JP5353657B2 - Vibration control device and vehicle equipped with the same - Google Patents

Vibration control device and vehicle equipped with the same Download PDF

Info

Publication number
JP5353657B2
JP5353657B2 JP2009267245A JP2009267245A JP5353657B2 JP 5353657 B2 JP5353657 B2 JP 5353657B2 JP 2009267245 A JP2009267245 A JP 2009267245A JP 2009267245 A JP2009267245 A JP 2009267245A JP 5353657 B2 JP5353657 B2 JP 5353657B2
Authority
JP
Japan
Prior art keywords
vibration
current
canceling
damping
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009267245A
Other languages
Japanese (ja)
Other versions
JP2011112111A (en
Inventor
英朗 守屋
丈生 伊藤
猛 富崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009267245A priority Critical patent/JP5353657B2/en
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to KR1020127008783A priority patent/KR20120114214A/en
Priority to PCT/JP2010/071051 priority patent/WO2011065441A1/en
Priority to CN201080053633.9A priority patent/CN102667227B/en
Priority to EP10833287A priority patent/EP2505870A1/en
Publication of JP2011112111A publication Critical patent/JP2011112111A/en
Priority to US13/473,876 priority patent/US9075418B2/en
Priority to HK12112257.9A priority patent/HK1171494A1/en
Application granted granted Critical
Publication of JP5353657B2 publication Critical patent/JP5353657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a damping device which improves stability of damping by canceling fault generated by a low sensitivity region in which damping effect acquired through an excitation of exciting means is low. <P>SOLUTION: When vibration generated by a vibration generating source gn and offsetting vibration generated by the exciting means are offset at a location at which they should be damped, a damping current command I<SB>41</SB>, or an offsetting signal, is corrected so that vibration remaining as offsetting error may be small based on vibration detected by a vibration detecting means 1, and the damping current command I<SB>41</SB>, or the offsetting signal, is made to be corrected in a direction that the offsetting vibration generated by the exciting means is suppressed when a present frequency is decided to be present in the low sensitivity region by a sensitivity judging means 52. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、制振安定性を向上させた制振装置及びこれを搭載した車両に関するものである。   The present invention relates to a vibration damping device with improved vibration damping stability and a vehicle equipped with the vibration damping device.

従来から車両のエンジン等の振動発生源で生じた振動と加振手段を通じて発生させた相殺振動とを制振すべき位置で相殺する制振装置が知られている。このような従来の制振装置として特許文献1には、振動発生源で生じた振動に対応する周波数を入力して振動発生源から制振すべき位置へ伝達した振動を相殺するための相殺信号を発生する制御手段と、この制御手段の発生する相殺信号が入力されることにより作動して制振すべき位置に相殺振動を発生させる加振手段と、制振すべき位置において振動発生源で生じた振動と相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、制御手段が、振動検出手段により検出された振動に基づいて相殺誤差として残る振動が小さくなるように相殺信号を修正するものが開示されている。   2. Description of the Related Art Conventionally, there is known a vibration damping device that cancels vibration generated at a vibration generation source such as an engine of a vehicle and canceling vibration generated through a vibrating means at a position where vibration is to be suppressed. As such a conventional vibration damping device, Patent Document 1 discloses a cancellation signal for canceling vibration transmitted from a vibration source to a position to be damped by inputting a frequency corresponding to vibration generated at the vibration source. Control means for generating vibration, excitation means for generating a cancellation vibration at a position to be damped by inputting a cancellation signal generated by the control means, and a vibration generating source at the position to be damped Vibration detecting means for detecting a vibration remaining as a canceling error between the generated vibration and the canceling vibration, and the control means cancels the vibration remaining as a canceling error based on the vibration detected by the vibration detecting means. What modifies the signal is disclosed.

特開2003−202902号公報JP 2003-202902 A

加振手段で発生させた振動は、加振手段から制振すべき位置に至る振動伝達経路上の伝達特性により制振すべき位置へ伝達する過程でその振幅又は位相が変化するものであり、加振手段を設ける位置によっては加振手段で発生させた振動が制振すべき位置に伝達するまでに大きく減衰してしまうという振動の伝わりにくい低感度領域が存在する場合がある。この低感度領域では、加振手段の加振により得られる制振効果が低く、加振手段を通じて制振すべき位置に発生させる相殺振動が小さくなり、この相殺振動と制振すべき位置の振動との相殺誤差が一向に埋まらないので、従来の制振装置では加振手段で発生させる振動を増加させ続けようとする。この状態に陥ると、他の部位への振動に悪影響を及ぼす場合があるうえ、この状態で周波数が推移して低感度領域を抜けると、必要以上の大きな相殺振動が制振すべき位置に加振されてしまい、制振の安定性を損ねるばかりでなく、最悪制御が発散状態に陥ることがある。   The vibration generated by the vibration means changes its amplitude or phase in the process of transmission to the position to be damped by the transmission characteristic on the vibration transmission path from the vibration means to the position to be damped. Depending on the position where the vibration means is provided, there may be a low-sensitivity region in which vibration is not easily transmitted such that the vibration generated by the vibration means is greatly attenuated before being transmitted to the position where vibration is to be suppressed. In this low sensitivity region, the damping effect obtained by the vibration of the vibration means is low, and the cancellation vibration generated at the position to be controlled through the vibration means is small. Therefore, the conventional vibration damping device tries to continue to increase the vibration generated by the vibrating means. If this state occurs, vibrations to other parts may be adversely affected, and if the frequency changes in this state and passes through the low sensitivity region, a larger canceling vibration than necessary is added to the position to be damped. In addition to impairing the stability of vibration suppression, the worst control may fall into a divergent state.

本発明は、このような課題に着目してなされたものであって、その目的は、加振手段の加振を通じて得られる制振効果が低い低感度領域によって生ずる不具合を解消し、制振の安定性を向上させた制振装置およびこれを搭載した車両を提供することを目的としている。   The present invention has been made paying attention to such a problem, and its purpose is to eliminate the problem caused by the low sensitivity region where the vibration damping effect obtained through the vibration of the vibration means is low, and to suppress vibration. An object of the present invention is to provide a vibration damping device with improved stability and a vehicle equipped with the vibration damping device.

本発明は、かかる目的を達成するために、次のような手段を講じたものである。   In order to achieve this object, the present invention takes the following measures.

すなわち、本発明の制振装置は、振動発生源で生じる振動と加振手段により発生される相殺振動とを制振すべき位置で相殺するにあたり、前記振動に対応する周波数を入力して前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するための相殺信号を発生する制御手段と、この制御手段の発生する相殺信号が入力されることにより作動して前記制振すべき位置に相殺振動を発生させる加振手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記制御手段が、前記振動検出手段により検出された振動に基づいて前記相殺誤差として残る振動が小さくなるように前記相殺信号を修正する制振装置であって、前記加振手段から前記制振すべき位置に至る振動伝達経路上の伝達特性を周波数と関連づけて感度情報として記憶する記憶手段と、前記感度情報に基づいて現周波数が前記加振手段により発生される振動の伝わりにくい低感度領域にあるか否かを判定する感度判定手段とを設け、前記制御手段は、前記感度判定手段により現周波数が低感度領域にあると判定される場合に前記相殺信号を前記加振手段により発生される相殺振動を抑える方向に修正することを特徴とする。   That is, the vibration damping device of the present invention inputs a frequency corresponding to the vibration and cancels the vibration generated at the vibration source and the canceling vibration generated by the vibration excitation means at a position where vibration is to be suppressed. Control means for generating a canceling signal for canceling vibration transmitted from the generation source to the position to be damped, and the position to be damped by inputting the canceling signal generated by the control means And vibration detecting means for detecting vibration remaining as a canceling error between the vibration generated at the vibration generating source and the canceling vibration at the position to be controlled. Means for correcting the canceling signal so as to reduce the vibration remaining as the canceling error based on the vibration detected by the vibration detecting means; The storage means for storing the transmission characteristics on the vibration transmission path leading to the position as sensitivity information in association with the frequency, and the current frequency based on the sensitivity information is in a low sensitivity region where the vibration generated by the excitation means is difficult to be transmitted. Sensitivity determining means for determining whether or not the canceling signal is generated by the excitation means when the sensitivity determining means determines that the current frequency is in the low sensitivity region. It is characterized by correcting in a direction to suppress vibration.

このように構成すると、加振手段から制振すべき位置に至る振動伝達経路上の伝達特性が周波数と関連づけて感度情報として記憶されており、この感度情報に基づいて現周波数が加振手段により発生される振動の伝わりにくい低感度領域にあると判定されると、相殺信号が加振手段により発生される相殺振動を抑える方向に修正されるので、加振手段の加振により得られる制振効果が低い低感度領域では、加振手段により発生される振動が抑えられ、他の部位への振動に悪影響を及ぼすことや低感度領域を抜けた場合に必要以上の大きな相殺振動が加振されることを防止し、低感度領域により生ずる不具合を解消して、制振安定性を向上させることができる。   With this configuration, the transmission characteristic on the vibration transmission path from the vibration means to the position to be damped is stored as sensitivity information in association with the frequency, and the current frequency is determined by the vibration means based on this sensitivity information. If it is determined that the generated vibration is in a low-sensitivity region, the cancellation signal is corrected in a direction to suppress the cancellation vibration generated by the vibration means, so that vibration suppression obtained by the vibration of the vibration means is obtained. In the low-sensitivity area where the effect is low, vibration generated by the vibration means is suppressed, and adverse effects on vibrations to other parts, or excessive cancellation vibration that is more than necessary when passing through the low-sensitivity area. Can be prevented, and problems caused by the low sensitivity region can be eliminated, and the vibration suppression stability can be improved.

特に、現周波数が低感度領域にあるか否かを効果的に判定するためには、前記感度判定手段は、前記感度情報に基づいて現周波数に関連づけられた振動伝達経路上の伝達特性の一つである振幅成分の伝達度が予め定められた第1しきい値より低い場合に現周波数が前記低感度領域にあると判定することが好ましい。   In particular, in order to effectively determine whether or not the current frequency is in the low sensitivity region, the sensitivity determination unit is configured to transmit one of the transfer characteristics on the vibration transmission path associated with the current frequency based on the sensitivity information. It is preferable to determine that the current frequency is in the low sensitivity region when the degree of transmission of the amplitude component is lower than a predetermined first threshold value.

現周波数が低感度領域にあるか否かの判定結果が頻繁に変わることにより制御が不安定になることを有効に防止するためには、前記感度判定手段は、前記感度情報に基づいて現周波数に関連づけられた振動伝達経路上の伝達特性の一つである振幅成分の伝達度が前記第1しきい値より高い伝達度である第2しきい値よりも高い場合に現周波数が前記低感度領域にないと判定するものであって、前記第1しきい値と前記第2しきい値との間に判定結果が変わらない不変領域が設けられており、前記制御手段は、前記感度判定手段により現周波数が低感度領域にないと判定される場合に前記相殺信号の修正を行わないことが望ましい。   In order to effectively prevent the control from becoming unstable due to frequent changes in the determination result as to whether or not the current frequency is in the low sensitivity region, the sensitivity determination means includes the current frequency based on the sensitivity information. When the transmission of the amplitude component, which is one of the transmission characteristics on the vibration transmission path associated with, is higher than the second threshold, which is higher than the first threshold, the current frequency is the low sensitivity. An invariable region is provided between the first threshold value and the second threshold value, and an invariable region is provided between the first threshold value and the second threshold value, and the control means includes the sensitivity determination means. Therefore, it is desirable not to correct the cancellation signal when it is determined that the current frequency is not in the low sensitivity region.

多大な制振電流指令が流れることによる不具合を防止する機構を利用して上記判定を実現するためには、前記相殺信号が制振電流指令であって、前記周波数から予め定めた電流上限値を導出し前記制振電流指令のピーク電流値が前記電流上限値を超過している場合に前記制御手段に電流上限超過信号を入力する電流超過検出手段を更に具備し、前記制御手段は、前記電流上限超過信号の入力を受けて前記制振電流指令を制限するように構成されるものであり、前記電流超過検出手段は、前記感度判定手段により現周波数が低感度領域にあると判定されている場合に前記電流上限値を前記制振電流指令が制限される方向へ修正することが好ましい。   In order to realize the above determination using a mechanism for preventing a problem caused by a large amount of vibration suppression current command flowing, the canceling signal is a vibration suppression current command, and a predetermined current upper limit value is determined from the frequency. A current excess detection means for inputting a current upper limit excess signal to the control means when the peak current value of the vibration suppression current command derived exceeds the current upper limit value, and the control means comprises the current In response to an input of an upper limit excess signal, the vibration suppression current command is limited, and the current excess detection means is determined by the sensitivity determination means that the current frequency is in a low sensitivity region. In this case, it is preferable to correct the current upper limit value in a direction in which the damping current command is limited.

本発明の制振装置は、車両に搭載してエンジンから発生する振動を制振する上で特に好適に適用が可能である。   The vibration damping device of the present invention can be applied particularly preferably when it is mounted on a vehicle to suppress vibrations generated from the engine.

本発明は、以上説明したように、現周波数が加振手段により発生される振動の伝わりにくい低感度領域にあるか否かを判定し、低感度領域にあると判定された場合には、加振手段により発生される振動を抑えるので、加振手段の振動により他の部位への振動に悪影響を及ぼすことや現周波数が低感度領域を抜けた場合に必要以上の大きな相殺振動が加振されることを防止し、低感度領域により生ずる不具合を解消して、制振安定性を向上させることが可能となる。   As described above, the present invention determines whether or not the current frequency is in the low sensitivity region where the vibration generated by the excitation means is difficult to be transmitted. Since the vibration generated by the vibration means is suppressed, the vibration of the vibration means will adversely affect the vibration to other parts, and if the current frequency goes out of the low sensitivity region, a larger canceling vibration than necessary will be excited. Therefore, it is possible to improve the vibration damping stability by eliminating the problems caused by the low sensitivity region.

本発明の一実施形態に係る制振装置を車両に適用した模式的な構成図。1 is a schematic configuration diagram in which a vibration damping device according to an embodiment of the present invention is applied to a vehicle. 同制振装置を構成するリニアアクチュエータを備えた加振手段の模式的な構成図。The typical block diagram of the vibration means provided with the linear actuator which comprises the vibration damping device. 本発明の一実施形態における制振制御に係る構成を示すブロック図。The block diagram which shows the structure which concerns on the vibration suppression control in one Embodiment of this invention. 加振手段から制振すべき位置へ伝達する振動に関する説明図。Explanatory drawing regarding the vibration transmitted to the position which should be damped from a vibration means. 加振手段から制振すべき位置に至る振動伝達経路上の伝達特性を示す模式図。The schematic diagram which shows the transmission characteristic on the vibration transmission path | route from the vibration means to the position which should be damped. 同実施形態において電流クランプテーブルに設定された上限値及びこれを導出する概念を示す図。The figure which shows the concept which derives | leads out the upper limit set to the current clamp table in the same embodiment.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

この実施形態の制振装置は、図1に示すように、自動車等の車両に搭載されるものであり、座席st等の制振すべき位置posに設けた加速度センサ等の振動検出手段1と、所定の質量を有する補助質量2aを振動させることにより相殺振動Vi4を制振すべき位置posに発生するリニアアクチュエータ20を用いた加振手段2と、振動発生源gnであるエンジンの点火パルスから取り出される基本周波数fから基準波ejθを生成する基準波生成手段3と、振動検出手段1からの振動検出信号sgと前記基準波ejθとを入力し加振手段2に相殺振動Vi4を制振すべき位置posに発生させる適応制御手段4とを有し、車体フレームfrmにマウンタgnmを介して搭載されたエンジン等の振動発生源gnで生じる振動Vi3と加振手段2を通じて発生させる相殺振動Vi4とを制振すべき位置posで相殺させて制振すべき位置posにおける振動を低減するものである。 As shown in FIG. 1, the vibration damping device of this embodiment is mounted on a vehicle such as an automobile, and includes vibration detection means 1 such as an acceleration sensor provided at a position pos to be damped such as a seat st. From the vibration means 2 using the linear actuator 20 that generates the canceling vibration Vi4 at the position pos to be damped by vibrating the auxiliary mass 2a having a predetermined mass, and the engine ignition pulse that is the vibration generation source gn The reference wave generating means 3 for generating the reference wave e from the extracted fundamental frequency f, the vibration detection signal sg from the vibration detecting means 1 and the reference wave e are inputted, and the canceling vibration Vi4 is controlled by the vibration means 2. A vibration Vi3 generated by a vibration generation source gn of an engine or the like mounted on the vehicle body frame frm via a mounter gnm, and a vibration exciter. Is canceled out at the position pos should be damped and a canceling vibration Vi4 to generate through 2 is intended to reduce vibration at the position pos should be damped by.

振動検出手段1は、加速度センサ等を用いてエンジンの主振動方向と同一方向の主振動を検出し、振動検出信号sg{=Asin(θ+φ)}を出力する。 The vibration detecting means 1 detects a main vibration in the same direction as the main vibration direction of the engine using an acceleration sensor or the like, and outputs a vibration detection signal sg {= A 1 sin (θ + φ)}.

リニアアクチュエータ20は、図2に示すように、永久磁石を備える固定子22を車体フレームfrmに固定し、抑制するべき振動方向と同方向の往復動(図2の紙面では上下動)を可動子23に行わせるようにしたレシプロタイプのものである。ここでは、車体フレームfrmの抑制すべき振動の方向と可動子23の往復動方向(推力方向)とが一致するように、車体フレームfrmに固定される。可動子23は補助質量21とともに軸25に取り付けられ、この軸25は可動子23及び補助質量21を推力方向に移動可能なように板バネ24を介して固定子22に支持されている。リニアアクチュエータ20と補助質量21によって、動吸振器が構成されていることになる。   As shown in FIG. 2, the linear actuator 20 fixes a stator 22 having a permanent magnet to the vehicle body frame frm, and moves the reciprocating motion in the same direction as the vibration direction to be suppressed (up and down motion on the paper surface of FIG. 2). It is of a reciprocating type that has been made to perform 23. Here, the body frame frm is fixed to the body frame frm so that the vibration direction to be suppressed matches the reciprocating direction (thrust direction) of the mover 23. The mover 23 is attached to the shaft 25 together with the auxiliary mass 21, and the shaft 25 is supported by the stator 22 via the leaf spring 24 so that the mover 23 and the auxiliary mass 21 can be moved in the thrust direction. The linear actuator 20 and the auxiliary mass 21 constitute a dynamic vibration absorber.

リニアアクチュエータ20を構成するコイル(図示せず)に交流電流(正弦波電流、矩形波電流)を流した場合、コイルに所定方向の電流が流れる状態では、磁束が、永久磁石においてS極からN極に導かれることにより、磁束ループが形成される。その結果、可動子23は、重力に逆らう方向(上方向)に移動する。一方、コイルに対して所定方向とは逆方向の電流を流すと、可動子23は、重力方向(下方向)に移動する。可動子23は、交流電流によるコイルへの電流の流れの方向が交互に変化することにより以上の動作を繰り返し、固定子22に対して軸25の軸方向に往復動することになる。これにより、軸25に接合されている補助質量21が上下方向に振動することになる。このリニアアクチュエータ20それ自体のより具体的な構造や動作説明は公知であるため、詳細は省略する。可動子23は図示しないストッパによって動作範囲が規制されている。リニアアクチュエータ20と補助質量21とによって構成される動吸振器は、アンプ6から出力される電流制御信号ssに基づいて、補助質量21の加速度を制御して制振力を調節することにより、車体フレームfrmに発生する振動を相殺して振動を低減することができる。   When an alternating current (sine wave current, rectangular wave current) is passed through a coil (not shown) constituting the linear actuator 20, the magnetic flux is changed from the S pole to the N in the permanent magnet when a current in a predetermined direction flows through the coil. By being guided to the pole, a magnetic flux loop is formed. As a result, the mover 23 moves in a direction (upward) against gravity. On the other hand, when a current in a direction opposite to the predetermined direction is applied to the coil, the mover 23 moves in the direction of gravity (downward). The mover 23 repeats the above operation by alternately changing the direction of the current flow to the coil by the alternating current, and reciprocates in the axial direction of the shaft 25 with respect to the stator 22. As a result, the auxiliary mass 21 joined to the shaft 25 vibrates in the vertical direction. Since a more specific structure and explanation of the operation of the linear actuator 20 itself are known, details thereof will be omitted. The operating range of the mover 23 is restricted by a stopper (not shown). The dynamic vibration absorber constituted by the linear actuator 20 and the auxiliary mass 21 controls the acceleration of the auxiliary mass 21 and adjusts the damping force based on the current control signal ss output from the amplifier 6. The vibration generated in the frame frm can be canceled to reduce the vibration.

基準波生成手段3は、図3に示すように、基本周波数f[Hz]から基本次数の基準波ejθである基準正弦波(sinθ)と基準余弦波(cosθ)を生成する。生成される基準正弦波(sinθ)と基準余弦波(cosθ)は何らかの同期信号に対し同期しても、させなくてもどちらでもよい。θ=ωt=2πftである。 As shown in FIG. 3, the reference wave generating means 3 generates a reference sine wave (sin θ) and a reference cosine wave (cos θ), which are reference waves ejθ of the basic order, from the basic frequency f [Hz]. The generated reference sine wave (sin θ) and reference cosine wave (cos θ) may or may not be synchronized with any synchronization signal. θ = ωt = 2πft.

適応制御手段4は、振動を制御する適応制御手段たる適応アルゴリズムブロック4aを主体とする。この適応アルゴリズムブロック4aは、振動検出信号sgと前記基準波ejθ{=(sinθ、cosθ)}とから適応フィルタ係数(Re、Im)=(A´cosφ´、A´sinφ´)を算出して当該適応フィルタ係数(Re、Im)に基づき制振電流指令I41を生成し、これに基づき後述する電流PI演算ブロック5やアンプ6を介してリニアアクチュエータ20に電流制御信号ssを入力することで、制振すべき位置posに前記振動発生源gnからの振動に対し逆相となる相殺振動Vi4を加振手段2を通じて発生させる。先ず、検出してきた振動検出信号sg{=Asin(θ+φ)}の基本周波数成分の正弦波の逆信号(正逆が反対の信号)を生成する。振動検出信号Asin(θ+φ)は収束パラメータμと乗算されたのち、乗算器41a、41bにおいて基準正弦波sinθ、あるいは、基準余弦波cosθと乗算され、積分器41c、41dにおいて演算毎に前回値Z- に加算する形で積分される。その演算結果は、振動検出信号sgの基準正弦波sinθからずれた逆相正弦波ベクトルの収束方向の成分を持つ逆相正弦波のベクトルすなわち適用フィルタ係数(Re、Im)=(A´cosφ´、A´sinφ´)として算出される。算出した適用フィルタ係数(Re、Im)に対し、乗算器41e、41fにおいてそれぞれ基準正弦波sinθ、基準余弦波cosθを乗算し、その結果を加算器41gにおいて加算することで、振動検出信号sgの逆相正弦波信号として制振電流指令I41{=A´sin(θ+φ´)}を生成する。この制振電流指令I41は、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を相殺するため加振手段2に相殺振動Vi4を発生させる電流制御信号ssの基礎となる相殺信号である。積分を繰り返すと、A´、φ´が真値A、φと対応する値に収束するにつれて振動の相殺が進むが、基本周波数fや位相θは絶えず変化しているため、常に変化に追従する形で制御が行われる。 The adaptive control means 4 is mainly composed of an adaptive algorithm block 4a which is an adaptive control means for controlling vibration. The adaptive algorithm block 4a calculates adaptive filter coefficients (Re, Im) = (A 1 ′ cos φ ′, A 1 ′ sin φ ′) from the vibration detection signal sg and the reference wave e {= (sin θ, cos θ)}. Based on the calculated adaptive filter coefficients (Re, Im), a damping current command I 41 is generated, and based on this, a current control signal ss is input to the linear actuator 20 via a current PI calculation block 5 and an amplifier 6 described later. As a result, a canceling vibration Vi4 having a phase opposite to the vibration from the vibration generating source gn is generated through the vibration means 2 at the position pos to be damped. First, a reverse sine wave signal of the fundamental frequency component of the vibration detection signal sg {= A 1 sin (θ + φ)} that has been detected (a signal with the opposite direction) is generated. The vibration detection signal A 1 sin (θ + φ) is multiplied by the convergence parameter μ, and then multiplied by the reference sine wave sinθ or the reference cosine wave cosθ in the multipliers 41a and 41b. It is integrated in the form of added to the - value Z. The calculation result is a vector of the anti-phase sine wave having a component in the convergence direction of the anti-phase sine wave vector shifted from the reference sine wave sin θ of the vibration detection signal sg, that is, the applied filter coefficient (Re, Im) = (A 1 ′ cos φ ', A 1 ' sinφ '). The calculated application filter coefficients (Re, Im) are multiplied by the reference sine wave sinθ and the reference cosine wave cosθ in the multipliers 41e and 41f, respectively, and the results are added in the adder 41g, thereby obtaining the vibration detection signal sg. A damping current command I 41 {= A 1 ′ sin (θ + φ ′)} is generated as a negative-phase sine wave signal. This damping current command I 41 is a canceling signal that is the basis of the current control signal ss that causes the vibration means 2 to generate the canceling vibration Vi4 to cancel the vibration Vi3 transmitted from the vibration generating source gn to the position pos to be controlled. It is. When the integration is repeated, the cancellation of the vibration proceeds as A ′ and φ ′ converge to the values corresponding to the true values A and φ. However, the fundamental frequency f and the phase θ constantly change, so the changes always follow. Control is performed in the form.

この制振電流指令I41を生成するにあたり、図4に示すように、振動発生源gnから制振すべき位置posへ伝達した振動Vi3に対してこの振動Vi3を逆波形にした振動−Vi3を相殺振動として加振すればよいが、加振手段2で発生させた振動Vi2は加振手段2から制振すべき位置posに至る振動伝達経路上の伝達特性によって制振すべき位置posに伝達する過程でその振幅又は位相が変化するので、この変化を考慮して制振すべき位置posに相殺振動Vi4が印加されるように振動Vi2を加振手段2に発生させる制振電流指令I41を生成する必要がある。具体的には、前記振動伝達経路上の伝達特性を表す振動伝達関数Gの逆伝達関数(1/G)を図3に示す逆伝達ゲイン記憶手段50に周波数と関連付けて感度情報として予め記憶しておき、上記で求めた振動検出信号sgの逆相正弦波信号(=相殺振動Vi4)と逆伝達関数(1/G)とを乗算器51で乗算して振動Vi2を発生させる制振電流指令I41を生成している。なお、ここでは、逆伝達関数の位相成分については図示及びその説明を省略している。図4では、伝達関数の振幅成分をGとし、位相成分をPとし、振動発生源gnから制振すべき位置posへ伝達する振動の振幅又は位相を変化させる振動伝達関数をG’と示している。 In generating the damping current command I 41 , as shown in FIG. 4, a vibration −Vi 3 in which the vibration Vi 3 has a reverse waveform with respect to the vibration Vi 3 transmitted from the vibration generation source gn to the position pos to be damped. The vibration Vi2 generated by the vibration means 2 is transmitted to the position pos to be damped by the transmission characteristic on the vibration transmission path from the vibration means 2 to the position pos to be damped. Since the amplitude or phase changes in the process, the damping current command I 41 that causes the vibration means 2 to generate the vibration Vi2 so that the canceling vibration Vi4 is applied to the position pos to be damped in consideration of this change. Must be generated. Specifically, the inverse transfer function (1 / G) of the vibration transfer function G representing the transfer characteristic on the vibration transfer path is stored in advance as sensitivity information in association with the frequency in the reverse transfer gain storage means 50 shown in FIG. A damping current command for generating the vibration Vi2 by multiplying the anti-phase sine wave signal (= cancellation vibration Vi4) of the vibration detection signal sg obtained above by the multiplier 51 by the multiplier 51. I 41 is generated. Here, illustration and description of the phase component of the inverse transfer function are omitted. In FIG. 4, the amplitude component of the transfer function is G, the phase component is P, and the vibration transfer function that changes the amplitude or phase of vibration transmitted from the vibration source gn to the position pos to be damped is denoted by G ′. Yes.

この加振手段2から制振すべき位置posに至る振動伝達経路上の伝達特性を表す伝達関数ゲイン(振幅成分)及び逆伝達関数ゲイン(振幅成分)は、図5(a)及び図5(b)にそれぞれ示されるように、周波数によってその伝達度が変化するものであり、周波数と関連付けて逆伝達ゲイン記憶手段50に記憶されている。図5に示す例では、加振手段2を設ける位置や振動を伝達する媒体等の環境によって加振手段で発生させた振動Vi2が制振すべき位置に伝達するまでに大きく減衰してしまうという振動が伝わりにくい低感度領域が低周波数帯と高周波数帯に存在している。この低感度領域では、加振手段2の加振により得られる制振効果が低く、加振手段2により発生させる相殺振動Vi4が小さくなり、この相殺振動Vi4と制振すべき位置posの振動Vi3との相殺誤差が一向に埋まらないので、制振装置が加振手段2で発生させる振動Vi2、すなわち制振電流指令I41を増加させ続けようとする。この状態は制振の安定性の観点から好ましくなく、制振電流指令I41を制限する必要がある。 The transfer function gain (amplitude component) and the inverse transfer function gain (amplitude component) representing the transfer characteristics on the vibration transfer path from the vibration means 2 to the position pos to be damped are shown in FIGS. As shown in each of b), the degree of transmission varies depending on the frequency, and is stored in the reverse transmission gain storage means 50 in association with the frequency. In the example shown in FIG. 5, the vibration Vi2 generated by the vibration means is greatly attenuated by the position where the vibration means 2 is provided and the environment such as the medium for transmitting the vibration to the position where the vibration is to be suppressed. Low sensitivity regions where vibrations are difficult to be transmitted exist in the low and high frequency bands. In this low sensitivity region, the damping effect obtained by the vibration of the vibration means 2 is low, the cancellation vibration Vi4 generated by the vibration means 2 is small, and this cancellation vibration Vi4 and the vibration Vi3 at the position pos to be controlled. since canceling error is bury not at all with the vibration damping device the vibration is generated in the vibrator 2 Vi2, that is, it tries to continue to increase the damping current command I 41. This state is not preferable from the viewpoint of damping stability, and the damping current command I 41 needs to be limited.

そこで、本実施形態ではさらに、逆伝達ゲイン記憶手段50に記憶される感度情報に基づいて現周波数が加振手段2により発生される振動Vi2の伝わりにくい低感度領域にあるか否かを判定する感度判定手段52を設けている。感度判定手段52は、図3及び図5(b)に示すように、逆伝達関数ゲイン(1/G)が第1しきい値より低い伝達度である場合は現周波数が低感度領域にあると判定して低感度検出信号Flgを出力する一方、逆伝達関数ゲイン(1/G)が第2しきい値より高い伝達度である場合は現周波数が低感度領域にないと判定して低感度検出信号Flgの出力を停止する。第2しきい値は、第1しきい値よりも高い伝達度に設定されており、第1しきい値と第2しきい値との間には所定の間隔が設けられて判定結果が切り変わらない不変領域が設けられている。各しきい値の具体的な設定例として、第1しきい値は、伝達関数ゲインの最大値(伝達度がピークとなる値)の−数十[dB]程度以下に設定するのが望ましく、第2しきい値は、第1しきい値に対し数[dB]程度高い値に設定するのが望ましい。このように、しきい値を用いてヒステリシス特性を持たせることにより、判定結果が頻繁に切り変わって低感度検出信号FlgのON/OFFが繰り返されるチャタリングを防止することが可能となる。   Therefore, in the present embodiment, it is further determined based on the sensitivity information stored in the reverse transfer gain storage means 50 whether or not the current frequency is in a low sensitivity region where the vibration Vi2 generated by the vibration means 2 is difficult to be transmitted. Sensitivity determination means 52 is provided. As shown in FIG. 3 and FIG. 5B, the sensitivity determination means 52 has the current frequency in the low sensitivity region when the inverse transfer function gain (1 / G) is lower than the first threshold. If the reverse transfer function gain (1 / G) is higher than the second threshold value, it is determined that the current frequency is not in the low sensitivity region and the low sensitivity detection signal Flg is output. The output of the sensitivity detection signal Flg is stopped. The second threshold value is set to be higher in transmission than the first threshold value, and a predetermined interval is provided between the first threshold value and the second threshold value, and the determination result is cut off. An invariable area that does not change is provided. As a specific setting example of each threshold value, the first threshold value is desirably set to about −tens of [dB] or less of the maximum value of the transfer function gain (the value at which the transfer degree reaches a peak), It is desirable to set the second threshold value to a value about several [dB] higher than the first threshold value. As described above, by providing the hysteresis characteristic using the threshold value, it is possible to prevent chattering in which the determination result is frequently switched and ON / OFF of the low sensitivity detection signal Flg is repeated.

この低感度検出信号Flgが出力されているとき、すなわち現周波数が低感度領域にあるときに、相殺信号である制振電流指令I41が加振手段2により発生される相殺振動Vi4を抑える方向に修正(制限)されるが、この修正(制限)は、過電流によりリニアアクチュエータ20を構成する可動子23が固定子22に設けた図示しないストッパ等への衝突等の不具合発生を防止するために設けられた制振電流指令I41を抑える機構を利用して行われている。 When the low sensitivity detection signal Flg is output, that is, when the current frequency is in the low sensitivity region, the damping current command I 41 that is a cancellation signal suppresses the cancellation vibration Vi4 generated by the vibration means 2. However, this correction (restriction) prevents the occurrence of problems such as collision of the movable element 23 constituting the linear actuator 20 with a stopper (not shown) provided on the stator 22 due to overcurrent. Is performed using a mechanism for suppressing the damping current command I 41 provided in

すなわち、その機構は、図3に示すように、前記制振電流指令I41のピーク電流値A´を算出する振幅検出手段4bと、基本周波数fから予め設めた電流上限値αを導出し前記制振電流指令I41のピーク電流値A´が前記電流上限値αを超過している場合に電流上限超過信号S41を生成する電流超過検出手段4cとを含んで構成されている。 That is, as shown in FIG. 3, the mechanism includes amplitude detection means 4b for calculating the peak current value A 1 ′ of the damping current command I 41 and a current upper limit value α 1 set in advance from the fundamental frequency f. derived peak current value a 1 of the damping current command I 41 'is configured to include a current excess detection means 4c for generating a current upper limit exceeded signal S 41 if they exceed the current upper limit value alpha 1 ing.

振幅検出手段4bは、制振電流指令I41の振幅A´を随時(リアルタイム)に算出するブロックである。振幅A´は、生成した制振電流指令I41の波形A´sin(θ+φ´)から求めてもよいし、その波形生成前の加算データの二乗和平方根をとっても良い。また、演算量を軽くするために二乗和だけをとり、比較する電流上限値αを二乗しても良い。 The amplitude detector 4b is a block that calculates the amplitude A 1 ′ of the damping current command I 41 as needed (real time). The amplitude A 1 ′ may be obtained from the waveform A 1 ′ sin (θ + φ ′) of the generated damping current command I 41 or may be the square sum of squares of the addition data before the waveform generation. Further, in order to reduce the amount of calculation, only the sum of squares may be taken and the current upper limit value α 1 to be compared may be squared.

電流超過検出手段4cは、電流上限値αを電流クランプテーブル41hの形で記憶している。この上限値αには、図6(a)に示すモータ上限電流Ic(最大出力値)もしくは位置上限電流Ip(衝突防止)の何れか小さい方の値が採用されている。 Current excess detection means 4c stores the current upper limit value alpha 1 in the form of a current clamp table 41h. The upper limit value alpha 1, the value of the smaller one shown in FIG. 6 (a) to the motor upper limit current shown Ic (maximum output) or position the upper limit current Ip (anticollision) is employed.

モータ上限電流Icは、本実施形態の演算処理機能を具現するコントローラにおいて出力できる最大電流値あるいはリニアアクチュエータ20に流すことができる(磁石が減磁しない程度の)最大電流値のうち何れか小さい方の値で、周波数によらず一定である。   The motor upper limit current Ic is the smaller of the maximum current value that can be output by the controller that implements the arithmetic processing function of this embodiment or the maximum current value that can be passed through the linear actuator 20 (so that the magnet does not demagnetize). This value is constant regardless of the frequency.

一方、位置上限電流Ipは、正弦波電流を流すことにより動作する可動子23が可動可能な振幅上限を超えない電流の上限値であり、正弦波加速度をa、最大加速度をAp(=a√2)とした場合、図6(b)に示す電流指令Irefの許容振幅Lpは、Lp<┃Xmax┃=Ap/ωとされる。この電流指令Irefは電流PI演算ブロック5で演算され、電圧指令としてアンプ6に入力されて、アンプ6による駆動でリニアアクチュエータ20が加速度aで駆動されることになる。図6(c)に示すように、電流指令Irefから可動子23に加速度aが発生するまでの伝達ゲインをE(f)とすると、a(f)=Iref・E(f)…(1)なる関係がある。今、最大電流Ip(f)を与えた場合に最大化速度Ap(f)が得られるとすると、Ap(f)=E(f)・Ip(f)…(2)であるから、(1)、(2)式より、Ip(f)=ω|Xmax|/E(f)が得られ、このIp(f)が位置上限電流とされ、エンジンgnから取り出した基本周波数fを入力することによってその時々の位置上限電流Ip(f)が求まる。 On the other hand, the position upper limit current Ip is the upper limit value of the current that does not exceed the upper limit of amplitude at which the movable element 23 that operates by passing a sine wave current can move, and the sine wave acceleration is a and the maximum acceleration is Ap (= a√ If a 2), the allowable amplitude Lp of the current command Iref shown in FIG. 6 (b), are Lp <┃Xmax┃ = Ap / ω 2 . The current command Iref is calculated by the current PI calculation block 5 and input to the amplifier 6 as a voltage command, and the linear actuator 20 is driven at the acceleration a by the drive by the amplifier 6. As shown in FIG. 6C, when the transmission gain from the current command Iref to the acceleration a occurring in the mover 23 is E (f), a (f) = Iref · E (f) (1) There is a relationship. Now, assuming that the maximum speed Ap (f) is obtained when the maximum current Ip (f) is given, since Ap (f) = E (f) · Ip (f) (2), (1) ), (2), Ip (f) = ω 2 | Xmax | / E (f) is obtained, this Ip (f) is used as the position upper limit current, and the fundamental frequency f extracted from the engine gn is input. Thus, the current position upper limit current Ip (f) is obtained.

これらの電流上限値α(IcまたはIpの何れか小さい方)は、そのまま選択部60に入力される一方で、電流上限値αを分岐して乗算器61で1/2倍に制限された電流上限値(α/2)が選択部60に入力されている。この選択部60は、感度判定手段52により低感度検出信号Flgが出力されている場合には電流上限値αを出力する一方、感度判定手段52により低感度検出信号Flgが出力されていない場合には制限された電流上限値(α/2)を出力する。出力された電流上限値(αまたはα/2の何れか一方)と振幅検出手段4bにより出力されたピーク電流値A´は比較部41iに入力され、基本次数ピーク電流値A´がその周波数の電流上限値(α又はα/2の何れか一方)以上となっているかどうかを判別し、もし、超過していれば電流上限超過信号(ON信号)S41を出力する。超過していない場合、電流上限超過信号S41は出力されない(OFF信号)。この信号S41は純粋に超過の可否によってON/OFFすることでもよいし、多少のヒステリシスの特性を持たせても良い。 These current upper limit values α 1 (Ic or Ip, whichever is smaller) are input to the selection unit 60 as they are, while the current upper limit value α 1 is branched and limited by the multiplier 61 to ½ times. current upper limit value (α 1/2) is input to the selection unit 60. The selection unit 60 while outputting the current upper limit value alpha 1 in the case of the sensitivity decision means 52 has the low sensitivity detection signal Flg is output, if the sensitivity decision means 52 does not low-sensitivity detection signal Flg is outputted outputs limited current limit (α 1/2) to. The output current upper limit value (either α 1 or α 1/2 ) and the peak current value A 1 ′ output by the amplitude detection means 4b are input to the comparison unit 41i, and the basic order peak current value A 1 ′. Is equal to or higher than the current upper limit value (either α 1 or α 1/2 ) of the frequency, and if it exceeds, the current upper limit excess signal (ON signal) S 41 is output. . If not exceeded, the current upper limit excess signal S41 is not output (OFF signal). The signal S 41 is also may be to ON / OFF by whether purely excess may have the characteristics of some hysteresis.

出力された電流上限超過信号S41は前記適応アルゴリズムブロック4aに入力されて、当該適応アルゴリズムブロック4aに、前記電流上限超過信号S41が入力されている間、すなわち現周波数が低感度領域にある間、前記適応フィルタ係数(Re、Im)を算出する毎に当該適応フィルタ係数(Re、Im)を予め定めた範囲内で制振電流指令I41が制限される方向に修正するようにしている。 Current upper limit exceeded signal S 41 outputted is inputted to the adaptive algorithm block 4a, to the adaptive algorithm block 4a, while the current upper limit exceeded signal S 41 is input, that is, the current frequency is in the low sensitivity region Meanwhile, every time the adaptive filter coefficient (Re, Im) is calculated, the adaptive filter coefficient (Re, Im) is corrected in a direction in which the damping current command I 41 is limited within a predetermined range. .

適応アルゴリズムブロック4aは、前述したごとく、前記振動検出手段1から入力される入力信号sgを積分しながら適応フィルタ係数(Re、Im)を更新する処理を繰り返すものであるが、制振電流指令I41を制限する際、前記積分値を小さく絞り込む位置に積分抜き処理ブロック4dを設け、積分抜き処理を行う。具体的には、電流上限超過信号S41が入力されているか否かによって内部のフラグ設定部41j、41kに0か1のフラグを立て、信号S41が入力されていないとき(フラグ1のとき)は絞り込みを行わず、信号S41が入力されているとき(フラグ0のとき)は演算タイミング毎に乗算器41m、41nにおいて抜き係数設定部41zに設定された抜き係数値kを前回値Z-1 に乗算することで、積分値を小さく絞り込む。抜き係数値kは一回の演算で絞り込む量を小さくするためのもので、例えばk=1020/1024(=0.9961)などと設定される。抜き係数値kを、1を大きく割り込まない値にしているのは(絞り込み量を小さく抑えているのは)、大きくしすぎると、一回の絞り込み動作で制振電流指令I41の値が急変し、出力に高調波が重畳されて異常振動を励起する原因になるからである。この抜き係数値kは、電流上限値α(電流クランプ値)からの超過量が大きくなるほど小さくなるように(つまり絞り込み量を大きくするように)、比較部41iからの偏差信号に応じて抜き係数設定部41zにおいて値を可変しても良い。また、超過量の比率を算出して、電流上限値αに同期させても良い。 As described above, the adaptive algorithm block 4a repeats the process of updating the adaptive filter coefficient (Re, Im) while integrating the input signal sg input from the vibration detecting means 1, but the damping current command I When limiting 41 , an integration removal process block 4d is provided at a position where the integral value is narrowed down to perform integration removal processing. Specifically, the current upper limit exceeded signal S 41 is the interior of the flag setting unit 41j by whether or not the input, sets a 0 or 1 in flag 41k, when the signal S 41 is not input (when the flag 1 ) does not perform narrowing, signal when the time of (the flag 0 S 41 is input) a multiplier 41m for each calculation timing, the previous value of the vent coefficient value k set to vent coefficient setting unit 41z in 41n Z By multiplying by -1 , the integral value is narrowed down. The extraction coefficient value k is for reducing the amount to be narrowed down by a single calculation, and is set to k = 1020/1024 (= 0.9961), for example. If the extraction coefficient value k is set to a value that does not significantly cut 1 (the amount of reduction is kept small), if the value is too large, the value of the damping current command I 41 changes suddenly with a single reduction operation. This is because harmonics are superimposed on the output and cause abnormal vibrations. The extraction coefficient value k is extracted according to the deviation signal from the comparison unit 41i so that the excess amount from the current upper limit value α 1 (current clamp value) increases (that is, the narrowing amount increases). The value may be varied in the coefficient setting unit 41z. Further, by calculating the ratio of the excess amount, it may be synchronized with the current upper limit value alpha 1.

すなわち、制振電流指令I41が超過している場合に、即座に制振電流指令I41の超過分をカットするのではなく、予め定めた範囲(ここでは、抜き係数値kによる積分の絞込みの範囲)で制振電流指令I41を制限する修正を繰り返すため、高調波の発生や、可動子の衝突のない振幅に向かって、制振電流指令I41が漸近することになる。絞り込み係数生成ブロック4dはあくまでも例であり、電流上限超過信号S41から絞り込み係数kの適用のオンオフないし当該絞り込み係数kを増減させるブロックであれば、内部構成はどの様な形であってもかまわない。適応フィルタ係数(Re、Im)の収束は、収束パラメータμが大きいほど早くなる。 That is, when the damping current command I 41 is exceeded, the excess of the damping current command I 41 is not cut immediately, but instead of a predetermined range (here, the integration is narrowed by the extraction coefficient value k). since in the range) and repeats the modification to limit the damping current command I 41, generation of harmonics, towards the free amplitude collision of the movable element, the damping current command I 41 is to be asymptotic. Refine coefficient generation block 4d is merely an example, if a block to increase or decrease the OFF to the narrowing coefficient k of the application of the narrowing coefficient k from the current upper limit exceeded signal S 41, the internal structure may be any kind of form Absent. The convergence of the adaptive filter coefficients (Re, Im) becomes faster as the convergence parameter μ is larger.

以上のように、本実施形態の制振装置は、振動発生源gnで生じる振動Vi3と加振手段2により発生される相殺振動Vi4とを制振すべき位置posで相殺するにあたり、振動Vi3に対応する周波数fを入力して振動発生源gnから制振すべき位置posへ伝達した振動Vi3を相殺するための相殺信号たる制振電流指令I41を発生する制御手段である適応アルゴリズムブロック4aと、この制御手段である適応アルゴリズムブロック4aの発生する相殺信号たる制振電流指令I41が入力されることにより作動して制振すべき位置posに相殺振動Vi4を発生させる加振手段2と、制振すべき位置posにおいて振動発生源gnで生じた振動Vi3と相殺振動Vi4との相殺誤差として残る振動を検出する振動検出手段1とを具備し、制御手段である適応アルゴリズムブロック4aが、振動検出手段1により検出された振動に基づいて相殺誤差として残る振動が小さくなるように相殺信号たる制振電流指令I41を修正するものであり、加振手段2から制振すべき位置posに至る振動伝達経路上の伝達特性を周波数と関連づけて感度情報として記憶する記憶手段たる逆伝達ゲイン記憶手段50と、感度情報に基づいて現周波数が加振手段2により発生される振動の伝わりにくい低感度領域にあるか否かを判定する感度判定手段52とを設け、制御手段たる適応アルゴリズムブロック4aは、感度判定手段52により現周波数が低感度領域にあると判定される場合に相殺信号たる制振電流指令I41を前記加振手段により発生される相殺振動を抑える方向に修正するように構成している。 As described above, the vibration damping device according to the present embodiment cancels the vibration Vi3 generated by the vibration generation source gn and the canceling vibration Vi4 generated by the vibration excitation unit 2 at the position pos to be vibrationally controlled. an adaptive algorithm block 4a is a control means for generating a cancellation signal serving damping current command I 41 for canceling vibration Vi3 that communicated by entering the corresponding frequency f to the position pos should be damped from the vibration generating source gn The excitation means 2 that operates when the damping current command I 41 that is a cancellation signal generated by the adaptive algorithm block 4a that is the control means is input and generates the cancellation vibration Vi4 at the position pos to be controlled, Vibration detection means 1 for detecting vibration remaining as a cancellation error between the vibration Vi3 generated by the vibration generation source gn and the cancellation vibration Vi4 at the position pos to be controlled And a control unit adaptive algorithm block 4a is, which modifies the damping current command I 41 serving cancellation signal so that the vibration is reduced remains as offset error based on the detected vibration by the vibration detecting unit 1, Reverse transfer gain storage means 50 as storage means for storing the transmission characteristics on the vibration transmission path from the vibration means 2 to the position pos to be damped as sensitivity information in association with the frequency, and the current frequency is added based on the sensitivity information. And a sensitivity determination unit 52 for determining whether or not the vibration generated by the vibration unit 2 is in a low sensitivity region, and the adaptive algorithm block 4a serving as the control unit uses the sensitivity determination unit 52 to reduce the current frequency to a low sensitivity region. modifying the cancellation signal serving damping current command I 41 in a direction to suppress the offsetting oscillation said generated by vibration means when it is determined that the It is configured to.

このように構成すると、加振手段2から制振すべき位置posに至る振動伝達経路上の伝達特性が周波数と関連づけて感度情報として記憶されており、この感度情報に基づいて現周波数が加振手段2により発生される振動Vi2の伝わりにくい低感度領域にあると判定されると、相殺信号たる制振電流指令I41が加振手段2により発生される相殺振動Vi4を抑える方向に修正されるので、加振手段2の加振により得られる制振効果が低い低感度領域では、加振手段2により発生される振動が抑えられ、他の部位への振動に悪影響を及ぼすことや低感度領域を抜けた場合に必要以上の大きな相殺振動Vi4が加振されることを防止し、低感度領域により生ずる不具合を解消して、制振安定性を向上させることができる。 With this configuration, the transmission characteristic on the vibration transmission path from the vibration means 2 to the position pos to be damped is stored as sensitivity information in association with the frequency, and the current frequency is excited based on this sensitivity information. If it is determined that the easily transmitted low sensitivity region of the vibration Vi2 generated by means 2, cancellation signal serving damping current command I 41 is modified in a direction to suppress the offsetting oscillation Vi4 generated by vibration means 2 Therefore, in the low sensitivity region where the vibration suppression effect obtained by the vibration of the vibration means 2 is low, the vibration generated by the vibration means 2 is suppressed, and adversely affects the vibration to other parts or the low sensitivity region. It is possible to prevent the excessive canceling vibration Vi4 from being excited when the vibration has passed through, eliminate the problems caused by the low sensitivity region, and improve the vibration damping stability.

また、本実施形態では、感度判定手段52が、感度情報に基づいて現周波数に関連づけられた振動伝達経路上の伝達特性の一つである振幅成分の伝達度が予め定められた第1しきい値より低い場合に現周波数が低感度領域にあると判定するので、第1しきい値の設定次第で、現周波数が低感度領域であるか否かを効果的に判定することが可能となる。   Further, in the present embodiment, the sensitivity determination means 52 has a first threshold in which the transmission degree of the amplitude component, which is one of the transmission characteristics on the vibration transmission path associated with the current frequency, is determined based on the sensitivity information. If it is lower than the value, it is determined that the current frequency is in the low sensitivity region. Therefore, it is possible to effectively determine whether or not the current frequency is in the low sensitivity region depending on the setting of the first threshold value. .

さらに、本実施形態では、感度判定手段52が、感度情報に基づいて現周波数に関連づけられた振動伝達経路上の伝達特性の一つである振幅成分の伝達度が第1しきい値より高い伝達度である第2しきい値よりも高い場合に現周波数が低感度領域にないと判定するものであって、第1しきい値と第2しきい値との間に判定結果が変わらない不変領域が設けられており、制御手段たる適応アルゴリズムブロック4aが、感度判定手段52により現周波数が低感度領域にないと判定される場合に相殺信号たる制振電流指令I41の修正を行わないので、現周波数がしきい値近傍にある場合に判定結果が頻繁に変わり制御が不安定になることを回避することが可能となる。 Furthermore, in the present embodiment, the sensitivity determination unit 52 transmits the amplitude component, which is one of the transmission characteristics on the vibration transmission path associated with the current frequency based on the sensitivity information, higher than the first threshold value. When the current threshold is higher than the second threshold value, it is determined that the current frequency is not in the low sensitivity region, and the determination result does not change between the first threshold value and the second threshold value. region is provided, the control means serving adaptive algorithm block 4a is, since the current frequency by the sensitivity decision means 52 does not perform a cancellation signal serving modified damping current command I 41 if it is determined not to low sensitivity region When the current frequency is in the vicinity of the threshold value, it is possible to avoid that the determination result frequently changes and the control becomes unstable.

さらにまた、本実施形態では、相殺信号が制振電流指令I41であって、周波数から予め定めた電流上限値αを導出し制振電流指令I41のピーク電流値A1´が電流上限値αを超過している場合に制御手段たる適応アルゴリズムブロック4aに電流上限超過信号S41を入力する電流超過検出手段4cを更に具備し、制御手段たる適応アルゴリズムブロック4aは、電流上限超過信号S41の入力を受けて制振電流指令I41を制限するように構成されるものであり、電流超過検出手段4cは、感度判定手段52により現周波数が低感度領域にあると判定されている場合に電流上限値αを制振電流指令I41が制限される方向へ修正して電流上限値(α/2)とするので、多大な制振電流指令が流れることによる可動子23の衝突等の不具合を防止する機構を利用して、現周波数が低感度領域にあるときに制振電流指令I41を加振手段2により発生される相殺振動Vi4を抑える方向に修正することを実現できる。 Furthermore, in the present embodiment, the canceling signal is the damping current command I 41 , a predetermined current upper limit value α 1 is derived from the frequency, and the peak current value A 1 ′ of the damping current command I 41 is the current upper limit value. further comprising a current excess detection means 4c for inputting a current limit exceeded signal S 41 to the control means serving adaptive algorithm block 4a when exceeds the alpha 1, the control means serving adaptive algorithm block 4a, the current upper limit exceeded signal S 41 is configured to limit the damping current command I 41 in response to the input of 41 , and the current excess detection means 4 c is determined by the sensitivity determination means 52 that the current frequency is determined to be in the low sensitivity region. the so the current upper limit value and correct the direction of vibration current command I 41 the current upper limit value alpha 1 is limited (α 1/2), the movable element 23 due to the flow of significant damping current command Using a mechanism for preventing a problem of collision or the like, realized to modify the direction of suppressing the offset vibration Vi4 that the current frequency is generated by the vibrating means 2 damping current command I 41 when in the low-sensitivity region it can.

したがって、このような制振装置を車両に搭載することにより、当該車両の制振機能に係る信頼性や耐久性を有効に向上させて、優れた走行機能を実現することが可能となる。   Therefore, by mounting such a vibration damping device on a vehicle, it is possible to effectively improve the reliability and durability related to the vibration damping function of the vehicle and realize an excellent traveling function.

以上、本発明の一実施形態について説明したが、各部の具体的な構成は、上述した実施形態のみに限定されるものではない。例えば、本実施形態では、逆伝達関数ゲインを周波数と関連づけて記録し、逆伝達関数ゲインに基づいて現周波数が低感度領域であるか否かを感度判定手段52で判定しているが、逆伝達関数ゲインの代わりに伝達関数ゲインを周波数と関連づけて記憶し、伝達関数ゲインに基づいて上記判定を行うように構成してもよい。   As mentioned above, although one Embodiment of this invention was described, the specific structure of each part is not limited only to embodiment mentioned above. For example, in this embodiment, the inverse transfer function gain is recorded in association with the frequency, and the sensitivity determination unit 52 determines whether or not the current frequency is in the low sensitivity region based on the inverse transfer function gain. Instead of the transfer function gain, the transfer function gain may be stored in association with the frequency, and the above determination may be performed based on the transfer function gain.

その他、本発明を振動発生が問題となる車両以外の移動装置や機器類に適用するなど、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, various modifications can be made without departing from the gist of the present invention, such as application of the present invention to a moving device or equipment other than a vehicle in which vibration is a problem.

1…振動検出手段
2…加振手段
4a…制御手段(適応アルゴリズムブロック)
4b…振幅検出手段
4c…電流超過検出手段
50…記憶手段(逆伝達ゲイン記憶手段)
52…感度判定手段
´…ピーク電流値
jθ…基準波
f…基本周波数
41…相殺信号(制振電流指令)
41…電流上限超過信号
α…電流上限値
1/2α…制限された電流上限値
gn…振動発生源
Vi3…振動発生源で生じる振動
Vi4…相殺振動
pos…制振すべき位置
DESCRIPTION OF SYMBOLS 1 ... Vibration detection means 2 ... Excitation means 4a ... Control means (adaptive algorithm block)
4b ... Amplitude detection means 4c ... Current excess detection means 50 ... Storage means (reverse transfer gain storage means)
52 ... Sensitivity determination means A 1 '... Peak current value e ... Reference wave f ... Fundamental frequency I 41 ... Cancellation signal (damping current command)
S 41 ... Current upper limit excess signal α 1 ... Current upper limit value 1 / 2α 1 ... Limited current upper limit value gn ... Vibration source Vi3 ... Vibration Vi4 generated at the vibration source ... Cancellation vibration pos ... Position to be controlled

Claims (5)

振動発生源で生じる振動と加振手段により発生される相殺振動とを制振すべき位置で相殺するにあたり、前記振動に対応する周波数を入力して前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するための相殺信号を発生する制御手段と、この制御手段の発生する相殺信号が入力されることにより作動して前記制振すべき位置に相殺振動を発生させる加振手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記制御手段が、前記振動検出手段により検出された振動に基づいて前記相殺誤差として残る振動が小さくなるように前記相殺信号を修正する制振装置であって、
前記加振手段から前記制振すべき位置に至る振動伝達経路上の伝達特性を周波数と関連づけて感度情報として記憶する記憶手段と、前記感度情報に基づいて現周波数が前記加振手段により発生される振動の伝わりにくい低感度領域にあるか否かを判定する感度判定手段とを設け、前記制御手段は、前記感度判定手段により現周波数が低感度領域にあると判定される場合に前記相殺信号を前記加振手段により発生される相殺振動を抑える方向に修正することを特徴とする制振装置。
When canceling the vibration generated at the vibration generation source and the canceling vibration generated by the excitation means at the position where vibration is to be suppressed, the frequency corresponding to the vibration is input to the position where vibration suppression is to be performed. Control means for generating a canceling signal for canceling the transmitted vibration, and an excitation means for generating a canceling vibration at the position to be controlled by operating when the canceling signal generated by the control means is input. Vibration detecting means for detecting vibration remaining as a cancellation error between the vibration generated by the vibration generating source at the position to be controlled and the cancellation vibration, and the control means is detected by the vibration detecting means. A damping device for correcting the canceling signal so that the remaining vibration as the canceling error is reduced based on the vibration,
Storage means for storing, as sensitivity information, transmission characteristics on a vibration transmission path from the excitation means to the position to be damped, and a current frequency is generated by the excitation means based on the sensitivity information. Sensitivity determining means for determining whether or not the vibration is in a low sensitivity region where the vibration is difficult to be transmitted, and the control means detects the cancellation signal when the sensitivity determination means determines that the current frequency is in the low sensitivity region. Is corrected in a direction to suppress the canceling vibration generated by the excitation means.
前記感度判定手段は、前記感度情報に基づいて現周波数に関連づけられた振動伝達経路上の伝達特性の一つである振幅成分の伝達度が予め定められた第1しきい値より低い場合に現周波数が前記低感度領域にあると判定する請求項1に記載の制振装置。   The sensitivity determination means is present when the transmission degree of an amplitude component, which is one of the transmission characteristics on the vibration transmission path associated with the current frequency based on the sensitivity information, is lower than a predetermined first threshold value. The vibration damping device according to claim 1, wherein a frequency is determined to be in the low sensitivity region. 前記感度判定手段は、前記感度情報に基づいて現周波数に関連づけられた振動伝達経路上の伝達特性の一つである振幅成分の伝達度が前記第1しきい値より高い伝達度である第2しきい値よりも高い場合に現周波数が前記低感度領域にないと判定するものであって、前記第1しきい値と前記第2しきい値との間に判定結果が変わらない不変領域が設けられており、前記制御手段は、前記感度判定手段により現周波数が低感度領域にないと判定される場合に前記相殺信号の修正を行わない請求項2に記載の制振装置。   The sensitivity determination means has a second transmission whose amplitude component, which is one of the transmission characteristics on the vibration transmission path associated with the current frequency based on the sensitivity information, is higher than the first threshold. An invariable region in which a determination result is not changed between the first threshold value and the second threshold value when it is determined that the current frequency is not in the low sensitivity region when higher than a threshold value. 3. The vibration damping device according to claim 2, wherein the control unit does not correct the cancellation signal when the sensitivity determination unit determines that the current frequency is not in the low sensitivity region. 前記相殺信号が制振電流指令であって、前記周波数から予め定めた電流上限値を導出し前記制振電流指令のピーク電流値が前記電流上限値を超過している場合に前記制御手段に電流上限超過信号を入力する電流超過検出手段を更に具備し、前記制御手段は、前記電流上限超過信号の入力を受けて前記制振電流指令を制限するように構成されるものであり、前記電流超過検出手段は、前記感度判定手段により現周波数が低感度領域にあると判定されている場合に前記電流上限値を前記制振電流指令が制限される方向へ修正する請求項1〜3のいずれかに記載の制振装置。   When the canceling signal is a damping current command, a predetermined current upper limit value is derived from the frequency, and the peak current value of the damping current command exceeds the current upper limit value, the current is supplied to the control means. Further comprising an overcurrent detection means for inputting an upper limit excess signal, wherein the control means is configured to limit the damping current command in response to the input of the current upper limit excess signal. The detection means corrects the current upper limit value in a direction in which the damping current command is limited when the sensitivity determination means determines that the current frequency is in a low sensitivity region. The vibration control device described in 1. 請求項1〜4のいずれかに記載の制振装置を搭載したことを特徴とする車両。
A vehicle comprising the vibration damping device according to claim 1.
JP2009267245A 2009-11-25 2009-11-25 Vibration control device and vehicle equipped with the same Expired - Fee Related JP5353657B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009267245A JP5353657B2 (en) 2009-11-25 2009-11-25 Vibration control device and vehicle equipped with the same
PCT/JP2010/071051 WO2011065441A1 (en) 2009-11-25 2010-11-25 Vibration damping device and vehicle provided therewith
CN201080053633.9A CN102667227B (en) 2009-11-25 2010-11-25 Vibration damping device and vehicle provided therewith
EP10833287A EP2505870A1 (en) 2009-11-25 2010-11-25 Vibration damping device and vehicle provided therewith
KR1020127008783A KR20120114214A (en) 2009-11-25 2010-11-25 Vibration damping device and vehicle provided therewith
US13/473,876 US9075418B2 (en) 2009-11-25 2012-05-17 Vibration damping device and method for canceling out a vibration at a damping position based on a phase difference
HK12112257.9A HK1171494A1 (en) 2009-11-25 2012-11-28 Vibration damping device and vehicle provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267245A JP5353657B2 (en) 2009-11-25 2009-11-25 Vibration control device and vehicle equipped with the same

Publications (2)

Publication Number Publication Date
JP2011112111A JP2011112111A (en) 2011-06-09
JP5353657B2 true JP5353657B2 (en) 2013-11-27

Family

ID=44234609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267245A Expired - Fee Related JP5353657B2 (en) 2009-11-25 2009-11-25 Vibration control device and vehicle equipped with the same

Country Status (1)

Country Link
JP (1) JP5353657B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116277161B (en) * 2023-05-25 2023-12-08 山东理工职业学院 Mechanical arm dynamic deviation monitoring system based on three-dimensional model coordinates

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336736A (en) * 2005-06-01 2006-12-14 Tokai Rubber Ind Ltd Active vibration-isolating system
JP2008250131A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Active noise controller
JP5391578B2 (en) * 2008-05-14 2014-01-15 シンフォニアテクノロジー株式会社 Vibration control device and vehicle
JP5098796B2 (en) * 2008-05-14 2012-12-12 シンフォニアテクノロジー株式会社 Vibration control device and vehicle

Also Published As

Publication number Publication date
JP2011112111A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
EP2023007B1 (en) Damper for automobiles for reducing vibration of automobile body
WO2011065441A1 (en) Vibration damping device and vehicle provided therewith
JP5522037B2 (en) Vibration control device and vehicle
JP5522038B2 (en) Vibration control device and vehicle
US8471502B2 (en) Vibration damping apparatus, electric actuator driving apparatus and vehicle
JP5391578B2 (en) Vibration control device and vehicle
JP5365508B2 (en) Vibration control device and vehicle equipped with the same
JP5353657B2 (en) Vibration control device and vehicle equipped with the same
JP5098796B2 (en) Vibration control device and vehicle
JP5120707B2 (en) Vibration control device and vehicle
JP4983720B2 (en) Vibration control device and vehicle
JP5120708B2 (en) Vibration control device and vehicle
JP7197774B2 (en) Vibration damping device, vehicle equipped with vibration damping device, and method for determining stability of vibration damping device
JP5098795B2 (en) Vibration control device and vehicle
JP2009275816A (en) Vibration damping device and vehicle
JP5440319B2 (en) Electric actuator driving device and vibration damping device provided with the same
JP7089173B2 (en) A method for estimating the phase error of a vibration damping device, a vehicle equipped with a vibration damping device, and a vibration damping device.
JP2020070895A (en) Vibration damping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5353657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees