JP5353754B2 - Metastable β-type titanium alloy having low Young's modulus and method for producing the same - Google Patents

Metastable β-type titanium alloy having low Young's modulus and method for producing the same Download PDF

Info

Publication number
JP5353754B2
JP5353754B2 JP2010034865A JP2010034865A JP5353754B2 JP 5353754 B2 JP5353754 B2 JP 5353754B2 JP 2010034865 A JP2010034865 A JP 2010034865A JP 2010034865 A JP2010034865 A JP 2010034865A JP 5353754 B2 JP5353754 B2 JP 5353754B2
Authority
JP
Japan
Prior art keywords
modulus
less
titanium alloy
phase
type titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010034865A
Other languages
Japanese (ja)
Other versions
JP2010216011A (en
Inventor
知徳 國枝
一浩 高橋
健一 森
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010034865A priority Critical patent/JP5353754B2/en
Publication of JP2010216011A publication Critical patent/JP2010216011A/en
Application granted granted Critical
Publication of JP5353754B2 publication Critical patent/JP5353754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semistable &beta; type titanium alloy having a low Young's modulus of &lt;80 GPa. <P>SOLUTION: The semistable &beta; type titanium alloy having a low Young's modulus of &lt;80 GPa has a composition comprising, by mass%, &ge;3.5 to &lt;7.0% Al, &ge;1.4 to &lt;3.6% Fe and &ge;2.0 to &lt;10.0% Mo, and the balance Ti with inevitable impurities, and in which Mo equivalent in the formula of Mo equivalent=2.9&times;%Fe+%Mo-%Al is &ge;6.0 to &lt;14.0. By performing cooling from a temperature equal to or above a &beta;transformation point at a cooling rate equal to or above that of water cooling, its microstructure is composed of a &beta; phase or two phases of a &beta; phase and an &alpha;'' martensitic phase, thus the semistable &beta; type titanium alloy having a low Young's modulus of &lt;80 GPa is produced. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、自動車または二輪車のサスペンションスプリング、エンジンバルブスプリングなどの自動車・二輪車用部品材料やメガネのフレーム材として適した、低ヤング率を有する準安定β型チタン合金およびその製造方法に関する。   The present invention relates to a metastable β-type titanium alloy having a low Young's modulus and suitable for use as a material for automobile and motorcycle parts such as suspension springs and engine valve springs for automobiles and motorcycles, and frame materials for glasses.

チタンの常温におけるヤング率は、α相が主である工業用純チタン、α型チタン合金、α相とβ相からなるα+β型チタン合金では、約100〜120GPa、β相が主であるβ型チタン合金では約70〜90GPaである。但し、β型チタン合金でもα+β二相域で時効熱処理しα相を析出させた場合には、上記のα型チタン合金やα+β型チタン合金と同様にヤング率は100〜120GPaに増加する。このように、チタンはその合金部材毎に、望まれるヤング率が異なることから、軽量化や耐食性などを目的にチタンが使用される部材毎に望まれるヤング率に合ったチタン合金が選択される。   The Young's modulus of titanium at room temperature is about 100 to 120 GPa in the case of industrial pure titanium, α-type titanium alloy, α + β-type titanium alloy consisting of α-phase and β-phase, and β-type mainly containing β-phase. For titanium alloys, it is about 70-90 GPa. However, even in a β-type titanium alloy, when an α-phase is precipitated by aging heat treatment in the α + β two-phase region, the Young's modulus increases to 100 to 120 GPa as in the case of the α-type titanium alloy and α + β-type titanium alloy. As described above, since the desired Young's modulus of titanium is different for each alloy member, a titanium alloy suitable for the desired Young's modulus is selected for each member in which titanium is used for the purpose of weight reduction and corrosion resistance. .

一般に、自動車または二輪車のサスペンションスプリング、エンジンバルブスプリング等では、その機能として、該スプリングに一定荷重が加えられた際のスプリング全体の伸縮量(変位量)を一定量確保するために、該スプリングの巻き数を調整する。この場合、材料が低ヤング率であるほど、巻き数が少なくてすみ、スプリング全体の軽量化が可能である。チタン合金等は、鉄鋼材料に比べ、比重が6割以下程度と小さいだけでなく、ヤング率が5〜6割程度であるがゆえに、巻き数を大幅に減らし、スプリング全体として軽量化に寄与する特長がある。   In general, suspension springs, engine valve springs, and the like of automobiles or motorcycles function as springs in order to ensure a certain amount of expansion / contraction (displacement) of the entire spring when a constant load is applied to the spring. Adjust the number of turns. In this case, the lower the Young's modulus of the material, the smaller the number of windings, and the lighter the spring can be. Titanium alloys, etc. not only have a specific gravity of about 60% or less compared to steel materials, but also have a Young's modulus of about 50-60%, so the number of turns is greatly reduced and the spring as a whole contributes to weight reduction. There are features.

サスペンションスプリング、エンジンバルブスプリングだけでなく、軽量化及び柔軟性が求められる部品等、例えばメガネのフレーム材、メガネのつる材としても、適している。   It is suitable not only for suspension springs and engine valve springs, but also for parts that require weight reduction and flexibility, such as frame materials for glasses and vine materials for glasses.

特に、低ヤング率が望まれる場合には、α+β型チタン合金やβ型チタン合金が使用される。α+β型チタン合金では、β安定化元素であるV、Mo、Nbが少ない含有量ですみ、Ti−6Al−4VやTi−4.5Al−3V−2Mo−2Fe(AMS4899)、特許文献1には、4.4〜5.5質量%Al、1.4〜2.1質量%Fe、1.5〜4.5質量%Moを含有し、不純物としてSiが0.1%未満、Cが0.01%未満に抑制された高強度α+β型チタン合金がある。また、特許文献2では、熱間圧延した線材を810度以上940度以下の温度から水冷することによって、ヤング率が75GPa以上100GPa未満であるα+β型チタン合金の製造方法が記載されている。   In particular, when a low Young's modulus is desired, an α + β type titanium alloy or a β type titanium alloy is used. In the α + β type titanium alloy, the content of V, Mo and Nb which are β stabilizing elements is small, Ti-6Al-4V, Ti-4.5Al-3V-2Mo-2Fe (AMS4899), Patent Document 1 4.4-5.5 mass% Al, 1.4-2.1 mass% Fe, 1.5-4.5 mass% Mo is contained, Si is less than 0.1% as an impurity, C is 0 There is a high-strength α + β-type titanium alloy that is suppressed to less than 0.01%. Patent Document 2 describes a method for producing an α + β type titanium alloy having a Young's modulus of 75 GPa or more and less than 100 GPa by water-cooling a hot-rolled wire from a temperature of 810 ° C. or more and 940 ° C. or less.

これに対して、より低いヤング率が望まれる場合には、β型チタン合金が使用される。代表的なβ型チタン合金として、Ti−15V−3Cr−3Sn−3Al、Ti−22V−4Al、Ti−15Mo−5Zr−3Al、Ti−10V−2Fe−3Al、Ti−3Al−8V−6Cr−4Mo−4Zr、特許文献3のTi−1.5Al−4.5Fe−6.8Mo、特許文献4のTi−15Mo−3Alなどがある。さらに、ヤング率が低いチタン合金として、特許文献5に10〜35質量%Zrと8〜14質量%Crを含有したものが、特許文献6に13〜28原子%Nb、0.1〜10原子%Snを含有したものが、特許文献7に30〜60質量%のVa族(バナジウム族)を含有したものが、特許文献8に0.3〜3質量%のO、NまたはCの一種以上、1.8%以下のAlを含み、Mo当量=Mo+0.67×V+0.44×W+0.28×Nb+0.22×Ta+2.9×Fe+1.6×Cr+1.1×Ni+1.4×Co+0.77×Cu−AlからなるMo当量が3以上11以下含有したものが記載されている。   On the other hand, when a lower Young's modulus is desired, a β-type titanium alloy is used. Typical β-type titanium alloys include Ti-15V-3Cr-3Sn-3Al, Ti-22V-4Al, Ti-15Mo-5Zr-3Al, Ti-10V-2Fe-3Al, Ti-3Al-8V-6Cr-4Mo. -4Zr, Ti-1.5Al-4.5Fe-6.8Mo of Patent Document 3, and Ti-15Mo-3Al of Patent Document 4. Further, as a titanium alloy having a low Young's modulus, Patent Document 5 containing 10 to 35 mass% Zr and 8 to 14 mass% Cr is disclosed in Patent Document 6 as 13 to 28 atomic% Nb and 0.1 to 10 atoms. The one containing 30% by mass of Sn in the patent document 7 contains one or more of 0.3 to 3% by mass of O, N or C in the patent document 8 containing 30 to 60% by mass of the Va group (vanadium group). , Containing 1.8% or less of Al, Mo equivalent = Mo + 0.67 × V + 0.44 × W + 0.28 × Nb + 0.22 × Ta + 2.9 × Fe + 1.6 × Cr + 1.1 × Ni + 1.4 × Co + 0.77 × The thing containing Mo equivalent which consists of Cu-Al 3-11 is described.

特開2005−320618号公報Japanese Patent Laying-Open No. 2005-320618 特開2007−314834号公報JP 2007-314834 A 特許第2859102号公報Japanese Patent No. 2859102 特開2004−183058号公報JP 2004-183058 A 特開2004−353039号公報JP 2004-353039 A 特開2005−113227号公報JP 2005-113227 A 特許第3375083号公報Japanese Patent No. 3375083 特開2004−162171号公報JP 2004-162171 A

α+β型チタン合金では、Ti−6Al−4VやTi−4.5Al−3V−2Mo−2Fe(AMS4899)のようにV、Mo、Nbの添加量が少ない。したがって、これらは、合金組成から推測するとβ型チタン合金よりは廉価であると考えられる。しかしながら、これらのα+β型チタン合金のヤング率は上述したように約100〜120GPa程度とβ型チタン合金に比べ非常に高い値である。   In the α + β type titanium alloy, the addition amount of V, Mo, Nb is small like Ti-6Al-4V and Ti-4.5Al-3V-2Mo-2Fe (AMS4899). Therefore, these are considered to be cheaper than the β-type titanium alloy when estimated from the alloy composition. However, the Young's modulus of these α + β type titanium alloys is about 100 to 120 GPa as described above, which is a very high value compared to the β type titanium alloy.

また、4.4〜5.5質量%Al、1.4〜2.1質量%Fe、1.5〜4.5質量%Moを含有し、不純物としてSiが0.1%未満、Cが0.01%未満に抑制された高強度α+β型チタン合金(特許文献1参照)では、810度以上940度以下の温度から水冷することによって、ヤング率が75GPa以上100GPa未満と(特許文献2参照)、α+β型チタン合金としては、低ヤング率が得られる。しかしながら、これはβ型チタン合金とほぼ同程度である。   Moreover, 4.4-5.5 mass% Al, 1.4-2.1 mass% Fe, 1.5-4.5 mass% Mo is contained, Si is less than 0.1% as an impurity, C is contained. In a high-strength α + β-type titanium alloy suppressed to less than 0.01% (see Patent Document 1), the Young's modulus is 75 GPa or more and less than 100 GPa by water cooling from a temperature of 810 degrees or more and 940 degrees or less (see Patent Document 2). ), A low Young's modulus is obtained as an α + β type titanium alloy. However, this is almost the same as β-type titanium alloy.

これに対して、β型チタン合金に代表される低ヤング率を有するTi−15V−3Cr−3Sn−3Al、Ti−22V−4Al、Ti−15Mo−5Zr−3Al、Ti−10V−2Fe−3Al、Ti−15Mo−3Al(特許文献3参照)は、いずれもVに代表されるVa族やMoといった比較的高価な添加元素を10%以上も含有しており、そのため、価格や密度が高めな傾向がある。   On the other hand, Ti-15V-3Cr-3Sn-3Al, Ti-22V-4Al, Ti-15Mo-5Zr-3Al, Ti-10V-2Fe-3Al, having a low Young's modulus represented by a β-type titanium alloy, Ti-15Mo-3Al (see Patent Document 3) contains 10% or more of relatively expensive additive elements such as Va group represented by V and Mo, and therefore tends to increase in price and density. There is.

また、Moの添加量を比較的低減した準安定β型チタン合金であるTi−1.5Al−4.5Fe−6.8Mo(特許文献4参照)では、Mo当量が16%以上と高く、β相が非常に安定である。一般に、低ヤング率は不安定なβ相もしくはα’’マルテンサイト相において発現することが知られており、本合金のヤング率は一般的なβ型チタン合金と同等であると考えられる。   Further, Ti-1.5Al-4.5Fe-6.8Mo (see Patent Document 4), which is a metastable β-type titanium alloy in which the addition amount of Mo is relatively reduced, has a high Mo equivalent of 16% or more. The phase is very stable. In general, it is known that a low Young's modulus appears in an unstable β phase or α ″ martensite phase, and the Young's modulus of this alloy is considered to be equivalent to a general β-type titanium alloy.

また、10〜35質量%Zrと8〜14質量%Crを含有したもの(特許文献5参照)、13〜28原子%Nb、0.1〜10原子%Snを含有したもの(特許文献6参照)、30〜60質量%のVa族(バナジウム族)を含有したもの(特許文献7参照)は、いずれもVに代表されるVa族やMoといった比較的高価な添加元素を10%以上も含有しており、且つ密度が高い元素を多量に含有しているためチタン合金そのものの密度が高くなっている。   Moreover, the thing containing 10-35 mass% Zr and 8-14 mass% Cr (refer patent document 5), the 13-28 atomic% Nb, the thing containing 0.1-10 atomic% Sn (refer patent document 6) ), Those containing 30 to 60% by mass of Va group (vanadium group) (see Patent Document 7) all contain 10% or more of relatively expensive additive elements such as Va group and Mo represented by V In addition, the titanium alloy itself has a high density because it contains a large amount of high density elements.

また、0.3〜3質量%のO、NまたはCの一種以上を含有し、且つ、1.8%以下のAlを含み、Mo当量=Mo+0.67×V+0.44×W+0.28×Nb+0.22×Ta+2.9×Fe+1.6×Cr+1.1×Ni+1.4×Co+0.77×Cu−AlからなるMo当量が3以上11以下含有したもの(特許文献8参照)は、侵入型元素であるO、NまたはCを0.3%以上も含んでいることから、加工性の低下が懸念される。また、α安定化元素であるOは同じα安定化元素であるAlに比べ凝固偏析しやすいため、大型インゴットを製造時に、材質のバラツキが懸念される。   Further, it contains 0.3 to 3% by mass of one or more of O, N, or C and contains 1.8% or less of Al, and Mo equivalent = Mo + 0.67 × V + 0.44 × W + 0.28 × Nb + 0 .22 × Ta + 2.9 × Fe + 1.6 × Cr + 1.1 × Ni + 1.4 × Co + 0.77 × Cu—Al containing Mo equivalent 3 to 11 (see Patent Document 8) is an interstitial element Since some O, N, or C is contained 0.3% or more, there is a concern that the workability is lowered. Further, O, which is an α-stabilizing element, is more likely to solidify and segregate than Al, which is the same α-stabilizing element, so there is a concern about variations in materials when manufacturing a large ingot.

そこで、本発明は、Mo当量からなる式で合金元素を制御した準安定β型チタン合金を用いて、低ヤング率を発現するβ型チタン合金を提供する。   Therefore, the present invention provides a β-type titanium alloy that exhibits a low Young's modulus by using a metastable β-type titanium alloy in which the alloy element is controlled by a formula consisting of Mo equivalents.

本発明者は、β相もしくはα’’マルテンサイト相を不安定にするため、Mo当量をできるだけ低くすることにより、一般的なβ型チタン合金よりも低いヤング率を有するチタン合金について、鋭意研究を重ねた。その結果、Ti−Al−Fe−Mo系の準安定β型チタン合金において、各元素の含有量をある所定内とすることで低ヤング率を発現することを見出した。   The present inventor has earnestly studied a titanium alloy having a lower Young's modulus than a general β-type titanium alloy by making the Mo equivalent as low as possible in order to make the β phase or α ″ martensite phase unstable. Repeated. As a result, the present inventors have found that in a Ti—Al—Fe—Mo based metastable β-type titanium alloy, a low Young's modulus is expressed by setting the content of each element within a predetermined range.

上記課題を解決するために本発明の要旨は、以下の通りである。
(1)質量%で 3.5%以上7.0%未満のAl、1.4%以上3.6%未満のFe、2.0%以上10.0%未満のMoを含有し、残部Ti及び不可避的な不純物からなり、含有元素の添加量をMo当量=2.9×[Fe%]+[Mo%]−[Al%]なる式において、Mo当量が6.0以上14.0%未満であることを特徴とする、80GPa未満の低ヤング率を有する準安定β型チタン合金。
(2)3.5%以上5.0%未満のAl、1.4%以上3.6%未満のFe、2.0%以上9.0%未満のMoを含有し、残部Ti及び不可避的な不純物からなり、含有元素の添加量をMo当量=2.9×[Fe%]+[Mo%]−[Al%]なる式において、Mo当量が6.0以上14.0%未満であることを特徴とする80GPa未満の低ヤング率を有する、準安定β型チタン合金。
(3)前記Mo当量が7.0以上12.0%未満であることを特徴とする、前記(1)または(2)に記載の、80GPa未満の低ヤング率を有する準安定β型チタン合金。
(4)前記Mo当量が7.5以上11.5%未満であることを特徴とする、前記(1)または(2)に記載の、80GPa未満の低ヤング率を有する準安定β型チタン合金。
(5)ミクロ組織がβ相単相もしくはβ相とα’’マルテンサイト相の2相からなることを特徴とする、前記(1)〜(4)に何れかに記載の、80GPa未満の低ヤング率を有する準安定β型チタン合金。
(6)β変態点以上の温度から水冷以上の冷却速度で冷却することによりミクロ組織がβ相単相もしくはβ相とα’’マルテンサイト相の2相からなることを特徴とする、前記(1)〜(5)に何れかに記載の、80GPa未満の低ヤング率を有する準安定β型チタン合金の製造方法。
In order to solve the above problems, the gist of the present invention is as follows.
(1) By mass%, containing 3.5% or more and less than 7.0% Al, 1.4% or more and less than 3.6% Fe, 2.0% or more and less than 10.0% Mo, the balance Ti In addition, in the formula of Mo equivalent = 2.9 × [Fe%] + [Mo%] − [Al%], the Mo equivalent is 6.0 or more and 14.0%. A metastable β-type titanium alloy having a low Young's modulus of less than 80 GPa, characterized by being less than 80 GPa.
(2) Containing 3.5% or more and less than 5.0% Al, 1.4% or more and less than 3.6% Fe, 2.0% or more and less than 9.0% Mo, the balance Ti and unavoidable In the formula of Mo equivalent = 2.9 × [Fe%] + [Mo%] − [Al%], the Mo equivalent is 6.0 or more and less than 14.0%. A metastable β-type titanium alloy having a low Young's modulus of less than 80 GPa.
(3) The metastable β-type titanium alloy having a low Young's modulus of less than 80 GPa as described in (1) or (2) above, wherein the Mo equivalent is 7.0 or more and less than 12.0% .
(4) The metastable β-type titanium alloy having a low Young's modulus of less than 80 GPa according to (1) or (2) above, wherein the Mo equivalent is 7.5 or more and less than 11.5% .
(5) The microstructure is composed of a β-phase single phase or two phases of a β-phase and an α ″ martensite phase. The low structure of less than 80 GPa according to any one of (1) to (4) above Metastable β-type titanium alloy with Young's modulus.
(6) The microstructure is composed of a β phase single phase or a β phase and an α ″ martensite phase by cooling from a temperature equal to or higher than the β transformation point at a cooling rate equal to or higher than water cooling. A method for producing a metastable β-type titanium alloy having a low Young's modulus of less than 80 GPa according to any one of 1) to (5).

本発明によって、β相を極力不安定になるようにMo当量を調整することにより、一般的なβ型チタン合金よりも低いヤング率を有するβ型チタン合金を提供できるため、産業上の効果は計り知れない。   According to the present invention, by adjusting the Mo equivalent so as to make the β phase as unstable as possible, a β-type titanium alloy having a Young's modulus lower than that of a general β-type titanium alloy can be provided. unfathomable.

横軸にMo当量、縦軸にヤング率ととったときのヤング率の変化を示す。The change in Young's modulus is shown with Mo equivalent on the horizontal axis and Young's modulus on the vertical axis. 曲げ試験による形状記憶特性結果の一例を示す図である。It is a figure which shows an example of the shape memory characteristic result by a bending test.

以下に、本発明について詳しく説明する。以降、添加元素の含有量は「質量%」で示す。   The present invention is described in detail below. Hereinafter, the content of the additive element is indicated by “mass%”.

本発明の材料指標について説明する。チタン合金において、β相を主とするβ型チタン合金は、α型チタン合金やα+β型チタン合金に比べ低ヤング率を有する。β相を安定させる方法として従来は、共析型β安定化元素であるFe、Ni、Cr、Mn、全率固溶型β安定化元素であるV、Mo等の置換型固溶元素を多量に添加している。しかし、Ti材料においてβ相もしくはα’’マルテンサイト相を室温で安定にするためには、Mo当量において6〜10%以上添加する必要がある。Moは比較的高価な元素であるため、Moのみでβ相もしくはα’’マルテンサイト相を安定化させると合金コストが非常に高くなってしまう。そこで、本発明者はβ相安定化元素の添加量指針であるMo当量を低減し、比較的安価な元素であるFeを添加することを指標とした。且つ、低ヤング率は不安定β相もしくはα’’マルテンサイト相でみられることから、元素添加量をMo当量において6%以上14%未満にすることを指標とした。且つ、ヤング率は上述したように、一般的なβ型チタン合金は80GPaであるから、本発明では下限レベルである80GPa未満とした。好ましくは、元素添加量をMo当量において7.0%超12.0%未満とし、ヤング率は75GPa未満とするのが良い。さらに好ましくは、元素添加量をMo当量において7.5%以上11.5%以下とし、ヤング率を70GPa未満とするのが良い。   The material index of the present invention will be described. Among titanium alloys, β-type titanium alloys mainly composed of β-phase have a lower Young's modulus than α-type titanium alloys and α + β-type titanium alloys. As a method for stabilizing the β phase, a large amount of substitutional solid solution elements such as eutectoid β stabilization elements Fe, Ni, Cr, Mn, and all-solid solution β stabilization elements V, Mo, etc. It has been added to. However, in order to stabilize the β phase or α ″ martensite phase in the Ti material at room temperature, it is necessary to add 6 to 10% or more in Mo equivalent. Since Mo is a relatively expensive element, stabilizing the β phase or the α ″ martensite phase with only Mo results in a very high alloy cost. Therefore, the present inventor used as an index to reduce the Mo equivalent, which is a guideline for the addition amount of the β-phase stabilizing element, and to add Fe, which is a relatively inexpensive element. Moreover, since a low Young's modulus is observed in the unstable β phase or α ″ martensite phase, the element addition amount was set to 6% or more and less than 14% in Mo equivalent. Also, as described above, the Young's modulus is 80 GPa for a general β-type titanium alloy. Therefore, in the present invention, the Young's modulus is set to less than the lower limit level of 80 GPa. Preferably, the element addition amount is more than 7.0% and less than 12.0% in Mo equivalent, and the Young's modulus is less than 75 GPa. More preferably, the element addition amount is 7.5% or more and 11.5% or less in Mo equivalent, and the Young's modulus is less than 70 GPa.

[添加元素量の指標]
ヤング率を低くするためには、ヤング率の低いβ相もしくはα’’マルテンサイト相を室温で安定にさせる必要がある。それに対して、β安定化元素の添加量を多くしすぎると、合金コストの上昇や、添加元素の凝固時の偏析、さらにはβ相が安定化になりすぎヤング率の上昇を生じるため、添加元素を適量添加する必要がある。本発明では添加元素としてAl、Fe、Moを添加しており、その添加量を下記に示すMo当量により調整することとした。
Mo当量=2.9×[Fe%] + [Mo%] − [Al%]
[Indicator of additive element content]
In order to lower the Young's modulus, it is necessary to stabilize the β phase or α ″ martensite phase having a low Young's modulus at room temperature. On the other hand, if the amount of β-stabilizing element added is too large, the alloy cost increases, segregation during solidification of the additive element, and the β phase becomes too stable, resulting in an increase in Young's modulus. Appropriate amounts of elements need to be added. In the present invention, Al, Fe, and Mo are added as additive elements, and the amount added is adjusted by the Mo equivalent shown below.
Mo equivalent = 2.9 × [Fe%] + [Mo%] − [Al%]

[Mo当量の指標]
チタン合金では、β変態点より高温から水冷以上の速度で冷却することによりβ相を残留させる、もしくはα’’マルテンサイト相やα’マルテンサイト相を生成することができる。しかしながら、α’マルテンサイト相を生成するとヤング率が上昇するため、好ましくない。上述のMo当量が低くなるとα’マルテンサイト相が生成することから、α’マルテンサイト相を生成させないためMo当量の下限を6.0%以上とした。しかし、Mo当量を14.0%以上にすると、添加元素総量が多くなりすぎてしまい、溶解時の凝固の偏析や、合金コストが上昇する。且つ、β相が安定化しすぎるためヤング率が上昇する。したがって、本発明ではMo当量の上限を14.0%とした。β相を不安定にすることで低ヤング率が得られることから、好ましくは7.0以上12.0%未満とした。さらに、低ヤング率を得るため、好ましくは、7.5以上11.5%未満とした。
[Indicator of Mo equivalent]
In the titanium alloy, the β phase can be left by cooling from the β transformation point to a temperature higher than water cooling from the high temperature, or an α ″ martensite phase or an α ′ martensite phase can be generated. However, when the α ′ martensite phase is generated, the Young's modulus increases, which is not preferable. Since the α ′ martensite phase is generated when the Mo equivalent is decreased, the lower limit of the Mo equivalent is set to 6.0% or more in order not to generate the α ′ martensite phase. However, if the Mo equivalent is 14.0% or more, the total amount of additive elements becomes too large, and segregation of solidification during melting and alloy costs increase. In addition, the Young's modulus increases because the β phase is too stabilized. Therefore, in the present invention, the upper limit of Mo equivalent is set to 14.0%. Since a low Young's modulus can be obtained by destabilizing the β phase, it is preferably 7.0 or more and less than 12.0%. Further, in order to obtain a low Young's modulus, the content is preferably 7.5 or more and less than 11.5%.

[Alの添加量]
Alはα安定化元素であり、β相を安定にするためには極力添加量を少なくする必要がある。しかしながら、Alはβ相内のω相の生成を抑制すること、且つ、低ヤング率を示しやすいα’’マルテンサイト相を安定化させることによりヤング率の上昇を抑制することから3.5%以上とした。しかしながら、添加量を多くすると、β安定化元素の添加量も多くなることから、上限を7.0%とした。さらに、β安定化元素の添加量を極力少なくし、コストを低くすることから、好ましくは上限を5.0%とした。
[Al addition amount]
Al is an α stabilizing element, and it is necessary to reduce the addition amount as much as possible in order to stabilize the β phase. However, Al suppresses the generation of the ω phase in the β phase and suppresses the increase in Young's modulus by stabilizing the α ″ martensite phase that tends to exhibit a low Young's modulus. It was above. However, when the addition amount is increased, the addition amount of the β-stabilizing element is also increased, so the upper limit was set to 7.0%. Furthermore, the upper limit is preferably set to 5.0% in order to minimize the addition amount of the β-stabilizing element and reduce the cost.

[Feの添加量]
一方、Feは、β安定化置換型固溶元素であり、添加量にしたがって室温でのβ相もしくはα’’相の安定化度が増していく。比較的高価な添加元素であるMoの添加元素を極力低減するためには1.4%以上の添加が必要である。しかしながら、凝固時に偏析しやすいため、添加量を多くするとその影響が顕著にあらわれる。そのため、添加量の上限を3.6%とした。
[Fe addition amount]
On the other hand, Fe is a β-stabilized substitutional solid solution element, and the degree of stabilization of the β phase or α ″ phase at room temperature increases according to the amount added. In order to reduce the additive element of Mo which is a relatively expensive additive element as much as possible, addition of 1.4% or more is necessary. However, since it is easy to segregate at the time of solidification, the effect becomes remarkable when the addition amount is increased. Therefore, the upper limit of the addition amount is set to 3.6%.

[Moの添加量]
上述したように、Moのみでβ相もしくはα’’マルテンサイト相を室温で安定にするためには6〜10%以上添加する必要があり、且つ、Alを添加することによりその添加量を増加させなければならない。本発明では、β安定化元素としてFeを活用しているが、上述したようにFeは偏析が顕著であり、Feのみでβ相を安定化させるのは難しい。一方、MoはFeと逆偏析を示すため、溶解時の材質均質化しやすくなる。前記AlおよびFeの成分範囲においてβ相もしくはα’’マルテンサイト相を室温でも安定化させるためには、Moを2.0%以上添加する必要がある。しかし、Moは比較的高価な元素であるため、添加量が多くなるとコストが高くなってしまう。さらに、Moを多量に添加すると凝固時の偏析が顕著となることから、上限を10.0%とした。好ましくは、より安定的に低ヤング率を得ること、またはコスト高騰を抑制するため、上限を9.0%とした。
[Mo addition amount]
As mentioned above, in order to stabilize the β phase or α ″ martensite phase at room temperature only with Mo, it is necessary to add 6 to 10% or more, and the addition amount is increased by adding Al. I have to let it. In the present invention, Fe is used as a β-stabilizing element. However, as described above, segregation is remarkable in Fe, and it is difficult to stabilize the β-phase only with Fe. On the other hand, since Mo exhibits reverse segregation with Fe, it is easy to homogenize the material during melting. In order to stabilize the β phase or α ″ martensite phase even at room temperature in the Al and Fe component ranges, it is necessary to add 2.0% or more of Mo. However, since Mo is a relatively expensive element, the cost increases as the amount added increases. Furthermore, when Mo is added in a large amount, segregation during solidification becomes remarkable, so the upper limit was made 10.0%. Preferably, the upper limit is set to 9.0% in order to obtain a low Young's modulus more stably or to prevent a cost increase.

[ミクロ組織]
本発明のチタン合金は、好ましくはミクロ組織がβ相単相もしくは、β相およびα’’マルテンサイト相の2相からなる。これにより、上記チタン合金の組成と相まって、80GPa未満の低ヤング率を有する準安定β型チタン合金とすることができる。ミクロ組織の同定は、光学顕微鏡及びX線回折によって行うことができる。
[Microstructure]
The titanium alloy of the present invention is preferably composed of a single phase of β phase or two phases of β phase and α ″ martensite phase. Thereby, combined with the composition of the titanium alloy, a metastable β-type titanium alloy having a low Young's modulus of less than 80 GPa can be obtained. The identification of the microstructure can be performed by optical microscopy and X-ray diffraction.

[チタン合金の製造方法]
本発明のチタン合金は、上記チタン合金の組成を含有した上で、β変態点以上の温度から水冷以上の冷却速度で冷却することにより、ミクロ組織をβ相単相もしくは、β相およびα’’マルテンサイト相の2相とすることができる。β変態点温度については、示唆熱分析などを用いて求めることができる。
[Production method of titanium alloy]
The titanium alloy of the present invention contains the composition of the titanium alloy and is cooled at a cooling rate equal to or higher than water cooling from a temperature equal to or higher than the β transformation point, so that the microstructure is β-phase single phase or β-phase and α ′. 'Two phases of martensite phase. The β transformation point temperature can be determined using suggested thermal analysis or the like.

[その他の特性]
[二方向の形状記憶特性]
Ti−Nb系やTi−Mo系などのβ型チタン合金では、一部、熱を加えることにより、β相の加工誘起マルテンサイト変態を利用した形状記憶特性を有することが知られている。本発明のチタン合金においてもMo当量が6.5〜9.4のとき、この形状記憶特性を有する。また、さらに、形状記憶特性が発現する以上の熱を加えることにより、変形方向と同じ方向への形状変化を生じる、二方向の形状記憶特性を有する。
[Other characteristics]
[Two-way shape memory characteristics]
It is known that β-type titanium alloys such as Ti—Nb and Ti—Mo alloys have shape memory characteristics utilizing a β-phase work-induced martensitic transformation when heated partially. The titanium alloy of the present invention also has this shape memory characteristic when the Mo equivalent is 6.5 to 9.4. Furthermore, it has a two-way shape memory characteristic that causes a shape change in the same direction as the deformation direction by applying heat exceeding the shape memory characteristic.

表1に示す成分のチタン合金をアーク溶解し約100gインゴットを作成し、これらを900−930℃に加熱し、厚み約3mmの板材に熱間鍛造した。さらにこの材料を950℃又は970℃で30分の大気焼鈍した後、水冷した場合の、構成組織、ヤング率を、同じ表1に示す。この熱処理条件では、表1のNo.1〜14のいずれのチタン合金においても、β変態点温度以上から水冷している。表1において、本発明範囲から外れる数値にアンダーラインを付している。   Titanium alloys having the components shown in Table 1 were arc-melted to prepare about 100 g ingots, which were heated to 900-930 ° C. and hot forged into plate materials having a thickness of about 3 mm. Table 1 shows the structural structure and Young's modulus when the material is air-cooled at 950 ° C. or 970 ° C. for 30 minutes and then cooled with water. In this heat treatment condition, No. Any of the titanium alloys 1 to 14 is water-cooled from the β transformation point temperature or higher. In Table 1, numerical values that deviate from the scope of the present invention are underlined.

以下に各々の測定条件と試験条件を説明する。断面の埋め込み研磨材料を硝フッ酸水溶液(硝酸濃度が約12%、フッ酸濃度が約1.5%)を用いて室温でエッチングした後に観察した。構成相の同定はX線回折より行った。ヤング率は板材から試験片を切り出し、共振法により測定した。   Each measurement condition and test condition will be described below. The cross-section embedded polishing material was observed after etching at room temperature using a nitric hydrofluoric acid aqueous solution (nitric acid concentration: about 12%, hydrofluoric acid concentration: about 1.5%). The constituent phases were identified by X-ray diffraction. The Young's modulus was measured by a resonance method after cutting a test piece from a plate material.

次に、二方向の形状記憶特性の測定方法について説明する。図2に二方向の形状記憶特性の評価方法の模式図を示す。本発明では二方向の形状記憶特性を有するかどうかを調べるために曲げ試験を行った。板状の試験片を切出した後、曲げの直径が5mmもしくは10mmとなるようにU字型に曲げ加工を行った。その後、100−500℃まで、50℃ごとに5分間加熱炉に保持した後、各温度で曲げ試験片の曲げ角を測定することにより、二方向の形状記憶特性を評価した。各試料とも250℃で角度が最も小さくなり、そのときの角度をθ1とした。また、各試料とも500℃のとき角度が最も大きくなり、そのときの角度をθ2とした。   Next, a method for measuring the shape memory characteristics in two directions will be described. FIG. 2 shows a schematic diagram of a method for evaluating shape memory characteristics in two directions. In the present invention, a bending test was conducted in order to examine whether or not the shape memory characteristics are in two directions. After cutting out the plate-like test piece, it was bent into a U shape so that the bending diameter was 5 mm or 10 mm. Then, after hold | maintaining in a heating furnace for 5 minutes for every 50 degreeC to 100-500 degreeC, the shape memory characteristic of two directions was evaluated by measuring the bending angle of a bending test piece at each temperature. Each sample had the smallest angle at 250 ° C., and the angle at that time was defined as θ1. In addition, each sample had the largest angle at 500 ° C., and the angle at that time was defined as θ2.

Figure 0005353754
Figure 0005353754

Figure 0005353754
Figure 0005353754

表1より、本発明の合金成分である実施例のNo.1〜9およびNo.15〜18は、構成組織がβ相単相もしくはβ相とα’’マルテンサイト相の2相となっており、ヤング率も80GPa未満と十分に低い値を示している。   From Table 1, No. of the Example which is an alloy component of this invention. 1-9 and no. Nos. 15 to 18 have a β-phase single phase or two phases of β-phase and α ″ martensite phase, and the Young's modulus is a sufficiently low value of less than 80 GPa.

一方で、比較例のNo.10は、構成組織がβ単相であるが、Mo当量が14.7と高くβ相が安定となり、ヤング率が81GPaと高い。   On the other hand, no. No. 10 has a β single phase, but has a high Mo equivalent of 14.7, a stable β phase, and a high Young's modulus of 81 GPa.

また、比較例のNo.11もしくはNo.12はMo当量がそれぞれ5.3もしくは3.9と低いため構成組織がα’マルテンサイト相とα’’マルテンサイト相の2相もしくはα’マルテンサイト単相となっており、ヤング率が高くなるα’相を有しているため、ヤング率が83GPaもしくは92GPaと高いことがわかる。   Moreover, No. of the comparative example. 11 or No. No. 12 has a low Mo equivalent of 5.3 or 3.9, so the structural structure is two phases of α ′ martensite phase and α ″ martensite phase or α ′ martensite single phase, and has a high Young's modulus. It can be seen that the Young's modulus is as high as 83 GPa or 92 GPa.

また、比較例のNo.13もしくはNo.14はMo当量が6.2もしくは7.9と本発明範囲内にあるものの、No.13ではAl含有量とMo含有量が低く構成組織がα’相単相となっていることから、ヤング率が97GPaと高い。一方、No.14は構成相もβ相とα’’マルテンサイト相の2相からなっているが、Alの添加量が3%と少ないためω相が十分抑制されておらず、ヤング率が87GPaと高い。   Moreover, No. of the comparative example. 13 or No. No. 14 has a Mo equivalent of 6.2 or 7.9 and is within the scope of the present invention. In No. 13, the Young's modulus is as high as 97 GPa because the Al content and the Mo content are low and the structural structure is an α ′ phase single phase. On the other hand, no. No. 14 is composed of two phases, a β phase and an α ″ martensite phase, but the ω phase is not sufficiently suppressed because the amount of Al added is as small as 3%, and the Young's modulus is as high as 87 GPa.

表2より、本発明合金成分である実施例、No.2、3、4は、U字型に曲げ加工した後、熱処理を施すことにより、曲げの角度が緩やかとなり、形状記憶特性を示す。またさらに高温で保持することにより、曲げの角度が急となり、曲げ方向と同一方向への形状記憶特性を示す。   From Table 2, the Examples, No. 2, 3, and 4 are bent into a U shape and then subjected to heat treatment, whereby the bending angle becomes gentle and shows shape memory characteristics. Further, by holding at a higher temperature, the angle of bending becomes steep, and shape memory characteristics in the same direction as the bending direction are exhibited.

一方、比較例のNo.10もしくはNo.11は曲げ加工を施した後、熱処理を施しても、曲げ角に変化が無く、二方向の形状記憶特性を示さない。   On the other hand, no. 10 or No. No. 11 shows no change in the bending angle even after heat treatment after bending, and does not show shape memory characteristics in two directions.

本発明のβ型チタン合金は、従来のβ型チタン合金よりも高価な添加元素であるV、Mo等の添加元素量が少なく、非常に低いヤング率を有していることから、自動車または二輪車のサスペンションスプリング、エンジンバルブスプリングなどの自動車または二輪車用部品材料やメガネのフレーム材として利用することに適しており、これら部品材の軽量化に寄与する。   The β-type titanium alloy of the present invention has a very low Young's modulus because it has a smaller amount of additive elements such as V and Mo, which are more expensive additive elements than conventional β-type titanium alloys, and therefore has a very low Young's modulus. It is suitable for use as a material for automobile or motorcycle parts such as suspension springs and engine valve springs, and as a frame material for eyeglasses, and contributes to weight reduction of these parts.

Claims (6)

質量%で、3.5%以上7.0%未満のAl、1.4%以上3.6%未満のFe、2.0%以上10.0%未満のMoを含有し、残部Ti及び不可避的な不純物からなり、含有元素の添加量をMo当量=2.9×[Fe%]+[Mo%]−[Al%]なる式において、Mo当量が6.0以上14.0%未満であることを特徴とする、80GPa未満の低ヤング率を有する準安定β型チタン合金。   Contains 3.5% or more and less than 7.0% Al, 1.4% or more and less than 3.6% Fe, 2.0% or more and less than 10.0% Mo, and the balance is Ti and inevitable In the formula of Mo equivalent = 2.9 × [Fe%] + [Mo%] − [Al%], the Mo equivalent is not less than 6.0 and less than 14.0%. A metastable β-type titanium alloy having a low Young's modulus of less than 80 GPa. 質量%で、3.5%以上5.0%未満のAl、1.4%以上3.6%未満のFe、2.0%以上9.0%未満のMoを含有し、残部Ti及び不可避的な不純物からなり、含有元素の添加量をMo当量=2.9×[Fe%]+[Mo%]−[Al%]なる式において、Mo当量が6.0以上14.0%未満であることを特徴とする、80GPa未満の低ヤング率を有する準安定β型チタン合金。   Contains 3.5% or more and less than 5.0% Al, 1.4% or more and less than 3.6% Fe, 2.0% or more and less than 9.0% Mo, the balance Ti and unavoidable In the formula of Mo equivalent = 2.9 × [Fe%] + [Mo%] − [Al%], the Mo equivalent is not less than 6.0 and less than 14.0%. A metastable β-type titanium alloy having a low Young's modulus of less than 80 GPa. 前記Mo当量が7.0以上12.0%未満であることを特徴とする、請求項1又は2に記載の、80GPa未満の低ヤング率を有する準安定β型チタン合金。   The metastable β-type titanium alloy having a low Young's modulus of less than 80 GPa according to claim 1 or 2, wherein the Mo equivalent is 7.0 or more and less than 12.0%. 前記Mo当量が7.5以上11.5%未満であることを特徴とする、請求項1又は2に記載の、80GPa未満の低ヤング率を有する準安定β型チタン合金。   The metastable β-type titanium alloy having a low Young's modulus of less than 80 GPa according to claim 1 or 2, wherein the Mo equivalent is 7.5 or more and less than 11.5%. ミクロ組織がβ相単相もしくは、β相およびα’’マルテンサイト相の2相からなることを特徴とする、請求項1〜4の何れか1項に記載の、80GPa未満の低ヤング率を有する準安定β型チタン合金。   The low Young's modulus of less than 80 GPa according to any one of claims 1 to 4, characterized in that the microstructure consists of a single phase of β phase or two phases of β phase and α '' martensite phase. A metastable β-type titanium alloy. β変態点以上の温度から水冷以上の冷却速度で冷却することを特徴とする、請求項1〜5の何れか1項に記載の80GPa未満の低ヤング率を有する準安定β型チタン合金の製造方法。   The production of a metastable β-type titanium alloy having a low Young's modulus of less than 80 GPa according to any one of claims 1 to 5, wherein the cooling is performed at a cooling rate equal to or higher than water cooling from a temperature equal to or higher than a β transformation point. Method.
JP2010034865A 2009-02-19 2010-02-19 Metastable β-type titanium alloy having low Young's modulus and method for producing the same Active JP5353754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010034865A JP5353754B2 (en) 2009-02-19 2010-02-19 Metastable β-type titanium alloy having low Young's modulus and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009036583 2009-02-19
JP2009036583 2009-02-19
JP2010034865A JP5353754B2 (en) 2009-02-19 2010-02-19 Metastable β-type titanium alloy having low Young's modulus and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010216011A JP2010216011A (en) 2010-09-30
JP5353754B2 true JP5353754B2 (en) 2013-11-27

Family

ID=42975141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010034865A Active JP5353754B2 (en) 2009-02-19 2010-02-19 Metastable β-type titanium alloy having low Young's modulus and method for producing the same

Country Status (1)

Country Link
JP (1) JP5353754B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498769A (en) * 2014-11-20 2015-04-08 中国航空工业集团公司北京航空材料研究院 Titanium alloy with strength greater than 1400MPa

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370669B1 (en) 2010-08-10 2014-03-04 도요타 지도샤(주) Vehicle seat and seat back board
JP5621571B2 (en) * 2010-12-14 2014-11-12 新日鐵住金株式会社 Α + β type titanium alloy having a low Young's modulus of less than 75 GPa and method for producing the same
EP2788519B1 (en) * 2011-12-06 2016-11-23 National Cheng Kung University Method for increasing mechanical strength of titanium alloys having " phase by cold working
CN102586639A (en) * 2012-03-16 2012-07-18 广州有色金属研究院 Method for preparing titanium alloy through high-speed pressing formation
KR101418775B1 (en) * 2012-05-30 2014-07-21 한국기계연구원 Beta type titanium alloy with low elastic modulus and high strength
WO2016013566A1 (en) * 2014-07-25 2016-01-28 新日鐵住金株式会社 Titanium alloy member having shape change characteristics in same direction as working direction, and method for manufacturing same
JP6696202B2 (en) * 2016-02-15 2020-05-20 日本製鉄株式会社 α + β type titanium alloy member and manufacturing method thereof
DE102021213902A1 (en) * 2020-12-11 2022-06-15 Kabushiki Kaisha Toyota Jidoshokki Non-magnetic element and method of making the non-magnetic element
CN115449665A (en) * 2022-07-08 2022-12-09 重庆大学 Titanium alloy and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294267A (en) * 1992-12-04 1994-03-15 Titanium Metals Corporation Metastable beta titanium-base alloy
JP3884316B2 (en) * 2002-04-04 2007-02-21 株式会社古河テクノマテリアル Superelastic titanium alloy for living body
US20040168751A1 (en) * 2002-06-27 2004-09-02 Wu Ming H. Beta titanium compositions and methods of manufacture thereof
JP4264411B2 (en) * 2004-04-09 2009-05-20 新日本製鐵株式会社 High strength α + β type titanium alloy
JP4517095B2 (en) * 2005-10-07 2010-08-04 新日本製鐵株式会社 High strength titanium alloy automotive engine valve
JP4478123B2 (en) * 2006-05-25 2010-06-09 新日本製鐵株式会社 Α + β-type titanium alloy member having a tensile strength of 1000 MPa class or more and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498769A (en) * 2014-11-20 2015-04-08 中国航空工业集团公司北京航空材料研究院 Titanium alloy with strength greater than 1400MPa

Also Published As

Publication number Publication date
JP2010216011A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5353754B2 (en) Metastable β-type titanium alloy having low Young&#39;s modulus and method for producing the same
JP5594244B2 (en) Α + β type titanium alloy having a low Young&#39;s modulus of less than 75 GPa and method for producing the same
JP4493029B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
JP4493028B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
AU2004236647B2 (en) Methods of processing nickel-titanium shape memory alloys
JP4605514B2 (en) Titanium plate and titanium plate manufacturing method
WO2009151031A1 (en) α-β TYPE TITANIUM ALLOY
JP2013534964A (en) Titanium alloy
JP5625646B2 (en) Titanium plate excellent in rigidity in the rolling width direction and method for producing the same
JP4478123B2 (en) Α + β-type titanium alloy member having a tensile strength of 1000 MPa class or more and method for producing the same
JP6269836B2 (en) Titanium alloy member having shape change characteristic in the same direction as the machining direction
JP4837783B2 (en) Method for adjusting Young&#39;s modulus of α + β type titanium alloy member having a tensile strength of 1000 MPa class or more
JP5589861B2 (en) Α + β type titanium alloy member having high strength and low Young&#39;s modulus and method for producing the same
JPWO2007066555A1 (en) Co-based alloy and manufacturing method thereof
CN112639144A (en) Copper alloy material, method for producing same, and member or component made of copper alloy material
JP5621571B2 (en) Α + β type titanium alloy having a low Young&#39;s modulus of less than 75 GPa and method for producing the same
JP5578041B2 (en) Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof
JP2009114513A (en) TiAl-BASED ALLOY
JP5144269B2 (en) High-strength Co-based alloy with improved workability and method for producing the same
JP6156865B2 (en) Super elastic alloy
JP2005060821A (en) beta TYPE TITANIUM ALLOY, AND COMPONENT MADE OF beta TYPE TITANIUM ALLOY
JP5605316B2 (en) Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof
JP5831283B2 (en) Titanium alloy member whose shape is deformed in the same direction as the processing direction by heat treatment and its manufacturing method
JP2005154850A (en) High strength beta-type titanium alloy
JPS6328975B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R151 Written notification of patent or utility model registration

Ref document number: 5353754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350