JP5353928B2 - Embedded magnet type rotating electrical machine - Google Patents

Embedded magnet type rotating electrical machine Download PDF

Info

Publication number
JP5353928B2
JP5353928B2 JP2011061104A JP2011061104A JP5353928B2 JP 5353928 B2 JP5353928 B2 JP 5353928B2 JP 2011061104 A JP2011061104 A JP 2011061104A JP 2011061104 A JP2011061104 A JP 2011061104A JP 5353928 B2 JP5353928 B2 JP 5353928B2
Authority
JP
Japan
Prior art keywords
rotor
magnet type
magnetic flux
shielding plate
embedded magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011061104A
Other languages
Japanese (ja)
Other versions
JP2012200053A (en
Inventor
剛 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2011061104A priority Critical patent/JP5353928B2/en
Priority to CN201210020440.4A priority patent/CN102684335B/en
Publication of JP2012200053A publication Critical patent/JP2012200053A/en
Application granted granted Critical
Publication of JP5353928B2 publication Critical patent/JP5353928B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

本発明は、埋込磁石形回転電機に関する。   The present invention relates to an embedded magnet type rotating electrical machine.

従来の埋込磁石形回転電機には、回転子鉄心に設置された永久磁石を軸方向に固定するために、回転子側面に側板を有するものがある。(例えば、特許文献1参照)。
特許文献1の図1には、回転子側面に側板を装着する埋込磁石形回転電機が示されている。また、特許文献1には、従来より側板は磁束の短絡を防ぐため非磁性の材料が用いられることが記述されている。
従来の別の埋込磁石形回転電機には、回転子鉄心に設置された永久磁石より発する磁束を集中し、高性能化を図るものがある。(例えば、特許文献2参照)。
特許文献2の図2には、回転子鉄心に磁極毎に略V字状に対向する2つの永久磁石を備えた回転子の構造が示されている。永久磁石は同じ磁極を向え合わせに装着されているため、対向する2つの永久磁石の磁束が回転子表面に集中され、ギャップの磁束密度を増大させる。回転子に設置された側板は、回転子鉄心を軸方向に固定するために用いられている。
このように、従来の埋込磁石形回転電機には、回転子側面に金属性の側板を有するものがある。
Some conventional embedded magnet type rotary electric machines have side plates on the side surfaces of the rotor in order to fix the permanent magnets installed on the rotor core in the axial direction. (For example, refer to Patent Document 1).
FIG. 1 of Patent Document 1 shows an embedded magnet type rotating electrical machine in which a side plate is mounted on a side surface of a rotor. Patent Document 1 describes that a non-magnetic material is conventionally used for the side plate to prevent a short circuit of magnetic flux.
Another conventional embedded magnet type rotating electrical machine concentrates the magnetic flux generated from a permanent magnet installed in a rotor core to improve performance. (For example, refer to Patent Document 2).
FIG. 2 of Patent Document 2 shows the structure of a rotor provided with two permanent magnets facing the rotor core in a substantially V shape for each magnetic pole. Since the permanent magnets are mounted with the same magnetic poles facing each other, the magnetic fluxes of the two opposing permanent magnets are concentrated on the rotor surface, increasing the magnetic flux density of the gap. A side plate installed on the rotor is used to fix the rotor core in the axial direction.
As described above, some conventional embedded magnet type rotating electric machines have a metallic side plate on the rotor side surface.

特開2000−197290号公報JP 2000-197290 A 特開2010−074975号公報JP 2010-074975 A

しかしながら、従来の埋込磁石形回転電機の回転子に設置された側板には、回転子側面からの洩れ磁束が近接するブラケットに誘発する渦電流損の低減を意図し、設置されたものはなかった。   However, there is no side plate installed on the rotor of a conventional embedded magnet type rotating electric machine with the intention of reducing the eddy current loss induced in the adjacent bracket by the leakage magnetic flux from the side of the rotor. It was.

産業用モータやEVモータ等に用いられる埋込磁石形回転電機は、今後さらに小型化や高効率化が望まれる。小型化を推進する手段として、特許文献2に示した磁束集中形の埋込磁石形回転電機が多用され、また回転子とブラケット間の空隙が縮小されることが想定される。磁束集中により回転子側面からの洩れ磁束が増大するとともに、近接するブラケットに誘発する渦電流損が増大する。高効率化を推進するためには、前記渦電流損の低減が必要になる。   The interior magnet type rotating electrical machine used for industrial motors, EV motors, and the like is desired to be further downsized and highly efficient in the future. As means for promoting downsizing, it is assumed that the magnetic flux concentration type embedded magnet type rotating electrical machine shown in Patent Document 2 is frequently used and that the gap between the rotor and the bracket is reduced. The magnetic flux concentration increases the leakage magnetic flux from the rotor side surface and increases the eddy current loss induced in the adjacent bracket. In order to promote higher efficiency, it is necessary to reduce the eddy current loss.

そこで、本発明は、小型化を推進しながら、回転子側面からの洩れ磁束を低減することで高効率化をも推進できる埋込磁石形回転電機を提供することを目的とする。   Therefore, an object of the present invention is to provide an embedded magnet type rotating electrical machine that can promote high efficiency by reducing leakage magnetic flux from the rotor side surface while promoting miniaturization.

上記課題を解決するため、本発明の一の観点によれば、固定子と、略V字状あるいは放射状に装着した永久磁石に挟まれる磁極部を有し、回転自在に支持された概円筒形の回転子を備えた埋込磁石形回転電機において、回転子側面に、亜鉛めっき鋼板を打ち抜き成形して製作された概円盤状の磁束遮蔽板を、回転子鉄心の前記磁極部と一定の距離を隔てて固定したことを特徴とする埋込磁石形回転電機が適用される。 In order to solve the above-described problems, according to one aspect of the present invention, a substantially cylindrical shape having a stator and a magnetic pole portion sandwiched between permanent magnets mounted substantially in a V shape or radially and supported rotatably. In an embedded magnet type rotary electric machine having a rotor of the above, a substantially disc-shaped magnetic flux shielding plate manufactured by punching a galvanized steel plate on the side of the rotor , and a certain distance from the magnetic pole part of the rotor core Komi磁 stone shape rotating electric machine embedding, characterized in that fixed at a applies.

本発明によれば、小型化を推進しながら、回転子側面からの洩れ磁束を低減することで高効率化をも推進できる埋込磁石形回転電機を提供することができる。   According to the present invention, it is possible to provide an embedded magnet type rotating electrical machine capable of promoting high efficiency by reducing leakage magnetic flux from the rotor side surface while promoting miniaturization.

本発明の第1実施形態に係る埋込磁石形回転電機の軸方向断面図である。1 is an axial cross-sectional view of an interior magnet type rotating electrical machine according to a first embodiment of the present invention. 同実施形態に係る埋込磁石形回転電機の径方向断面図である。It is radial direction sectional drawing of the interior magnet type rotary electric machine which concerns on the same embodiment. 前記回転子の軸方向断面図である。It is an axial sectional view of the rotor. 前記回転子の部品構成説明図である。It is component structure explanatory drawing of the said rotor. 磁極の位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of a magnetic pole. 前記回転子の組立説明図である。It is assembly explanatory drawing of the said rotor. 本実施形態の無負荷トルク試験結果説明図である。It is a no-load torque test result explanatory view of this embodiment. 本発明の第2実施形態に係る埋込磁石形回転電機の軸方向断面図である。It is an axial sectional view of an embedded magnet type rotating electrical machine according to a second embodiment of the present invention. 本実施形態に係る埋込磁石形回転電機の径方向断面図である。It is radial direction sectional drawing of the interior magnet type rotary electric machine which concerns on this embodiment. その他の埋込磁石の配置形態説明図である。It is arrangement | positioning explanatory drawing of another embedded magnet.

以下、本発明の実施の形態について図を参照して説明する。なお、同一の構成については同一の符号を付することにより、重複説明を適宜省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, about the same structure, the same code | symbol is attached | subjected and duplication description is abbreviate | omitted suitably.

<第1実施形態>
まず、図1を参照しつつ、本発明の第1実施形態に係る埋込磁石形回転電機の構成について説明する。図1は、サーボモータに供する、本発明の第1実施形態に係る埋込磁石形回転電機の軸方向断面図である。
<First Embodiment>
First, the configuration of an embedded magnet type rotating electrical machine according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is an axial cross-sectional view of an embedded magnet type rotating electrical machine according to a first embodiment of the present invention, which is used in a servo motor.

図1に示すように、本実施形態に係る埋込磁石形回転電機は、固定子鉄心13と固定子コイル14を設置した固定子と、永久磁石22が設置され回転自在に支持された概円筒形の回転子20と、前記回転子の回転位置を検出するエンコーダ部17とを有する。回転子20は、回転子側面からの洩れ磁束を遮蔽する目的で、回転子側面に円盤状の鉄板からなる負荷側遮蔽板28と反負荷側遮蔽板29を備える。
回転子20は、負荷側軸受18と反負荷側軸受19を介して、負荷側ブラケット11と反負荷側ブラケット12に回転自在に保持される。
反負荷側ブラケット12は、フレーム10とともに、図示しないボルトで、負荷側ブラケット11に締結されている。
As shown in FIG. 1, the embedded magnet type rotating electric machine according to the present embodiment is a substantially cylindrical in which a stator having a stator core 13 and a stator coil 14 installed, and a permanent magnet 22 is installed and supported rotatably. A rotor 20 having a shape, and an encoder unit 17 for detecting the rotational position of the rotor. The rotor 20 includes a load-side shielding plate 28 and an anti-load-side shielding plate 29 made of a disk-shaped iron plate on the rotor side surface for the purpose of shielding leakage magnetic flux from the rotor side surface.
The rotor 20 is rotatably held by the load side bracket 11 and the antiload side bracket 12 via the load side bearing 18 and the antiload side bearing 19.
The anti-load side bracket 12 is fastened to the load side bracket 11 together with the frame 10 by a bolt (not shown).

図2は、本実施形態に係る埋込磁石形回転電機の径方向断面図である。
図2に示すように、固定子は12個に分割された固定子鉄心13の各々に固定子コイル14を装着して構成されている。固定子コイル14は、モールド樹脂15をもって、固定子鉄心13や負荷側ブラケット11と絶縁されている。
回転子20は、磁極毎に略V字状に対向する2つの永久磁石22と、前記2つの永久磁石の間に磁極毎に分離された外側の回転子鉄心25を有し、10極の磁極を構成している。対向する2つの永久磁石22の磁束が回転子表面に集中されるばかりでなく、回転子鉄心は永久磁石22の外側と内側で磁極毎に分離されているため、N極からS極へショートカットする洩れ磁束が少ない。そのため、ギャップの磁束密度を増大させる効果が高く、固定子鉄心へ向かう有効な磁束Fを増大することで一層の小型高性能化を推進している。
FIG. 2 is a radial cross-sectional view of the interior magnet type rotating electric machine according to the present embodiment.
As shown in FIG. 2, the stator is configured by attaching a stator coil 14 to each of the stator cores 13 divided into twelve. The stator coil 14 is insulated from the stator iron core 13 and the load side bracket 11 by the mold resin 15.
The rotor 20 has two permanent magnets 22 facing each other in a substantially V shape for each magnetic pole, and an outer rotor core 25 separated for each magnetic pole between the two permanent magnets. Is configured. Not only the magnetic fluxes of the two opposing permanent magnets 22 are concentrated on the rotor surface, but the rotor core is separated for each magnetic pole on the outside and inside of the permanent magnet 22, so that the N pole is short-circuited to the S pole. There is little leakage magnetic flux. For this reason, the effect of increasing the magnetic flux density of the gap is high, and further effective miniaturization is promoted by increasing the effective magnetic flux F toward the stator core.

ロッド23は、電磁鋼板を積層して磁極を構成する外側の回転子鉄心25を貫通して、外側の回転子鉄心25を保持している。内側の回転子鉄心24は、永久磁石22や外側の回転子鉄心25を、作用するトルクに対し回転子の周方向に支持し、凹凸による合部を持ってシャフトに合固定されているため、強大なトルクに耐え得る。 The rod 23 penetrates the outer rotor core 25 constituting magnetic poles by laminating electromagnetic steel plates, and holds the outer rotor core 25. Inside of the rotor core 24, the permanent magnet 22 and outer rotor core 25, supported in the circumferential direction of the rotor relative to the torque applied, are engaged secured to the shaft with the engagement portion by irregularities Therefore, it can endure a powerful torque.

図3は、前記回転子の軸方向断面図である。
図において、回転子は、永久磁石22と外側の回転子鉄心25を回転子の径方向に作用する遠心力に対し支持する負荷側側板26と反負荷側側板27を、回転子側面に有する。外側の回転子鉄心25は、外側の回転子鉄心25を軸方向に貫くロッド23により、回転子側面の側板に支持されるため、遠心力に対し強固な構造の回転子とすることができる。
負荷側遮蔽板28と反負荷側遮蔽板29は、回転子側面の負荷側側板26と反負荷側側板27のさらに外側に装着されている。
FIG. 3 is an axial sectional view of the rotor.
In the figure, the rotor has a load side plate 26 and an anti-load side plate 27 that support a permanent magnet 22 and an outer rotor core 25 against centrifugal force acting in the radial direction of the rotor on the rotor side surface. Since the outer rotor core 25 is supported on the side plate on the side of the rotor by the rod 23 penetrating the outer rotor core 25 in the axial direction, it can be a rotor having a structure strong against centrifugal force.
The load-side shielding plate 28 and the anti-load-side shielding plate 29 are mounted on the outer side of the load-side plate 26 and the anti-load-side plate 27 on the rotor side surface.

図4は、前記回転子の部品構成説明図である。
図において、磁極毎に略V字状に対向する2つの永久磁石22と、外側の回転子鉄心25は、各々分離した部品である。永久磁石22と外側の回転子鉄心25は、内側の回転子鉄心24に装着され、外側の回転子鉄心25が磁極部を構成する。
内側の回転子鉄心24は、内側の合部を持って、シャフトに合固定される。
負荷側側板26は、シャフトに嵌合し、永久磁石22と外側の回転子鉄心25を貫くロッド23を、永久磁石支持穴26aとロッド支持穴26bに嵌合固定する。
FIG. 4 is an explanatory diagram of a component configuration of the rotor.
In the figure, the two permanent magnets 22 facing each other in a substantially V shape for each magnetic pole and the outer rotor core 25 are separate parts. The permanent magnet 22 and the outer rotor core 25 are mounted on the inner rotor core 24, and the outer rotor core 25 constitutes a magnetic pole part.
Inside of the rotor core 24, with the inner side of the engagement portion is engaged secured to the shaft.
The load side plate 26 is fitted to the shaft, and the rod 23 penetrating the permanent magnet 22 and the outer rotor core 25 is fitted and fixed to the permanent magnet support hole 26a and the rod support hole 26b.

図5は、前記回転子の組立説明図である。
図において、シャフト21に、永久磁石22,外側の回転子鉄心25,内側の回転子鉄心24と負荷側側板26を装着したのち、反負荷側側板27をシャフトに嵌合し、永久磁石22と外側の回転子鉄心25を貫くロッド23を、永久磁石支持穴27aとロッド支持穴27bに嵌合固定する。負荷側側板26と反負荷側側板27は非磁性のステンレス製であり、N極とS極の磁束を側板で短絡させることはない。
FIG. 5 is an assembly explanatory view of the rotor.
In the figure, a permanent magnet 22, an outer rotor core 25, an inner rotor core 24, and a load side plate 26 are attached to a shaft 21, and then an anti-load side plate 27 is fitted to the shaft, The rod 23 penetrating the outer rotor core 25 is fitted and fixed in the permanent magnet support hole 27a and the rod support hole 27b. The load side plate 26 and the anti-load side plate 27 are made of non-magnetic stainless steel, and the N pole and S pole magnetic fluxes are not short-circuited by the side plates.

図6は、前記回転子の遮蔽板の組立説明図である。
図において、反負荷側側板27まで装着した回転子の軸方向両側面に、鉄製の負荷側遮蔽板28と反負荷側遮蔽板29を装着して回転子が完成する。
本実施形態のように、高度に磁束集中した埋込磁石形回転子では、負荷側遮蔽板28と反負荷側遮蔽板29を装着しない回転子状態においては、固定子鉄心へ向かう有効な磁束Fに対し、回転子側面からの洩れ磁束Flが増大する。
この洩れ磁束によって、例えば負荷側ブラケットの回転子近接部11aでは、回転子の回転に伴い交番する洩れ磁束による有害な渦電流損を誘発する。従来は特許文献1に示されるように、回転子側面とブラケット壁面との空隙距離を大きくすることで渦電流損の発生を低減したが、従来の方法では回転電機の小型化が推進できない。
FIG. 6 is an assembly explanatory diagram of the shield plate of the rotor.
In the figure, iron load-side shielding plates 28 and anti-load-side shielding plates 29 are mounted on both axial sides of the rotor mounted up to the anti-load side plate 27 to complete the rotor.
As in the present embodiment, in the embedded magnet type rotor having a high magnetic flux concentration, in the rotor state in which the load side shielding plate 28 and the anti-load side shielding plate 29 are not mounted, an effective magnetic flux F toward the stator core. On the other hand, the leakage flux Fl from the rotor side surface increases.
Due to this leakage flux, harmful eddy current loss due to leakage flux alternating with the rotation of the rotor is induced, for example, in the rotor proximity portion 11a of the load side bracket. Conventionally, as disclosed in Patent Document 1, the generation of eddy current loss has been reduced by increasing the gap distance between the rotor side surface and the bracket wall surface, but the conventional method cannot promote downsizing of the rotating electrical machine.

本実施形態では、鉄製の負荷側遮蔽板28と反負荷側遮蔽板29を装着して、回転子側面からの洩れ磁束Flを回転子内に短絡させることで、回転子外部に対し洩れ磁束を遮蔽している。
負荷側遮蔽板28と反負荷側遮蔽板29は、回転子鉄心の磁極部である外側の回転子鉄心25に密着させると洩れ磁束を増大させ、固定子鉄心へ向かう有効な磁束Fを減少させてしまうため、回転子鉄心の磁極部から隔てて装着しなければならない。
そのため、本実施形態では図3に示したように、負荷側遮蔽板28と反負荷側遮蔽板29は、回転子側面の非磁性のステンレス製である側板や空隙を介して装着し、回転子側面からの洩れ磁束Flを弱めた上で、回転子外部に対し洩れ磁束を遮蔽する。前記遮蔽板は、亜鉛めっき鋼板を打ち抜き成形して製作されるため、量産性がよく安価である。
In the present embodiment, the load side shielding plate 28 and the anti-load side shielding plate 29 made of iron are mounted, and the leakage magnetic flux Fl from the rotor side surface is short-circuited in the rotor, so that the leakage magnetic flux is generated outside the rotor. Shielded.
When the load-side shielding plate 28 and the anti-load-side shielding plate 29 are brought into close contact with the outer rotor core 25 that is the magnetic pole portion of the rotor core, the leakage magnetic flux is increased and the effective magnetic flux F directed toward the stator core is decreased. Therefore, it must be mounted apart from the magnetic pole part of the rotor core.
Therefore, in this embodiment, as shown in FIG. 3, the load-side shielding plate 28 and the anti-load-side shielding plate 29 are mounted via a side plate made of nonmagnetic stainless steel on the side surface of the rotor or a gap, so that the rotor After the leakage flux Fl from the side surface is weakened, the leakage flux is shielded from the outside of the rotor. Since the shielding plate is manufactured by stamping and forming a galvanized steel plate, it is good in mass productivity and inexpensive.

図7は、本実施形態の回転電機を外部より駆動し、回転速度に対して要するトルクを比較で測定した無負荷トルク試験結果説明図である。
図において、本実施形態Cの無負荷トルクは十分に小さいが、負荷側と反負荷側の遮蔽板の装着なしAでは、無負荷トルクは2倍程度に増加する。回転子側面からの洩れ磁束Flによって、図1に示した負荷側ブラケットの回転子近接部11a等に有害な渦電流損を誘発したためである。この損失増加は回転電機の効率を低下させる。従来の手法にもとづき空隙を大きくとる方法として、前記回転子近接部11aを除去Bした場合でも、本実施形態より無負荷トルクは増加する。
つまり、本実施形態の遮蔽板を設置することで、磁束集中により埋込磁石形回転電機の小型化を推進しながら、回転子の軸方向の洩れ磁束を低減することで高効率化をも推進できる結果を得た。
FIG. 7 is an explanatory diagram of a no-load torque test result obtained by driving the rotating electrical machine of the present embodiment from the outside and measuring the torque required for the rotational speed by comparison.
In the figure, the no-load torque of the present embodiment C is sufficiently small, but the no-load torque increases about twice when the load-side and anti-load-side shielding plates are not mounted A. This is because the leakage magnetic flux Fl from the rotor side surface induces harmful eddy current loss in the rotor proximity portion 11a of the load side bracket shown in FIG. This increase in loss reduces the efficiency of the rotating electrical machine. As a method of increasing the gap based on the conventional method, even when the rotor proximity portion 11a is removed B, the no-load torque is increased compared to the present embodiment.
In other words, by installing the shielding plate of this embodiment, while promoting the downsizing of the embedded magnet type rotating electrical machine by concentrating the magnetic flux, the leakage flux in the axial direction of the rotor is reduced, and also the high efficiency is promoted. The result was obtained.

<第2実施形態>
以上、本発明の第1実施形態に係る埋込磁石形回転電機について説明した。次に、図8を参照しつつ、本発明の第2実施形態に係る埋込磁石形回転電機について説明する。図8は、本発明の第2実施形態に係る埋込磁石形回転電機の軸方向断面図である。
Second Embodiment
Heretofore, the embedded magnet type rotary electric machine according to the first embodiment of the present invention has been described. Next, an embedded magnet type rotating electrical machine according to a second embodiment of the present invention will be described with reference to FIG. FIG. 8 is an axial cross-sectional view of an embedded magnet type rotating electrical machine according to the second embodiment of the present invention.

図8に示すように、この第2実施形態に係る埋込磁石形回転電機は、分離された回転子鉄心と側板の代わりに一体の回転子鉄心44を有する点で、第1実施形態に係る埋込磁石形回転電機と異なり、他の構成は同様に構成される。従って、以下では、説明の便宜上、重複説明を適宜省略し、第1実施形態と異なる点を中心に説明することとする。   As shown in FIG. 8, the interior permanent magnet type rotating electrical machine according to the second embodiment is in accordance with the first embodiment in that it has an integral rotor core 44 instead of the separated rotor core and side plate. Unlike the interior magnet type rotating electrical machine, other configurations are configured in the same manner. Therefore, in the following, for convenience of explanation, overlapping explanation will be omitted as appropriate, and explanation will be made centering on differences from the first embodiment.

永久磁石装着孔44aに永久磁石42を備えた一体の回転子鉄心44は、凹凸による合部を持ってシャフト41に合固定されている。回転子40は、回転子側面からの洩れ磁束を遮蔽する目的で、回転子側面に円盤状の鉄板からなる負荷側遮蔽板48と反負荷側遮蔽板49を備える。 The rotor core 44 integral with the permanent magnet 42 to the permanent magnet mounting hole 44a is engaged fixed to the shaft 41 with the engagement portion due to the unevenness. The rotor 40 includes a load-side shielding plate 48 and an anti-load-side shielding plate 49 made of a disk-shaped iron plate on the rotor side surface for the purpose of shielding leakage magnetic flux from the rotor side surface.

図9は、本実施形態に係る埋込磁石形回転電機の径方向断面図である。
図9に示すように、回転子40は、磁極毎に略V字状に対向する2つの永久磁石42を回転子鉄心の永久磁石装着孔44aに装着し、10極の磁極を構成している。対向する2つの永久磁石42の磁束が回転子表面に集中されるため、ギャップの磁束密度を増大させ、固定子鉄心へ向かう有効な磁束Fを増大することで回転電機の小型高性能化を推進している。
回転子鉄心44は、回転子鉄心の磁極部44b や永久磁石42に作用するトルクに対し、凹凸による合部を持ってシャフトに合固定されているため、強大なトルクに耐え得る。
FIG. 9 is a radial cross-sectional view of the interior magnet type rotating electrical machine according to the present embodiment.
As shown in FIG. 9, in the rotor 40, two permanent magnets 42 facing each other in a substantially V shape for each magnetic pole are mounted in the permanent magnet mounting hole 44a of the rotor core to form a 10-pole magnetic pole. . Since the magnetic fluxes of the two opposing permanent magnets 42 are concentrated on the rotor surface, the magnetic flux density in the gap is increased, and the effective magnetic flux F toward the stator core is increased to promote the miniaturization and high performance of the rotating electrical machine. doing.
The rotor core 44, to a torque acting on the magnetic pole portion 44b and the permanent magnets 42 of the rotor core, because it is engaged secured to the shaft with the engagement portion due to the unevenness can withstand powerful torque.

負荷側遮蔽板48と反負荷側遮蔽板49が、回転子の軸方向の洩れ磁束を回転子外部に対し遮蔽することは、第1実施形態と同じである。本実施形態では、第1実施形態における負荷側側板26と反負荷側側板27が不要であるため、負荷側遮蔽板48と反負荷側遮蔽板49を、回転子鉄心の磁極部44bから隔てて装着した部分が異なる。
円盤状の鉄板からなる負荷側遮蔽板48と反負荷側遮蔽板49は、内側が厚く外側が薄く形成されている。内側を厚く形成し、回転子鉄心44に密着させることで、シャフト41に対し回転子鉄心44を軸方向に固定する役目も果たしている。外側を薄く形成し、回転子鉄心の磁極部44bから隔てて装着することで、回転子側面からの洩れ磁束Flを弱めた上で、回転子外部に対し洩れ磁束を遮蔽する。
The load-side shielding plate 48 and the anti-load-side shielding plate 49 shield the leakage magnetic flux in the axial direction of the rotor from the outside of the rotor as in the first embodiment. In this embodiment, since the load side plate 26 and the anti-load side plate 27 in the first embodiment are not required, the load-side shielding plate 48 and the anti-load-side shielding plate 49 are separated from the magnetic pole portion 44b of the rotor core. The installed part is different.
The load-side shielding plate 48 and the anti-load-side shielding plate 49 made of a disk-shaped iron plate are formed so that the inside is thick and the outside is thin. The inner side is formed thick and is brought into close contact with the rotor core 44, thereby also serving to fix the rotor core 44 to the shaft 41 in the axial direction. By thinly forming the outer side and mounting it away from the magnetic pole portion 44b of the rotor core, the leakage magnetic flux Fl from the rotor side surface is weakened and the leakage magnetic flux is shielded from the outside of the rotor.

以上説明したように、本実施形態に係る埋込磁石形回転電機は、回転子側面に円盤状の鉄板からなる遮蔽板を有することにより、磁束集中により小型化を推進しながら、回転子側面からの洩れ磁束を低減することで高効率化をも推進できる埋込磁石形回転電機を提供することができる。   As described above, the embedded magnet-type rotating electrical machine according to the present embodiment has a shielding plate made of a disk-shaped iron plate on the rotor side surface, thereby promoting downsizing by concentrating magnetic flux, and from the rotor side surface. It is possible to provide an embedded magnet type rotating electrical machine that can promote high efficiency by reducing the leakage flux of the magnetic field.

以上、本発明の実施形態について説明した。ただし、いわゆる当業者であれば、本発明の趣旨を逸脱しない範囲内で、上記実施形態から適宜変更が可能であり、また、上記実施形態と変更例による手法を適宜組み合わせて利用することも可能である。すなわち、このような変更等が施された技術であっても、本発明の技術的範囲に含まれることは言うまでもない。   The embodiment of the present invention has been described above. However, a so-called person skilled in the art can appropriately modify the above embodiment without departing from the gist of the present invention, and can appropriately combine the above embodiment and the method according to the modified example. It is. That is, it is needless to say that even a technique with such a change is included in the technical scope of the present invention.

例えば、上記実施形態では、円盤状の鉄板を用いたが、磁束を遮蔽するためには磁性材であればよく、鉄製に限るものではない。同様に円盤状である必要もなく、回転子側面を覆う形状であればよい。板状である必要もなく、フィルム状でもよい。また、埋込磁石の配置形態については、図10に示す、その他の埋込磁石の配置形態説明図のように、略V字状に限らず、放射状に永久磁石52を装着(A)してもよく、放射状の永久磁石62b の内周側にさらに円周状に永久磁石62aを装着(B)してもよい。つまり、本発明の洩れ磁束の遮蔽板は、永久磁石に囲まれる大きな磁極部25,44b ,53a ,63a を有し、該磁極部が磁束の洩れる大きな側面となる埋込磁石の配置構造に対し同様な効果を有する。   For example, in the above-described embodiment, a disk-shaped iron plate is used. However, in order to shield magnetic flux, any magnetic material may be used, and the material is not limited to iron. Similarly, it is not necessary to have a disk shape, and any shape that covers the rotor side surface may be used. It does not need to be plate-like and may be film-like. Further, the arrangement of the embedded magnets is not limited to a substantially V shape, as shown in the explanatory diagram of the arrangement of other embedded magnets shown in FIG. 10, and the permanent magnets 52 are mounted (A) radially. Alternatively, the permanent magnets 62a may be mounted (B) in a circumferential shape on the inner peripheral side of the radial permanent magnets 62b. In other words, the leakage flux shielding plate of the present invention has large magnetic pole portions 25, 44b, 53a, 63a surrounded by permanent magnets, and the magnetic pole portion is a large side surface from which magnetic flux leaks. Has the same effect.

本発明の埋込磁石形回転電機は、小型高効率化が可能となるため、電動機に限らず発電機を含めた広範囲な回転電機用途に適用できる。   Since the embedded magnet type rotary electric machine of the present invention can be made small and highly efficient, it can be applied to a wide range of rotary electric machine applications including a generator as well as an electric motor.

10 フレーム
11 負荷側ブラケット
11a 回転子近接部
12 反負荷側ブラケット
13 固定子鉄心
14 固定子コイル
15 モールド樹脂
16 結線部
17 エンコーダ部
18 負荷側軸受
19 反負荷側軸受
20 回転子
21 シャフト
22 永久磁石
23 ロッド
24 内側の回転子鉄心
25 外側の回転子鉄心
26 負荷側側板
27 反負荷側側板
28 負荷側遮蔽板
29 反負荷側遮蔽板
F 磁束
Fl 洩れ磁束
10 frames
11 Load side bracket 11a Rotor proximity part 12 Anti-load side bracket
13 Stator Core 14 Stator Coil
15 Mold resin 16 Connection
17 Encoder 18 Load side bearing
19 Anti-load-side bearing 20 Rotor
21 Shaft 22 Permanent magnet
23 Rod 24 Rotor core inside
25 Outer rotor core 26 Load side plate 27 Anti-load side plate
28 Load side shielding plate
29 Anti-load side shielding plate F Magnetic flux
Fl Leakage magnetic flux

Claims (5)

固定子と、略V字状あるいは放射状に装着した永久磁石に挟まれる磁極部を有し、回転自在に支持された概円筒形の回転子を備えた埋込磁石形回転電機において、
回転子側面に、亜鉛めっき鋼板を打ち抜き成形して製作された概円盤状の磁束遮蔽板を、回転子鉄心の前記磁極部と一定の距離を隔てて固定したことを特徴とする埋込磁石形回転電機。
In an embedded magnet type rotating electrical machine having a stator and a substantially cylindrical rotor having a magnetic pole portion sandwiched between substantially V-shaped or radially mounted permanent magnets and supported rotatably,
The rotor side, a zinc-plated steel sheet stamped and approximately disk-shaped magnetic flux shielding plate that is manufactured, Komi磁 stone buried, characterized in that fixed at a certain distance between the magnetic pole portion of the rotor core Rotating electric machine.
前記磁束遮蔽板を、前記回転子を固定するシャフトと係合する内側部分を厚く形成する一方、外側を薄く形成して、前記回転子鉄心の磁極部との間に空隙を隔て設け、前記回転子側面からの永久磁石の洩れ磁束を弱めた上で、前記回転子外部に対し前記洩れ磁束を遮蔽することを特徴とする請求項1記載の埋込磁石形回転電機。 The magnetic flux shielding plate is formed with a thick inner portion that engages with a shaft that fixes the rotor, while a thin outer portion is provided with a gap between the magnetic pole portion of the rotor core and the rotation 2. The embedded magnet type rotating electric machine according to claim 1 , wherein the leakage flux of the permanent magnet from the side surface of the rotor is weakened and the leakage flux is shielded from the outside of the rotor . 前記磁束遮蔽板は、前記回転子に一体に固定されたことを特徴とする請求項1記載の埋込磁石形回転電機。 2. The embedded magnet type rotating electric machine according to claim 1, wherein the magnetic flux shielding plate is integrally fixed to the rotor . 前記磁束遮蔽板は、前記回転子鉄心との間に非磁性を挟んで設けられたことを特徴とする請求項1記載の埋込磁石形回転電機。 The magnetic flux shielding plate is embedded magnet type rotary electric machine according to claim 1, characterized in that provided across the non-magnetic plate between the rotor core. 前記磁束遮蔽板は、前記回転子鉄心の磁極部との間に空隙を隔て設けられたことを特徴とする請求項1記載の埋込磁石形回転電機。 The magnetic flux shielding plate is embedded magnet type rotary electric machine according to claim 1, characterized in that provided at a gap between the pole portion of the rotor core.
JP2011061104A 2011-03-18 2011-03-18 Embedded magnet type rotating electrical machine Expired - Fee Related JP5353928B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011061104A JP5353928B2 (en) 2011-03-18 2011-03-18 Embedded magnet type rotating electrical machine
CN201210020440.4A CN102684335B (en) 2011-03-18 2012-01-29 Magnet embedded type rotary motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011061104A JP5353928B2 (en) 2011-03-18 2011-03-18 Embedded magnet type rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2012200053A JP2012200053A (en) 2012-10-18
JP5353928B2 true JP5353928B2 (en) 2013-11-27

Family

ID=46815855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011061104A Expired - Fee Related JP5353928B2 (en) 2011-03-18 2011-03-18 Embedded magnet type rotating electrical machine

Country Status (2)

Country Link
JP (1) JP5353928B2 (en)
CN (1) CN102684335B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164506B2 (en) * 2013-11-11 2017-07-19 株式会社安川電機 Rotating electric machine
KR101920679B1 (en) * 2017-10-31 2018-11-21 현대모비스 주식회사 Motor for vehicle
JP2023005393A (en) 2021-06-29 2023-01-18 ミネベアミツミ株式会社 rotor and motor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666015A (en) * 1993-04-30 1997-09-09 Sanyo Electric Co., Ltd. Electric motor for a compressor with a rotor with combined balance weights and oil separation disk
JPH11308792A (en) * 1998-04-22 1999-11-05 Toshiba Corp Permanent magnet type reluctance rotating machine
EP1330010A4 (en) * 2000-09-01 2007-06-20 Matsushita Electric Ind Co Ltd Electric motor
CN200969534Y (en) * 2006-11-08 2007-10-31 常州阿尔泰动力机械有限公司 Rare-earth magneto synchronous generator rotor
JP2009027768A (en) * 2007-07-17 2009-02-05 Kayaba Ind Co Ltd Permanent magnet synchronous motor
JP2009027842A (en) * 2007-07-19 2009-02-05 Toshiba Corp Permanent-magnet synchronous motor
JP2009072009A (en) * 2007-09-14 2009-04-02 Shin Etsu Chem Co Ltd Permanent magnet rotating machine
JP5493339B2 (en) * 2008-11-21 2014-05-14 日本電産株式会社 Motor, fan, motor manufacturing method, and fan manufacturing method

Also Published As

Publication number Publication date
JP2012200053A (en) 2012-10-18
CN102684335A (en) 2012-09-19
CN102684335B (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5678954B2 (en) Permanent magnet type rotating electric machine
JP5861660B2 (en) Rotating electric machine
JP5700217B2 (en) motor
JP5141749B2 (en) End plate and rotor of rotating electric machine using the same
US10637305B2 (en) Double stator-type rotary machine
WO2018037652A1 (en) Consequent pole-type rotor, electric motor, and air conditioner
JP2010226785A (en) Manufacturing method for plate-like member, plate-like member, rotor using plate-like member, and embedded magnet rotary electric machine having the rotor
JP2013102597A (en) Rotor for electric motor and brushless motor
JP2012231578A (en) Embedded magnet rotary electric machine
JP5353928B2 (en) Embedded magnet type rotating electrical machine
CN105515242A (en) Embedded disk-type motor rotor
JP2013115899A (en) Rotor of permanent magnet type motor, manufacturing method of the same, and permanent magnet type motor
JP2011041446A (en) Method of manufacturing rotor core, rotor core manufactured by the manufacturing method, and embedded magnet type rotary electric machine having the rotor core
JP2012157180A (en) Rotating machine with built-in resolver
JP2014054135A (en) Permanent magnet type rotary electric machine
JP2013090556A (en) Ipm bearingless motor
JP2017221069A (en) Magnet motor and washing machine with the same
JP2016093044A (en) Rotor of surface magnet type rotary machine
JP2005094978A (en) Claw pole type rotating machine
JP2020115728A (en) motor
WO2013132625A1 (en) Rotating electric machine
US20230049968A1 (en) Magnetic geared rotary electric machine and stator manufacturing method
JP2019170115A (en) Resolver
EP4329153A1 (en) Permanent magnet rotor with reduced torque ripple
JP2018133954A (en) motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees