JP5340530B2 - Manufacturing method of micro phase separation structure - Google Patents

Manufacturing method of micro phase separation structure Download PDF

Info

Publication number
JP5340530B2
JP5340530B2 JP2006237910A JP2006237910A JP5340530B2 JP 5340530 B2 JP5340530 B2 JP 5340530B2 JP 2006237910 A JP2006237910 A JP 2006237910A JP 2006237910 A JP2006237910 A JP 2006237910A JP 5340530 B2 JP5340530 B2 JP 5340530B2
Authority
JP
Japan
Prior art keywords
shear
microphase
liquid crystal
segment
separation structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006237910A
Other languages
Japanese (ja)
Other versions
JP2008055579A (en
Inventor
雅利 戸木田
達矢 泉
順次 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2006237910A priority Critical patent/JP5340530B2/en
Publication of JP2008055579A publication Critical patent/JP2008055579A/en
Application granted granted Critical
Publication of JP5340530B2 publication Critical patent/JP5340530B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ミクロ相分離構造物の製造方法及び当該製造方法により製造されるミクロ相分離構造物に関する。   The present invention relates to a method for producing a microphase separation structure and a microphase separation structure produced by the production method.

従来から、ずり変形や流動によるナノ構造物質の配向秩序等への影響が知られており、中でもブロック共重合体、サーモトロピック液晶及びリオトロピック液晶等は、特定の熱力学的及び力学的挙動を示すものであることから、様々な研究がなされてきた。近年、ブロック共重合体について、ナノオーダー間隔のミクロドメイン構造を有し、より一層高度な配向制御ができるものが期待されており、非晶−非晶ブロック共重合体や、非晶−液晶ブロック共重合体が提案されている。
例えば、ミクロ相分離構造がシリンダー構造であるポリエチレン−ポリエチレンプロピレン(PE−PEP)による非晶−非晶ジブロック共重合体や、ポリスチレンと液晶セグメントによる非晶−液晶−非晶トリブロック共重合体をせん断流動配向させた例が知られている(非特許文献1、非特許文献2)。
しかしながら、これらの方法では、共重合体を配向させることはできるが、配向を制御することはできず、配向度の点、及びナノオーダー間隔のミクロドメイン構造の作成の点で不十分であるといった問題があった。
Conventionally, the effects of shear deformation and flow on the orientational order of nanostructured materials have been known. Among them, block copolymers, thermotropic liquid crystals, lyotropic liquid crystals, etc. exhibit specific thermodynamic and mechanical behavior. Since it is a thing, various researches have been made. In recent years, it has been expected that block copolymers have a microdomain structure with a nano-order interval and can perform higher-level orientation control, such as amorphous-amorphous block copolymers and amorphous-liquid crystal blocks. Copolymers have been proposed.
For example, an amorphous-amorphous diblock copolymer of polyethylene-polyethylenepropylene (PE-PEP) having a microphase separation structure of a cylinder structure, or an amorphous-liquid crystal-amorphous triblock copolymer of polystyrene and a liquid crystal segment There are known examples in which the material is shear-flow-oriented (Non-Patent Document 1, Non-Patent Document 2).
However, in these methods, the copolymer can be oriented, but the orientation cannot be controlled, which is insufficient in terms of the degree of orientation and the creation of a microdomain structure with nano-order intervals. There was a problem.

F.S.Bates et.al,“Variable Shear−Induced Orientation of a Diblock Copolymer Hexagonal Phase”,Macromolecules,1995,28,3008−3011F. S. Bates et. al, “Variable Shear-Induced Orientation of a Block Polymer Hexagonal Phase”, Macromolecules, 1995, 28, 3008-3011. J.Sanger et.al,“Preparation of a Liquid Single−Crystal Triblock Copolymer by Shear”,Macromolecules,1997,29,7621−7623J. et al. Sanger et. al, “Preparation of a Liquid Single-Crystal Triblock Polymer by Shear”, Macromolecules, 1997, 29, 7621-7623.

本発明の課題は、ミクロドメイン構造を高度に配向制御することができ、高い配向度を有し、ナノオーダー間隔のミクロドメイン構造を形成するミクロ相分離構造物の製造方法及び該製造方法により得られる構造物を提供することにある。   An object of the present invention is to provide a method for producing a microphase-separated structure capable of highly controlling the orientation of a microdomain structure, having a high degree of orientation, and forming a microdomain structure with a nano-order interval, and the production method. It is to provide a structure that can be obtained.

本発明者らは、上記目的を達成するため鋭意研究を重ねた結果、液晶多形を示すセグメントを有するブロック共重合体にせん断ずり印加を施すことで、ミクロドメイン構造を高度に配向制御することができ、高い配向度を有し、ナノオーダー間隔のミクロドメイン構造を形成するミクロ相分離構造物を得られることを見出した。本発明はかかる知見に基づいて完成したものである。
すなわち本発明は、以下のミクロ相分離構造物の製造方法及び当該製造方法により得られるミクロ相分離構造物を提供するものである。
1.液晶多形を示すセグメントと非晶性セグメントとを有するブロック共重合体をせん断ずり印加により配向制御することを特徴とするミクロ相分離構造物の製造方法。
2.前記せん断ずり印加を、前記ブロック共重合体がミクロ相分離構造を形成し、かつ液晶多形を示すセグメントが液晶相を形成する温度域で行うことを特徴とする前記1に記載のミクロ相分離構造物の製造方法。
3.前記せん断ずり印加が定常ずりである前記1又は2に記載のミクロ相分離構造物の製造方法。
4.前記ミクロ相分離構造がシリンダー構造である前記2又は3に記載のミクロ相分離構造物の製造方法。
5. 前記液晶多形を示すセグメントが、高分子骨格主鎖、スペーサー及びメソゲン基が結合し、さらにその末端に末端基が結合したものであり、高分子骨格主鎖が一般式(1)から選ばれる1種であり、スペーサーが一般式(2)から選ばれる1種であり、メソゲン基が一般式(3)から選ばれる1種であり、末端基が一般式(4)から選ばれる1種である前記1〜4のいずれかに記載のミクロ相分離構造物の製造方法。
6.前記液晶多形を示すセグメントが一般式(5)である前記1〜4のいずれかに記載のミクロ相分離構造物の製造方法。
7.前記非晶性セグメントを構成する化合物が親水性である前記1〜6のいずれかに記載のミクロ相分離構造物の製造方法。
8.前記ミクロ相分離構造物がフィルムである前記1〜7のいずれかに記載のミクロ相分離構造物の製造方法。
9.前記1〜7のいずれかに記載のミクロ相分離構造物の製造方法により得られるミクロ相分離構造物。
10.前記8に記載のミクロ相分離構造物の製造方法により得られるミクロ相分離構造フィルム。
As a result of intensive studies to achieve the above object, the inventors of the present invention are capable of highly controlling the orientation of the microdomain structure by applying shear shear to a block copolymer having segments exhibiting liquid crystal polymorphism. It has been found that a microphase-separated structure having a high degree of orientation and forming a microdomain structure with nano-order intervals can be obtained. The present invention has been completed based on such findings.
That is, the present invention provides the following method for producing a microphase separation structure and a microphase separation structure obtained by the production method.
1. A method for producing a microphase-separated structure, comprising controlling the orientation of a block copolymer having a segment exhibiting liquid crystal polymorphism and an amorphous segment by applying shear shear.
2. 2. The microphase separation according to 1 above, wherein the shear shear application is performed in a temperature range in which the block copolymer forms a microphase separation structure and a segment exhibiting a liquid crystal polymorph forms a liquid crystal phase. Manufacturing method of structure.
3. 3. The method for producing a microphase-separated structure according to 1 or 2, wherein the application of shear shear is steady shear.
4). 4. The method for producing a microphase separation structure according to 2 or 3, wherein the microphase separation structure is a cylinder structure.
5. The segment showing the liquid crystal polymorph is a polymer skeleton main chain, a spacer and a mesogenic group bonded to each other, and a terminal group bonded to the terminal thereof, and the polymer skeleton main chain is selected from the general formula (1) 1 type, the spacer is 1 type selected from general formula (2), the mesogenic group is 1 type selected from general formula (3), and the end group is 1 type selected from general formula (4). The manufacturing method of the micro phase-separated structure in any one of said 1-4.
6). The manufacturing method of the micro phase-separated structure in any one of said 1-4 whose segment which shows the said liquid crystal polymorph is General formula (5).
7). 7. The method for producing a microphase separation structure according to any one of 1 to 6, wherein the compound constituting the amorphous segment is hydrophilic.
8). 8. The method for producing a microphase separation structure according to any one of 1 to 7, wherein the microphase separation structure is a film.
9. A microphase separation structure obtained by the method for producing a microphase separation structure according to any one of 1 to 7 above.
10. 9. A microphase-separated structure film obtained by the method for producing a microphase-separated structure according to 8 above.

本発明によれば、ミクロドメイン構造を高度に配向することができ、高い配向度を有し、ナノオーダー間隔のミクロドメイン構造を形成するミクロ相分離構造物の製造方法及び当該製造方法により製造されるミクロ相分離構造物及びミクロ相分離構造フィルムを得ることができる。   According to the present invention, a method for producing a microphase-separated structure capable of highly orienting a microdomain structure, having a high degree of orientation, and forming a microdomain structure with nano-order spacing, and the production method are provided. A microphase-separated structure and a microphase-separated structure film can be obtained.

本発明のミクロ相分離構造物は、液晶多形を示すセグメントと非晶性セグメントとを有するブロック共重合体を、せん断ずり印加により配向制御することで得られる。   The microphase-separated structure of the present invention can be obtained by controlling the orientation of a block copolymer having a segment exhibiting liquid crystal polymorphism and an amorphous segment by applying shear shear.

本発明のミクロ相分離構造物を構成するブロック共重合体における液晶多形を示すセグメントは、二つ以上の液晶種を形成するセグメントである。液晶種としては、スメクチック液晶、ネマチック液晶、コレステリック液晶を挙げることができるが、中でも、スメクチック液晶及びネマチック液晶を有することが好ましい。
このような液晶多形を示すセグメントは、二つ以上の液晶種を有するセグメントであれば特に制限はないが、高分子骨格主鎖、スペーサー及びメソゲン基が任意に結合し、さらにその末端に末端基が順に結合したものであり、各々以下に例示される基から選ばれる1種が結合してなるものを好ましく挙げることができる。また、このように表されるセグメントは、1種でもよいし、高分子骨格主鎖、スペーサー、メソゲン基及び末端基の少なくとも1つの基が異なる複数種を有していてもよい。
The segment showing the liquid crystal polymorphism in the block copolymer constituting the microphase separation structure of the present invention is a segment forming two or more liquid crystal species. Examples of the liquid crystal species include a smectic liquid crystal, a nematic liquid crystal, and a cholesteric liquid crystal. Among them, it is preferable to have a smectic liquid crystal and a nematic liquid crystal.
The segment exhibiting such a liquid crystal polymorph is not particularly limited as long as it is a segment having two or more liquid crystal species, but a polymer backbone, a spacer, and a mesogenic group are arbitrarily bonded, and further, the terminal is terminated at the terminal. Preferable examples include those in which groups are bonded in order, and one group selected from the groups exemplified below is bonded. Moreover, the segment represented in this way may be 1 type, and may have multiple types from which at least 1 group of a polymer backbone principal chain, a spacer, a mesogen group, and a terminal group differs.

高分子骨格主鎖としては、以下の一般式(1)の基を挙げることができる。ここでR1は水素原子、ハロゲン原子又は置換もしくは無置換の炭素数1〜6のアルキル基を示し、中でも水素原子、メチル基が好ましい。R2はCOO、CONH、OCO、NHCO、CH2O、OC64、C64O、C54+(R5-、NH+(R5-を示し、R3は窒素原子、酸素原子又は直接結合手を示す。また、R4は水素原子又は置換もしくは無置換の炭素数1〜6のアルキル基を示し、R5はハロゲンイオンを示す。y及びlは任意の整数である。yは、後述するブロック共重合体中の液晶多形を示すセグメントの重量分率φLCが好ましい範囲となるように適宜決められるが、通常10〜90である。lは、液晶多形を示すセグメントの重量平均分子量により適宜決められ、通常4〜8であり、5〜7が好ましい。 Examples of the polymer skeleton main chain include groups of the following general formula (1). R 1 represents a hydrogen atom, a halogen atom, or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and among them, a hydrogen atom and a methyl group are preferable. R 2 represents COO, CONH, OCO, NHCO, CH 2 O, OC 6 H 4 , C 6 H 4 O, C 5 H 4 N + (R 5 ) , NH + (R 5 ) , and R 3 Represents a nitrogen atom, an oxygen atom or a direct bond. R 4 represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and R 5 represents a halogen ion. y and l are arbitrary integers. y is appropriately determined so that the weight fraction φ LC of the segment showing the liquid crystal polymorphism in the block copolymer described later is within a preferable range, but is usually 10 to 90. l is appropriately determined by the weight average molecular weight of the segment exhibiting liquid crystal polymorphism, and is usually 4 to 8, and preferably 5 to 7.

Figure 0005340530
Figure 0005340530

スペーサーとしては、以下の一般式(2)の基を挙げることができる。ここでR6は各々独立して炭素数1〜6のアルキル基又はフェニル基を示し、mは任意の整数であり、容易にせん断ずり印加を施す観点により決められ、通常4〜8であり、5〜7が好ましい。 Examples of the spacer include groups of the following general formula (2). Here, each R 6 independently represents an alkyl group having 1 to 6 carbon atoms or a phenyl group, m is an arbitrary integer, is easily determined by applying shear shear, and is usually 4 to 8, 5-7 are preferable.

Figure 0005340530
Figure 0005340530

メソゲン基としては、以下の一般式(3)の基を挙げることができる。ここで、R7は、COO、N=N、CH=CH、O−CO−CH=CH、(C64)−O−CO−CH=CH又は単結合を示す。また、ベンゼン環は置換されていても、置換されていなくてもよい。なお、R7が単結合の場合、一般式(3)の基はビフェニル基である。 Examples of the mesogenic group include a group represented by the following general formula (3). Here, R 7 represents COO, N═N, CH═CH, O—CO—CH═CH, (C 6 H 4 ) —O—CO—CH═CH, or a single bond. Moreover, the benzene ring may be substituted or unsubstituted. When R 7 is a single bond, the group of general formula (3) is a biphenyl group.

Figure 0005340530
Figure 0005340530

末端基としては、以下の一般式(4)の基を挙げることができる。ここでR8はハロゲン原子を示す。nは任意の整数であり、容易にせん断ずり印加を施す観点より決められ、通常4〜8であり、5〜7が好ましい。 Examples of the terminal group include groups of the following general formula (4). Here, R 8 represents a halogen atom. n is an arbitrary integer, is determined from the viewpoint of easily applying shearing shear, and is usually 4 to 8, preferably 5 to 7.

Figure 0005340530
Figure 0005340530

中でも、下記一般式(5)で表される液晶性アゾベンゼンを好ましく挙げることができる。   Among these, liquid crystalline azobenzene represented by the following general formula (5) can be preferably exemplified.

Figure 0005340530
Figure 0005340530

一般式(5)中、R7は上記と同様であり、R9は水素原子、ハロゲン原子、又はメチル基を示し、R10は置換もしくは無置換の炭素数1〜6のアルキル基を示す。y及びmは任意の整数であり、上記と同様である。このような一般式(5)のうち、R7がN=Nであり、R9及びR10がメチル基である下記一般式(6)が好ましい。 In general formula (5), R 7 is the same as above, R 9 represents a hydrogen atom, a halogen atom, or a methyl group, and R 10 represents a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms. y and m are arbitrary integers, and are the same as described above. Of such general formula (5), the following general formula (6) in which R 7 is N = N and R 9 and R 10 are methyl groups is preferable.

Figure 0005340530
Figure 0005340530

本発明におけるブロック共重合体は、上記の液晶多形を示すセグメント及び非晶性セグメントを有するものであり、各々のセグメントは1種であってもよいし、複数種あってもよい。当該ブロック共重合体の数平均分子量(Mn)は、加工しやすさの観点から5000〜500000が好ましく、10000〜100000がさらに好ましい。当該ブロック共重合体中の液晶多形を示すセグメントの重量分率φLCは、ミクロドメイン構造形成の観点から、50〜95質量%が好ましく、70〜90質量%がより好ましく、分子量分布(Mw/Mn)は、ミクロドメイン構造形成の観点から、1.0〜1.5が好ましく、1.0〜1.4がより好ましい。
また、当該ブロック共重合体のガラス転移温度は、本発明のミクロ相分離構造物の成形性の観点から、50〜80℃が好ましく、70〜80℃がさらに好ましい。
The block copolymer in the present invention has a segment exhibiting the above liquid crystal polymorphism and an amorphous segment, and each segment may be one kind or plural kinds. The number average molecular weight (M n ) of the block copolymer is preferably from 5,000 to 500,000, more preferably from 10,000 to 100,000, from the viewpoint of ease of processing. The weight fraction φ LC of the segment showing the liquid crystal polymorph in the block copolymer is preferably 50 to 95% by mass, more preferably 70 to 90% by mass, from the viewpoint of forming the microdomain structure, and the molecular weight distribution (M w / M n ) is preferably 1.0 to 1.5, more preferably 1.0 to 1.4 from the viewpoint of forming a microdomain structure.
In addition, the glass transition temperature of the block copolymer is preferably 50 to 80 ° C, and more preferably 70 to 80 ° C, from the viewpoint of moldability of the microphase-separated structure of the present invention.

本発明のミクロ相分離構造物を構成するブロック共重合体における非晶性セグメントは、非晶性を示すものであれば、特に制限はない。非晶性セグメントを構成する化合物としては、スチレン、アクリル酸エステル、メタクリル酸エステル等のビニル化合物やエチレングリコール、プロピレングリコール等のグリコール等を好ましく挙げることができる。ここで、液晶多形を示すセグメントは、一般に疎水性であるので、非晶性セグメントとして親水性の化合物を用いることにより、非晶性セグメントのみに金属をコーティングするなどの加工が可能となる。親水性の化合物としては、例えば、アクリル酸エチレングリコールエステル、アクリル酸ポリプロピレングリコールエステル等が挙げられる。   The amorphous segment in the block copolymer constituting the microphase-separated structure of the present invention is not particularly limited as long as it exhibits amorphous properties. Preferred examples of the compound constituting the amorphous segment include vinyl compounds such as styrene, acrylic acid esters and methacrylic acid esters, and glycols such as ethylene glycol and propylene glycol. Here, since the segment which shows liquid crystal polymorphism is generally hydrophobic, processing such as coating a metal only on the amorphous segment becomes possible by using a hydrophilic compound as the amorphous segment. Examples of the hydrophilic compound include acrylic acid ethylene glycol ester and acrylic acid polypropylene glycol ester.

本発明のミクロ相分離構造物は、上記のようなブロック共重合体をせん断ずり印加により配向制御することで得られる。高度な配向制御を行う観点から、せん断ずり印加はブロック共重合体がクロ相分離構造を形成し、かつ液晶多形を示すセグメントが液晶相を形成する温度域で行うことが好ましく、また、ミクロ相分離構造がシリンダー構造であることが好ましい。ミクロ相分離構造を形成し、かつ液晶多形を示すセグメントが液晶相を形成する温度域は、特に限定されないが、通常0〜200℃であり、50〜200℃が好ましい。
本発明のミクロ相分離構造物の製造方法は、液晶多形を示すセグメントの液晶種によって、配向が変化することを利用し、高度に配向制御できるものである。本発明の好ましい具体例を図1及び図2を用いて説明する。
図1及び図2は、せん断ずり印加を施して得られたミクロ相分離構造物の模式図である。図1は液晶多形を示すセグメントがネマチック液晶相の場合のミクロ相分離構造物である。矢印はせん断ずり印加の方向であり、液晶多形を示すセグメントがネマチック液晶相の場合は、シリンダーがせん断ずり印加の方向に対して平行に配向(parallel−b配向)していることを示す。一方、図2は液晶多形を示すセグメントがスメクチック相の場合のミクロ相分離構造物である。図1と同様に、矢印はせん断ずり印加の方向であり、液晶多形を示すセグメントがスメクチック相の場合は、シリンダーがせん断ずり印加の方向に対して垂直に配向(perpendicular−c配向)していることを示す。
このように、本発明のミクロ相分離構造物の製造方法においては、液晶多形を示すセグメントの液晶種によって、配向を高度に制御することができる。
The micro phase separation structure of the present invention can be obtained by controlling the orientation of the block copolymer as described above by applying shear shear. From the viewpoint of performing high-level alignment control, it is preferable to apply shear shear in a temperature range where the block copolymer forms a chroma phase separation structure and the segment exhibiting liquid crystal polymorphism forms a liquid crystal phase. The phase separation structure is preferably a cylinder structure. The temperature range in which the segment forming the microphase separation structure and the liquid crystal polymorphic segment forms the liquid crystal phase is not particularly limited, but is usually 0 to 200 ° C, and preferably 50 to 200 ° C.
The method for producing a microphase-separated structure of the present invention is capable of highly controlling the orientation by utilizing the fact that the orientation changes depending on the liquid crystal species of the segment exhibiting liquid crystal polymorphism. A preferred embodiment of the present invention will be described with reference to FIGS.
1 and 2 are schematic views of a microphase-separated structure obtained by applying shear shear. FIG. 1 shows a microphase-separated structure in the case where a segment exhibiting liquid crystal polymorphism is a nematic liquid crystal phase. The arrow indicates the direction in which shear shear is applied. When the segment indicating the liquid crystal polymorphism is a nematic liquid crystal phase, it indicates that the cylinder is aligned parallel to the direction in which shear shear is applied (parallel-b orientation). On the other hand, FIG. 2 shows a micro phase separation structure in the case where the segment showing the liquid crystal polymorphism is a smectic phase. As in FIG. 1, the arrow indicates the direction of shear shear application. When the segment showing the liquid crystal polymorphism is in the smectic phase, the cylinder is oriented perpendicularly to the direction of shear shear application (perpendicular-c orientation). Indicates that
Thus, in the method for producing a microphase-separated structure according to the present invention, the orientation can be highly controlled by the liquid crystal species of the segment exhibiting the liquid crystal polymorphism.

本発明において、せん断ずり印加は、定常ずり、LAOS(Large Amplitude Oscillating Shearing)等の通常せん断ずり印加に用いられる方法によりなされるが、工業的な観点から、定常ずりであることが好ましい。定常ずりとは、一定のせん断速度でずり印加することをいう。本発明においては、せん断速度は特に制限されないが、通常0.001〜10s-1であり、0.005〜5.5s-1が好ましい。また、せん断ずり印加を行う機器にも特に制限はなく、例えばRheosol G3000レオメーター(UBM社製)等を用いることができる。また、せん断ずり印加を行う機器における治具も特に限定されず、コーンプレート型やパラレルプレート型などの治具を使用することができる。 In the present invention, the shear shear application is performed by a method used for normal shear shear application such as steady shear, LAOS (Large Amplitude Oscillating Shearing), and is preferably a steady shear from an industrial viewpoint. Steady shear refers to application of shear at a constant shear rate. In the present invention, the shear rate is not particularly limited, but is usually 0.001 to 10 s −1 , preferably 0.005 to 5.5 s −1 . Moreover, there is no restriction | limiting in particular also in the apparatus which performs a shear shear application, For example, Rhesol G3000 rheometer (made by UBM) etc. can be used. In addition, a jig in a device that applies shear shear is not particularly limited, and a jig such as a cone plate type or a parallel plate type can be used.

本発明のミクロ相分離構造物は、例えば以下に示すような方法で製造することができる。
合成して得られたブロック共重合体の試料を、せん断ずり印加を行う治具に設置する。当該治具中にて、ブロック共重合体中の液晶多形を示すセグメントが等方相を示す温度で熱処理(通常0〜10分間)をした後、所定の液晶種を示す温度領域まで降温し、所定の条件でせん断ずり印加を施す。次いで、せん断ずり印加の応力が定常状態になったところでせん断ずり印加を停止し、ブロック共重合体のガラス転移温度以下まで降温させて、試料を治具から剥離してフィルム状のミクロ相分離構造物が得られる。
本発明により、フィルムとして得られるミクロ相分離構造物のフィルム厚みは通常50〜1500μmである。また、合成樹脂基板などの基板上にブロック共重合体の試料を配置した状態で、せん断ずりを印加してもよい。
The microphase separation structure of the present invention can be produced, for example, by the following method.
A sample of the block copolymer obtained by synthesis is placed on a jig for applying shear shear. In the jig, after heat treatment (usually 0 to 10 minutes) at a temperature at which the segment showing the liquid crystal polymorph in the block copolymer shows an isotropic phase, the temperature is lowered to a temperature range showing a predetermined liquid crystal species. Application of shear shear is performed under predetermined conditions. Next, when the shear shear application stress reaches a steady state, the shear shear application is stopped, the temperature is lowered to the glass transition temperature or less of the block copolymer, and the sample is peeled from the jig to form a film-like micro phase separation structure. A thing is obtained.
According to the present invention, the film thickness of the microphase-separated structure obtained as a film is usually 50 to 1500 μm. Further, a shear shear may be applied in a state where a block copolymer sample is placed on a substrate such as a synthetic resin substrate.

このようにして得られた本発明のミクロ相分離構造物は、高度な配向制御がなされ、0.95〜0.99と非常に高い配向度P2を有し、ナノオーダー間隔のミクロドメイン構造を形成するものである。通常、配向度P2が0.8以上であれば高い配向度を有するといわれるが、本発明のミクロ相分離構造物は上記のように非常に高い配向度を有する。 The microphase-separated structure of the present invention thus obtained is highly controlled in orientation, has a very high degree of orientation P 2 of 0.95 to 0.99, and has a microdomain structure with nano-order intervals. Is formed. Usually, if the degree of orientation P 2 is 0.8 or more, it is said to have a high degree of orientation, but the microphase-separated structure of the present invention has a very high degree of orientation as described above.

本発明のミクロ相分離構造物は、高度な配向制御がなされ、高い配向度を有し、ナノオーダー間隔のミクロドメイン構造を形成するものであり、様々な用途に応用することができる。例えば、本発明のフィルム状のミクロ相分離構造物の片方のミクロドメイン構造部分に金属をコーティングすることにより、可視光の波長よりも幅と間隔が狭く、規則正しく配列した金属ストライプを形成することができる。この金属ストライプを用いて、可視光及び紫外光用のワイヤグリッド偏光子を製造することができる。
ワイヤグリッド偏光子は、基板上に無数の金属細線を周期的に配列させたものであるが、従来のフォトリソグラフィー法等では、その周期間隔をミクロンオーダー程度のものしか製造することができず、赤外線用のワイヤグリッド偏光子しか製造できなかった。しかし、本発明のミクロ相分離構造物は、高い配向度を有し、ナノオーダー間隔のミクロドメイン構造を有するので、そのシリンダー構造部分に金属をコーティングすることで、ナノオーダーの周期間隔を有するワイヤグリッド偏光子を得ることができるので、可視光及び紫外光用としての使用が可能となる。
The microphase-separated structure of the present invention has a high degree of orientation control, has a high degree of orientation, and forms a microdomain structure with nano-order intervals, and can be applied to various applications. For example, by coating a metal on one microdomain structure part of the film-like microphase-separated structure of the present invention, it is possible to form regularly arranged metal stripes that are narrower in width and interval than the wavelength of visible light. it can. Using this metal stripe, a wire grid polarizer for visible light and ultraviolet light can be produced.
The wire grid polarizer is an infinite number of fine metal wires periodically arranged on a substrate. However, in a conventional photolithography method or the like, only a periodic interval of about a micron order can be manufactured. Only wire grid polarizers for infrared could be produced. However, since the microphase separation structure of the present invention has a high degree of orientation and a microdomain structure with nano-order spacing, a wire having a nano-order periodic spacing can be obtained by coating the cylinder structure with metal. Since a grid polarizer can be obtained, it can be used for visible light and ultraviolet light.

次に、本発明を実施例によりさらに詳細に説明するが、本発明はこの例によって何ら限定されるものではない。
(評価方法)
実施例で得られたミクロ相分離構造物の試料について、以下の方法で評価した。
(1)ガラス転移温度の測定
実施例で得られた試料のガラス転移温度は、示差走査熱量計(DSC)により測定された値であり、示差走査熱量計Pyris−1(Perkin−Elmer社製)を用いて、10℃/minの昇温、降温サイクルにおいて観測されるピーク温度からガラス転移温度を決定した。なお、測定はせん断ずり印加前の試料を用いて行った。
(2)数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)の測定
数平均分子量及び重量平均分子量は、せん断ずり印加前の試料をクロロホルムに溶解した0.5質量%溶液をGPCにより下記条件で測定したポリスチレン換算の値である。
カラム:Shodex製、溶離液:クロロホルム、流速:1.0mL/min、カラム温度:40℃、検出器:示差屈折率計。
(3)ミクロ相分離構造の評価(せん断ずり印加前)
実施例でせん断ずり印加前に得られた試料を、小角X線散乱測定Nano−STAR(ブルカーエイエックス社製)を用いて、得られるパターンよりスフィアー構造、ラメラ構造等のミクロ相分離構造を同定した。また、試料における液晶多形を示すセグメントの同定は、広角X線回折測定(RINT2500、理学電気社製)を行い、得られるパターンよりネマチック液晶、スメクチック液晶等の液晶種を同定した。
(4)ミクロ相分離構造の評価(せん断ずり印加後)
実施例でせん断ずり印加後に得られた試料を、小角X線散乱測定Nano−STAR(ブルカーエイエックス社製)及び、広角X線回折測定(RINT2500、理学電気社製)を用いてミクロ相分離構造を同定した。
得られたデータを下記の数式に適用し、配向度、シリンダー半径、シリンダーの周期長を算出した。
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited at all by this example.
(Evaluation method)
Samples of the microphase separation structures obtained in the examples were evaluated by the following methods.
(1) Measurement of glass transition temperature The glass transition temperature of the sample obtained in the example is a value measured by a differential scanning calorimeter (DSC), and a differential scanning calorimeter Pyris-1 (manufactured by Perkin-Elmer). Was used to determine the glass transition temperature from the peak temperature observed in the temperature increase / decrease cycle of 10 ° C./min. In addition, the measurement was performed using the sample before application of shear shear.
(2) Measurement of number average molecular weight (M n ), weight average molecular weight (M w ) and molecular weight distribution (M w / M n ) Number average molecular weight and weight average molecular weight were obtained by dissolving a sample before application of shear shear in chloroform. It is the value of polystyrene conversion which measured the 0.5 mass% solution on the following conditions by GPC.
Column: manufactured by Shodex, eluent: chloroform, flow rate: 1.0 mL / min, column temperature: 40 ° C., detector: differential refractometer.
(3) Evaluation of microphase separation structure (before applying shear shear)
Samples obtained before applying shear shear in the examples were identified using micro-angle separation structures such as sphere structures and lamellar structures from the obtained patterns using small-angle X-ray scattering measurement Nano-STAR (manufactured by Bruker Ax). did. Moreover, the segment which shows the liquid crystal polymorphism in a sample identified wide-angle X-ray-diffraction measurement (RINT2500, Rigaku Denki Co., Ltd.), and identified liquid crystal seeds, such as a nematic liquid crystal and a smectic liquid crystal, from the pattern obtained.
(4) Evaluation of microphase separation structure (after applying shear shear)
Samples obtained after applying shear shear in the examples were subjected to micro-phase separation structure using small-angle X-ray scattering measurement Nano-STAR (Bruker Ax) and wide-angle X-ray diffraction measurement (RINT2500, manufactured by Rigaku Corporation). Was identified.
The obtained data was applied to the following mathematical formula, and the degree of orientation, cylinder radius, and cylinder cycle length were calculated.

Figure 0005340530
Figure 0005340530

上記式中、P2はミクロシリンダーの配向秩序パラメータ(配向度)、βは2次元X線回折パターンの方位角、I(β)は回折強度を示す。また、Dはシリンダーの周期長(シリンダー間の距離)(nm)、d100は小角X線散乱測定から決定されたシリンダーが形成する2次元六方格子の(100)面間隔(nm)を示す。rはシリンダー半径(nm)、wは非晶部分の重量分率、ρLC、及びρamorは液晶及び非晶ポリマー密度を示す。 In the above formula, P 2 represents the orientation parameter (orientation degree) of the microcylinder, β represents the azimuth angle of the two-dimensional X-ray diffraction pattern, and I (β) represents the diffraction intensity. D represents the periodic length of the cylinder (distance between the cylinders) (nm), and d100 represents the (100) spacing (nm) of the two-dimensional hexagonal lattice formed by the cylinder determined from the small angle X-ray scattering measurement. r is the cylinder radius (nm), w is the weight fraction of the amorphous part, ρ LC , and ρ amor are the liquid crystal and amorphous polymer density.

合成例1(4−ヒドロキシ−4’メトキシアゾベンゼンの合成)
p−アニシジン25.0g(203mmol)を塩酸水溶液(3mol/l)250mLに溶解させた。この水溶液を氷浴中で冷却した状態にて亜硝酸ナトリウム14.3g(208mmol)を蒸留水150mLに溶解させた水溶液をゆっくり加えて水溶液1を得た。一方、フェノール19.5mg(208mmol)を10質量%水酸化ナトリウム水溶液200mLに溶解させた溶液を氷浴で冷やし、水溶液1をゆっくり加えた。赤褐色の懸濁溶液中に生じた沈殿物を回収し、多量の水で洗浄した。残った固体を真空乾燥し、目的生成物4−ヒドロキシ−4’メトキシアゾベンゼンを得た。収量は18.48g(81mmol)、収率39.9%だった。
Synthesis Example 1 (Synthesis of 4-hydroxy-4′methoxyazobenzene)
25.0 g (203 mmol) of p-anisidine was dissolved in 250 mL of an aqueous hydrochloric acid solution (3 mol / l). With this aqueous solution cooled in an ice bath, an aqueous solution in which 14.3 g (208 mmol) of sodium nitrite was dissolved in 150 mL of distilled water was slowly added to obtain an aqueous solution 1. On the other hand, a solution in which 19.5 mg (208 mmol) of phenol was dissolved in 200 mL of a 10% by mass aqueous sodium hydroxide solution was cooled in an ice bath, and the aqueous solution 1 was slowly added. The precipitate formed in the reddish brown suspension was collected and washed with a large amount of water. The remaining solid was vacuum-dried to obtain the desired product 4-hydroxy-4′methoxyazobenzene. The yield was 18.48 g (81 mmol), and the yield was 39.9%.

合成例2(1−ブロモ−6−(4−メトキシアゾベンゼン−4’オキシ)ヘキサンの合成)
合成例1で得られた4−ヒドロキシ−4’メトキシアゾベンゼン18.48g(81mmol)、1,6−ジブロモヘキサン152g(624mmol)、炭酸カルシウム89.2g(646mmol)をアセトンに溶解させて、24時間還流を行った。反応後溶媒を減圧留去させ、残渣をクロロホルムに溶解させた。水で洗浄を行い、硫酸マグネシウムを加えて一晩攪拌させた後、減圧留去を行った。得られた固体をエタノール/水の混合溶媒で再結晶を行い、目的生成物1−ブロモ−6−(4−メトキシアゾベンゼン−4’オキシ)ヘキサンを得た。収量は19.0g(48.6mmol)、収率59.9%だった。
Synthesis Example 2 (Synthesis of 1-bromo-6- (4-methoxyazobenzene-4′oxy) hexane)
18.48 g (81 mmol) of 4-hydroxy-4′methoxyazobenzene obtained in Synthesis Example 1, 152 g (624 mmol) of 1,6-dibromohexane, and 89.2 g (646 mmol) of calcium carbonate were dissolved in acetone for 24 hours. Reflux was performed. After the reaction, the solvent was distilled off under reduced pressure, and the residue was dissolved in chloroform. After washing with water, magnesium sulfate was added and the mixture was stirred overnight, and then distilled off under reduced pressure. The obtained solid was recrystallized with a mixed solvent of ethanol / water to obtain the target product 1-bromo-6- (4-methoxyazobenzene-4′oxy) hexane. The yield was 19.0 g (48.6 mmol), and the yield was 59.9%.

合成例3(Azの合成)
1Lのナス型フラスコに炭酸水素カリウム10.5g(105.0mmol)を入れ、これにメタクリル酸9.4g(108.6mmol)をゆっくり滴下した後、室温で5分攪拌をおこなった。これに合成例2で得られた1−ブロモ−6−(4−メトキシアゾベンゼン−4’オキシ)ヘキサン19.0g(48.6mmol)とp−ヒドロキノン0.035g(0.32mmol)をジメチルホルムアミド500mLに溶解させた溶液を滴下し、100℃に加熱して24時間反応を行った。反応終了後ジメチルホルムアミドを減圧留去させた後、残渣をクロロホルムに溶解させた。有機層を5質量%の水酸化ナトリウム水溶液および水で2回ずつ洗浄を行い、硫酸マグネシウムを加えて一晩攪拌させた後、減圧留去を行った。得られた固体を、クロロホルムを展開溶媒としてカラムクロマトグラフィーにかけ、さらに、クロロホルム/ヘキサンの混合溶媒中から再結晶を行い、液晶多形を示すセグメントを構成する目的生成物Azを得た。収量は10.0g(25.2mmol)、収率は51.9%だった。ここで、目的性生物Azは下記化学式で表される化合物である。
Synthesis Example 3 (Synthesis of Az)
10.5 g (105.0 mmol) of potassium hydrogen carbonate was placed in a 1 L eggplant-shaped flask, and 9.4 g (108.6 mmol) of methacrylic acid was slowly added dropwise thereto, followed by stirring at room temperature for 5 minutes. To this, 19.0 g (48.6 mmol) of 1-bromo-6- (4-methoxyazobenzene-4′oxy) hexane obtained in Synthesis Example 2 and 0.035 g (0.32 mmol) of p-hydroquinone were added to 500 mL of dimethylformamide. The solution dissolved in was added dropwise, heated to 100 ° C., and reacted for 24 hours. After completion of the reaction, dimethylformamide was distilled off under reduced pressure, and the residue was dissolved in chloroform. The organic layer was washed twice with a 5% by mass aqueous sodium hydroxide solution and water, added with magnesium sulfate and stirred overnight, and then distilled off under reduced pressure. The obtained solid was subjected to column chromatography using chloroform as a developing solvent, and further recrystallized from a mixed solvent of chloroform / hexane to obtain a target product Az constituting a segment exhibiting liquid crystal polymorphism. The yield was 10.0 g (25.2 mmol), and the yield was 51.9%. Here, the target organism Az is a compound represented by the following chemical formula.

Figure 0005340530
Figure 0005340530

合成例4(PS−Brマクロイニシエーターの合成)
スチレン(東京化成社製)13.0g、1−ブロモエチルベンゼン(東京化成社製)0.0541g、(−)−スパルテイン(アルドリッチ社製)0.156gを100mLナスフラスコに入れ、アニソール(関東化学社製)13.0gに溶解させる。系を液体窒素に浸して凍結させた後減圧し、室温に戻す操作を3回繰り返し、系中の酸素を取り除く。再び系を凍結させ、臭化銅(和光純薬工業社製)0.0477gを投入する。再び系を高真空状態とした後、高純度窒素を導入して10分間放置する。その後、ナスフラスコを110°Cに保ったオイルバスに浸し、窒素気流下で3.75時間重合する。ナスフラスコを氷水に浸し、系を冷やして重合を停止させる。反応溶液に適量のテトラヒドロフラン(東京化成社製)を加え、塩基性の活性アルミナ(ブロックマンI、アルドリッチ社製)に通し、臭化銅を反応系から取り除く。その溶液をメタノール中に投入し、得られたポリスチレンを析出させる。析出したポリスチレンを適量のテトラヒドロフランに溶解させ、メタノール中に投入し沈殿させる操作を3回繰り返す。こうして得られたPS−Brマクロイニシエータの数平均重合度(Mn)は10900、分子量分布(Mw/Mn)は1.16であった。
Synthesis Example 4 (Synthesis of PS-Br macroinitiator)
13.0 g of styrene (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.0541 g of 1-bromoethylbenzene (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.156 g of (−)-sparteine (manufactured by Aldrich Co.) were placed in a 100 mL eggplant flask and anisole (Kanto Chemical) Dissolved in 13.0 g). The system is immersed in liquid nitrogen and frozen, and then the pressure is reduced and the operation of returning to room temperature is repeated three times to remove oxygen in the system. The system is frozen again and 0.0477 g of copper bromide (Wako Pure Chemical Industries, Ltd.) is added. The system is again brought to a high vacuum, and then high purity nitrogen is introduced and left for 10 minutes. Thereafter, the eggplant flask is immersed in an oil bath maintained at 110 ° C. and polymerized under a nitrogen stream for 3.75 hours. The eggplant flask is immersed in ice water and the system is cooled to stop the polymerization. An appropriate amount of tetrahydrofuran (manufactured by Tokyo Chemical Industry Co., Ltd.) is added to the reaction solution and passed through basic activated alumina (Blockman I, manufactured by Aldrich Co.) to remove copper bromide from the reaction system. The solution is put into methanol and the resulting polystyrene is precipitated. The operation of dissolving the precipitated polystyrene in an appropriate amount of tetrahydrofuran, throwing it into methanol and precipitating is repeated three times. The number average polymerization degree (Mn) of the PS-Br macroinitiator thus obtained was 10900, and the molecular weight distribution (M w / M n ) was 1.16.

合成例5(ジブロック共重合体PS−b−PM6BAの合成)
合成例3で得られたモノマーAz4.62g、合成例4で得られたPS−Brマクロイニシエーター(数平均分子量10900)0.9g、CuBr(和光純薬工業)0.187g、(−)−スパルテイン(アルドリッチ)0.0571g及びアニソール(関東化学社製)18.48gを50mLのナスフラスコ中に入れ、得られたアニソール溶液を凍結後、系を減圧して融解させる作業を3回繰り返して反応溶液中から酸素を除去した。その後、溶液が凍結した状態で臭化銅をナスフラスコに入れ、反応系中の酸素を除去するために高真空状態とした。90℃に加熱したオイルバスにナスフラスコを2時間入れ、窒素気流下で重合を行った。重合終了後、反応溶液を塩基性の活性アルミナを通すことにより臭化銅を反応系から取り除き、メタノール中に注ぐ再沈殿を2回繰り返した。得られたポリマーにはポリスチレンの重合中に二分子停止を起こしたスチレン−スチレンがブロック共重合せずに残っているので、これを除くためメチルシクロヘキサンを用いてソックスレー抽出を行った後、再びメタノールで再沈殿を行った。
得られたジブロック共重合体のガラス転移温度は73℃、数平均分子量(Mn)は20500、分子量分布(Mw/Mn)は1.32だった。また、得られたジブロック共重合体の組成比は1H−NMR測定により算出し、φLCは87だった。
得られたジブロック共重合体は下記化学式で示される。
Synthesis Example 5 (Synthesis of diblock copolymer PS-b-PM6BA)
Monomer Az 4.62 g obtained in Synthesis Example 3, PS-Br macroinitiator (number average molecular weight 10900) 0.9 g obtained in Synthesis Example 4, CuBr (Wako Pure Chemical Industries) 0.187 g, (-)- Put 0.0571 g of sparteine (Aldrich) and 18.48 g of anisole (manufactured by Kanto Chemical Co., Ltd.) into a 50 mL eggplant flask, freeze the resulting anisole solution, and then repeat the operation of thawing the system under reduced pressure three times. Oxygen was removed from the reaction solution. Thereafter, copper bromide was placed in the eggplant flask while the solution was frozen, and a high vacuum state was applied to remove oxygen in the reaction system. The eggplant flask was placed in an oil bath heated to 90 ° C. for 2 hours, and polymerization was performed under a nitrogen stream. After the completion of the polymerization, copper bromide was removed from the reaction system by passing the reaction solution through basic activated alumina, and reprecipitation poured into methanol was repeated twice. In the polymer obtained, styrene-styrene that had undergone bimolecular termination during the polymerization of polystyrene remained without block copolymerization, so to remove this, Soxhlet extraction was performed using methylcyclohexane, and then methanol again. Reprecipitation was performed.
The obtained diblock copolymer had a glass transition temperature of 73 ° C., a number average molecular weight (M n ) of 20500, and a molecular weight distribution (M w / M n ) of 1.32. The composition ratio of the obtained diblock copolymer was calculated by 1 H-NMR measurement, and φ LC was 87.
The obtained diblock copolymer is represented by the following chemical formula.

Figure 0005340530
Figure 0005340530

合成例6((ジブロック共重合体PS−b−PM6BAの合成)
合成例5において、合成例3で得られたモノマーAzの使用量を1.37gとし、PS−Brマクロイニシエーターの使用量を0.4gとした以外は合成例5と同様にして、ジブロック共重合体PS−b−PM6BAを合成した。
得られたジブロック共重合体のガラス転移温度は73℃、数平均分子量(Mn)は39900、分子量分布(Mw/Mn)は1.26だった。また、得られたジブロック共重合体の組成比は1H−NMR測定により算出し、φLCは78だった。
Synthesis Example 6 (Synthesis of diblock copolymer PS-b-PM6BA)
In Synthesis Example 5, diblock was obtained in the same manner as in Synthesis Example 5 except that the amount of monomer Az obtained in Synthesis Example 3 was 1.37 g and the amount of PS-Br macroinitiator was 0.4 g. A copolymer PS-b-PM6BA was synthesized.
The obtained diblock copolymer had a glass transition temperature of 73 ° C., a number average molecular weight (M n ) of 39900, and a molecular weight distribution (M w / M n ) of 1.26. The composition ratio of the obtained diblock copolymer was calculated by 1 H-NMR measurement, and φ LC was 78.

合成例7(ジブロック共重合体PEG−PM6BAの合成)
合成例3で得られたモノマーAz0.3g、PEG−Brマクロイニシエーター0.081g、臭化銅(和光純薬工業社製)0.009g、(−)−スパルテイン(アルドリッチ)0.0266g及びアニソール(関東化学社製)1.1625gを50mLのナスフラスコ中に入れ、得られたアニソール溶液を凍結後、系を減圧して融解させる作業を3回繰り返して反応溶液中から酸素を除去した。その後、溶液が凍結した状態で臭化銅をナスフラスコに入れ、反応系中の酸素を除去するために高真空状態とした。90℃に加熱したオイルバスにナスフラスコを2時間入れ、窒素気流下で重合を行った。重合終了後、反応溶液を塩基性の活性アルミナを通すことにより臭化銅を反応系から取り除き、メタノール中に注ぐ再沈殿を2回繰り返した。
なお、上記のPEG−Brマクロイニシエーターは、Y.Tian,K.Watanabe,X.Kong,J.Abe,andT.Iyoda,Macromolecules,35,3797−3747(2002)に記載される合成方法に従い合成した。
得られたジブロック共重合体のガラス転移温度は71℃、数平均分子量(Mn)は13000、分子量分布(Mw/Mn)は1.20だった。また、得られたジブロック共重合体の組成比は1H−NMR測定により算出し、φLCは84だった。
Synthesis Example 7 (Synthesis of diblock copolymer PEG-PM6BA)
Monomer Az 0.3 g obtained in Synthesis Example 3, PEG-Br macroinitiator 0.081 g, copper bromide (manufactured by Wako Pure Chemical Industries, Ltd.) 0.009 g, (−)-spartein (Aldrich) 0.0266 g and 1.1625 g of anisole (manufactured by Kanto Chemical Co., Inc.) was placed in a 50 mL eggplant flask, and after the obtained anisole solution was frozen, the system was decompressed and melted three times to remove oxygen from the reaction solution. Thereafter, copper bromide was placed in the eggplant flask while the solution was frozen, and a high vacuum state was applied to remove oxygen in the reaction system. The eggplant flask was placed in an oil bath heated to 90 ° C. for 2 hours, and polymerization was performed under a nitrogen stream. After the completion of the polymerization, copper bromide was removed from the reaction system by passing the reaction solution through basic activated alumina, and reprecipitation poured into methanol was repeated twice.
The above PEG-Br macroinitiator is Y.I. Tian, K .; Watanabe, X .; Kong, J .; Abe, and T.M. It was synthesized according to the synthesis method described in Iyoda, Macromolecules, 35, 3797-3747 (2002).
The obtained diblock copolymer had a glass transition temperature of 71 ° C., a number average molecular weight (M n ) of 13,000, and a molecular weight distribution (M w / M n ) of 1.20. The composition ratio of the obtained diblock copolymer was calculated by 1 H-NMR measurement, and φ LC was 84.

実施例1
合成例5で得られたジブロック共重合体PS−b−PM6BA(Mn:20500、Mw/Mn:1.32、φLC:87)の試料を、治具(コーン角:5.6deg、直径:25mmのコーンプレート)中に設置し、液晶多形を示すセグメントが等方相を示す温度140℃で熱処理をした後、120℃まで降温し、所定の条件でせん断ずり印加をせん断速度5.32s-1の条件で施した。次いで、せん断ずり印加の応力が定常状態になった状態でせん断ずり印加を停止し、ブロック共重合体のガラス転移温度73℃よりも低い室温まで降温させて、試料を治具から剥離してフィルム状のミクロ相分離構造物を得た。
得られた試料を上記の方法で相分離挙動を測定し、配向度、シリンダー半径、及びシリンダー周期長を算出した。結果を表1に示す。
Example 1
A sample of the diblock copolymer PS-b-PM6BA (M n : 20500, M w / M n : 1.32, φ LC : 87) obtained in Synthesis Example 5 was used as a jig (cone angle: 5. 6 deg, diameter: 25 mm cone plate), heat treatment at a temperature of 140 ° C where the segment showing liquid crystal polymorphism shows isotropic phase, then cool down to 120 ° C and shear shear application under specified conditions The process was performed at a speed of 5.32 s −1 . Next, the shear shear application is stopped in a state where the shear shear application stress is in a steady state, the temperature is lowered to a room temperature lower than the glass transition temperature of 73 ° C. of the block copolymer, and the sample is peeled off from the jig to form a film. A microphase separation structure was obtained.
The phase separation behavior of the obtained sample was measured by the above method, and the degree of orientation, cylinder radius, and cylinder cycle length were calculated. The results are shown in Table 1.

実施例2〜6
実施例1において、せん断ずり印加を施す温度及びせん断速度を表1に示す条件で行った以外は、実施例1と同様にしてミクロ相分離構造物を得た。
得られた試料を上記の方法で相分離挙動を測定し、配向度、シリンダー半径、及びシリンダー周期長を算出した。結果を表1に示す。
Examples 2-6
A microphase-separated structure was obtained in the same manner as in Example 1, except that the temperature at which shear shear application was applied and the shear rate were performed under the conditions shown in Table 1.
The phase separation behavior of the obtained sample was measured by the above method, and the degree of orientation, cylinder radius, and cylinder cycle length were calculated. The results are shown in Table 1.

実施例7
実施例1において、ジブロック共重合体を合成例6で得られたジブロック共重合体PS−b−PM6BA(Mn:39900、Mw/Mn:1.26、φLC:78)とし、せん断ずり印加を施す温度を120℃とした以外は、実施例1と同様にしてミクロ相分離構造物を得た。
得られた試料を上記の方法で測定し、配向度、シリンダー半径、及びシリンダー周期長を算出した。結果を表1に示す。
Example 7
In Example 1, the diblock copolymer is the diblock copolymer PS-b-PM6BA obtained in Synthesis Example 6 (M n : 39900, M w / M n : 1.26, φ LC : 78). A microphase-separated structure was obtained in the same manner as in Example 1 except that the temperature for applying shear shear was 120 ° C.
The obtained sample was measured by the above method, and the degree of orientation, cylinder radius, and cylinder cycle length were calculated. The results are shown in Table 1.

実施例8
実施例1において、ジブロック共重合体を合成例7で得られたジブロック共重合体PEG−PM6BA(Mn:13000、Mw/Mn:1.20、φLC:84)とし、せん断ずり印加を施す温度を110℃とし、せん断速度を0.532s-1とした以外は、実施例1と同様にしてミクロ相分離構造物を得た。
得られた試料を上記の方法で測定し、配向度、シリンダー半径、及びシリンダー周期長を算出した。結果を表1に示す。
Example 8
In Example 1, the diblock copolymer was the diblock copolymer PEG-PM6BA obtained in Synthesis Example 7 (M n : 13000, M w / M n : 1.20, φ LC : 84), and shearing A microphase-separated structure was obtained in the same manner as in Example 1 except that the temperature for applying shear was 110 ° C. and the shear rate was 0.532 s −1 .
The obtained sample was measured by the above method, and the degree of orientation, cylinder radius, and cylinder cycle length were calculated. The results are shown in Table 1.

本発明の実施例1〜8のミクロ相分離構造物は、配向度が0.95〜0.99と非常に高い配向度を有し、せん断ずり印加を施す温度によって配向状態が高度に制御され、また、シリンダーの半径は8.5〜18.7nm、シリンダーの周期長は20.9〜35.0nmとナノオーダーであることが分かった。   The microphase-separated structures of Examples 1 to 8 of the present invention have a very high degree of orientation of 0.95 to 0.99, and the orientation state is highly controlled by the temperature at which shear shear is applied. Further, it was found that the radius of the cylinder was 8.5 to 18.7 nm, and the cycle length of the cylinder was 20.9 to 35.0 nm, which was nano-order.

Figure 0005340530
*1、配向状態Aは、図1のようにせん断ずり印加の方向に対して平行に配向している状態である。また、配向状態Bは、図2のようにせん断ずり印加の方向に対して垂直に配向している状態である。
*2、相転移挙動は、各実施例で用いられるジブロック共重合体における液晶多形を示すセグメントの挙動を示すものである。例えば、実施例1のG73SmA94N134Iは、73℃以下ではガラス相、73〜94℃ではスメクチック液晶、94〜134℃ではネマチック液晶、134℃以上では等方相(液体)であることを示す。
Figure 0005340530
* 1. The orientation state A is a state of being oriented parallel to the direction of shear shear application as shown in FIG. Further, the orientation state B is a state in which the orientation is perpendicular to the direction of shear shear application as shown in FIG.
* 2. Phase transition behavior indicates the behavior of the segment showing liquid crystal polymorphism in the diblock copolymer used in each example. For example, G73SmA94N134I of Example 1 indicates a glass phase at 73 ° C. or lower, a smectic liquid crystal at 73 to 94 ° C., a nematic liquid crystal at 94 to 134 ° C., and an isotropic phase (liquid) at 134 ° C. or higher.

本発明のミクロ相分離構造物の断面を示す模式図である。It is a schematic diagram which shows the cross section of the micro phase-separation structure of this invention. 本発明のミクロ相分離構造物の断面を示す模式図である。It is a schematic diagram which shows the cross section of the micro phase-separation structure of this invention.

Claims (6)

液晶多形を示すセグメントと非晶性セグメントとを有するブロック共重合体をせん断ずり印加により配向制御することを特徴とするミクロ相分離構造物の製造方法により得られるミクロ相分離構造フィルムであって、ミクロ相分離構造がシリンダー構造であり、シリンダー半径が8.5〜18.7nmであり、シリンダー周期長が20.9〜35.0nmである、ミクロ相分離構造フィルムA microphase-separated structure film obtained by a method for producing a microphase-separated structure, wherein a block copolymer having a segment exhibiting liquid crystal polymorphism and an amorphous segment is subjected to orientation control by applying shear shear. The microphase-separated structure film wherein the microphase-separated structure is a cylinder structure, the cylinder radius is 8.5 to 18.7 nm, and the cylinder cycle length is 20.9 to 35.0 nm . 前記せん断ずり印加を、前記ブロック共重合体がミクロ相分離構造を形成し、かつ液晶多形を示すセグメントが液晶相を形成する温度域で行うことを特徴とする請求項1に記載のミクロ相分離構造フィルム2. The microphase according to claim 1, wherein the shear shear application is performed in a temperature range in which the block copolymer forms a microphase separation structure and a segment exhibiting a liquid crystal polymorph forms a liquid crystal phase. Separation structure film . 前記せん断ずり印加が定常ずりである請求項1又は2に記載のミクロ相分離構造フィルムThe microphase-separated structure film according to claim 1 or 2, wherein the shear shear application is a steady shear. 前記液晶多形を示すセグメントが、高分子骨格主鎖、スペーサー及びメソゲン基が結合し、さらにその末端に末端基が結合したものであり、高分子骨格主鎖が下記一般式(1)から選ばれる1種であり、スペーサーが下記一般式(2)から選ばれる1種であり、メソゲン基が下記一般式(3)から選ばれる1種であり、末端基が下記一般式(4)から選ばれる1種である請求項1〜のいずれかに記載のミクロ相分離構造フィルム
Figure 0005340530
〔式中、R1は水素原子、ハロゲン原子又は置換もしくは無置換の炭素数1〜6のアルキル基を示し、R2はCOO、CONH、OCO、NHCO、CH2O、OC64、C64O、C54+(R5-、NH+(R5-を示し、R3は窒素原子、酸素原子又は直接結合手を示す。また、R4は水素原子又は置換もしくは無置換の炭素数1〜6のアルキル基を示し、R5はハロゲンイオンを示す。y及びlは任意の整数である。〕
Figure 0005340530
〔式中、R6は各々独立して炭素数1〜6のアルキル基又はフェニル基を示し、mは任意の整数を示す。〕
Figure 0005340530
〔式中、R7は、COO、N=N、CH=CH、O−CO−CH=CH、(C64)−O−CO−CH=CH又は単結合を示す。また、ベンゼン環は置換されていても、置換されていなくてもよい。〕
Figure 0005340530
〔式中、R8はハロゲン原子を示す。nは任意の整数である。〕
The segment showing the liquid crystal polymorph is a polymer skeleton main chain, a spacer and a mesogenic group bonded to each other, and a terminal group bonded to the terminal thereof. The polymer skeleton main chain is selected from the following general formula (1) The spacer is one selected from the following general formula (2), the mesogenic group is one selected from the following general formula (3), and the end group is selected from the following general formula (4). microphase separation structure film according to any one of claims 1 to 3, which is one type.
Figure 0005340530
[Wherein, R 1 represents a hydrogen atom, a halogen atom, or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and R 2 represents COO, CONH, OCO, NHCO, CH 2 O, OC 6 H 4 , C 6 H 4 O, C 5 H 4 N + (R 5 ) , NH + (R 5 ) is represented, and R 3 represents a nitrogen atom, an oxygen atom or a direct bond. R 4 represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and R 5 represents a halogen ion. y and l are arbitrary integers. ]
Figure 0005340530
Wherein, R 6 each independently represents an alkyl group or a phenyl group having 1 to 6 carbon atoms, m represents any integer. ]
Figure 0005340530
[Wherein R 7 represents COO, N═N, CH═CH, O—CO—CH═CH, (C 6 H 4 ) —O—CO—CH═CH or a single bond. Moreover, the benzene ring may be substituted or unsubstituted. ]
Figure 0005340530
[Wherein R 8 represents a halogen atom. n is an arbitrary integer. ]
前記液晶多形を示すセグメントが下記一般式(5)である請求項1〜のいずれかに記載のミクロ相分離構造フィルム
Figure 0005340530
〔式中、R7は上記と同様であり、R9は水素原子、ハロゲン原子、又はメチル基を示し、R10は置換もしくは無置換の炭素数1〜6のアルキル基を示す。y及びmは任意の整数である。〕
The segment which shows the said liquid crystal polymorphism is following General formula (5), The microphase-separation structure film in any one of Claims 1-3 .
Figure 0005340530
[Wherein, R 7 is as defined above, R 9 represents a hydrogen atom, a halogen atom, or a methyl group, and R 10 represents a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms. y and m are arbitrary integers. ]
前記非晶性セグメントを構成する化合物が親水性である請求項1〜のいずれかに記載のミクロ相分離構造フィルムMicrophase separation structure film according to any one of claims 1-5 compound constituting the amorphous segment is hydrophilic.
JP2006237910A 2006-09-01 2006-09-01 Manufacturing method of micro phase separation structure Expired - Fee Related JP5340530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006237910A JP5340530B2 (en) 2006-09-01 2006-09-01 Manufacturing method of micro phase separation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006237910A JP5340530B2 (en) 2006-09-01 2006-09-01 Manufacturing method of micro phase separation structure

Publications (2)

Publication Number Publication Date
JP2008055579A JP2008055579A (en) 2008-03-13
JP5340530B2 true JP5340530B2 (en) 2013-11-13

Family

ID=39238916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006237910A Expired - Fee Related JP5340530B2 (en) 2006-09-01 2006-09-01 Manufacturing method of micro phase separation structure

Country Status (1)

Country Link
JP (1) JP5340530B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5330527B2 (en) * 2009-09-29 2013-10-30 株式会社東芝 Structure
KR101826774B1 (en) * 2010-06-04 2018-02-07 에이에스엠엘 네델란즈 비.브이. Self-assemblable polymer and method for use in lithography
JP5508195B2 (en) * 2010-08-27 2014-05-28 浜松ホトニクス株式会社 Optical element and manufacturing method thereof
JP5254381B2 (en) * 2011-02-23 2013-08-07 株式会社東芝 Pattern formation method
JP5699047B2 (en) * 2011-06-30 2015-04-08 浜松ホトニクス株式会社 Structural color body
US10160822B2 (en) 2013-12-06 2018-12-25 Lg Chem, Ltd. Monomer and block copolymer
JP6521974B2 (en) 2013-12-06 2019-05-29 エルジー・ケム・リミテッド Block copolymer
CN105899558B (en) 2013-12-06 2018-09-18 株式会社Lg化学 Block copolymer
CN105934455B (en) 2013-12-06 2019-01-18 株式会社Lg化学 Block copolymer
CN105899557B (en) 2013-12-06 2018-10-26 株式会社Lg化学 Block copolymer
EP3101043B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
CN105934454B (en) 2013-12-06 2019-01-18 株式会社Lg化学 Block copolymer
EP3078693B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
EP3078692B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
CN107075050B (en) * 2014-09-30 2019-08-13 株式会社Lg化学 Block copolymer
WO2016052999A1 (en) 2014-09-30 2016-04-07 주식회사 엘지화학 Block copolymer
US10281820B2 (en) 2014-09-30 2019-05-07 Lg Chem, Ltd. Block copolymer
JP6637495B2 (en) 2014-09-30 2020-01-29 エルジー・ケム・リミテッド Manufacturing method of patterned substrate
CN107075053B (en) 2014-09-30 2019-05-21 株式会社Lg化学 Block copolymer
CN107075055B (en) * 2014-09-30 2019-08-27 株式会社Lg化学 Block copolymer
WO2016053001A1 (en) 2014-09-30 2016-04-07 주식회사 엘지화학 Block copolymer
EP3225641B1 (en) 2014-09-30 2021-11-24 LG Chem, Ltd. Block copolymer
US10703897B2 (en) 2014-09-30 2020-07-07 Lg Chem, Ltd. Block copolymer
EP3203497B1 (en) 2014-09-30 2023-11-29 LG Chem, Ltd. Method for producing patterned substrate
JP6505212B2 (en) 2014-09-30 2019-04-24 エルジー・ケム・リミテッド Block copolymer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4122747B2 (en) * 2001-10-11 2008-07-23 ソニー株式会社 Hologram diffraction grating element and manufacturing method thereof
JP2004264770A (en) * 2003-03-04 2004-09-24 Nakan Corp Polarizing film manufacturing equipment
JP4455958B2 (en) * 2004-08-31 2010-04-21 新日本石油株式会社 Optical liquid crystal film and manufacturing method thereof
JP2006072273A (en) * 2004-08-31 2006-03-16 Tokyo Institute Of Technology Optical rotation film and its manufacturing method

Also Published As

Publication number Publication date
JP2008055579A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP5340530B2 (en) Manufacturing method of micro phase separation structure
US6579947B2 (en) Hydraulic fracturing fluid comprising a block copolymer containing at least one water-soluble block and one hydrophobic block
EP2436722A1 (en) Self-supporting thin polymer film
Yu et al. Photocontrolled microphase separation in a nematic liquid–crystalline diblock copolymer
Chen et al. Design, synthesis, and characterization of bent-core mesogen-jacketed liquid crystalline polymers
Han et al. Synthesis and characterization of new liquid-crystalline block copolymers with p-cyanoazobenzene moieties and poly (n-butyl acrylate) segments using atom-transfer radical polymerization
Yi et al. ABA type triblock copolymer based on mesogen-jacketed liquid crystalline polymer: Design, synthesis, and potential as thermoplastic elastomer
Mehravar et al. Phase behavior of side-chain liquid-crystalline polymers containing biphenyl mesogens with different spacer lengths synthesized via miniemulsion polymerization
Yan et al. Self-healing and phase behavior of liquid crystalline elastomer based on a block copolymer constituted of a side-chain liquid crystalline polymer and a hydrogen bonding block
Ban et al. Influence of the spacer and molecular weight on the phase behavior of side-chain liquid crystalline polymers containing triphenylene discotic mesogen units as side groups
Wei et al. Diblock copolymers composed of a liquid crystalline azo block and a poly (dimethylsiloxane) block: Synthesis, morphology and photoresponsive properties
Wang et al. Optically active helical vinylbiphenyl polymers with reversible thermally induced stereomutation
JPH10310612A (en) Compounds and method for producing liquid crystal polymer from these compounds
Yang et al. Self-organization behaviours of hemiphasmidic side-chain liquid-crystalline polymers with different spacer lengths
JP2017056569A (en) Phase separation structure film and production method of the same
JP5197497B2 (en) Method for producing block copolymer thin film having uniaxial horizontal alignment micro phase separation structure
Tenneti et al. Influence of lc content on the phase structures of side-chain liquid crystalline block copolymers with bent-core mesogens
Wang et al. Synthesis and characterization of side-chain liquid-crystalline block-copolymers containing laterally attached photoluminescent quinquephenyl units via ATRP
Zenati et al. Characteristics and self‐assembly behaviors of photochromic triblock azo‐copolymers based on hard‐soft‐hard segments synthesized via RAFT process
Luo et al. Influence of the spacer length on the phase behaviors of mesogen-jacketed liquid crystalline polymers with a bulk side-chain
Yang et al. Tailoring the liquid crystalline property via controlling the generation of dendronized polymers containing azobenzene mesogen
JP3770397B2 (en) Polymer liquid crystal material
JP2007131653A (en) Chalcone analog
JP3805761B2 (en) Polysilane orientation control method
Bin et al. Influence of main-chain and molecular weight on the phase behaviors of side-chain liquid crystalline polymers without the spacer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130807

R150 Certificate of patent or registration of utility model

Ref document number: 5340530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees