この触媒前駆体の比表面積は、約80m/gであった。
Add 1.969 g of samarium nitrate hexahydrate solid to 15.0 g of zirconia hydrosol “Zr30AH” (Nissan Chemical Industry Co., Ltd., Zr: 30 wt%, pH = 4.0). Stir until uniform creamy sludge. Separately, 19.806 g of nickel nitrate hexahydrate was dissolved in 20 ml of pure water to prepare an aqueous nickel nitrate solution. This aqueous solution was added to the sludge and stirred until a homogeneous solution was obtained. This solution was allowed to stand for 1 hour and then placed in a muffle furnace and kept at 150 ° C. for 4 hours to remove moisture and free water and to dry. Subsequently, it was baked at 500 ° C. for 8 hours to obtain 10.3 g of a grayish black solid. The solid matter was pulverized in an agate mortar and passed through a 100 μm mesh sieve to collect the passing portion, thereby obtaining an oxide serving as a catalyst precursor. This precursor contains 62.5 atomic% of Ni based on the elemental configuration of the element in the metal state.
NiO 0.625 (Zr 0.892 Sm 0.108 O 1.946 ) 0.375
Having a composition of It was confirmed by X-ray diffraction using Cu—Kα rays that zirconia was tetragonal. The specific surface area of this catalyst precursor was about 80 m 2 / g.

内径15mmの石英管を反応管として使用し、その中に、上に得た触媒前駆体酸化物5.0gを、石英ウールで固定した。反応管を電気炉内に置き、300℃に加熱し、水素気流中で2時間還元して、触媒を得た。 A quartz tube having an inner diameter of 15 mm was used as a reaction tube, in which 5.0 g of the catalyst precursor oxide obtained above was fixed with quartz wool. The reaction tube was placed in an electric furnace, heated to 300 ° C., and reduced in a hydrogen stream for 2 hours to obtain a catalyst.

二酸化炭素と水素の割合が、モル比で1:4とした反応ガスを、触媒の温度を250℃に保った反応管に通した。反応管出口をガスクロマトグラフィと直結させ、反応ガス成分を分析して、水素および二酸化炭素の導入ガス量と未反応量のガスの比率から、転換率を求めた。 A reaction gas having a molar ratio of carbon dioxide and hydrogen of 1: 4 was passed through a reaction tube in which the temperature of the catalyst was maintained at 250 ° C. The reaction tube outlet was directly connected to gas chromatography, the reaction gas component was analyzed, and the conversion rate was determined from the ratio of the introduced gas amount of hydrogen and carbon dioxide to the unreacted gas amount.

その結果、触媒前駆体酸化物1.0g当り反応ガスを5.4L/Hr通したときの二酸化炭素の転換率は、82.2%であった。ガスクロマトグラフィで検出されたものは未反応の水素、二酸化炭素と生成物であるメタンのみであり、メタンへ反応選択率が100%であることが確認された。 As a result, the conversion rate of carbon dioxide when the reaction gas was passed through 5.4 L / Hr per 1.0 g of the catalyst precursor oxide was 82.2%. Only unreacted hydrogen and carbon dioxide and the product methane were detected by gas chromatography, and it was confirmed that the reaction selectivity to methane was 100%.

比較例1Comparative Example 1

特許文献4には、そこに開示した触媒のうち、50原子%のNiを含む50Ni/50(Zr0.9Sm0.11.95)の組成を有する触媒は、上記の反応条件において、二酸化炭素の転換率が52.6%であったと記載されている。 Patent Document 4 discloses that among the catalysts disclosed therein, a catalyst having a composition of 50Ni / 50 (Zr 0.9 Sm 0.1 O 1.95 ) containing 50 atomic% of Ni is obtained under the above reaction conditions. Was 52.6%.

実施例1と同様の成分混合および焼成の方法に従い、Niの含有量および種々の安定化元素の含有割合およびZrの含有量割合を変化させて触媒を製造し、実施例1と同じ反応条件で、各触媒の二酸化炭素転換率を測定した。その結果を表2に示す。いずれの触媒も、反応温度200℃および250℃でメタンヘの高い転換率を示し、すぐれた触媒であることが確認された。 According to the same component mixing and firing method as in Example 1, the catalyst was produced by changing the Ni content, the various stabilizing element content ratios, and the Zr content ratio, under the same reaction conditions as in Example 1. The carbon dioxide conversion rate of each catalyst was measured. The results are shown in Table 2. Both catalysts showed high conversion to methane at reaction temperatures of 200 ° C. and 250 ° C., and were confirmed to be excellent catalysts.

表2

Figure 0005353952
Table 2
Figure 0005353952

ジルコニアのヒドロゾルに、硝酸サマリウムまたは硝酸カルシウムと、硝酸ニッケルとともに、硝酸コバルトと硝酸第二鉄のいずれか1種または2種を所定の割合で混合し、蒸発乾固、焼成および還元を行なって触媒を合成した。実施例1と同じ反応条件における、二酸化炭素転換率を測定した。その結果を、表3に示す。ここでも、各触媒は、反応温度200℃および250℃において、メタンヘの高い転換率を示した。 A zirconia hydrosol is mixed with samarium nitrate or calcium nitrate and nickel nitrate together with one or two of cobalt nitrate and ferric nitrate at a predetermined ratio, and evaporated to dryness, calcined and reduced to form a catalyst. Was synthesized. The carbon dioxide conversion rate under the same reaction conditions as in Example 1 was measured. The results are shown in Table 3. Again, each catalyst showed high conversion to methane at reaction temperatures of 200 ° C and 250 ° C.

表3

Figure 0005353952
Table 3
Figure 0005353952

実施例1と同様に、ジルコニアのヒドロゾルに、硝酸サマリウムまたは硝酸カルシウムと硝酸ニッケルとを種々の割合で混合し、蒸発乾固、焼成および還元を行なって、触媒を得た。CO,CO2およびH2の割合がモル%で15.5%、14.5%、70%となるように混合した反応ガスを、触媒の温度を300℃保った反応管に通した。反応ガスの流量は、前駆体の状態における触媒1.0g当たり5.4L/Hrである。反応管出口をガスクロマトグラフィと直結させ、反応ガス成分を分析し、導入したガスの量と未反応のガスの量との比率から、転換率を求めた。 In the same manner as in Example 1, samarium nitrate or calcium nitrate and nickel nitrate were mixed in various proportions with zirconia hydrosol, and evaporated to dryness, calcined and reduced to obtain a catalyst. The reaction gas mixed so that the proportions of CO, CO 2 and H 2 were 15.5%, 14.5%, and 70% in mol% was passed through a reaction tube in which the temperature of the catalyst was maintained at 300 ° C. The flow rate of the reaction gas is 5.4 L / Hr per 1.0 g of catalyst in the precursor state. The reaction tube outlet was directly connected to gas chromatography, the reaction gas components were analyzed, and the conversion rate was determined from the ratio of the amount of introduced gas and the amount of unreacted gas.

結果を、表4に示した。いずれの触媒も、反応温度300℃では、まず一酸化炭素を100%メタンに変換し、その反応で残った水素が、二酸化炭素をメタンに変換することが判明した。 The results are shown in Table 4. In any catalyst, at a reaction temperature of 300 ° C., carbon monoxide was first converted to 100% methane, and hydrogen remaining in the reaction was found to convert carbon dioxide to methane.

表4

Figure 0005353952
Table 4
Figure 0005353952

本発明の触媒の化学組成を示すダイアグラム。The diagram which shows the chemical composition of the catalyst of this invention.

Claims (3)

二酸化炭素、一酸化炭素と二酸化炭素との混合物、またはこれらを主成分とする混合物を水素化してメタンを得るためのメタン化反応用触媒を製造する方法であって、下記の諸工程からなり、
1)ジルコニアのヒドロゾルに、Y,La,Ce,Pr,Nd,Sm,Gd,Dy,Ca,およびMgからなるグループから選んだ1種または2種以上の安定化元素の塩の水溶液、ならびに鉄族元素の塩の水溶液を混合すること、
2)混合物を濃縮乾固させて焼成すること、および
3)混合物を還元処理すること、
元素状態の金属を基準とした原子%で、
A)Zr:18〜70原子%、
B)上記安定化元素の1種または2種以上(2種以上の場合は合計で):1〜20原子%、ならびに
C)鉄族元素:25〜80原子%、
からなる組成を有し、安定化元素とともに鉄族元素の一部をも結晶構造に取り込んで安定化された正方晶系ジルコニア構造の酸化物からなる担体に、金属状態の鉄族元素が触媒活性を担う活性種として担持された触媒を得ることを特徴とするメタン化反応用触媒の製造方法。
A method for producing a catalyst for methanation reaction for obtaining methane by hydrogenating carbon dioxide, a mixture of carbon monoxide and carbon dioxide, or a mixture mainly composed of these, comprising the following steps:
1) An aqueous solution of a salt of one or more stabilizing elements selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ca, and Mg, and iron Mixing an aqueous solution of a salt of a group element,
2) concentrating the mixture to dryness and calcining; and 3) reducing the mixture.
Atomic% based on elemental metal,
A) Zr: 18-70 atomic%,
B) One or more of the above stabilizing elements (in the case of two or more): 1 to 20 atomic%, and C) an iron group element: 25 to 80 atomic%,
The metal-state iron group element has catalytic activity on a support made of a tetragonal zirconia structure oxide that is stabilized by incorporating a part of the iron group element together with the stabilizing element into the crystal structure. A method for producing a catalyst for methanation reaction, characterized in that a catalyst supported as an active species that bears the above is obtained.
触媒活性を担う鉄族元素がNiである請求項1のメタン化反応用触媒の製造方法。 The method for producing a catalyst for methanation reaction according to claim 1, wherein the iron group element responsible for the catalytic activity is Ni. 触媒活性を担う鉄族元素が、Niと、CoおよびFeの1種または2種とであって、Niが原子比で0.6またはそれ以上を占める請求項1のメタン化反応用触媒の製造方法。 The production of a catalyst for methanation reaction according to claim 1, wherein the iron group element responsible for the catalytic activity is Ni and one or two of Co and Fe, and Ni occupies 0.6 or more in atomic ratio. Method.
JP2011124681A 2011-06-02 2011-06-02 Method for producing catalyst for methanation reaction of carbon oxide Active JP5353952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011124681A JP5353952B2 (en) 2011-06-02 2011-06-02 Method for producing catalyst for methanation reaction of carbon oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011124681A JP5353952B2 (en) 2011-06-02 2011-06-02 Method for producing catalyst for methanation reaction of carbon oxide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008187970A Division JP2010022944A (en) 2007-08-03 2008-07-18 Methanizing catalyst of carbonic oxide, its manufacturing method and methanizing method using methanizing catalyst

Publications (2)

Publication Number Publication Date
JP2011206770A JP2011206770A (en) 2011-10-20
JP5353952B2 true JP5353952B2 (en) 2013-11-27

Family

ID=44938454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011124681A Active JP5353952B2 (en) 2011-06-02 2011-06-02 Method for producing catalyst for methanation reaction of carbon oxide

Country Status (1)

Country Link
JP (1) JP5353952B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5767957B2 (en) * 2011-12-06 2015-08-26 日立造船株式会社 Hydrocarbon methanation process
WO2014158095A1 (en) 2013-03-28 2014-10-02 Agency For Science, Technology And Research Methanation catalyst
SG2013050877A (en) 2013-06-28 2015-01-29 Agency Science Tech & Res Methanation catalyst
AU2015293227B2 (en) * 2014-07-19 2018-12-13 Hitachi Zosen Corporation Methanation reaction catalyst, method for producing methanation reaction catalyst and method for producing methane
CN105126856B (en) * 2015-07-29 2017-06-27 中国华能集团清洁能源技术研究院有限公司 A kind of preparation method of resistant to elevated temperatures methanation catalyst
JP6867179B2 (en) * 2017-02-01 2021-04-28 日立造船株式会社 Method for producing catalyst for methanation reaction and method for producing methane
CN111229270B (en) * 2018-11-28 2023-04-11 中国科学院大连化学物理研究所 Method for efficiently methanation of carbon dioxide and carbon monoxide simultaneously

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3582088B2 (en) * 1993-09-08 2004-10-27 東ソー株式会社 Hydrogenation method of carbon dioxide
JP4864688B2 (en) * 2006-12-25 2012-02-01 日揮触媒化成株式会社 Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst

Also Published As

Publication number Publication date
JP2011206770A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5358909B2 (en) Method for producing carbon oxide methanation catalyst and methanation method
US9732010B2 (en) Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
JP2010022944A (en) Methanizing catalyst of carbonic oxide, its manufacturing method and methanizing method using methanizing catalyst
JP5353952B2 (en) Method for producing catalyst for methanation reaction of carbon oxide
US8475684B2 (en) Composite oxide for hydrocarbon reforming catalyst, process for producing the same, and process for producing syngas using the same
WO2010107065A1 (en) Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst, and method for combustion of ammonia using the catalyst
JP5778309B2 (en) Hydrogen production catalyst and hydrogen production method using the same
CN107042111B (en) Layered perovskite type catalyst for autothermal reforming of acetic acid to produce hydrogen and preparation method thereof
JP5483705B2 (en) Hydrogen production catalyst and hydrogen production method using the same
JP4167775B2 (en) Carbon dioxide methanation catalyst and method for producing the same
AU2015293227B2 (en) Methanation reaction catalyst, method for producing methanation reaction catalyst and method for producing methane
JP2000000469A (en) Nickel based catalyst for reforming and production of synthetic gas using the same
JP2019155227A (en) Co2 methanation catalyst and carbon dioxide reduction method using the same
JP2022153521A (en) Catalyst and process for producing hydrocarbon
JP5767957B2 (en) Hydrocarbon methanation process
JP4505127B2 (en) Production method of reforming catalyst and production method of synthesis gas using the same
JPH10194703A (en) Catalyst for producing synthesis gas and production of synthesis gas
JP2007313487A (en) Catalyst for water gas shift reaction, and method for water gas shift reaction using the same
JP2012071291A (en) Hydrogen production catalyst, method for manufacturing the same, and method for producing hydrogen using the same
KR102186052B1 (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Acetone Using the Same
JP5760981B2 (en) Exhaust gas purification catalyst and method for producing the same
JP7069946B2 (en) A method for producing a tar-containing gas reforming catalyst, a tar-containing gas reforming catalyst, and a tar-containing gas reforming method using a tar-containing gas reforming catalyst.
JP2008161868A (en) Method of producing catalyst for reforming hydrocarbon
JP6844440B2 (en) Hydrogen production method
EP4096823A1 (en) Reforming catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5353952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250