JP5353501B2 - High temperature hydrogen gas storage steel container having excellent hydrogen resistance and method for producing the same - Google Patents

High temperature hydrogen gas storage steel container having excellent hydrogen resistance and method for producing the same Download PDF

Info

Publication number
JP5353501B2
JP5353501B2 JP2009161837A JP2009161837A JP5353501B2 JP 5353501 B2 JP5353501 B2 JP 5353501B2 JP 2009161837 A JP2009161837 A JP 2009161837A JP 2009161837 A JP2009161837 A JP 2009161837A JP 5353501 B2 JP5353501 B2 JP 5353501B2
Authority
JP
Japan
Prior art keywords
less
hydrogen
steel container
hydrogen gas
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009161837A
Other languages
Japanese (ja)
Other versions
JP2010037655A (en
Inventor
陽一 萱森
洋一 田中
泰士 長谷川
健裕 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2009161837A priority Critical patent/JP5353501B2/en
Publication of JP2010037655A publication Critical patent/JP2010037655A/en
Application granted granted Critical
Publication of JP5353501B2 publication Critical patent/JP5353501B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel superior in hydrogen resistance for a vessel for storing high-pressure hydrogen gas therein, which includes hydrogen erosion resistance, creep resistance and tempering brittleness resistance, and to provide a manufacturing method therefor. <P>SOLUTION: A steel material includes, by mass%, 0.12 to 0.15% C, 0.01 to 0.10% Si, 0.30 to 0.60% Mn, 0.02% or less P, 0.005% or less S, 2.00 to 2.50% Cr, 0.90 to 1.20% Mo, 0.20 to 0.35% V, 0.01 to 0.06% Nb, 0.002 to 0.030% Ti and the balance Fe with unavoidable impurities. The manufacturing method includes subjecting the steel material to a stress relief annealing step at 600 to 750&deg;C for 5 to 40 hours to make an MC-based carbide precipitation index MCI=(0.24V+0.06Mo)/C, which is expressed by each content (mass%) of C, Mo and V, satisfy 0.70 or more. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、常温高圧水素ガスを貯蔵するための鋼製に関するもので、特に、耐水素性に優れた常温高圧水素ガス貯蔵鋼製およびその製造方法に関する。
具体的には、例えば水素をエネルギー源とする自動車に水素ガスを供給する水素ステーションにおいて、水素ガスを常温高圧貯蔵する鋼製に関する。
The present invention relates to a steel container for storing normal temperature high-pressure hydrogen gas, in particular, room temperature high-pressure hydrogen gas storage steel container having excellent water feature and a method for producing the same.
Specifically, in the hydrogen station for supplying hydrogen gas to hydrogen in an automobile to an energy source to a steel container to a room temperature high pressure storage of hydrogen gas.

水素燃料エンジンを搭載する水素自動車や、燃料電池の電力で駆動する燃料電池自動車を普及させるためには、当該自動車に水素を供給するための水素ステーションが一般市街地に数多く存在することが望まれる。しかし、水素ステーションで鋼製容器中に高圧水素ガスを貯蔵すると、常温でも水素原子が鋼中に侵入・拡散し、鋼の脆化(水素脆化)をもたらすことがある。水素ステーションを一般市街地に数多く建設するためには、耐水素性に優れた安全な水素ガス貯蔵鋼製が必要となる。 In order to popularize a hydrogen vehicle equipped with a hydrogen fuel engine and a fuel cell vehicle driven by the power of the fuel cell, it is desired that a large number of hydrogen stations for supplying hydrogen to the vehicle exist in a general urban area. However, when high-pressure hydrogen gas is stored in a steel container at a hydrogen station, hydrogen atoms may penetrate and diffuse into the steel even at room temperature, resulting in steel embrittlement (hydrogen embrittlement). To many construct a hydrogen station in general urban areas, safe hydrogen gas storage steel container having excellent water feature is required.

水素ガス貯蔵容器用鋼は、石油化学プラントや発電プラントにおいて、400℃以上の高温かつ20MPa以上の高圧の水素ガス環境を前提に、耐水素侵食性、耐クリープ性、耐焼き戻し脆性及び耐水素脆化性に優れたCr−Mo−V鋼(例えば、特許文献1、非特許文献1参照。)が発明されている。   Steel for hydrogen gas storage containers is hydrogen erosion resistance, creep resistance, tempering brittleness and hydrogen resistance on the premise of hydrogen gas environment at high temperature of 400 ° C or higher and high pressure of 20 MPa or higher in petrochemical plants and power plants. A Cr—Mo—V steel excellent in embrittlement (for example, see Patent Document 1 and Non-Patent Document 1) has been invented.

また、水素ガス貯蔵容器用鋼ではないが、高力ボルト等に使用される高強度棒線材において、鋼中に多量の水素が侵入した場合の耐遅れ破壊特性に優れた高強度調質鋼(特許文献2参照。)が発明されている。   In addition, it is not a steel for hydrogen gas storage containers, but it is a high-strength tempered steel with excellent delayed fracture resistance when a large amount of hydrogen enters the steel in high-strength rods and wires used for high-strength bolts ( Patent Document 2) has been invented.

しかし、前者は高温環境により、後者は鋼の高強度化により、いずれも数ppmオーダーの非常に多量の拡散性水素が鋼中に侵入した場合の鋼の耐水素性を検討しており、水素ステーションにおける常温高圧水素ガス貯蔵を前提とはしていない。   However, due to the high temperature environment in the former and the strengthening of the steel in the latter, both are investigating the hydrogen resistance of steel when a very large amount of diffusible hydrogen of the order of several ppm penetrates into the steel. It is not premised on storage at room temperature and high pressure hydrogen gas.

また、水素ガス貯蔵の異なる方法として、水素吸蔵合金を利用する方法(例えば、特許文献3参照。)が開示されている。   Further, as a method for storing hydrogen gas, a method using a hydrogen storage alloy (for example, see Patent Document 3) is disclosed.

特開平05−195061号公報JP 05-195061 A 特開2006−045670号公報JP 2006-045670 A 特開2004−316673号公報JP 2004-316673 A

家口浩、村上昌吾、藤綱宣之、新谷智彦、山田雅人:V改良型2.25Cr−1Mo鋼の恒温長時間時効特性、R&D 神戸製鋼技報、Vol.56、No.2(Aug.2006)、pp.6−9Hiroshi Ieguchi, Masatsugu Murakami, Nobuyuki Fujitsuna, Tomohiko Shintani, Masato Yamada: Constant-temperature long-term aging characteristics of V-modified 2.25Cr-1Mo steel, R & D Kobe Steel Engineering Reports, Vol. 56, no. 2 (Aug. 2006), pp. 6-9

水素ステーションを一般市街地に数多く建設するために、耐水素性に優れた安全な常温高圧水素ガス貯蔵鋼製が切望されている。 To many construct a hydrogen station in general urban, secure normal temperature high-pressure hydrogen gas storage steel container having excellent water feature is desired.

本発明者らは、水素ステーションの常温高圧水素ガス貯蔵を模擬した環境において、引張強さが490N/mm級から950N/mm級の鋼に侵入する拡散性水素量を検討したところ、0.1から1ppm程度であることが判明した。また、このような低い鋼中拡散性水素量においても、きずや構造的不連続部などの応力集中部を有する鋼材は破壊に対する抵抗力が低くなることを見出した。なお、この様な0.1から1ppm程度の鋼中拡散性水素量で常温高圧水素ガス貯蔵鋼製に生じる破壊は、その破壊抵抗力は低いが粒内の延性引き裂き破壊であり、一方、高温高圧の石油化学・発電プラントで生じる破壊や高力ボルトの遅れ破壊は、粒界割れを主とする脆性破壊であることから、両者の破壊機構は異なる。よって、水素ステーションにおける常温高圧水素ガス貯蔵を前提とすると、耐水素性に優れた鋼製として、非特許文献1や特許文献1〜2に示す鋼材から成る容器では不十分である。 The present inventors have in an environment which simulates a normal temperature high-pressure hydrogen gas storage of hydrogen station, tensile strength was investigated amount of diffusible hydrogen entering the 950 N / mm 2 class steels from 490 N / mm 2 grade, 0 It was found to be about 1 to 1 ppm. Further, it has been found that even in such a low amount of diffusible hydrogen in steel, a steel material having a stress concentration portion such as a flaw or a structural discontinuity portion has a low resistance to fracture. Incidentally, breakage resulting from such 0.1 to ambient temperature high-pressure hydrogen gas storage steel container with steel in diffusible hydrogen content of about 1ppm, the puncture resistance force is ductile tear destruction of low but the grains, whereas The fracture mechanism that occurs in high-temperature and high-pressure petrochemical / power plants and delayed fracture of high-strength bolts are brittle fractures mainly consisting of intergranular cracks. Therefore, given the cold high-pressure hydrogen gas storage in the hydrogen station, a steel container having excellent water feature, is not sufficient in containers made of steel shown in Non-Patent Document 1 and Patent Documents 1 and 2.

また、水素吸蔵合金を利用する方法では、水素吸蔵合金が高価であること、また、水素の吸蔵と放出を繰り返すと水素吸蔵合金が脆化して吸蔵率が低下することなどから、水素ステーションの水素ガス貯蔵方法として必ずしも適していない。   Further, in the method using a hydrogen storage alloy, the hydrogen storage alloy is expensive, and if the storage and release of hydrogen are repeated, the hydrogen storage alloy becomes brittle and the storage rate decreases. It is not necessarily suitable as a gas storage method.

そこで、本発明は、水素ステーションにおける鋼製容器での常温高圧水素ガス貯蔵を想定し、耐水素性に優れた常温高圧水素ガス貯蔵鋼製およびその製造方法を提供することを目的とする。 Accordingly, the present invention contemplates the ambient temperature high-pressure hydrogen gas storage in steel containers at a hydrogen station, and to provide a good ambient temperature high-pressure hydrogen gas storage steel container and its manufacturing method in resistance to hydrogen resistance .

上記の課題を解決する為になされた本発明の要旨は、特許請求の範囲に記載した通りの下記内容である。
(1) 質量%で、C:0.12〜0.15%、Si:0.01〜0.10%、Mn:0.30〜0.60%、P:0.02%以下、S:0.005%以下、Cr:2.00〜2.50%、Mo:0.90〜1.20%、V:0.20〜0.35%、Nb:0.01〜0.06%、Ti:0.002〜0.030%を含有し、残部がFe及び不可避的不純物からなり、C、Mo及びVの各含有量(質量%)で表されるMC系炭化物析出指数MCI=(0.24V+0.06Mo)/Cが0.70以上を満足し、焼き戻しベイナイト組織において、化学量論比1対1のVを主体とするVとMoのMC系炭化物(V,Mo)Cの平均粒子径が100nm以下で、且つ当該炭化物の面積率が0.2%以上であることを特徴とする、耐水素性に優れた常温高圧水素ガス貯蔵鋼製器。
The gist of the present invention made in order to solve the above-mentioned problems is the following contents as described in the claims.
(1) By mass%, C: 0.12-0.15%, Si: 0.01-0.10%, Mn: 0.30-0.60%, P: 0.02% or less, S: 0.005% or less, Cr: 2.00 to 2.50%, Mo: 0.90 to 1.20%, V: 0.20 to 0.35%, Nb: 0.01 to 0.06%, MC: Carbide precipitation index MCI = (0 containing Ti: 0.002 to 0.030%, the balance being Fe and inevitable impurities, and represented by the contents (mass%) of C, Mo and V .24V + 0.06Mo) / C satisfies 0.70 or more, and in the tempered bainite structure, the average of MC-based carbides (V, Mo) C of V and Mo mainly composed of V having a stoichiometric ratio of 1: 1. in the particle diameter of 100nm or less, and the area ratio of the carbides is equal to or not less than 0.2%, normally having excellent water feature Temperature high-pressure hydrogen gas storage steel container.

(2) さらに、質量%で、N:0.010%以下、Al:0.005〜0.040%、Cu:0.01〜0.25%、Ni:0.05〜0.25%、B:0.0003〜0.0020%、Y:0.0005〜0.010%、Ce:0.0005〜0.010%、La:0.0005〜0.010%、Ca:0.0005〜0.010%、Mg:0.0005〜0.010%、Ba:0.0005〜0.010%、Zr:0.0005〜0.010%の1種または2種以上を含有することを特徴とする、上記(1)に記載の耐水素性に優れた常温高圧水素ガス貯蔵鋼製器。 (2) Further, by mass%, N: 0.010% or less, Al: 0.005-0.040%, Cu: 0.01-0.25%, Ni: 0.05-0.25%, B: 0.0003 to 0.0020%, Y: 0.0005 to 0.010%, Ce: 0.0005 to 0.010%, La: 0.0005 to 0.010%, Ca: 0.0005 One or more of 0.010%, Mg: 0.0005-0.010%, Ba: 0.0005-0.010%, Zr: 0.0005-0.010% are contained. to, normal temperature high-pressure hydrogen gas storage steel container having excellent water feature according to the above (1).

) 質量%で、C:0.12〜0.15%、Si:0.01〜0.10%、Mn:0.30〜0.60%、P:0.02%以下、S:0.005%以下、Cr:2.00〜2.50%、Mo:0.90〜1.20%、V:0.20〜0.35%、Nb:0.01〜0.06%、Ti:0.002〜0.030%を含有し、残部がFe及び不可避的不純物からなり、C、Mo及びVの各含有量(質量%)で表されるMC系炭化物析出指数MCI=(0.24V+0.06Mo)/Cが0.70以上を満足する容器に対して、600〜750℃の温度において5〜40時間の応力除去焼鈍を施すことにより、焼き戻しベイナイト組織において、化学量論比1対1のVを主体とするVとMoのMC系炭化物(V,Mo)Cの平均粒子径が100nm以下で、且つ当該炭化物の面積率が0.2%以上であるようにすることを特徴とする、耐水素性に優れた常温高圧水素ガス貯蔵鋼製の製造方法。
) 前記容器が、さらに、質量%で、N:0.010%以下、Al:0.005〜0.040%、Cu:0.01〜0.25%、Ni:0.05〜0.25%、B:0.0003〜0.0020%、Y:0.0005〜0.010%、Ce:0.0005〜0.010%、La:0.0005〜0.010%、Ca:0.0005〜0.010%、Mg:0.0005〜0.010%、Ba:0.0005〜0.010%、Zr:0.0005〜0.010%の1種または2種以上を含有することを特徴とする、上記()に記載の耐水素性に優れた常温高圧水素ガス貯蔵鋼製の製造方法。
( 3 ) By mass%, C: 0.12-0.15%, Si: 0.01-0.10%, Mn: 0.30-0.60%, P: 0.02% or less, S: 0.005% or less, Cr: 2.00 to 2.50%, Mo: 0.90 to 1.20%, V: 0.20 to 0.35%, Nb: 0.01 to 0.06%, Ti: containing 0.002 to 0.030 percent, the balance Ri Do Fe and inevitable impurities, C, Mo and the content of V MC carbide precipitation index represented by (mass%) MCI = ( 0.24V + 0.06Mo) / C satisfying 0.70 or more is subjected to stress relief annealing at a temperature of 600 to 750 ° C. for 5 to 40 hours, so that the stoichiometry in the tempered bainite structure. The average particle diameter of MC-based carbides (V, Mo) C of V and Mo mainly having a ratio of 1: 1 V is 100. nm or less, and the area ratio of the carbides, characterized in that as is 0.2% or more, a manufacturing method of the cold high-pressure hydrogen gas storage steel container having excellent water feature.
( 4 ) The container is further mass%, N: 0.010% or less, Al: 0.005-0.040%, Cu: 0.01-0.25%, Ni: 0.05-0. .25%, B: 0.0003 to 0.0020%, Y: 0.0005 to 0.010%, Ce: 0.0005 to 0.010%, La: 0.0005 to 0.010%, Ca: Contains one or more of 0.0005 to 0.010%, Mg: 0.0005 to 0.010%, Ba: 0.0005 to 0.010%, Zr: 0.0005 to 0.010% method for producing a cold high-pressure hydrogen gas storage steel container having excellent water feature as claimed in, wherein, the (3) to be.

本発明によれば、水素ステーションの常温高圧水素ガス貯蔵において、水素性の損傷を防止した安全な常温高圧水素ガス貯蔵鋼製を提供することができ、産業上、著しく有用な効果を奏する。 According to the present invention, at room temperature high-pressure hydrogen gas storage of hydrogen station, it is possible to provide a safe ambient temperature high-pressure hydrogen gas storage steel container which prevents hydrogen of damage, industrial, exhibits a significantly useful effect .

MC値と耐水素脆化特性の関係を示す図である。It is a diagram showing the relationship between MC I value and hydrogen embrittlement resistance. 破壊特性評価試験に用いた0.5TCT試験片を示す図である。It is a figure which shows the 0.5TCT test piece used for the fracture characteristic evaluation test.

以下に本発明鋼製容器における各成分、熱処理及び炭化物の限定理由について、その作用とともに詳細に説明する。 The reasons for limiting the components, heat treatment, and carbides in the steel container of the present invention will be described in detail below together with the action thereof.

C:鋼製容器の強度を向上させる為に、またMC系炭化物を微細かつ高密度に分散析出させて耐水素脆化特性を向上させる為に0.12%以上を含有させる必要があるが、0.15%を超えて添加すると鋼製容器の靭性が低下することに関連し耐水素脆化特性も低下する為、0.12〜0.15%の範囲に限定した。 C: In order to improve the strength of the steel container , and to improve the hydrogen embrittlement resistance by finely and densely dispersing MC-based carbides, it is necessary to contain 0.12% or more, If added over 0.15%, the toughness of the steel container is lowered, and the hydrogen embrittlement resistance is also lowered. Therefore, the content is limited to the range of 0.12 to 0.15%.

Si:鋼の脱酸を助けるとともに、強度を得る為にも0.01%以上が必要であるが、0.10%を超えて添加すると焼き戻し脆化に対する感受性が増加するので、0.01〜0.10%の範囲に限定した。   Si: 0.01% or more is necessary for helping deoxidation of steel and obtaining strength, but adding over 0.10% increases susceptibility to temper embrittlement, so 0.01% It was limited to a range of ˜0.10%.

Mn:鋼の脱酸・脱硫を助けるとともに、焼き入れ性を向上させるのに有効な元素であるが、0.30%未満では上記の効果を得られず、一方、0.60%を超えて添加すると焼き戻し脆化に対する感受性が増加するので、0.30〜0.60%の範囲に限定した。   Mn: It is an element effective to help deoxidation and desulfurization of steel and improve hardenability. However, if it is less than 0.30%, the above effect cannot be obtained, while it exceeds 0.60%. When added, the sensitivity to temper embrittlement increases, so it was limited to the range of 0.30 to 0.60%.

P、S:いずれも鋼の不純物成分である。鋼製容器の靭性低下に至らぬように、Pは0.02%以下、Sは0.005%以下に制限する必要がある。鋼の高清浄度化に必要な制限である。 P and S: Both are impurity components of steel. It is necessary to limit P to 0.02% or less and S to 0.005% or less so as not to lower the toughness of the steel container . This is a restriction necessary to increase the cleanliness of steel.

Cr:鋼製容器の耐クリープ性と耐水素侵食性を向上させる為に必要な元素であるが、2.00%未満ではそれらの効果を確保できず、2.50%を超えて添加すると、長時間の高温使用で炭化物による脆化を促進することがある為、2.00〜2.50%の範囲に限定した。 Cr: Although it is an element necessary for improving the creep resistance and hydrogen erosion resistance of a steel container , if less than 2.00%, those effects cannot be ensured, and if added over 2.50%, Since embrittlement due to carbide may be promoted when used for a long time at a high temperature, it is limited to a range of 2.00 to 2.50%.

Mo:Vと共にMC系炭化物(V,Mo)Cとして微細かつ高密度に分散析出し、拡散性水素をトラップすることにより、鋼製容器の水素脆化を防止する為に必要な元素である。また、鋼製容器の高温クリープ特性の改善に寄与する元素でもある。0.90未満では効果が少なく、1.20%を超えて添加するとM6C系炭化物Mo6Cとして粒界析出脆化を招くことがある為、0.90〜1.20%の範囲に限定した。 It is an element necessary for preventing hydrogen embrittlement of the steel vessel by finely and densely dispersing and precipitating as MC-based carbide (V, Mo) C together with Mo: V and trapping diffusible hydrogen. It is also an element that contributes to improving the high temperature creep characteristics of steel containers . If less than 0.90, the effect is small, and if added over 1.20%, grain boundary precipitation embrittlement may be caused as M6C carbide Mo6C, so the content was limited to 0.90 to 1.20%.

V:本発明において非常に重要な元素である。Vを主体とするVとMoのMC系炭化物(V,Mo)Cとして微細かつ高密度に分散析出し、拡散性水素をトラップして鋼製容器の水素脆化を防止する。0.20%以上の添加で効果が発現し、0.35%を超えて添加すると炭化物が粗大化して鋼製容器が脆化することがある為、0.20〜0.35%の範囲に限定した。 V: A very important element in the present invention. It is dispersed finely and densely as MC carbide (V, Mo) C of V and Mo mainly composed of V, and traps diffusible hydrogen to prevent hydrogen embrittlement of the steel container . The effect is exhibited by addition of 0.20% or more, and if added over 0.35%, the carbides may become coarse and the steel container may become brittle, so the range is from 0.20 to 0.35%. Limited.

Nb:鋼製容器の耐クリープ性を向上させる為に必要な元素であるが、0.01%未満ではそれらの効果を発揮できず、0.06%を超えて添加すると、長時間の高温使用で粗大炭化物による脆化を促進することがある為、0.01〜0.06%の範囲に限定した。 Nb: An element necessary for improving the creep resistance of steel containers , but if it is less than 0.01%, these effects cannot be exhibited, and if added over 0.06%, it will be used for a long time at high temperatures. In order to promote embrittlement due to coarse carbides, the content is limited to 0.01 to 0.06%.

Ti:TiはTiNを形成し結晶粒の粗大化を抑制する効果があるが、0.002%未満ではその効果が発現せず、0.030%を超えて過剰に添加すると粗大炭化物による脆化を促進することがある為、0.002〜0.030%の範囲に限定した。   Ti: Ti has the effect of suppressing the coarsening of crystal grains by forming TiN, but if less than 0.002%, the effect is not manifested, and if added over 0.030%, embrittlement by coarse carbides In some cases, it is limited to the range of 0.002 to 0.030%.

また、Vを主体とするVとMoのMC系炭化物(V,Mo)Cが寄与する鋼製容器の耐水素脆化特性向上条件を詳細に検討したところ、(V,Mo)Cが微細かつ高密度に分散析出することが必須であることがわかった。そして、前記成分範囲の鋼製容器においてのみ、さらに当該炭化物の構成元素配分から、MC系炭化物析出指数MCI=(0.24V+0.06Mo)/Cが0.70以上を満足する場合、(V,Mo)Cが良好に析出し、図1に示すようにCTOD比の高いものとなり、鋼製容器の耐水素脆化特性が向上することを見出した。よって、MCIを0.70以上に限定した。図1は、鋼製容器の耐水素脆化特性を表すCTOD比とMCとの関係を示したグラフである。ここで、CTOD(き裂先端開口変位)比とは、水素添加試験片の限界CTODを水素無添加試験片の限界CTODで割った値である。 In addition, when the conditions for improving the hydrogen embrittlement resistance of the steel container to which the MC-based carbides (V, Mo) C of V and Mo mainly composed of V contribute, the (V, Mo) C is fine and It was found that it is essential to disperse and precipitate at a high density. And only in the steel container of the component range, when MC-based carbide precipitation index MCI = (0.24V + 0.06Mo) / C satisfies 0.70 or more from the constituent element distribution of the carbide, (V, It has been found that Mo) C precipitates well, has a high CTOD ratio as shown in FIG. 1, and improves the hydrogen embrittlement resistance of the steel container . Therefore, the MCI is limited to 0.70 or more. Figure 1 is a graph showing the relationship between CTOD ratio and MC I representing the hydrogen embrittlement resistance of the steel container. Here, the CTOD (crack tip opening displacement) ratio is a value obtained by dividing the limit CTOD of the hydrogenated test piece by the limit CTOD of the non-hydrogen added test piece.

本発明鋼製容器は上記の化学成分の範囲に調整されたものであるが、一般に、鋼製容器には組み立て後に応力除去焼鈍を施す。本発明鋼製容器は、耐水素脆化特性を改善するために、MC系炭化物の微細かつ高密度な分散析出を積極的に活用したものであり、このような炭化物の析出を達成するために、600〜750℃の温度において5〜40時間の応力除去焼鈍を施すことを必須とする。 The steel container of the present invention is adjusted to the range of the above chemical components, but generally, the steel container is subjected to stress relief annealing after assembly. In order to improve the hydrogen embrittlement resistance, the steel container of the present invention actively utilizes the fine and high-density dispersion precipitation of MC-based carbides, and in order to achieve such carbide precipitation. It is essential to perform stress relief annealing for 5 to 40 hours at a temperature of 600 to 750 ° C.

上記に加えて、下記の各成分の1種または2種以上を含有することも有効であり、以下にその理由を説明する。   In addition to the above, it is also effective to contain one or more of the following components, and the reason will be described below.

N:製鋼工程で不可避的に不純物として含まれるが、0.010%を超えて含有するとVと窒化物を形成し、MC系炭化物の析出による耐水素脆化特性の改善効果の発現を阻害する可能性がある為、0.010%以下の範囲に限定した。   N: Although inevitably contained as an impurity in the steelmaking process, if it exceeds 0.010%, V and nitride are formed, and the improvement effect of hydrogen embrittlement resistance due to precipitation of MC carbide is inhibited. Since there is a possibility, it limited to 0.010% or less of range.

Al:Nを固定する効果があり、必要に応じて添加するが、0.005%未満では殆どその効果を発現せず、0.040%を超えて添加すると耐クリープ特性に悪影響を及ぼすことがある為、0.005〜0.040%の範囲に限定した。   Al: N has an effect of fixing, and is added as necessary. However, if it is less than 0.005%, the effect is hardly exhibited, and if it exceeds 0.040%, the creep resistance may be adversely affected. Therefore, it is limited to the range of 0.005 to 0.040%.

Cu:析出強化元素であり、必要に応じて添加するが、0.01%未満ではその効果が低く、0.25%を超えて添加すると熱間で鋼材を加工する際に割れ状のきずを生じる。この為、0.01%〜0.25%の範囲に限定した。   Cu: Precipitation strengthening element, which is added as necessary. However, if it is less than 0.01%, its effect is low, and if it is added over 0.25%, cracks in the form of cracks are generated when the steel is processed hot. Arise. For this reason, it was limited to a range of 0.01% to 0.25%.

Ni:焼き入れ性を向上させて鋼の組織制御による強度・靭性を確保するために、0.05%以上の添加が有効であるが、0.25%を超えて添加してもコストに見合った効果を期待できない為、0.05〜0.25%の範囲に限定した。   Ni: Addition of 0.05% or more is effective to improve the hardenability and ensure the strength and toughness by controlling the structure of the steel, but even if added over 0.25%, it is commensurate with the cost. Therefore, it was limited to the range of 0.05 to 0.25%.

B:固溶状態で活用すると溶接熱影響部の靭性改善に有効な元素であり、この効果を得るために0.0003%以上の添加が必要であるが、0.0020%を超えて添加すると窒化物の析出脆化を促進することがある為、0.0003〜0.0020%の範囲に限定した。   B: It is an element effective for improving the toughness of the weld heat-affected zone when used in a solid solution state, and 0.0003% or more of addition is necessary to obtain this effect, but if added over 0.0020% Since precipitation embrittlement of nitride may be promoted, the content is limited to a range of 0.0003 to 0.0020%.

さらに、鋼材の中心偏析部に粗大なMnSが形成されることによる材質低下を防止するために、Y、Ce、La、Ca、Mg、Ba、Zrの硫化物形態制御元素を1種または2種以上添加することが有効である。この効果を得るためにいずれの元素も0.0005%以上の添加が必要であるが、0.010%を超えて添加すると酸化物のクラスターを形成して材質が低下する為、0.0005〜0.010%の範囲に限定した。   Furthermore, in order to prevent material deterioration due to the formation of coarse MnS in the central segregation part of the steel material, one or two sulfide form control elements of Y, Ce, La, Ca, Mg, Ba, Zr are used. It is effective to add more. In order to obtain this effect, the addition of 0.0005% or more of any element is necessary. However, if added over 0.010%, an oxide cluster is formed and the material is deteriorated. It was limited to the range of 0.010%.

本発明鋼製容器は、上記の成分範囲で構成される鋼製容器に対し、限定された応力除去焼鈍を施すことでもたらされるものであるが、そのMC系炭化物の寸法と分布状態を分析装置付帯の透過型電子顕微鏡を用いて詳細に調査したところ、焼き戻しベイナイト組織から成る本発明鋼において、化学量論比1対1のVを主体とするVとMoのMC系炭化物(V,Mo)Cの平均粒子径が100nm以下で、且つ当該炭化物の面積率が0.2%以上との特徴を見出した為、MC系炭化物の平均粒子径と体積率をそのように規定した。 The steel container of the present invention is obtained by subjecting a steel container constituted by the above-mentioned component range to limited stress relief annealing, and analyzes the size and distribution state of the MC-based carbide. A detailed investigation was conducted using an incident transmission electron microscope. As a result, in the steel of the present invention having a tempered bainite structure, MC based carbides (V, Mo) of V and Mo mainly composed of V having a stoichiometric ratio of 1: 1. ) Since the average particle diameter of C was 100 nm or less and the area ratio of the carbide was found to be 0.2% or more, the average particle diameter and volume ratio of MC carbide were defined as such.

本発明例、比較例の化学成分から成る表1および表2に示す鋼を、高炉−転炉−二次精錬(真空脱ガス設備付き再加熱脱硫粉体吹き込み設備)を経て、連続鋳造でスラブとし、1100〜1250℃に再加熱して10〜20%厚減比の粗圧延、20〜50%厚減比の仕上げ圧延を実施して、25〜160mmの鋼板とした。当該鋼板は、900〜1150℃に再加熱して10〜360分の均熱保持の後、冷却することで焼準処理し、さらに容器状に加工後、表3および表4に示すように、600〜750℃の範囲で1〜50時間、適宜、焼き戻し及び応力除去焼鈍に相当する熱処理を施した。 The steels shown in Tables 1 and 2 comprising the chemical components of the present invention example and comparative example are subjected to blast furnace-converter-secondary refining (reheated desulfurized powder blowing equipment with vacuum degassing equipment) and slab by continuous casting. Then, the steel sheet was reheated to 1100 to 1250 ° C. and subjected to rough rolling with a thickness reduction ratio of 10 to 20% and finish rolling with a thickness reduction ratio of 20 to 50% to obtain a steel plate with a thickness of 25 to 160 mm. The steel sheet is reheated to 900 to 1150 ° C., kept soaked for 10 to 360 minutes, and then cooled and then normalized, and after processing into a container shape, as shown in Tables 3 and 4, Heat treatment corresponding to tempering and stress-relieving annealing was appropriately performed in the range of 600 to 750 ° C. for 1 to 50 hours.

Figure 0005353501
Figure 0005353501

Figure 0005353501
Figure 0005353501

Figure 0005353501
Figure 0005353501

Figure 0005353501
Figure 0005353501

続いて、当該鋼製容器の板厚中央より、試験片厚さB:0.5インチ、試験片幅W:1インチの0.5TCT試験片(図2)をL−T方向に採取し、日本溶接協会規格WES1108:1995(き裂先端開口変位(CTOD)試験方法)に準拠する荷重で疲労予き裂を導入した。疲労予き裂は、図2に示す初期き裂長さaが試験片幅Wの半分になるまで導入し、当該鋼製容器の破壊特性評価試験に用いた。 Subsequently, a 0.5 TCT test piece (FIG. 2) having a test piece thickness B of 0.5 inch and a test piece width W of 1 inch is taken in the LT direction from the center of the plate thickness of the steel container . A fatigue precrack was introduced with a load in accordance with Japan Welding Association Standard WES1108: 1995 (crack tip opening displacement (CTOD) test method). The fatigue precrack was introduced until the initial crack length a shown in FIG. 2 was half of the specimen width W, and used for the fracture property evaluation test of the steel container .

破壊特性評価試験は、水素を添加しない試験片と、水素を添加した試験片の両者で行い、室温大気中における静的なCTOD比=(水素添加試験片の限界CTOD/水素無添加試験片の限界CTOD)を評価した。限界CTODはWES1108:1995の方法に従って得た。試験片への水素添加は、試験片を高圧水素オートクレーブ中に設置することにより行い、水素添加の温度は室温、水素分圧は45MPa、添加時間は192時間とした。試験片は、高圧水素オートクレーブから取り出した後、直ちに電解Cdめっきを施し、鋼中拡散性水素の試験片外への放出を防止して破壊特性評価試験に用いた。   The destructive property evaluation test is performed on both a test piece to which hydrogen is not added and a test piece to which hydrogen is added, and the static CTOD ratio in the atmosphere at room temperature = (limit CTOD of hydrogenation test piece / no hydrogen addition test piece The critical CTOD) was evaluated. The limit CTOD was obtained according to the method of WES1108: 1995. Hydrogen addition to the test piece was performed by placing the test piece in a high-pressure hydrogen autoclave. The hydrogenation temperature was room temperature, the hydrogen partial pressure was 45 MPa, and the addition time was 192 hours. The test piece was taken out of the high-pressure hydrogen autoclave and immediately subjected to electrolytic Cd plating to prevent release of diffusible hydrogen in the steel to the outside of the test piece, and used for the fracture property evaluation test.

また、当該鋼製容器からMC系炭化物測定用の薄膜試料を採取し、分析装置付帯の透過型電子顕微鏡を用いて、MC系炭化物の平均粒子経と面積率を測定した。 Moreover, the thin film sample for MC type carbide | carbonized_material measurement was extract | collected from the said steel container, and the average particle diameter and area ratio of MC type carbide | carbonized_material were measured using the transmission electron microscope accompanying an analyzer.

破壊特性評価結果(耐水素脆化特性)とMC系炭化物の測定結果を表3および表4に示す。   Table 3 and Table 4 show the fracture property evaluation results (hydrogen embrittlement resistance) and MC carbide measurement results.

表1および表3のNo.1〜19は本発明例であって、いずれの実施例でも高いCTOD比を示し、耐水素脆化特性は良好であった。ここで、高いCTOD比としては、実験結果のばらつきを考慮しても水素添加後の限界CTODが水素無添加の限界CTODと同程度であることが望ましく、例えば、判定(良)を0.95以上に設定した。   No. in Table 1 and Table 3 Examples 1 to 19 are examples of the present invention, and in all examples, a high CTOD ratio was exhibited, and the hydrogen embrittlement resistance was good. Here, as a high CTOD ratio, it is desirable that the limit CTOD after hydrogen addition is approximately the same as the limit CTOD without hydrogen addition even if variation in experimental results is taken into account. For example, the determination (good) is 0.95. Set as above.

一方、表2および表4のNo.20〜31は比較例であり、No.20〜27は鋼製容器成分が限定範囲外であった為、No.28〜31は応力除去焼鈍条件が限定範囲外であった為、いずれも低いCTOD比を示した。
On the other hand, no. Nos. 20 to 31 are comparative examples. In Nos. 20 to 27, the steel container components were out of the limited range. Nos. 28 to 31 showed low CTOD ratios because the stress relief annealing conditions were outside the limited range.

B 試験片厚さ、
W 試験片幅、
a 初期き裂長さ
B specimen thickness,
W Specimen width,
a Initial crack length

Claims (4)

質量%で、
C :0.12〜0.15%、
Si:0.01〜0.10%、
Mn:0.30〜0.60%、
P :0.02%以下、
S :0.005%以下、
Cr:2.00〜2.50%、
Mo:0.90〜1.20%、
V :0.20〜0.35%、
Nb:0.01〜0.06%、
Ti:0.002〜0.030%
を含有し、残部がFe及び不可避的不純物からなり、C、Mo及びVの各含有量(質量%)で表されるMC系炭化物析出指数MCI=(0.24V+0.06Mo)/Cが0.70以上を満足し、焼き戻しベイナイト組織において、化学量論比1対1のVを主体とするVとMoのMC系炭化物(V,Mo)Cの平均粒子径が100nm以下で、且つ当該炭化物の面積率が0.2%以上であることを特徴とする、耐水素性に優れた常温高圧水素ガス貯蔵鋼製器。
% By mass
C: 0.12-0.15%,
Si: 0.01 to 0.10%,
Mn: 0.30 to 0.60%
P: 0.02% or less,
S: 0.005% or less,
Cr: 2.00 to 2.50%,
Mo: 0.90 to 1.20%,
V: 0.20 to 0.35%,
Nb: 0.01 to 0.06%,
Ti: 0.002 to 0.030%
MC balance precipitation index MCI = (0.24V + 0.06Mo) / C represented by each content (mass%) of C, Mo and V is 0.8. 70 and above, in a tempered bainite structure, the average particle diameter of V and Mo MC-based carbides (V, Mo) C mainly composed of V with a stoichiometric ratio of 1: 1 is 100 nm or less, and the carbides wherein the area ratio of not less than 0.2%, cold high-pressure hydrogen gas storage steel container having excellent water feature.
さらに、質量%で、
N :0.010%以下、
Al:0.005〜0.040%、
Cu:0.01〜0.25%、
Ni:0.05〜0.25%、
B :0.0003〜0.0020%、
Y :0.0005〜0.010%、
Ce:0.0005〜0.010%、
La:0.0005〜0.010%、
Ca:0.0005〜0.010%、
Mg:0.0005〜0.010%、
Ba:0.0005〜0.010%、
Zr:0.0005〜0.010%
の1種または2種以上を含有することを特徴とする、請求項1に記載の耐水素性に優れた常温高圧水素ガス貯蔵鋼製器。
Furthermore, in mass%,
N: 0.010% or less,
Al: 0.005 to 0.040%,
Cu: 0.01 to 0.25%,
Ni: 0.05 to 0.25%,
B: 0.0003 to 0.0020%,
Y: 0.0005 to 0.010%,
Ce: 0.0005 to 0.010%,
La: 0.0005 to 0.010%,
Ca: 0.0005 to 0.010%,
Mg: 0.0005 to 0.010%,
Ba: 0.0005 to 0.010%,
Zr: 0.0005 to 0.010%
One or characterized by containing two or more, cold high-pressure hydrogen gas storage steel container having excellent water feature as claimed in claim 1.
質量%で、
C :0.12〜0.15%、
Si:0.01〜0.10%、
Mn:0.30〜0.60%、
P :0.02%以下、
S :0.005%以下、
Cr:2.00〜2.50%、
Mo:0.90〜1.20%、
V :0.20〜0.35%、
Nb:0.01〜0.06%、
Ti:0.002〜0.030%
を含有し、残部がFe及び不可避的不純物からなり、C、Mo及びVの各含有量(質量%)で表されるMC系炭化物析出指数MCI=(0.24V+0.06Mo)/Cが0.70以上を満足する容器に対して、
600〜750℃の温度において5〜40時間の応力除去焼鈍を施すことにより、焼き戻しベイナイト組織において、化学量論比1対1のVを主体とするVとMoのMC系炭化物(V,Mo)Cの平均粒子径が100nm以下で、且つ当該炭化物の面積率が0.2%以上であるようにすることを特徴とする、耐水素性に優れた常温高圧水素ガス貯蔵鋼製の製造方法。
% By mass
C: 0.12-0.15%,
Si: 0.01 to 0.10%,
Mn: 0.30 to 0.60%
P: 0.02% or less,
S: 0.005% or less,
Cr: 2.00 to 2.50%,
Mo: 0.90 to 1.20%,
V: 0.20 to 0.35%,
Nb: 0.01 to 0.06%,
Ti: 0.002 to 0.030%
Containing the balance Ri Do Fe and inevitable impurities, C, each amount of Mo and V MC represented by (mass%) based carbide precipitation index MCI = (0.24V + 0.06Mo) / C is 0 For containers that satisfy 70 or more
By applying stress-relieving annealing at a temperature of 600 to 750 ° C. for 5 to 40 hours, in the tempered bainite structure, MC carbides of V and Mo mainly composed of V having a stoichiometric ratio of 1: 1 (V, Mo) ) C average particle diameter of 100nm or less of, and the area ratio of the carbides, characterized in that as is 0.2% or more, the production of cold high-pressure hydrogen gas storage steel container having excellent water feature Method.
前記容器が、さらに、質量%で、
N :0.010%以下、
Al:0.005〜0.040%、
Cu:0.01〜0.25%、
Ni:0.05〜0.25%、
B :0.0003〜0.0020%、
Y :0.0005〜0.010%、
Ce:0.0005〜0.010%、
La:0.0005〜0.010%、
Ca:0.0005〜0.010%、
Mg:0.0005〜0.010%、
Ba:0.0005〜0.010%、
Zr:0.0005〜0.010%
の1種または2種以上を含有することを特徴とする、請求項3に記載の耐水素性に優れた常温高圧水素ガス貯蔵鋼製の製造方法。
The container is further in weight percent,
N: 0.010% or less,
Al: 0.005 to 0.040%,
Cu: 0.01 to 0.25%,
Ni: 0.05 to 0.25%,
B: 0.0003 to 0.0020%,
Y: 0.0005 to 0.010%,
Ce: 0.0005 to 0.010%,
La: 0.0005 to 0.010%,
Ca: 0.0005 to 0.010%,
Mg: 0.0005 to 0.010%,
Ba: 0.0005 to 0.010%,
Zr: 0.0005 to 0.010%
One or characterized by containing two or more, cold high pressure method for producing a hydrogen gas storing steel container having excellent water feature as claimed in claim 3.
JP2009161837A 2008-07-09 2009-07-08 High temperature hydrogen gas storage steel container having excellent hydrogen resistance and method for producing the same Expired - Fee Related JP5353501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009161837A JP5353501B2 (en) 2008-07-09 2009-07-08 High temperature hydrogen gas storage steel container having excellent hydrogen resistance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008179185 2008-07-09
JP2008179185 2008-07-09
JP2009161837A JP5353501B2 (en) 2008-07-09 2009-07-08 High temperature hydrogen gas storage steel container having excellent hydrogen resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010037655A JP2010037655A (en) 2010-02-18
JP5353501B2 true JP5353501B2 (en) 2013-11-27

Family

ID=42010494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161837A Expired - Fee Related JP5353501B2 (en) 2008-07-09 2009-07-08 High temperature hydrogen gas storage steel container having excellent hydrogen resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5353501B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980246B1 (en) 2013-03-29 2019-01-09 JFE Steel Corporation Steel material and hydrogen container as well as manufacturing methods therefor
EP2980247B1 (en) * 2013-03-29 2023-10-18 JFE Steel Corporation Method for producing a steel structure for hydrogen gas
US10837602B2 (en) 2013-04-26 2020-11-17 Jfe Steel Corporation Hydrogen storage tank
EP3272893B1 (en) 2015-03-16 2020-12-30 JFE Steel Corporation Steel material for composite pressure vessel liner, steel tubing for composite pressure vessel liner, and method for manufacturing steel tubing for composite pressure vessel liner
CN108026619A (en) * 2015-09-17 2018-05-11 杰富意钢铁株式会社 The excellent hydrogen steel structure of hydrogen embrittlement resistance in high pressure hydrogen and its manufacture method
US11365848B2 (en) 2016-08-12 2022-06-21 Jfe Steel Corporation Composite pressure vessel liner, composite pressure vessel, and method for producing composite pressure vessel liner
US11168375B2 (en) 2016-09-21 2021-11-09 Jfe Steel Corporation Steel pipe or tube for pressure vessels, method of producing steel pipe or tube for pressure vessels, and composite pressure vessel liner
US20220064770A1 (en) 2018-12-26 2022-03-03 Jfe Steel Corporation Steel material for high-pressure hydrogen gas environment, steel structure for high-pressure hydrogen gas environment, and methods for producing steel material for high-pressure hydrogen gas environment
JP7188466B2 (en) * 2019-02-08 2022-12-13 日本製鉄株式会社 Bolts and steel materials for bolts
US20230279555A1 (en) * 2022-03-02 2023-09-07 Halliburton Energy Services, Inc. High-Pressure, Low-Temperature Coating For Hydrogen Service Environments

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130457A (en) * 1984-11-28 1986-06-18 Kobe Steel Ltd Cr-mo steel for pressure vessel
JPS61284555A (en) * 1985-06-10 1986-12-15 Kawasaki Steel Corp Cr-mo steel having excellent resistance to hydrogen erosion and sr cracking
JP3620099B2 (en) * 1995-06-09 2005-02-16 Jfeスチール株式会社 Method for producing Cr-Mo steel excellent in strength and toughness
JP4251229B1 (en) * 2007-09-19 2009-04-08 住友金属工業株式会社 Low alloy steel for high pressure hydrogen gas environment and container for high pressure hydrogen

Also Published As

Publication number Publication date
JP2010037655A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5353501B2 (en) High temperature hydrogen gas storage steel container having excellent hydrogen resistance and method for producing the same
JP6004140B1 (en) Austenitic stainless steel and manufacturing method thereof
JP6451545B2 (en) High Mn steel for high-pressure hydrogen gas, method for producing the same, and piping, container, valve and joint made of the steel
JP5131794B2 (en) High-strength austenitic stainless steel for high-pressure hydrogen gas
JP4251229B1 (en) Low alloy steel for high pressure hydrogen gas environment and container for high pressure hydrogen
JP5786830B2 (en) High-strength austenitic stainless steel for high-pressure hydrogen gas
JP5201625B2 (en) High strength low alloy steel with excellent high pressure hydrogen environment embrittlement resistance and method for producing the same
JP5513254B2 (en) Low temperature steel plate and method for producing the same
CA2766028A1 (en) High-strength seamless steel tube, having excellent resistance to sulfide stress cracking, for oil wells and method for manufacturing the same
WO2017047099A1 (en) Steel structure for hydrogen which exhibits excellent hydrogen embrittlement resistance properties in high-pressure hydrogen gas, and method for producing same
WO2018181570A1 (en) Austenite-based thick stainless-steel plate and production method therefor
JP2016183412A (en) High strength austenitic stainless steel excellent in hydrogen embrittlement resistance, manufacturing method therefor, and device for hydrogen used in high pressure hydrogen gas and liquid hydrogen environment
JP2012107333A (en) High-strength steel for high-pressure hydrogen storage container
KR20200057041A (en) Low-temperature nickel-containing steel
KR102292016B1 (en) Austenitic stainless steel having a large amount of unifromly distributed nanometer-sized precipitates and preparing method of the same
US10633717B2 (en) Low thermal expansion superalloy and manufacturing method thereof
KR20200058489A (en) Low-temperature nickel-containing steel
EP3693486A1 (en) Austenitic stainless steel welding metal and welded structure
KR102539588B1 (en) Cr-based stainless steel sheet with excellent hydrogen embrittlement resistance
CN112912530B (en) Austenitic high-manganese steel material with excellent yield strength and preparation method thereof
JP2012017484A (en) Steel for bolt, bolt, and method for production of the bolt
JP2017197792A (en) Ni steel for liquid hydrogen
JP2013142197A (en) Ni-ADDED STEEL PLATE HAVING EXCELLENT TOUGHNESS SUCH THAT CHARPY TEST VALUES OF BOTH OF BASE MATERIAL AND WELDING JOINT AT -196°C ARE EACH 100 J OR MORE AND EXCELLENT PRODUCTIVITY, AND METHOD FOR MANUFACTURING THE SAME
CN112063922B (en) Steel pipe, preparation method and application thereof
JP2017197791A (en) Ni steel for liquid hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R151 Written notification of patent or utility model registration

Ref document number: 5353501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees