JP5336991B2 - Electromagnet for controlling charged particle beam and irradiation treatment apparatus provided with the same - Google Patents

Electromagnet for controlling charged particle beam and irradiation treatment apparatus provided with the same Download PDF

Info

Publication number
JP5336991B2
JP5336991B2 JP2009229596A JP2009229596A JP5336991B2 JP 5336991 B2 JP5336991 B2 JP 5336991B2 JP 2009229596 A JP2009229596 A JP 2009229596A JP 2009229596 A JP2009229596 A JP 2009229596A JP 5336991 B2 JP5336991 B2 JP 5336991B2
Authority
JP
Japan
Prior art keywords
electromagnet
particle beam
magnetic field
charged particle
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009229596A
Other languages
Japanese (ja)
Other versions
JP2011072717A (en
Inventor
透 荻津
隆博 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009229596A priority Critical patent/JP5336991B2/en
Publication of JP2011072717A publication Critical patent/JP2011072717A/en
Application granted granted Critical
Publication of JP5336991B2 publication Critical patent/JP5336991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To permit a rotary gantry to be reduced in size and weight, and accurate rotation control of the rotary gantry and accurate irradiation on a target. <P>SOLUTION: The electromagnet for controlling a charged particle beam guides a charged particle beam accelerated by an accelerator to a target by forming a deflecting magnetic field stored in the rotary gantry of an irradiation therapy instrument and varying the path of the charged particle beam, and a converging magnetic field controlling a diverging component receding from the center of the path of the charge particle beam, and has superconducting coils 41:42 whose shapes are set so as to simultaneously form the deflecting magnetic field and the converging magnetic field as a synthetic magnetic field and change the direction of the magnetic field along the path of the charged particle beam. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、放射線治療技術に係り、特に、放射線治療で用いる荷電粒子線ビームの制御用電磁石及びこれを備えた照射治療装置に関する。   The present invention relates to a radiotherapy technique, and more particularly to an electromagnet for controlling a charged particle beam used in radiotherapy and an irradiation therapy apparatus including the same.

近年、主に癌患者を対象とする放射線治療において、高エネルギーに加速した陽子線や炭素イオンなどの重粒子線(荷電粒子線)の利用が注目されている。荷電粒子線を利用した放射線治療)では、X線、ガンマ線、電子線或いは中性子線等の粒子線を利用した放射線治療と比べ、体内における線量分布や線量ピークを調節しやすい。このため、体表面及び体内患部周囲の正常細胞の損傷を抑えつつターゲットとなる癌患部などを効果的に治療することが可能となる。   In recent years, the use of heavy particle beams (charged particle beams) such as proton beams and carbon ions accelerated to high energy has attracted attention in radiotherapy mainly for cancer patients. In radiation therapy using charged particle beams, the dose distribution and dose peak in the body can be adjusted more easily than radiotherapy using particle beams such as X-rays, gamma rays, electron beams or neutron beams. For this reason, it becomes possible to effectively treat the target cancerous part and the like while suppressing damage to normal cells around the body surface and the affected part in the body.

初期の照射治療装置は、荷電粒子線ビームの照射部が固定され、ターゲットに対して一方向からの照射のみが可能となるものが主流であった。しかし、正常細胞の損傷を抑えつつ癌患部を効果的に治療するには、病巣部の形状やその体内深度に応じた最適な線量値及び線量分布を計画することが重要となる。そのため、荷電粒子線ビームの照射部を回転させることにより、ターゲットを多方向から照射する言わば“回転式”の照射治療装置が提案された(特許文献1、2参照)。   In the early irradiation therapy apparatus, the main part is one in which the irradiation unit of the charged particle beam is fixed and the target can only be irradiated from one direction. However, in order to effectively treat a cancerous part while suppressing damage to normal cells, it is important to plan an optimal dose value and dose distribution according to the shape of the lesion and its depth in the body. For this reason, a so-called “rotary” irradiation treatment apparatus that irradiates a target from multiple directions by rotating a charged particle beam irradiation unit has been proposed (see Patent Documents 1 and 2).

特開平11−47287号公報JP 11-47287 A 特開平9−192244号公報JP-A-9-192244

回転式の照射治療装置において、病巣部の形状やその体内深度に応じた最適な線量値及び線量分布にてターゲットを照射するためには、回転ガントリの高精度な回転制御が必要となる。しかしながら、回転ガントリの最外殻(最外径)が大きくなるほど、又、回転ガントリが重くなるほど、回転ガントリの高精度な回転制御は困難になってくる。   In the rotary irradiation treatment apparatus, in order to irradiate the target with the optimal dose value and dose distribution according to the shape of the lesion part and the depth in the body, high-precision rotation control of the rotary gantry is required. However, as the outermost shell (outermost diameter) of the rotating gantry increases and the rotating gantry becomes heavier, it becomes more difficult to control the rotating gantry with high accuracy.

本発明は上記事情に鑑みてなされたもので、回転ガントリの小型化及び軽量化が可能となり、回転ガントリの高精度な回転制御、ターゲットの高精度な照射が可能となる荷電粒子線ビームの制御用電磁石及びこれを備えた照射治療装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and enables the miniaturization and weight reduction of the rotating gantry, and the control of the charged particle beam that enables the highly accurate rotation control of the rotating gantry and the highly accurate irradiation of the target. An object of the present invention is to provide an electromagnet for use and an irradiation treatment apparatus including the electromagnet.

上述した目的を達成するため、本発明に係る荷電粒子線ビームの制御用電磁石では、照射治療装置の回転ガントリに格納され、荷電粒子線ビームの軌道を変える偏向磁場と、荷電粒子線ビームの軌道中心から遠ざかる発散成分を抑える集束磁場とを形成して、加速器で加速された荷電粒子線ビームをターゲットに導く荷電粒子線ビームの制御用電磁石において、偏向磁場と集束磁場を合成磁場として同時に形成するとともに、荷電粒子線ビームの軌道に沿って磁場の向きが切り替わるように形状設定された超伝導コイルを有し、この超伝導コイルは、同心状の2重構造を有し、内側を構成して偏向磁場を形成する超伝導偏向電磁石と、外側を構成して集束磁場を形成する超伝導集束電磁石とを有し、この超伝導偏向電磁石と超伝導集束電磁石は互いに独立して励磁電流の供給を受けるように構成されることを特徴とする。 In order to achieve the above-described object, the charged particle beam beam control electromagnet according to the present invention is stored in the rotating gantry of the irradiation treatment apparatus, and the deflection magnetic field for changing the orbit of the charged particle beam and the orbit of the charged particle beam A focusing magnetic field that suppresses the divergent component away from the center is formed, and a deflecting magnetic field and a focusing magnetic field are simultaneously formed as a composite magnetic field in a charged particle beam control electromagnet that guides the charged particle beam accelerated by an accelerator to a target. together, along a trajectory of a charged particle beam to have a superconducting coil which is shaped set to switch the orientation of the magnetic field, the superconducting coil has a double structure of concentric, constitute an inner A superconducting deflection electromagnet that forms a deflection magnetic field, and a superconducting focusing electromagnet that forms the focusing magnetic field by configuring the outside, the superconducting deflection electromagnet and the superconducting focusing electromagnet Characterized in that configured to receive a supply of the exciting current independently of each other.

また、本発明に係る照射治療装置では、上述した荷電粒子線ビームの制御用電磁石を備えることを特徴とする。   Moreover, the irradiation treatment apparatus according to the present invention includes the above-described electromagnet for controlling the charged particle beam.

本発明によれば、回転ガントリの小型化及び軽量化が可能となり、回転ガントリの高精度な回転制御、ターゲットの高精度な照射が可能となる。   According to the present invention, the rotating gantry can be reduced in size and weight, and the rotating gantry can be controlled with high accuracy and the target can be irradiated with high accuracy.

本発明に係る照射治療装置の第1実施形態を示す要部縦断面図。The principal part longitudinal cross-sectional view which shows 1st Embodiment of the irradiation treatment apparatus which concerns on this invention. 図1の複合型超伝導電磁石の分解斜視図。The disassembled perspective view of the composite superconducting electromagnet of FIG. 本発明の経緯説明図であり、従来の照射治療装置の要部縦断面図。It is history explanatory drawing of this invention, and is a principal part longitudinal cross-sectional view of the conventional irradiation treatment apparatus. 本発明の経緯説明図であり、従来の荷電粒子線ビームの制御用電磁石を示す分解斜視図であり、(A)は常電導偏向電磁石を示す図、(B)は常電導集束電磁石を示す図。FIG. 2 is an explanatory diagram of the present invention, and is an exploded perspective view showing a conventional charged particle beam beam control electromagnet, (A) shows a normal conducting deflection electromagnet, and (B) shows a normal conducting focusing electromagnet. . 本発明に係る照射治療装置の第2実施形態を示す図であり、複合型超伝導電磁石の縦断面図(図1のII−II線断面図)。It is a figure which shows 2nd Embodiment of the irradiation treatment apparatus which concerns on this invention, and is a longitudinal cross-sectional view (II-II sectional view taken on the line of FIG. 1) of a composite superconducting electromagnet. 本発明に係る照射治療装置の第3実施形態を示す図であり、複合型超伝導電磁石の分解斜視図。It is a figure which shows 3rd Embodiment of the irradiation treatment apparatus which concerns on this invention, and is a disassembled perspective view of a composite superconducting electromagnet. 図1の複合型超伝導電磁石の好ましい形態を示す図。The figure which shows the preferable form of the composite superconducting electromagnet of FIG.

添付図面を参照して、本発明の実施形態を説明する。   Embodiments of the present invention will be described with reference to the accompanying drawings.

(第1実施形態)
図1は本発明に係る照射治療装置の第1実施形態を示す要部縦断面図である。
(First embodiment)
FIG. 1 is a longitudinal sectional view of an essential part showing a first embodiment of an irradiation treatment apparatus according to the present invention.

照射治療装置1は、荷電粒子線ビームの照射部がターゲット(例えば、患者の癌患部)の周囲で回転し、任意の回転位置からターゲットを照射する回転式の照射治療装置である。   The irradiation therapy apparatus 1 is a rotary irradiation therapy apparatus in which a charged particle beam irradiation unit rotates around a target (for example, a cancerous part of a patient) and irradiates the target from an arbitrary rotation position.

この照射治療装置1は、陽子や炭素イオンなどの荷電粒子線を数百MeVの高エネルギーまで加速し、ビーム状に集束・成型してターゲットに導くビーム輸送路を形成するように構成され、加速器としてのシンクロトロン(図示省略)、ビームパイプ2、回転ガントリ3及び複合型超伝導電磁石4(荷電粒子線ビームの制御用電磁石)を主要な構成としている。   This irradiation treatment apparatus 1 is configured to accelerate a charged particle beam such as protons or carbon ions to a high energy of several hundred MeV, and to form a beam transport path that is focused and shaped into a beam and led to a target. The main components are a synchrotron (not shown), a beam pipe 2, a rotating gantry 3, and a composite superconducting electromagnet 4 (electromagnet for controlling charged particle beam).

ビームパイプ2は、その内部が略真空に維持されており、シンクロトロンで加速された荷電粒子線をターゲットPへと導くビーム輸送路である。   The inside of the beam pipe 2 is maintained in a substantially vacuum, and is a beam transport path that guides the charged particle beam accelerated by the synchrotron to the target P.

回転ガントリ3は、ビーム輸送路の終端となり荷電粒子線ビームの出口となる照射部5を保持しながら回転するように構成され、任意の回転位置からターゲットPに荷電粒子線ビームを照射する。   The rotating gantry 3 is configured to rotate while holding the irradiation unit 5 serving as the end of the beam transport path and serving as the exit of the charged particle beam, and irradiates the target P with the charged particle beam from an arbitrary rotation position.

複合型超伝導電磁石4は、回転ガントリ3の内部で間隔を置いて3体設けられている。この複合型超伝導電磁石4は、荷電粒子線ビームのビーム軌道を制御する磁場として、偏向磁場(2極磁場)と集束磁場(4極磁場)の2つの磁場を言わば重畳的な合成磁場として同時に形成する。   Three composite superconducting electromagnets 4 are provided inside the rotating gantry 3 at intervals. This composite superconducting electromagnet 4 is a magnetic field that controls the beam trajectory of a charged particle beam, and simultaneously combines two magnetic fields, ie, a deflection magnetic field (bipolar magnetic field) and a focusing magnetic field (quadrupole magnetic field) as a superimposed synthetic magnetic field. Form.

複合型超伝導電磁石4の偏向磁場は、ビームパイプ2を通過する荷電粒子線ビームの軌道を強制的に変え、荷電粒子線ビームが回転ガントリ3に入射して照射部5から射出されるまでに、そのビーム軌道を円弧状に90℃向きを変えるように調節されている。かかる偏向磁場の調節は、複合型超伝導電磁石4の配置によっても行われている。   The deflection magnetic field of the composite superconducting electromagnet 4 forcibly changes the trajectory of the charged particle beam passing through the beam pipe 2 until the charged particle beam enters the rotating gantry 3 and is emitted from the irradiation unit 5. The beam trajectory is adjusted to change the direction of the arc at 90 ° C. Such adjustment of the deflection magnetic field is also performed by the arrangement of the composite superconducting electromagnet 4.

また、偏向磁場とともに形成される集束磁場は、ビームパイプ2を通過する荷電粒子線ビームの軌道中心(ビーム進行方向)から遠ざかる発散成分を強制的に抑え、荷電粒子線ビームが回転ガントリ3に入射して照射部5から射出されるまでにその指向性が高まるように調節されている。   Further, the focusing magnetic field formed together with the deflection magnetic field forcibly suppresses the divergent component moving away from the orbit center (beam traveling direction) of the charged particle beam passing through the beam pipe 2, and the charged particle beam enters the rotating gantry 3. Thus, the directivity is adjusted so as to increase before being emitted from the irradiation unit 5.

図2は複合型超伝導電磁石4の分解斜視図である。   FIG. 2 is an exploded perspective view of the composite superconducting electromagnet 4.

複合型超伝導電磁石4は、互いに対峙する第1超伝導コイル41及び第2超伝導コイル42を用いて構成され、ビームパイプ2の周囲を取り囲むように互いに近接して配置される。   The composite superconducting electromagnet 4 is configured using a first superconducting coil 41 and a second superconducting coil 42 facing each other, and is disposed close to each other so as to surround the periphery of the beam pipe 2.

第1超伝導コイル41及び第2超伝導コイル42は、多層で構成されており、ビームに近い側に主コイル、ビームから遠い側にアクティブシールドコイルが配置構成され、主コイルに同じ方向の電流供給、アクティブシールドコイルには逆方向の電流供給を行い、中心に偏向、収束磁場を形成し、かつ外側には磁場を出さないよう構成される。   The first superconducting coil 41 and the second superconducting coil 42 are composed of multiple layers. The main coil is arranged on the side near the beam, and the active shield coil is arranged on the side far from the beam. The supply and active shield coils are configured to be supplied with current in the reverse direction, to form a deflection and convergent magnetic field at the center, and not to generate a magnetic field outside.

第1超伝導コイル41及び第2超伝導コイル42は、それぞれ荷電粒子線ビームの軌道に沿った祖と密の非対称構造とされ、この非対称構造によって2極磁場である偏向磁場とともに4極磁場である集束磁場を重畳的に形成するように構成される。   The first superconducting coil 41 and the second superconducting coil 42 each have a dense asymmetric structure along the trajectory of the charged particle beam, and the asymmetric structure allows a quadrupole magnetic field together with a dipolar magnetic field. A certain focusing magnetic field is configured to be superimposed.

更に、荷電粒子線ビームの軌道に沿って設定される第1超伝導コイル41の非対称構造と第2超伝導コイルの非対称構造についても非対称に配置され、このような非対称配置よって集束磁場(4極磁場)の符号(正/負)が反転するように構成される。   Further, the asymmetric structure of the first superconducting coil 41 and the asymmetric structure of the second superconducting coil set along the trajectory of the charged particle beam are also arranged asymmetrically. The sign (positive / negative) of the (magnetic field) is reversed.

次に、本発明に至った経緯ならびの本発明の効果を説明する。   Next, the background to the present invention and the effects of the present invention will be described.

図3は従来の照射治療装置の要部縦断面図である。図4は従来の照射治療装置に設けられる荷電粒子線ビームの制御用電磁石を示す分解斜視図であり、(A)は常電導偏向電磁石を示す図、(B)は常電導集束電磁石を示す図である。   FIG. 3 is a longitudinal sectional view of a main part of a conventional irradiation treatment apparatus. FIG. 4 is an exploded perspective view showing a charged particle beam beam control electromagnet provided in a conventional irradiation treatment apparatus, (A) shows a normal conducting deflection electromagnet, and (B) shows a normal conducting focusing electromagnet. It is.

従来の照射治療装置1aにあっては、図3に示すように、荷電粒子線ビームの制御用電磁石が常電導偏向電磁石10aと常電導集束磁場20aの2つの独立した電磁石を用いて構成されている。   In the conventional radiation therapy apparatus 1a, as shown in FIG. 3, the control electromagnet for the charged particle beam is configured using two independent electromagnets, a normal conducting deflection electromagnet 10a and a normal conducting focusing magnetic field 20a. Yes.

シンクロトロンで高エネルギーに加速された荷電粒子線ビームは、回転ガントリ3aに案内されて各々の常電導偏向電磁石10aの偏向磁場(2極磁場)で偏向され、そのビーム軌道が円弧を描いて90°向きを変える。そして、荷電粒子線ビームは、患者の周りで回転している回転ガントリ3aの照射部5aから射出され、多方向からターゲットPに向かって入射する。このとき、回転ガントリ3aに案内された荷電粒子線ビームは、常電導集束電磁石20aの各々の集束磁場(4極磁場)で集束され、軌道から遠ざかる発散成分が抑えられて指向性の高いビームに成形される。   The charged particle beam beam accelerated to high energy by the synchrotron is guided by the rotating gantry 3a and deflected by the deflection magnetic field (dipolar magnetic field) of each normal conducting deflection magnet 10a, and the beam trajectory draws an arc. ° Change direction. Then, the charged particle beam is emitted from the irradiation unit 5a of the rotating gantry 3a rotating around the patient, and enters the target P from multiple directions. At this time, the charged particle beam guided to the rotating gantry 3a is focused by each focusing magnetic field (quadrupole magnetic field) of the normal conducting focusing electromagnet 20a, and a divergent component moving away from the orbit is suppressed to form a highly directional beam. Molded.

常電導偏向電磁石10aは、図4(A)に示すように、互いに対峙する第1常電導コイル11a及び第2常電導コイル12aにより構成されており、同じ方向に電流を流すことにより偏向磁場(2極磁場)が形成される構成となっている。一方、常電導集束電磁石20aは、回転対称にて90℃毎に配置される4つの超伝導コイル21a〜24aにより構成されており、隣り合う常電導コイルに逆向きの電流を流すことにより集束磁場(4極磁場)が形成される構成となっている。   As shown in FIG. 4A, the normal conducting deflection electromagnet 10a is composed of a first normal conducting coil 11a and a second normal conducting coil 12a facing each other, and a deflection magnetic field ( (Dipole magnetic field) is formed. On the other hand, the normal conducting focusing electromagnet 20a is composed of four superconducting coils 21a to 24a arranged every 90 ° C. in a rotationally symmetric manner, and a focusing magnetic field is generated by applying a reverse current to adjacent normal conducting coils. (4-pole magnetic field) is formed.

ここで、回転ガントリ3aに案内された荷電粒子線ビームがターゲットPに導かれるまでに描くビーム軌道半径は、偏向磁場の強度に大きく依存する。このため、偏向磁場が強ければ強いほど、小さいビーム軌道半径で荷電粒子線ビームを偏向させることができ、荷電粒子線ビームの偏向場である回転ガントリ3aの小型化や軽量化を図ることができるようになる。つまり、回転ガントリ3aの回転制御の高精度化が図られる。   Here, the radius of the beam trajectory drawn until the charged particle beam guided to the rotating gantry 3a is guided to the target P greatly depends on the strength of the deflection magnetic field. Therefore, the stronger the deflection magnetic field, the more the charged particle beam can be deflected with a smaller beam trajectory radius, and the rotating gantry 3a, which is the deflection field of the charged particle beam, can be reduced in size and weight. It becomes like this. That is, it is possible to improve the accuracy of rotation control of the rotating gantry 3a.

従来の照射治療装置1aは、常電導偏向電磁石10aを用いて荷電粒子線ビームを偏向させるものとなっており、荷電粒子線ビームのビーム軌道半径の縮小、即ち、回転ガントリ3aの小型化や軽量化に限界がある。また、回転ガントリ3aの大型化は、設置スペースにも影響し、低コスト化を図りにくくなる点も無視できない。   The conventional irradiation treatment apparatus 1a deflects a charged particle beam using a normal conducting deflection electromagnet 10a, and the beam orbit radius of the charged particle beam is reduced, that is, the rotating gantry 3a is reduced in size and weight. There is a limit to conversion. In addition, the increase in size of the rotating gantry 3a affects the installation space, and it is difficult to reduce the cost.

加えて、従来の照射治療装置1aは、常電導集束電磁石20aを用いて荷電粒子線ビームを集束させるものとなっているところ、この常電導集束電磁石20aを用いることなく荷電粒子線ビームを集束できれば、回転ガントリ3aの更なる小型化や軽量化を実現できるようになる。   In addition, the conventional irradiation treatment apparatus 1a focuses the charged particle beam using the normal conducting focusing electromagnet 20a. If the charged particle beam can be focused without using the normal conducting focusing electromagnet 20a, Thus, further reduction in size and weight of the rotating gantry 3a can be realized.

そこで、回転ガントリの小型化及び軽量化が可能となり、回転ガントリの高精度な回転制御、ターゲットの高精度な照射が可能となる照射治療装置を実現すべく、以下の各手法が考えられた。   In view of this, the following methods have been considered to realize an irradiation treatment apparatus that can reduce the size and weight of the rotating gantry, and can perform high-precision rotation control of the rotating gantry and high-precision irradiation of the target.

(i)先ず、回転ガントリ内部のビーム輸送路に配置される常電導偏向電磁石を超伝導偏向電磁石に置き換える。超伝導偏向電磁石を用いると常電導電磁石に比べて強力な磁場を作り出せることから、ビーム軌道半径の縮小、即ち、回転ガントリの小型化や軽量化に有利となる。   (I) First, the normal conducting deflection electromagnet arranged in the beam transport path inside the rotating gantry is replaced with a superconducting deflection electromagnet. When a superconducting deflection electromagnet is used, a stronger magnetic field can be created compared to a normal electromagnet, which is advantageous for reducing the beam trajectory radius, that is, for reducing the size and weight of the rotating gantry.

(ii)更に、荷電粒子ビームの偏向とともに、荷電粒子ビームの集束も行う言わば複合的な磁場を形成するように超伝導電磁石の構造を特殊化する。こうすることで、集束磁場(4極磁場)を形成するための集束電磁石ならびにその保持構造の配置スペースが不要となり、回転ガントリの一層の小型化や軽量化を望める。   (Ii) Further, the structure of the superconducting electromagnet is specialized so as to form a so-called composite magnetic field in which the charged particle beam is focused together with the deflection of the charged particle beam. By doing so, the space for arranging the focusing electromagnet and its holding structure for forming the focusing magnetic field (quadrupole magnetic field) becomes unnecessary, and further reduction in size and weight of the rotating gantry can be expected.

(iii)更に、複合磁場型超伝導電磁石は、鉄ヨークを用いない空芯タイプ(空心コイル)とする。空心タイプとすることにより、超伝導電磁石の重量軽減が図られる。   (Iii) Furthermore, the composite magnetic field type superconducting electromagnet is an air core type (air core coil) that does not use an iron yoke. By using the air core type, the weight of the superconducting electromagnet can be reduced.

本実施形態の照射治療装置1は、(i)〜(iii)に列挙した知見に基づいて為され、
(1)偏向磁場と集束磁場を合成磁場として同時に形成するとともに、荷電粒子線ビームの軌道に沿って磁場の向きが切り替わるように形状設定された第1超伝導コイル41及び第2超伝導コイル42を有する複合型超伝導電磁石4(荷電粒子線ビームの制御用電磁石)を備える。即ち、偏向磁場用の電磁石と集束用の電磁石を別個に用意することなく荷電粒子線ビームの偏向と集束が可能となり、又、空心タイプとしても強力な磁場が得られる。従って、回転ガントリの小型化及び軽量化が可能となり、回転ガントリの高精度な回転制御、ターゲットの高精度な照射が可能となる。
The radiation therapy apparatus 1 of the present embodiment is made based on the findings listed in (i) to (iii),
(1) The first superconducting coil 41 and the second superconducting coil 42 which are formed so that the deflection magnetic field and the focusing magnetic field are simultaneously formed as a combined magnetic field and the direction of the magnetic field is switched along the trajectory of the charged particle beam. And a composite superconducting electromagnet 4 (electromagnet for controlling charged particle beam). That is, it is possible to deflect and focus a charged particle beam without separately preparing an electromagnet for deflection magnetic field and an electromagnet for focusing, and a strong magnetic field can be obtained as an air-core type. Therefore, the rotating gantry can be reduced in size and weight, and the rotating gantry can be controlled with high accuracy and the target can be irradiated with high accuracy.

(2)また、複合型超伝導電磁石4の第1超伝導コイル41及び第2超伝導コイル42は、多層で構成されており、ビームに近い側に主コイル、ビームから遠い側にアクティブシールドコイルが配置構成され、主コイルに同じ方向、アクティブシールドコイルに逆方向の電流供給が可能に構成される。このため、中心には偏向及び収束磁場を形成しつつ、外側の漏れ磁場を効果的に抑制できる。その結果、周囲の構造物との磁力的な相互作用が低減され、偏向及び集束の機能を良好に維持できる。   (2) Also, the first superconducting coil 41 and the second superconducting coil 42 of the composite superconducting electromagnet 4 are composed of multiple layers, the main coil being closer to the beam and the active shield coil being far from the beam. Are arranged so that current can be supplied in the same direction to the main coil and in the reverse direction to the active shield coil. For this reason, the outside leakage magnetic field can be effectively suppressed while forming a deflection and convergence magnetic field at the center. As a result, the magnetic interaction with surrounding structures is reduced, and the deflection and focusing functions can be maintained well.

(第2実施形態)
図5は本発明に係る照射治療装置の第2実施形態を示す図であり、複合型超伝導電磁石の縦断面図(図1のII−II線断面図)である。
(Second Embodiment)
FIG. 5 is a view showing a second embodiment of the radiation therapy apparatus according to the present invention, and is a longitudinal sectional view (a sectional view taken along the line II-II in FIG. 1) of the composite superconducting electromagnet.

本実施形態は、第1実施形態の照射治療装置1における複合型超伝導電磁石に構成を追加した例である。なお、第1実施形態と同様の構成は同一符号を付して説明を省略し、第1実施形態の構成を変更し或いは新たに追加した構成は符号に「A」を付して説明する。   The present embodiment is an example in which a configuration is added to the composite superconducting electromagnet in the radiation therapy apparatus 1 of the first embodiment. Note that the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted, and the configurations of the first embodiment that are changed or newly added are described by adding “A” to the symbols.

本実施形態の複合型超伝導電磁石4Aは、第1実施形態の構成に加え、鉄ヨーク6A及び第二の複合型超伝導電磁石7Aを有する。   The composite superconducting electromagnet 4A of the present embodiment has an iron yoke 6A and a second composite superconducting electromagnet 7A in addition to the configuration of the first embodiment.

鉄ヨーク6Aは、第1超伝導コイル41及び第2超伝導コイル42の外側を覆うように設けられている。   The iron yoke 6 </ b> A is provided so as to cover the outside of the first superconducting coil 41 and the second superconducting coil 42.

第二の複合型超伝導電磁石7Aは、互いに対峙する第3超伝導コイル71A及び第4超伝導コイル72Aにより構成される。   The second composite superconducting electromagnet 7A is composed of a third superconducting coil 71A and a fourth superconducting coil 72A facing each other.

第3超伝導コイル71A及び第4超伝導コイル72Aは、鉄ヨーク6の外側を覆うように設けられており、超伝導性のアクティブシールドコイルにより構成され且つ偏向磁場(2極磁場)とともに集束磁場(4極磁場)を重畳的に同時に形成するように構成される。即ち、第3超伝導コイル71A及び第4超伝導コイル72Aは、第1超伝導コイル41及び第2超伝導コイル42と同様の構成を有している。   The third superconducting coil 71A and the fourth superconducting coil 72A are provided so as to cover the outer side of the iron yoke 6, are constituted by superconducting active shield coils, and a focusing magnetic field together with a deflection magnetic field (bipolar magnetic field). (Quadrupole magnetic field) is configured to be simultaneously formed in a superimposed manner. That is, the third superconducting coil 71A and the fourth superconducting coil 72A have the same configuration as the first superconducting coil 41 and the second superconducting coil 42.

次に、効果を説明する。   Next, the effect will be described.

本実施形態の照射治療装置にあっては、第1実施形態の(1)及び(2)の効果に加え、次の効果を得ることができる。   In the radiation therapy apparatus of this embodiment, in addition to the effects (1) and (2) of the first embodiment, the following effects can be obtained.

(3)複合型超伝導電磁石4Aは、第1超伝導コイル41及び第2超伝導コイルの外側を覆う鉄ヨーク6Aを有する。このため、ビームパイプ2の内部の磁場が高められることに加えて、磁気シールドの作用によって第1超伝導コイル41及び第2超伝導コイル42から染み出る漏れ磁場を低減でき、第1実施形態の(2)の効果を高めることができる。   (3) The composite superconducting electromagnet 4A has an iron yoke 6A that covers the outer sides of the first superconducting coil 41 and the second superconducting coil. For this reason, in addition to the magnetic field inside the beam pipe 2 being increased, the leakage magnetic field oozing out from the first superconducting coil 41 and the second superconducting coil 42 can be reduced by the action of the magnetic shield. The effect of (2) can be enhanced.

(4)また、複合型超伝導電磁石4Aは、鉄ヨーク6Aを覆うように設けられ、偏向磁場とともに集束磁場を合成磁場として重畳的に同時に形成するとともに、荷電粒子線ビームの軌道に沿って磁場の向きが切り替わるように形状設定され、且つ、アクティブシールドコイルとして構成された第二の複合型超伝導電磁石7Aを有する。このため、荷電粒子線ビームの偏向機能及び集束機能が増幅することに加え、鉄ヨーク6Aから染み出す漏れ磁場をも低減され、第1実施形態の(1)及び(2)の効果を一層高めることができる。   (4) The composite superconducting electromagnet 4A is provided so as to cover the iron yoke 6A, and simultaneously forms a focusing magnetic field and a focusing magnetic field in a superimposed manner as a combined magnetic field, and a magnetic field along the trajectory of the charged particle beam. And a second composite superconducting electromagnet 7A configured as an active shield coil. For this reason, in addition to the amplification of the deflection function and the focusing function of the charged particle beam, the leakage magnetic field oozing out from the iron yoke 6A is also reduced, and the effects (1) and (2) of the first embodiment are further enhanced. be able to.

(第3実施形態)
図6は本発明に係る照射治療装置の第3実施形態を示す図であり、複合型超伝導電磁石の分解斜視図である。
(Third embodiment)
FIG. 6 is a diagram showing a third embodiment of the radiation therapy apparatus according to the present invention, and is an exploded perspective view of a composite superconducting electromagnet.

本実施形態は、第1実施形態の照射治療装置1における複合型超伝導電磁石4の構成を変更した例である。なお、第1実施形態と同様の構成は同一符号を付して説明を省略し、第1実施形態の構成を変更し或いは新たに追加した構成は符号に「B」を付して説明する。   The present embodiment is an example in which the configuration of the composite superconducting electromagnet 4 in the radiation therapy apparatus 1 of the first embodiment is changed. Note that the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted, and the configurations of the first embodiment that are changed or newly added are described by adding “B” to the symbols.

本実施形態の照射治療装置4Bは、図6に示すように、二重構造となっており、内側を構成する超伝導偏向電磁石8Bと、外側を構成する2体以上の超伝導集束電磁石9Bとを用いて構成される。なお、超伝導偏向電磁石81B及び超伝導集束電磁石82Bは、互いに接近して重なり合うようにオーバーラップして配置される。   As shown in FIG. 6, the radiation therapy apparatus 4B of the present embodiment has a double structure, and is composed of a superconducting deflection electromagnet 8B constituting the inner side and two or more superconducting focusing electromagnets 9B constituting the outer side. It is configured using. The superconducting deflection electromagnet 81B and the superconducting focusing electromagnet 82B are arranged so as to overlap each other so as to be close to each other.

超伝導偏向電磁石8Bは、荷電粒子線ビームのビーム軌道を強制的に変える偏向磁場(2極磁場)を形成するように構成される。   The superconducting deflection electromagnet 8B is configured to form a deflection magnetic field (dipolar magnetic field) that forcibly changes the beam trajectory of the charged particle beam.

超伝導集束電磁石9Bは、荷電粒子線ビームの軌道中心から遠ざかる発散成分を抑える集束磁場(4極磁場)を形成するように配置された4つの超伝導コイル91B〜94Bを有する。これら4つの超伝導コイル91B〜94Bは、回転対称となるように90℃毎に配置されるとともに、何れも超伝導偏向電磁石8Bの長手方向と重なり合うように配置される。   The superconducting focusing electromagnet 9B has four superconducting coils 91B to 94B arranged so as to form a focusing magnetic field (quadrupole magnetic field) that suppresses a divergent component that moves away from the center of the orbit of the charged particle beam. These four superconducting coils 91B to 94B are arranged every 90 ° C. so as to be rotationally symmetric, and all are arranged so as to overlap with the longitudinal direction of the superconducting deflection electromagnet 8B.

2体の超伝導集束電磁石9Bは、荷電粒子線ビームの軌道に沿って間隔を置いて配置されており、独立して励磁電流の供給を受けるように構成されている。また、超伝導偏向電磁石8Bと超伝導集束電磁石9Bについても、独立して励磁電流の供給を受けるように構成されている。   The two superconducting focusing electromagnets 9B are arranged at intervals along the trajectory of the charged particle beam and are configured to be independently supplied with an excitation current. The superconducting deflection electromagnet 8B and the superconducting focusing electromagnet 9B are also configured to receive an excitation current independently.

次に、効果を説明する。   Next, the effect will be described.

本実施形態の照射治療装置にあっては、第1実施形態の(1)及び(2)の効果に加えて、次の効果を得ることができる。   In the radiation therapy apparatus of this embodiment, in addition to the effects (1) and (2) of the first embodiment, the following effects can be obtained.

(5)複合型超伝導電磁石4Bは、同心状の2重構造を有し、内側を構成して偏向磁場を形成する超伝導偏向電磁石8Bと、外側を構成して集束磁場を形成する超伝導集束電磁石9Bとを有し、この超伝導偏向電磁石8Bと超伝導集束電磁石9Bは独立して励磁電流の供給を受けるように構成されている。このため、偏向磁場と集束磁場を個別に設定できるので、荷電粒子線ビームの偏向制御と集束制御を高精度且つ容易に行えるようになる。   (5) The composite superconducting electromagnet 4B has a concentric double structure, the superconducting deflection electromagnet 8B which forms the deflection magnetic field by configuring the inner side, and the superconductivity which forms the focusing magnetic field by configuring the outer side. The superconducting deflection electromagnet 8B and the superconducting focusing electromagnet 9B are configured to be independently supplied with an excitation current. For this reason, since the deflection magnetic field and the focusing magnetic field can be set individually, the deflection control and focusing control of the charged particle beam can be performed with high accuracy and ease.

(6)複合型超伝導電磁石4Bを構成する超伝導集束電磁石9Bは、荷電粒子線ビームの軌道に沿って複数設けられ、各超伝導集束電磁石9Bは独立して励磁電流の供給を受けるように構成されている。このため、集束磁場を精細に設定できるので、(5)の効果が高められる。   (6) A plurality of superconducting focusing electromagnets 9B constituting the composite superconducting electromagnet 4B are provided along the trajectory of the charged particle beam, and each superconducting focusing electromagnet 9B is independently supplied with an excitation current. It is configured. For this reason, since the focusing magnetic field can be set finely, the effect of (5) is enhanced.

以上、本発明に係る照射治療装置及びその荷電粒子線ビームの制御に用いる超伝導電磁石を第1実施形態〜第3実施形態に基づき説明してきたが、具体的な構成については、これらの実施形態に限られるものではなく、特許請求の範囲に記載の発明の要旨を逸脱しない限り設計の変更や追加等は許容される。   As described above, the radiation therapy apparatus according to the present invention and the superconducting electromagnet used for the control of the charged particle beam have been described based on the first to third embodiments. However, design changes and additions are permitted without departing from the spirit of the invention described in the claims.

例えば、第1実施形態〜第3実施形態で例示した各種の複合型超伝導電磁石の形状は、荷電粒子線ビームの効果的な輸送の観点から、荷電粒子線ビームの軌道に沿った形状とするのがよい。なお、図7は、第1実施形態の複合型超伝導電磁石の好ましい形態であり、電粒子線ビームの軌道に沿った形状とした例を示す図である。   For example, the shape of various composite superconducting electromagnets exemplified in the first to third embodiments is a shape along the trajectory of the charged particle beam from the viewpoint of effective transport of the charged particle beam. It is good. FIG. 7 is a preferred form of the composite superconducting electromagnet of the first embodiment, and is a view showing an example in which the shape is along the trajectory of the particle beam.

また、複合型超伝導電磁石は、集束磁場(4極磁場)の磁場成分が部分的に強弱変化を呈するような構成としてもよい。   The composite superconducting electromagnet may be configured such that the magnetic field component of the focusing magnetic field (quadrupole magnetic field) partially changes in strength.

また、複合型超伝導電磁石は、集束磁場として4極磁場よりも高次の磁場(6極以上)を形成するようにしてもよい。   The composite superconducting electromagnet may form a higher-order magnetic field (six poles or more) than the quadrupole magnetic field as the focusing magnetic field.

また、複合型超伝導電磁石は、回転ガントリの内部に3体設ける例としたが、複合型超伝導電磁石の数に制限はない。   In addition, although three composite superconducting electromagnets are provided inside the rotating gantry, the number of composite superconducting electromagnets is not limited.

なお、荷電粒子線を加速する加速器としては、シンクロトロンのほか、サイクロトロンや直線型加速器など、任意の加速手段を適用し或いは各種の加速器を組み合わせたものでもよい。   As an accelerator for accelerating a charged particle beam, an arbitrary acceleration means such as a cyclotron, a linear accelerator, or a combination of various accelerators may be used in addition to a synchrotron.

P……ターゲット, 1……照射治療装置, 2……ビームパイプ, 3……回転ガントリ, 4、4A,4B……複合型超伝導電磁石, 41……第1超伝導コイル, 42……第2超伝導コイル, 5……照射部 6……鉄ヨーク, 71B……第3超伝導コイル, 72B……第4超伝導コイル, 8B……超伝導偏向電磁石, 9B……超伝導集束電磁石, 91B〜94B……超伝導コイル.   P ... Target, 1 ... Irradiation treatment device, 2 ... Beam pipe, 3 ... Rotating gantry, 4, 4A, 4B ... Composite superconducting electromagnet, 41 ... First superconducting coil, 42 ... First 2 Superconducting coils, 5 ... Irradiation part 6 ... Iron yoke, 71B ... 3rd superconducting coil, 72B ... 4th superconducting coil, 8B ... Superconducting deflection electromagnet, 9B ... Superconducting focusing electromagnet, 91B-94B ... Superconducting coil.

Claims (6)

照射治療装置の回転ガントリに格納され、荷電粒子線ビームの軌道を変える偏向磁場と、荷電粒子線ビームの軌道中心から遠ざかる発散成分を抑える集束磁場とを形成して、加速器で加速された荷電粒子線ビームをターゲットに導く荷電粒子線ビームの制御用電磁石において、
前記偏向磁場と集束磁場を合成磁場として同時に形成するとともに、荷電粒子線ビームの軌道に沿って磁場の向きが切り替わるように形状設定された超伝導コイルを有し、
この超伝導コイルは、同心状の2重構造を有し、内側を構成して偏向磁場を形成する超伝導偏向電磁石と、外側を構成して集束磁場を形成する超伝導集束電磁石とを有し、この超伝導偏向電磁石と超伝導集束電磁石は互いに独立して励磁電流の供給を受けるように構成されることを特徴とする荷電粒子線ビームの制御用電磁石。
Charged particles that are stored in the rotating gantry of the radiation therapy device and that are accelerated by an accelerator by forming a deflection magnetic field that changes the trajectory of the charged particle beam and a focusing magnetic field that suppresses the divergent component away from the orbit center of the charged particle beam In an electromagnet for controlling a charged particle beam that guides the beam to the target,
And forming simultaneously a focusing magnetic field and the deflection magnetic field as a synthetic magnetic field, along the trajectory of the charged particle beam to have a superconducting coil which is shaped set to switch the orientation of the magnetic field,
This superconducting coil has a concentric double structure, and has a superconducting deflection electromagnet that forms the deflection magnetic field by configuring the inner side, and a superconducting focusing electromagnet that forms the focusing magnetic field by configuring the outer side. An electromagnet for controlling a charged particle beam , wherein the superconducting deflection electromagnet and the superconducting focusing electromagnet are configured to receive an excitation current independently of each other .
請求項1に記載の荷電粒子線ビームの制御用電磁石において、
前記超伝導コイルは、アクティブシールドコイルとして構成されることを特徴とする荷電粒子線ビームの制御用電磁石。
In the electromagnet for controlling a charged particle beam according to claim 1,
An electromagnet for controlling a charged particle beam, wherein the superconducting coil is configured as an active shield coil.
請求項1又は請求項2に記載の荷電粒子線ビームの制御用電磁石において、
前記超伝導コイルの外側を覆う鉄ヨークを有することを特徴とする荷電粒子線ビームの制御用電磁石。
In the electromagnet for controlling a charged particle beam according to claim 1 or 2,
An electromagnet for controlling a charged particle beam, comprising an iron yoke that covers the outside of the superconducting coil.
請求項3に記載の荷電粒子線ビームの制御用電磁石において、
前記鉄ヨークを覆うように設けられ、偏向磁場と集束磁場を合成磁場として同時に形成するとともに、荷電粒子線ビームの軌道に沿って磁場の向きが切り替わるように形状設定され、且つ、アクティブシールドコイルとして構成された超伝導コイルを有することを特徴とする荷電粒子線ビームの制御用電磁石。
The electromagnet for controlling a charged particle beam according to claim 3,
It is provided so as to cover the iron yoke, and a deflection magnetic field and a focusing magnetic field are simultaneously formed as a composite magnetic field, and the shape is set so that the direction of the magnetic field is switched along the trajectory of the charged particle beam, and as an active shield coil An electromagnet for controlling a charged particle beam comprising a superconducting coil configured.
請求項に記載の荷電粒子線ビームの制御用電磁石において、
前記超伝導集束電磁石は、荷電粒子線ビームの軌道に沿って独立して複数設けられ、各超伝導集束電磁石は互いに独立して励磁電流の供給を受けるように構成されることを特徴とする荷電粒子線ビームの制御用電磁石。
In the electromagnet for controlling a charged particle beam according to claim 1 ,
A plurality of the superconducting focusing electromagnets are provided independently along the trajectory of the charged particle beam, and each superconducting focusing electromagnet is configured to be independently supplied with an excitation current. Electromagnet for particle beam control.
請求項1ないし請求項何れか1項に記載の荷電粒子線ビームの制御用電磁石を備えることを特徴とする照射治療装置。 An irradiation treatment apparatus comprising the electromagnet for controlling a charged particle beam according to any one of claims 1 to 5 .
JP2009229596A 2009-10-01 2009-10-01 Electromagnet for controlling charged particle beam and irradiation treatment apparatus provided with the same Active JP5336991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009229596A JP5336991B2 (en) 2009-10-01 2009-10-01 Electromagnet for controlling charged particle beam and irradiation treatment apparatus provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009229596A JP5336991B2 (en) 2009-10-01 2009-10-01 Electromagnet for controlling charged particle beam and irradiation treatment apparatus provided with the same

Publications (2)

Publication Number Publication Date
JP2011072717A JP2011072717A (en) 2011-04-14
JP5336991B2 true JP5336991B2 (en) 2013-11-06

Family

ID=44017335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009229596A Active JP5336991B2 (en) 2009-10-01 2009-10-01 Electromagnet for controlling charged particle beam and irradiation treatment apparatus provided with the same

Country Status (1)

Country Link
JP (1) JP5336991B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418667A (en) * 2017-03-14 2019-11-05 株式会社东芝 Rotary irradiation device, rotary irradiation method and rotary irradiation therapeutic device
CN111249633A (en) * 2020-03-21 2020-06-09 华中科技大学 High momentum acceptance superconducting rotating gantry for proton therapy

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045017A1 (en) * 2013-09-25 2015-04-02 株式会社日立製作所 Superconducting magnet, particle beam treatment system, and method for operating superconducting magnet
JP6328487B2 (en) 2014-05-20 2018-05-23 住友重機械工業株式会社 Superconducting electromagnet and charged particle beam therapy system
WO2016067820A1 (en) * 2014-10-28 2016-05-06 国立研究開発法人 放射線医学総合研究所 Charged particle beam irradiation device
JP6613466B2 (en) * 2014-10-28 2019-12-04 国立研究開発法人量子科学技術研究開発機構 Charged particle beam irradiation equipment
JP6470124B2 (en) * 2015-06-19 2019-02-13 株式会社東芝 Particle beam control electromagnet and irradiation treatment apparatus provided with the same
JP6622142B2 (en) * 2016-04-27 2019-12-18 株式会社東芝 Particle beam transport device and irradiation treatment device
WO2018092753A1 (en) * 2016-11-15 2018-05-24 株式会社東芝 Particle beam transport apparatus, rotary gantry and particle beam irradiation treatment system
JP6937420B2 (en) * 2017-03-14 2021-09-22 株式会社東芝 Control method of rotary irradiation device
CN107174742B (en) * 2017-05-02 2024-05-07 商澎 Superconducting strong magnetic field device for tumor treatment
CN111773559A (en) * 2020-07-07 2020-10-16 北京大学 Superconducting rotating frame for proton cancer treatment device
CN116585623B (en) * 2023-05-06 2023-12-19 华中科技大学 Large momentum acceptance superconductive rotating frame for proton cancer treatment device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238600A (en) * 1998-02-24 1999-08-31 Toshiba Corp Particle beam therapy device
JP3759003B2 (en) * 2001-07-16 2006-03-22 独立行政法人科学技術振興機構 Permanent magnet built-in high magnetic field generator
JP4042675B2 (en) * 2003-10-08 2008-02-06 三菱電機株式会社 Deflection electromagnet and charged particle accelerator
JP4716284B2 (en) * 2006-03-29 2011-07-06 国立大学法人大阪大学 Charged particle beam deflection apparatus and charged particle beam irradiation apparatus
JP4633002B2 (en) * 2006-05-17 2011-02-16 三菱電機株式会社 Beam emission control method for charged particle beam accelerator and particle beam irradiation system using charged particle beam accelerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418667A (en) * 2017-03-14 2019-11-05 株式会社东芝 Rotary irradiation device, rotary irradiation method and rotary irradiation therapeutic device
CN110418667B (en) * 2017-03-14 2021-06-15 株式会社东芝 Rotary irradiation device, rotary irradiation method thereof, and rotary irradiation treatment device
CN111249633A (en) * 2020-03-21 2020-06-09 华中科技大学 High momentum acceptance superconducting rotating gantry for proton therapy

Also Published As

Publication number Publication date
JP2011072717A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5336991B2 (en) Electromagnet for controlling charged particle beam and irradiation treatment apparatus provided with the same
US11260246B2 (en) Apparatus and methods for magnetic control of radiation electron beam
US10256004B2 (en) Particle-beam control electromagnet and irradiation treatment apparatus equipped therewith
WO2004039133A1 (en) Electron accelerator and radiotherapy apparatus using same
US20210060358A1 (en) 3d high speed rf beam scanner for hadron therapy
WO2015045017A1 (en) Superconducting magnet, particle beam treatment system, and method for operating superconducting magnet
US20090090871A1 (en) Radiation treatment system with a beam control magnet
JP6622142B2 (en) Particle beam transport device and irradiation treatment device
US9013104B1 (en) Periodic permanent magnet focused klystron
US20240096534A1 (en) Superconducting coil apparatus, superconducting accelerator, and particle beam therapy apparatus
JP7293042B2 (en) Charged particle beam irradiation device and charged particle beam irradiation method
WO2018092753A1 (en) Particle beam transport apparatus, rotary gantry and particle beam irradiation treatment system
JP6736452B2 (en) Linear accelerator, neutron beam generator and particle beam therapy system
CN114668986A (en) Radiotherapy device, photon flash therapy system and ultrahigh-energy electronic flash therapy system
KR102026127B1 (en) A High Current and Compact LEBT(Low Energy Beam Transport) for BNCT Incinerator
JP5854518B2 (en) Charged particle trajectory control device, charged particle accelerator, charged particle storage ring and deflection electromagnet
JP3839652B2 (en) Charged particle acceleration magnet using permanent magnet and high magnetic field circular charged particle accelerator
WO2022201935A1 (en) Superconducting coil device, superconducting accelerator, and particle beam treatment device
WO2015015579A1 (en) Charged particle beam irradiation device
JP2018011872A (en) Neutron capture therapy system
JP2024022311A (en) Multipolar electric magnet
JP2005063894A (en) Liniac for radiation therapy and electron beam generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R150 Certificate of patent or registration of utility model

Ref document number: 5336991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350