JP5335376B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP5335376B2
JP5335376B2 JP2008282752A JP2008282752A JP5335376B2 JP 5335376 B2 JP5335376 B2 JP 5335376B2 JP 2008282752 A JP2008282752 A JP 2008282752A JP 2008282752 A JP2008282752 A JP 2008282752A JP 5335376 B2 JP5335376 B2 JP 5335376B2
Authority
JP
Japan
Prior art keywords
air
support member
temperature
steel
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008282752A
Other languages
Japanese (ja)
Other versions
JP2010112566A (en
Inventor
正 角田
文明 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO POWER INCORPORATED
Original Assignee
ECO POWER INCORPORATED
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO POWER INCORPORATED filed Critical ECO POWER INCORPORATED
Priority to JP2008282752A priority Critical patent/JP5335376B2/en
Publication of JP2010112566A publication Critical patent/JP2010112566A/en
Application granted granted Critical
Publication of JP5335376B2 publication Critical patent/JP5335376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Duct Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supporting member set and a heating/cooling system including the same, capable of cooling or heating the entire partitioning member while suppressing increase of labor-hour and costs. <P>SOLUTION: This supporting member set 10 includes a first supporting member 11 supporting the partitioning member 15 from a back side of a room R, and a second member 12 supporting the first supporting member 11 at a position holding the same with the partitioning member 15. The first and second supporting members 11, 12 are provided with flow channels for the air SA inside, and communication holes 14 for communicating the flow channels of the air SA at a position where both flow channels are intersected and kept into contact with each other. The first supporting member 11 is provided with a lead-out hole 11h opened in the direction to allow the led-out air SA to flow along a back face of the partitioning member 15. This heating/cooling system includes the supporting member set 10, and an air temperature adjusting device for adjusting a temperature of the air SA flowing inside of the first and second supporting members 11, 12 in advance. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は支持部材セット及び冷暖房システムに関し、特に手間及びコストの増大を抑制しつつ区画材全体を満遍なく冷却又は加熱することが可能な支持部材セット及びこれを備える冷暖房システムに関する。   The present invention relates to a support member set and an air conditioning system, and more particularly to a support member set capable of cooling or heating the entire partition material uniformly while suppressing an increase in labor and cost, and an air conditioning system including the support member set.

近年、省エネルギーと快適性とを両立する冷暖房方式として、輻射熱で冷暖房を行う輻射冷暖房システムが注目されている。輻射冷暖房システムは、天井面や床面等を、冷房時は冷やし暖房時は温めて、冷却又は加熱した天井面や床面等からの輻射熱により冷暖房室の温度を調整するシステムである。輻射熱による冷暖房は、室内に極端な温度ムラが生じないため快適であると共に、天井面や床面等を冷却又は加熱するのに必要な熱量がいわゆる対流方式の冷暖房システムに比べて少ない。このため、輻射冷暖房システムは、より省エネルギーなシステムと言える。   In recent years, a radiant cooling and heating system that performs cooling and heating with radiant heat has attracted attention as a cooling and heating method that achieves both energy saving and comfort. A radiant cooling / heating system is a system that adjusts the temperature of a cooling / heating room by radiant heat from a ceiling surface, a floor surface, or the like that is cooled or heated by cooling a ceiling surface or a floor surface during cooling and heating it during heating. Heating and cooling by radiant heat is comfortable because extreme temperature unevenness does not occur in the room, and the amount of heat required for cooling or heating the ceiling surface, floor surface, etc. is less than that of a so-called convection type air conditioning system. For this reason, the radiation cooling and heating system can be said to be a more energy-saving system.

輻射冷暖房システムの一例として、床下地ボードの下面に冷風や温風の熱媒体を衝突させて放射状に拡散させ、床仕上材を効率よく冷却又は加熱して、床仕上材から生じる冷輻射や温輻射熱の効果を高めて、床輻射冷暖房を行うものがある。この輻射空調システムでは、コンクリートスラブと床下地ボードとの間の床下送気空間に、床下地ボードに対して水平方向に熱媒体を流し、床下送気空間に複数設置された気流方向変換器で水平方向の流れを垂直方向の流れに変換して、熱媒体を床下地ボードの下面に衝突させて床仕上材を冷却又は加熱して床輻射冷暖房を行っていた(例えば特許文献1参照)。
特開2004−132680号公報(図1等)
As an example of a radiant cooling / heating system, cold air or hot air heat medium collides with the lower surface of the floor base board and diffuses it radially to cool or heat the floor finishing material efficiently, resulting in cold radiation or temperature generated from the floor finishing material. There are some which raise the effect of radiant heat and perform floor radiant cooling and heating. This radiant air-conditioning system uses an airflow direction changer that is installed in the underfloor air supply space by flowing a heat medium horizontally to the underfloor air supply space between the concrete slab and the underfloor board. The horizontal flow is converted into the vertical flow, and the floor finish is cooled or heated by causing the heat medium to collide with the lower surface of the floor base board to perform floor radiant cooling and heating (see, for example, Patent Document 1).
JP 2004-132680 A (FIG. 1 etc.)

しかしながら、上述の輻射冷暖房システムによれば良好な輻射効果を得られるが、床仕上材の全面を満遍なく冷却又は加熱するには、多数の気流方向変換器を必要とし、システム構築の手間及びコストが増大してしまっていた。   However, according to the above-described radiation cooling / heating system, a good radiation effect can be obtained. However, in order to uniformly cool or heat the entire surface of the flooring material, a large number of airflow direction changers are required, and the effort and cost of system construction are reduced. It had increased.

本発明は上述の課題に鑑み、構築の手間及びコストの増大を抑制しつつ区画材全体を満遍なく冷却又は加熱することが可能な支持部材セット及びこれを備える冷暖房システムを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a support member set capable of cooling or heating the entire partition material evenly while suppressing an increase in construction effort and cost, and an air conditioning system including the same. .

上記目的を達成するために、本発明の第1の態様に係る支持部材セットは、例えば図1に示すように、部屋Rの輪郭を形成する板状の区画材15を部屋Rの裏側から支える第1の支持部材11であって、内部に空気SAの流路が形成された第1の支持部材11と;第1の支持部材11を区画材15との間に挟む位置で支える第2の支持部材12であって、第1の支持部材11に対して交差して配置されると共に内部に空気SAの流路が形成された第2の支持部材12とを備え;第1の支持部材11と第2の支持部材12とが前記交差により接触する位置に、互いの空気SAの流路が連絡する連絡孔14が、第1の支持部材11及び第2の支持部材12のそれぞれに形成され;第1の支持部材11の空気SAの流路から部屋Rの裏側の空間SPに空気SAを導出する導出孔11hであって、導出孔11hから導出された空気SAが区画材15の裏面に沿って流れる向きに開口した導出孔11hが第1の支持部材11に形成されている。   In order to achieve the above object, the support member set according to the first aspect of the present invention supports a plate-shaped partition material 15 that forms the contour of the room R from the back side of the room R as shown in FIG. A first support member 11 having a flow path for air SA formed therein; and a second support member supported at a position sandwiching the first support member 11 between the partition members 15 A support member 12, which is disposed so as to intersect the first support member 11 and has a second support member 12 in which a flow path of the air SA is formed; A communication hole 14 is formed in each of the first support member 11 and the second support member 12 at a position where the second support member 12 and the second support member 12 are in contact with each other by the intersection. The space SP on the back side of the room R from the flow path of the air SA of the first support member 11 The first support member 11 is formed with a lead-out hole 11h through which the air SA is led out so that the air SA led out from the lead-out hole 11h flows along the back surface of the partition member 15. .

このように構成すると、第1の支持部材に対して交差して配置されると共に内部に空気の流路が形成された第2の支持部材を備え、第1の支持部材と第2の支持部材とが交差により接触する位置に互いの空気の流路が連絡する連絡孔が形成され、導出された空気が区画材の裏面に沿って流れる向きに開口した導出孔が第1の支持部材に形成されているので、支持部材がダクトを兼ねることとなる。それゆえ、構築の手間及びコストの増大を抑制しつつ区画材の裏側全体に満遍なく空気を接触させることができる。導出孔から導出される空気を温度調節された空気とした場合は、区画材の全体を満遍なく冷却又は加熱することができる。   If comprised in this way, it is equipped with the 2nd support member by which the flow path of air was formed inside while intersecting with the 1st support member, and the 1st support member and the 2nd support member Is formed in the first support member in a direction in which the derived air flows along the back surface of the partition material. Thus, the support member also serves as a duct. Therefore, air can be uniformly contacted with the entire back side of the partition material while suppressing the labor and cost of construction. When the air led out from the lead-out hole is temperature-controlled air, the entire partition material can be uniformly cooled or heated.

上記目的を達成するために、本発明の第2の態様に係る冷暖房システムは、例えば図1に示すように、上記本発明の第1の態様に係る支持部材セット10と;第1の支持部材11及び第2の支持部材12の内部を流れる空気SAの温度を事前に調節する空気温度調節機器21(例えば図2参照)とを備える。   In order to achieve the above object, an air conditioning system according to a second aspect of the present invention includes, for example, a support member set 10 according to the first aspect of the present invention as shown in FIG. 11 and an air temperature adjusting device 21 (for example, see FIG. 2) that adjusts the temperature of the air SA flowing inside the second support member 12 in advance.

このように構成すると、導出孔から導出される空気を温度調節された空気とすることができ、区画材の全体を満遍なく冷却又は加熱することができる。   If comprised in this way, the air derived | led-out from the outlet hole can be made into the temperature-controlled air, and the whole partition material can be cooled or heated uniformly.

また、本発明の第3の態様に係る冷暖房システムは、例えば図2に示すように、上記本発明の第2の態様に係る冷暖房システム1において、第1の支持部材11及び第2の支持部材12を複数備え;複数の第2の支持部材12がそれぞれ線状に形成され、かつ、所定の間隔L2を持って配列され;複数の第2の支持部材12のそれぞれの一端12aに空気SAを供給する第1のチャンバー25Aと;複数の第2の支持部材12のそれぞれの他端12bに空気SAを供給する第2のチャンバー25Bとをさらに備え;第1のチャンバー25Aが、配列された第2の支持部材12のそれぞれの一端12aに順番に空気SAが到達する方向に空気SAを流すように構成され;第2のチャンバー25Bが、配列された第2の支持部材12のそれぞれの他端12bに、一端12aに空気SAが到達する順番とは逆の順番で空気SAが到達する方向に空気SAを流すように構成されている。   Moreover, the air conditioning system which concerns on the 3rd aspect of this invention is the 1st support member 11 and the 2nd support member in the air conditioning system 1 which concerns on the said 2nd aspect of this invention, for example, as shown in FIG. A plurality of second support members 12 are linearly formed and arranged with a predetermined interval L2; air SA is provided to one end 12a of each of the plurality of second support members 12. A first chamber 25A for supplying; a second chamber 25B for supplying air SA to each of the other ends 12b of the plurality of second support members 12; and a first chamber 25A in which the first chamber 25A is arranged. The air SA is configured to flow in the direction in which the air SA reaches the one end 12a of each of the two support members 12 in order; a second chamber 25B is provided for each of the arranged second support members 12 The end 12b, and a to flow air SA in the direction of reaching the air SA in the reverse order from the order to reach the air SA to the one end 12a.

このように構成すると、複数の第1の支持部材のそれぞれに形成された導出孔における静圧が偏ることを抑制することができる。   If comprised in this way, it can suppress that the static pressure in the outlet hole formed in each of several 1st support members is biased.

また、本発明の第4の態様に係る冷暖房システムは、例えば図1に示すように、上記本発明の第2の態様又は第3の態様に係る冷暖房システム1において、複数の第1の支持部材11間で第2の支持部材12に接触して配置される閉塞板16であって、区画材15との間に形成される空間SPDに導出孔11hが位置するように配置された閉塞板16を備える。   Moreover, the air conditioning system which concerns on the 4th aspect of this invention is a some 1st supporting member in the air conditioning system 1 which concerns on the said 2nd aspect or the 3rd aspect of this invention, for example, as shown in FIG. 11 is a closing plate 16 disposed in contact with the second support member 12, and is disposed so that the outlet hole 11 h is positioned in a space SPD formed between the partition members 15. Is provided.

このように構成すると、導出孔から導出された空気が区画材の裏側で区画材から離れる方向に拡散することを抑制することができ、導出孔から導出された空気が区画材に接触する割合を大きくすることができる。   If comprised in this way, it can suppress that the air derived | led-out from the outlet hole diffuses in the direction away from a partition material on the back side of a partition material, and the ratio of the air derived | led-out from the outlet hole contacting a partition material is set. Can be bigger.

また、本発明の第5の態様に係る冷暖房システムは、例えば図4に示すように、上記本発明の第2の態様乃至第4の態様のいずれか1つの態様に係る冷暖房システムにおいて、導出孔11h(例えば図1参照)に取り付けられる全圧取り出しノズル30であって、第1の支持部材11の内部を流れる空気SAの向きに直交する面に空気SAを取り込む開口32hが形成されて取り込んだ空気SAの流れの向きを直角に変えて第1の支持部材11の外部に導く動圧取り出し部32と、第1の支持部材11の内部を流れる空気SAの向きに平行な面に空気SAを取り込む開口33hが形成されて取り込んだ空気SAを第1の支持部材11の外部に導く静圧取り出し部33と、動圧取り出し部32を通過した空気SAと静圧取り出し部33を通過した空気SAとを混合する混合部31と、を有する全圧取り出しノズル30を備える。   Moreover, the air conditioning system which concerns on the 5th aspect of this invention is a lead-out hole in the air conditioning system which concerns on any one aspect of the said 2nd aspect thru | or 4th aspect of this invention, as shown, for example in FIG. 11h (see, for example, FIG. 1) is a total pressure takeout nozzle 30 which is formed by forming an opening 32h for taking in air SA on a surface orthogonal to the direction of air SA flowing through the inside of the first support member 11. The dynamic pressure take-out portion 32 that changes the flow direction of the air SA to a right angle and guides the air SA to the outside of the first support member 11, and the air SA on a surface parallel to the direction of the air SA that flows inside the first support member 11. An intake opening 33h is formed, and the air SA that has been taken in is introduced to the outside of the first support member 11, and the air SA that has passed through the dynamic pressure take-out portion 32 and the static pressure take-out portion 33 are passed through. It includes a mixing unit 31 for mixing the air SA, the total pressure extraction nozzle 30 having a.

このように構成すると、導出孔から導出される空気が静圧だけの場合に比べて高い圧力で導出されることとなり、区画材の裏面に沿う方向の空気の拡散を促進させることができる。   If comprised in this way, it will be derived | led-out by the high pressure compared with the case where the air derived | led-out from a derivation | leading-out hole is only a static pressure, and the spreading | diffusion of the air along the back surface of a partition material can be promoted.

本発明によれば、第1の支持部材に対して交差して配置されると共に内部に空気の流路が形成された第2の支持部材を備え、第1の支持部材と第2の支持部材とが交差により接触する位置に互いの空気の流路が連絡する連絡孔が形成され、導出された空気が区画材の裏面に沿って流れる向きに開口した導出孔が第1の支持部材に形成されているので、支持部材がダクトを兼ねることとなる。それゆえ、手間及びコストの増大を抑制しつつ区画材の裏側全体に満遍なく空気を接触させることができ、導出孔から導出される空気を温度調節された空気とした場合は、区画材の全体を満遍なく冷却又は加熱することができる。   According to the present invention, the first support member and the second support member are provided including the second support member that is disposed so as to intersect the first support member and that has an air flow path formed therein. Is formed in the first support member in a direction in which the derived air flows along the back surface of the partition material. Thus, the support member also serves as a duct. Therefore, air can be uniformly contacted with the entire back side of the partition material while suppressing an increase in labor and cost, and when the temperature of the air led out from the outlet hole is adjusted to the temperature, It can be cooled or heated evenly.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

図1及び図2を参照して、本発明の第1の実施の形態に係る支持部材セット10及び本発明の第2の実施の形態に係る冷暖房システム1を説明する。図1は、支持部材セット10及び冷暖房システム1の構成を説明する図であり、(a)は断面図、(b)は平面図である。図1(b)は、区画材としての床材15を外した様子を表している。図2は、支持部材セット10及び冷暖房システム1の構成を示す斜視図であり、床材15を外した様子を表している。冷暖房システム1は、床材15を支持する支持部材セット10と、支持部材セット10に温度が調節された空気である温調空気SAを供給する第1のチャンバーとしての順流チャンバー25A及び第2のチャンバーとしての逆流チャンバー25Bと、温調空気SAを生成する空気温度調節機器としての温調機器21とを備えている。   With reference to FIG.1 and FIG.2, the supporting member set 10 which concerns on the 1st Embodiment of this invention, and the air conditioning system 1 which concerns on the 2nd Embodiment of this invention are demonstrated. 1A and 1B are diagrams for explaining the configuration of a support member set 10 and an air conditioning system 1, wherein FIG. 1A is a cross-sectional view and FIG. 1B is a plan view. FIG.1 (b) represents a mode that the flooring 15 as a partition material was removed. FIG. 2 is a perspective view showing the configuration of the support member set 10 and the air conditioning system 1 and shows a state in which the flooring 15 is removed. The air conditioning system 1 includes a support member set 10 that supports a flooring 15, a forward flow chamber 25 </ b> A as a first chamber that supplies temperature-controlled air SA that is air whose temperature is adjusted to the support member set 10, and a second flow chamber 25 </ b> A. A backflow chamber 25B as a chamber and a temperature adjustment device 21 as an air temperature adjustment device that generates temperature adjustment air SA are provided.

また図3を併せて参照し、冷暖房システム1全体の説明に先立って、冷暖房システム1の構成要素の1つである支持部材セット10について詳説する。図3は、支持部材セット10の部分斜視図である。支持部材セット10は、第1の支持部材としての根太鋼11と、第2の支持部材としての大引鋼12と、大引鋼12をスラブSL上で支持する支持台18とを備えている。支持部材セット10は、建物の床を構成する部材である。根太鋼11の上には、冷房又は暖房(以下「冷暖房」という。)が行われる対象となる冷暖房室Rの床面となる床材15が敷設される。   Further, with reference to FIG. 3, the support member set 10 which is one of the components of the cooling / heating system 1 will be described in detail prior to the description of the entire cooling / heating system 1. FIG. 3 is a partial perspective view of the support member set 10. The support member set 10 includes a joist steel 11 as a first support member, a large drawing steel 12 as a second support member, and a support base 18 that supports the large drawing steel 12 on the slab SL. . The support member set 10 is a member constituting a floor of a building. On the joist steel 11, a floor material 15 is laid as a floor surface of a cooling / heating room R to be cooled or heated (hereinafter referred to as “cooling / heating”).

根太鋼11は、床材15自体及び床材15にかかる重量を大引鋼12に伝える部材である。根太鋼11は、典型的には、細長の溶融亜鉛めっき鋼板を断面が「ハット形状」となるように折り曲げ加工して形成された棒状の部材である。「ハット形状」は、周囲に縁が付いた帽子(ハット)のような形状であり、例えば断面矩形の中空角柱の当該矩形の底辺を中央で切断し、その切断した底辺をこの辺に交わる側辺との交点でそれぞれ180°外側に回転させて形成される形状である。このように形成された根太鋼11は、断面で見ると、載置されたときに水平の辺となる天面11tと、天面11tの両端からそれぞれ下方に延びる辺となる側面11sと、各側面11sの下端から水平方向外側に延びる縁部11bとを有する。本実施の形態における根太鋼11は、天面11tの幅が79mm、側面11sの高さが50mm、縁部11bの幅が29mmであるが、この寸法に限られない。根太鋼11は、両縁部11b間の開口を塞ぐことにより、内部に温調空気SAの流路を形成することができる。   The joist steel 11 is a member that transmits the weight applied to the flooring 15 itself and the flooring 15 to the large drawing steel 12. The joist steel 11 is typically a rod-shaped member formed by bending an elongated hot-dip galvanized steel sheet so that the cross section has a “hat shape”. A “hat shape” is a hat-like shape with a border around it, for example, the bottom of the rectangular prism with a rectangular cross section is cut at the center, and the side where the cut bottom intersects this side The shape is formed by rotating 180 ° outward at the intersections with each other. When the joist steel 11 formed in this way is viewed in cross section, the top surface 11t which becomes a horizontal side when placed, the side surface 11s which becomes a side extending downward from both ends of the top surface 11t, And an edge portion 11b extending outward in the horizontal direction from the lower end of the side surface 11s. In the joist steel 11 in the present embodiment, the width of the top surface 11t is 79 mm, the height of the side surface 11s is 50 mm, and the width of the edge 11b is 29 mm, but is not limited thereto. The joist steel 11 can form a flow path of the temperature-controlled air SA inside by closing the opening between both edge portions 11b.

根太鋼11は、側面11sに、内部を流れる温調空気SAを導出する導出孔11hが形成されている。導出孔11hは、根太鋼11の長手方向に所定の間隔で複数形成されている。また、導出孔11hは、一方の側面11sと対向する他方の側面11sとで千鳥状となるように形成されている。換言すれば、一方の側面11s側から根太鋼11を見たときに、目視できる導出孔11hと導出孔11hとの中間に裏側の側面11sの導出孔11hが形成されている。導出孔11hは、導出された温調空気SAが、根太鋼11の上に敷設された床材15の裏面に沿って床材15の裏面に接触しながら拡散するような向きに形成されている。導出孔11hの間隔は、床材15の裏面に満遍なく温調空気SAを接触させることができる間隔とすることが好ましい。床材15の裏面に満遍なく温調空気SAを接触させることにより、床材15をムラなく冷却又は加熱することが可能になる。導出孔11hの大きさは、導出された温調空気SAが床材15との間に形成される境膜(流体が相対運動をしている場合に相境界に存在する、層流状態が保たれている極薄い領域)を破壊する風速で流れる開口面積に形成するのが好ましい。一般に、床材15と温調空気SAの流れとの間に空気が滞留する境膜が存在すると表面熱伝達抵抗が大きくなって温調空気SAが保有する冷熱又は温熱が効率よく床材15に伝達されなくなるが、境膜を破壊することによって熱伝達率を向上させることができる。根太鋼11は、例えば定尺が5400mmであり、適切な長さに切断して用いられる。   The joist steel 11 has a side surface 11s formed with a lead-out hole 11h for leading out the temperature-controlled air SA flowing inside. A plurality of lead-out holes 11 h are formed at predetermined intervals in the longitudinal direction of the joist steel 11. In addition, the lead-out holes 11h are formed in a zigzag shape with one side surface 11s and the other side surface 11s facing each other. In other words, when the joist steel 11 is viewed from the side surface 11s side, the outlet hole 11h on the rear side surface 11s is formed between the outlet hole 11h and the outlet hole 11h that can be seen. The outlet hole 11h is formed in such a direction that the derived temperature-controlled air SA diffuses while contacting the back surface of the floor material 15 along the back surface of the floor material 15 laid on the joist steel 11. . It is preferable that the interval between the outlet holes 11 h be an interval at which the temperature-controlled air SA can be uniformly contacted with the back surface of the flooring 15. By uniformly contacting the temperature-controlled air SA with the back surface of the flooring 15, the flooring 15 can be cooled or heated without unevenness. The size of the outlet hole 11h is a boundary film formed between the temperature-controlled air SA and the floor material 15 (the laminar flow state that exists at the phase boundary when the fluid is in relative motion is maintained. It is preferable to form an opening area that flows at a wind speed that destroys a very thin region. In general, if there is a boundary film in which air stays between the floor material 15 and the flow of the temperature-controlled air SA, the surface heat transfer resistance is increased, and the cold heat or the heat held by the temperature-controlled air SA is efficiently supplied to the floor material 15. Although it is not transmitted, the heat transfer rate can be improved by destroying the boundary film. The joist steel 11 has a standard length of 5400 mm, for example, and is used after being cut to an appropriate length.

大引鋼12は、その上に間隔(根太間隔L1)を空けて複数敷設される根太鋼11を支え、その重量を支持脚18を介してスラブSLに伝える部材である。大引鋼12は、典型的には、溶融亜鉛めっき鋼板が断面矩形の中空角柱に加工されて形成されている。中空に形成されている大引鋼12は、その内部の中空部分を温調空気SAの流路とすることができる。本実施の形態では、大引鋼12の断面形状が一辺100mmの正方形に形成されている。大引鋼12の断面矩形の一辺は、75mmとしてもよく、中空部分を流れる温調空気SAの流量を勘案して決定されたその他の寸法としてもよい。大引鋼12は、根太鋼11と接触する部分に大引連絡孔14Bが形成されている。大引連絡孔14Bは、大引鋼12の内部と根太鋼11の内部とを連絡して、大引鋼12の内部を流れてきた温調空気SAを根太鋼11の内部に流入させることができる開口である。大引連絡孔14Bは、大引鋼12の長手方向の大きさが、根太鋼11の両側面11s間の幅よりも一回り小さく形成されている。大引鋼12の幅方向の大引連絡孔14Bの大きさは、大引鋼12の必要な強度を確保できる範囲でできるだけ大きく形成してもよい。大引連絡孔14Bが形成される間隔は、典型的には根太間隔L1と一致する。根太間隔L1は、床材15に温調空気SAを満遍なく接触させる観点からは、導出孔11hから導出された温調空気SAの到達距離が採用され、所定の目的の規格(例えば体育館用鋼製床下地構成材:JISA6519)を満たす観点からは、規格を充足する寸法が採用される。規格を充足する観点から根太間隔L1を決定した場合も、床材15に温調空気SAを満遍なく接触させることができるようにすることが好ましい。大引鋼12は、例えば定尺が5400mmであり、適切な長さに切断して用いられる。   The large drawing steel 12 is a member that supports a plurality of joist steels 11 that are laid at intervals (joe pitch L 1) thereon and transmits the weight to the slab SL through the support legs 18. The large drawing steel 12 is typically formed by processing a hot dip galvanized steel sheet into a hollow prism having a rectangular cross section. The large drawn steel 12 formed in a hollow shape can have a hollow portion inside as a flow path for the temperature-controlled air SA. In the present embodiment, the cross-sectional shape of the large drawing steel 12 is formed into a square having a side of 100 mm. One side of the cross section rectangle of the drawn steel 12 may be 75 mm, or may be other dimensions determined in consideration of the flow rate of the temperature-controlled air SA flowing through the hollow portion. The large drawing steel 12 has a large drawing connection hole 14 </ b> B formed in a portion in contact with the joist steel 11. The large drawing connection hole 14B connects the inside of the large drawing steel 12 and the inside of the joist steel 11, and allows the temperature-controlled air SA that has flowed through the inner drawing steel 12 to flow into the joist steel 11. It is an opening that can be made. The large drawing connection hole 14 </ b> B is formed such that the size of the large drawing steel 12 in the longitudinal direction is slightly smaller than the width between both side surfaces 11 s of the joist steel 11. The size of the large drawing hole 14 </ b> B in the width direction of the large drawing steel 12 may be formed as large as possible within a range in which the necessary strength of the large drawing steel 12 can be ensured. The interval at which the large drawing contact hole 14B is formed typically coincides with the joist interval L1. As the joist interval L1, the reach of the temperature-controlled air SA derived from the outlet hole 11h is adopted from the viewpoint of evenly contacting the temperature-controlled air SA with the flooring 15, and a predetermined target standard (for example, steel for gymnasium) is adopted. From the viewpoint of satisfying the floor foundation constituent material: JIS A6519), a dimension satisfying the standard is adopted. Even when the joist interval L1 is determined from the viewpoint of satisfying the standard, it is preferable that the temperature-controlled air SA can be uniformly contacted with the flooring 15. The large drawing steel 12 has a standard length of 5400 mm, for example, and is used after being cut to an appropriate length.

支持台18は、大引鋼12を受ける大引受18aと、冷暖房室Rの床高を調節する支持ボルト18bと、大引受18a及び支持ボルト18bのスラブSL上における位置を固定する支持脚18cとを有している。大引受18aは、大引鋼12の両側面及び底面を包むようなU字形状に鋼板が加工されて形成され、大引鋼12との間に緩衝材としてのゴム板が嵌挿されて構成されている。大引受18aの上部には、大引鋼12を挟んだ大引受18aを締め付けるための調整ボルトが挿通されて蝶ねじが螺合されている。支持脚18cは、ハット状に形成され、ハットの縁の部分にアンカーを挿通する孔が形成されており、アンカーでスラブSLに固定することができるように構成されている。支持ボルト18bは、全ねじが床高に適合する所定の長さに切断されて形成されており、一端が大引受18aのU字状の底部に溶接され、他端が支持脚18cのハットの頂部に挿通されてナットで固定されている。支持ボルト18bを支持脚18cに挿通する度合いを調節することにより、大引受18aの高さ、ひいては大引鋼12のレベルを調節することができる。   The support base 18 includes a large receiving 18a that receives the large drawing steel 12, a support bolt 18b that adjusts the floor height of the air conditioning room R, and a support leg 18c that fixes the position of the large receiving 18a and the support bolt 18b on the slab SL. have. The large bearing 18 a is formed by processing a steel plate into a U shape so as to wrap both sides and the bottom surface of the large drawing steel 12, and a rubber plate as a cushioning material is inserted between the large drawing steel 12. Has been. An adjustment bolt for tightening the large receiving member 18a sandwiching the large drawing steel 12 is inserted into the upper portion of the large receiving member 18a, and a thumbscrew is screwed together. The support leg 18c is formed in a hat shape, and a hole through which the anchor is inserted is formed at the edge portion of the hat, and is configured to be fixed to the slab SL by the anchor. The support bolt 18b is formed by cutting all screws to a predetermined length that matches the floor height, one end of which is welded to the U-shaped bottom of the large receiving portion 18a, and the other end of the hat of the support leg 18c. It is inserted through the top and fixed with a nut. By adjusting the degree of insertion of the support bolt 18b into the support leg 18c, the height of the large bearing 18a and consequently the level of the large drawing steel 12 can be adjusted.

支持部材セット10を建物に設置する際は、まず、スラブSL上に支持台18をアンカーで固定する。支持台18の割付は、敷設される大引鋼12に対応して行われる。支持部材セット10は、複数の大引鋼12が所定の間隔(大引間隔L2)で平行に敷設され、大引鋼12の上に複数の根太鋼11が根太間隔L1で平行に敷設されるところ、大引間隔L2は、所定の目的の規格(例えば体育館用鋼製床下地構成材:JISA6519)を満たす観点からは、規格を充足する寸法が採用される。また、床材15に温調空気SAを満遍なく接触させる観点からは、必要な流量の温調空気SAを根太鋼11に供給することができる間隔が採用される。両観点からの条件を共に充足させることが好ましい。支持台18は、上記の観点を考慮して決定された大引間隔L2に対応する位置でスラブSL上に固定される。   When the support member set 10 is installed in a building, first, the support base 18 is fixed on the slab SL with an anchor. The allocation of the support base 18 is performed corresponding to the drawn steel 12 to be laid. In the support member set 10, a plurality of large drawing steels 12 are laid in parallel at a predetermined interval (large drawing interval L2), and a plurality of joists 11 are laid on the large drawing steel 12 in parallel at a joist interval L1. However, from the viewpoint of satisfying a predetermined target standard (for example, steel floor foundation constituent material: JIS A6519) for the large draw interval L2, a dimension that satisfies the standard is adopted. Further, from the viewpoint of bringing the temperature-controlled air SA in contact with the floor 15 evenly, an interval at which the temperature-controlled air SA having a necessary flow rate can be supplied to the joist steel 11 is employed. It is preferable to satisfy both conditions from both viewpoints. The support base 18 is fixed on the slab SL at a position corresponding to the large drawing interval L2 determined in consideration of the above viewpoint.

支持台18がスラブSL上に固定されたら、大引鋼12を冷暖房室Rの床面積に応じて切断してから長手方向が水平になるようにして大引受18aに載置する。このとき、大引連絡孔14Bが上方(後に敷設する根太鋼11側)を向くように(大引鋼12の上面に現れるように)、かつ、ある大引連絡孔14Bを通り大引鋼12に直交する仮想線上に他の大引鋼12の大引連絡孔14Bが乗るように、大引鋼12が大引受18aに載置される。大引鋼12が大引受18aに載置されたら、大引受18aの調整ボルトに螺合された蝶ねじを締め付けて、大引鋼12を支持台18に固定する。その後、根太鋼11を、両縁部11bの間の開口で仮想線上の各大引連絡孔14Bを覆い隠すようにしつつ縁部11bを大引鋼12に接触させて、大引鋼12上に敷設する。このとき、根太鋼11は大引鋼12に対して直交している。根太鋼11を敷設したら、縁部11bと大引鋼12の上面とをタッピングビス等で固定する。根太鋼11を大引鋼12に固定したら、隣り合う大引鋼12間の根太鋼11の底面が両縁部11bの間で開口しているので、この開口を塞ぐ。根太鋼11底面の両縁部11b間の開口を塞ぐには、アルミテープを用いてもよく、鉄板を底面側からあてがってクリップやビス等で固定してもよい。大引鋼12の上に載置固定された根太鋼11は、底面開口が塞がれることにより暗渠となり、内部に温調空気SAの流路が形成される。大引鋼12間における根太鋼11の底面開口を塞ぐと、根太鋼11の底面は大引鋼12の上方部分が塞がれずに残る。この塞がれずに残った部分が根太連絡孔14Aとなる。根太連絡孔14Aは、大引連絡孔14Bを内部に収めることができる大きさになっている。根太連絡孔14Aと大引連絡孔14Bとで連絡孔14を形成し、底部開口が塞がれた根太鋼11の内部と大引鋼12の内部とを連絡することができるようになっている。   When the support base 18 is fixed on the slab SL, the large drawing steel 12 is cut according to the floor area of the cooling / heating chamber R and then placed on the large receiving 18a so that the longitudinal direction becomes horizontal. At this time, the large drawing connection hole 14B faces upward (to the side of the joisting steel 11 to be laid later) (so that it appears on the upper surface of the large drawing steel 12), and passes through a certain large drawing connection hole 14B. The large drawing steel 12 is placed on the large receiving 18a so that the large drawing connection hole 14B of the other large drawing steel 12 is placed on a virtual line orthogonal to the drawing line. When the large drawing steel 12 is placed on the large receiving 18a, the thumbscrew screwed to the adjusting bolt of the large receiving 18a is tightened to fix the large drawing steel 12 to the support base 18. Then, the edge 11b is brought into contact with the large drawing steel 12 while concealing each large drawing connection hole 14B on the imaginary line at the opening between both edges 11b, and the edge 11b is brought into contact with the large drawing steel 12 to Lay down. At this time, the joist steel 11 is orthogonal to the large drawing steel 12. After the joist steel 11 is laid, the edge 11b and the upper surface of the large drawing steel 12 are fixed with a tapping screw or the like. When the joisting steel 11 is fixed to the large drawing steel 12, the bottom surface of the joisting steel 11 between the adjacent large drawing steels 12 is open between the two edge portions 11b, and thus this opening is closed. In order to close the opening between both edge portions 11b on the bottom surface of the joist steel 11, an aluminum tape may be used, or an iron plate may be applied from the bottom surface side and fixed with a clip or a screw. The joist steel 11 placed and fixed on the large drawing steel 12 becomes a culvert when the bottom opening is blocked, and a flow path of the temperature-controlled air SA is formed inside. When the bottom opening of the joisting steel 11 between the large drawing steels 12 is closed, the upper part of the large drawing steel 12 remains on the bottom surface of the joisting steel 11 without being blocked. The portion remaining without being blocked becomes the joist connection hole 14A. The joist connecting hole 14A is sized to accommodate the large drawing connecting hole 14B. The joist connection hole 14A and the large drawing communication hole 14B form the communication hole 14 so that the inside of the joist steel 11 whose bottom opening is blocked and the inside of the large drawing steel 12 can be communicated. .

引き続き、図1及び図2を主に参照し、適宜図3を参照して、冷暖房システム1の構成を説明する。上述のように構成された支持部材セット10の、各大引鋼12の一端12aには、温調空気SAを大引鋼12内に分配供給する順流チャンバー25Aが接続されている。順流チャンバー25Aは、典型的には矩形ダクトで構成されている。順流チャンバー25Aは、亜鉛鉄板で形成されていてもよく、グラスウール板を加工して形成されていてもよい。順流チャンバー25Aは、各大引鋼12の一端12aに接触して、根太鋼11と平行に配設されている。順流チャンバー25Aは、各大引鋼12の一端12aと接触する部分が開口され、順流チャンバー25A内から大引鋼12内へ温調空気SAを供給することができるように構成されている。順流チャンバー25Aは、複数敷設された大引鋼12のうちの一方の最外部に敷設された大引鋼12の外側で塞がれている。順流チャンバー25A内への温調空気SAの供給は、塞がれた方とは反対側の端部から行われるように構成されている。   Next, the configuration of the air conditioning system 1 will be described with reference mainly to FIGS. 1 and 2 and with reference to FIG. 3 as appropriate. A forward flow chamber 25 </ b> A that distributes the temperature-controlled air SA into the large drawing steel 12 is connected to one end 12 a of each large drawing steel 12 of the support member set 10 configured as described above. The forward flow chamber 25A is typically configured by a rectangular duct. The forward flow chamber 25A may be formed of a zinc iron plate or may be formed by processing a glass wool plate. The forward flow chamber 25 </ b> A is disposed in parallel with the joist steel 11 in contact with one end 12 a of each large drawing steel 12. The forward flow chamber 25 </ b> A is configured such that a portion in contact with one end 12 a of each large drawing steel 12 is opened, and temperature-controlled air SA can be supplied from the forward flow chamber 25 </ b> A into the large drawing steel 12. The forward flow chamber 25 </ b> A is closed on the outer side of the large drawing steel 12 laid on the outermost side of one of the multiple drawing steels 12 laid. The supply of the temperature-controlled air SA into the forward flow chamber 25A is configured to be performed from the end on the side opposite to the closed side.

逆流チャンバー25Bは、典型的には順流チャンバー25Aと同様の材料で同様の形状及び同様の長さに形成され、各大引鋼12の他端12bに接続されている。逆流チャンバー25Bは、各大引鋼12の他端12bに接触して、根太鋼11と平行に配設されている。逆流チャンバー25Bは、各大引鋼12の他端12bと接触する部分が開口され、逆流チャンバー25B内から大引鋼12内へ温調空気SAを供給することができるように構成されている。逆流チャンバー25Bは、順流チャンバー25Aの塞がれた端部の直近の大引鋼12とは反対側の最外部に敷設された大引鋼12の外側で塞がれている。逆流チャンバー25B内への温調空気SAの供給は、塞がれた方とは反対側の端部から行われるように構成されている。このように構成されることにより、平面視において、順流チャンバー25A内を流れる温調空気SAの流れ方向と、逆流チャンバー25B内を流れる温調空気SAの流れ方向とが逆向きになるようになっている。   The reverse flow chamber 25 </ b> B is typically formed of the same material as the forward flow chamber 25 </ b> A in the same shape and the same length, and is connected to the other end 12 b of each large drawing steel 12. The reverse flow chamber 25 </ b> B is disposed in parallel with the joist steel 11 in contact with the other end 12 b of each large drawing steel 12. The backflow chamber 25B is configured such that a portion that contacts the other end 12b of each large drawing steel 12 is opened, and temperature-controlled air SA can be supplied from the backflow chamber 25B into the large drawing steel 12. The reverse flow chamber 25B is closed outside the large drawing steel 12 laid on the outermost side opposite to the direct drawing chamber 12 at the end where the forward flow chamber 25A is blocked. The supply of the temperature-controlled air SA into the backflow chamber 25B is configured to be performed from the end on the side opposite to the closed side. With this configuration, in the plan view, the flow direction of the temperature-controlled air SA flowing in the forward flow chamber 25A and the flow direction of the temperature-controlled air SA flowing in the reverse flow chamber 25B are reversed. ing.

温調機器21は、冷暖房室Rの輻射冷暖房を行うことができる温度に調節した温調空気SAを生成する機器である。温調機器21は、典型的にはパッケージ型空調機が用いられるが、エアハンドリングユニット等が用いられることとしてもよい。温調機器21は、冷暖房室Rが形成される部分の外側に設置される。温調機器21は、冷暖房室Rに隣接した部屋あるいは冷暖房室Rから離れた部屋に設置されてもよい。温調機器21は、順流チャンバー25Aの開口端部及び逆流チャンバー25Bの開口端部にそれぞれ設置してもよく、1台の温調機器21を設置して温調機器21から順流チャンバー25A及び逆流チャンバー25Bのそれぞれの開口端部に温調空気SAを導く分配ダクト(不図示)を併せて設けることとしてもよい。分配ダクト(不図示)を設ける場合は、適宜ダンパ等を設けて順流チャンバー25A及び逆流チャンバー25Bのそれぞれの開口端部における静圧が等しくなるようにすることが好ましい。   The temperature control device 21 is a device that generates the temperature control air SA adjusted to a temperature at which the radiant cooling / heating of the cooling / heating room R can be performed. The temperature control device 21 is typically a package type air conditioner, but may be an air handling unit or the like. The temperature control device 21 is installed outside the portion where the air conditioning room R is formed. The temperature control device 21 may be installed in a room adjacent to the air conditioning room R or a room away from the air conditioning room R. The temperature control device 21 may be installed at the open end of the forward flow chamber 25A and the open end of the reverse flow chamber 25B, respectively. One temperature control device 21 is installed, and the forward flow chamber 25A and the reverse flow from the temperature control device 21 are installed. A distribution duct (not shown) that guides the temperature-controlled air SA may be provided at each opening end of the chamber 25B. When a distribution duct (not shown) is provided, it is preferable to provide a damper or the like as appropriate so that the static pressures at the open end portions of the forward flow chamber 25A and the backflow chamber 25B become equal.

冷暖房システム1を構築する際は、上述の要領で設置される支持部材セット10が設置される前あるいは設置された後に、温調機器21を設置する。温調機器21及び支持部材セット10を設置したら、各大引鋼12の一端12aに順流チャンバー25Aを接続して設置し、各大引鋼12の他端12bに逆流チャンバー25Bを接続して設置する。そして、必要に応じて分配ダクト(不図示)を、温調機器21と順流チャンバー25A及び逆流チャンバー25Bのそれぞれとを接続して設置する。その後、根太鋼11の上に床材15を敷設する。なお、床材15を敷設する前に、隣り合う根太鋼11の間の大引鋼12上に閉塞板16を敷き詰めて、根太鋼11の間の開口を塞ぐこととしてもよい。このとき、敷設された閉塞板16の上面よりも上方に、導出孔11hが現れるように閉塞板16の厚さが決められる。このようにすることで、床材15と閉塞板16との間に床下空間SPをさらに小さくした空気拡散空間SPDを形成することができ、導出孔11hから導出された温調空気SAの拡散領域を床材15付近に制限することができて、温調空気SAの冷熱又は温熱を効率よく床材15に伝達することが可能となる。   When constructing the air conditioning system 1, the temperature control device 21 is installed before or after the support member set 10 installed in the above-described manner is installed. After the temperature control device 21 and the support member set 10 are installed, the forward flow chamber 25A is connected to one end 12a of each large drawing steel 12, and the reverse flow chamber 25B is connected to the other end 12b of each large drawing steel 12. To do. And if necessary, a distribution duct (not shown) is installed by connecting the temperature control device 21 to each of the forward flow chamber 25A and the reverse flow chamber 25B. Thereafter, the flooring 15 is laid on the joist steel 11. In addition, before laying the flooring 15, it is good also as covering the opening between the joisting steel 11 by laying the obstruction board 16 on the large drawing steel 12 between the joisting steel 11 adjacent. At this time, the thickness of the blocking plate 16 is determined so that the outlet hole 11h appears above the upper surface of the laid blocking plate 16. By doing so, an air diffusion space SPD in which the underfloor space SP is further reduced can be formed between the floor material 15 and the blocking plate 16, and the diffusion region of the temperature-controlled air SA derived from the outlet hole 11h. Can be limited to the vicinity of the flooring 15, and the cold heat or heat of the temperature-controlled air SA can be efficiently transmitted to the flooring 15.

また、床材15には、根太鋼11の導出孔11hから床下空間SPに導出された温調空気SAを冷暖房室Rに流入させる連通口17が形成されている。連通口17を介して温調空気SAを冷暖房室R内に導入することにより、対流による冷暖房効果を享受することが可能になる。連通口17は、典型的には、冷暖房室Rの隅部に2〜4箇所形成されている。連通口17は、冷暖房室Rの床面において、物の落下を防ぐための格子(不図示)が設けられている。さらに、冷暖房室Rの壁面又は天井面には、冷暖房室Rに流入した温調空気SA分の空気を冷暖房室R外に導出する導出口(不図示)が形成されている。導出口(不図示)には、典型的には冷暖房室R内の空気を温調機器21に導く還気ダクト(不図示)が接続されている。   Further, the floor 15 is formed with a communication port 17 through which the temperature-controlled air SA led out from the outlet hole 11h of the joist steel 11 to the underfloor space SP flows into the cooling / heating room R. By introducing the temperature-controlled air SA into the cooling / heating room R through the communication port 17, it becomes possible to enjoy the cooling / heating effect by convection. The communication ports 17 are typically formed at 2 to 4 locations at the corners of the air conditioning room R. The communication port 17 is provided with a lattice (not shown) on the floor surface of the cooling / heating room R to prevent objects from falling. Further, on the wall surface or ceiling surface of the cooling / heating room R, a lead-out port (not shown) through which air for the temperature-controlled air SA flowing into the cooling / heating room R is led out of the cooling / heating room R is formed. Typically, a return air duct (not shown) that guides the air in the air conditioning room R to the temperature control device 21 is connected to the outlet (not shown).

引き続き図1〜図3を参照して、支持部材セット10及び冷暖房システム1の作用(運転状況)を説明する。なお、支持部材セット10の作用は、冷暖房システム1の作用の一環として説明する。温調機器21では、冷暖房室Rを輻射冷暖房するのに適した温度(設定温度に依存するが、例えば、冷房時18〜23℃、暖房時30〜35℃)に調節された温調空気SAが生成される。輻射冷暖房は、一般に、対流のみによる冷暖房(温度調節された空気を冷暖房室内に供給して行う冷暖房)に比べて、温度調節された空気の温度と外気温との差が小さくなるように設計されるため、温調空気SAを生成するためのエネルギーが少なくて済む。温調機器21で生成された温調空気SAは、必要に応じて分配ダクト(不図示)を介して順流チャンバー25A及び逆流チャンバー25Bに供給される。   With continued reference to FIG. 1 to FIG. 3, the operation (operation status) of the support member set 10 and the air conditioning system 1 will be described. The operation of the support member set 10 will be described as a part of the operation of the air conditioning system 1. In the temperature control device 21, the temperature-controlled air SA adjusted to a temperature suitable for radiant cooling / heating of the air conditioning room R (depending on the set temperature, for example, 18 to 23 ° C. during cooling, 30 to 35 ° C. during heating). Is generated. Radiant cooling / heating is generally designed so that the difference between the temperature of the temperature-controlled air and the outside air temperature is small compared to cooling / heating using only convection (cooling / heating performed by supplying temperature-controlled air into the cooling / heating room). Therefore, less energy is required to generate the temperature-controlled air SA. The temperature-controlled air SA generated by the temperature adjustment device 21 is supplied to the forward flow chamber 25A and the reverse flow chamber 25B through a distribution duct (not shown) as necessary.

順流チャンバー25A及び逆流チャンバー25Bに供給された温調空気SAは、それぞれ塞がれた端部に向かって流れ、途中で順番に接続された大引鋼12に順次流入する。順流チャンバー25Aから大引鋼12の一端12aに、及び逆流チャンバー25Bから大引鋼12の他端12bにそれぞれ流入した温調空気SAは、それぞれ反対側の端部に向かって大引鋼12内を流れつつ、途中で順番に現れる連絡孔14から根太鋼11の内部にも順次流入する。大引鋼12の両端12a、12bからそれぞれ流入した温調空気SAは、大引鋼12内で出会うが(以下、温調空気SAが出会う点を「出会点」という。)、大引鋼12の端部から温調空気SAの出会点までの距離は、複数配設された大引鋼12に対して温調空気SAが到達する順序が順流チャンバー25A側と逆流チャンバー25B側とで逆になっており、各大引鋼12により端部12a、12bから静圧が等しい部分までの距離が異なるので、各大引鋼12によって異なる。複数配設された大引鋼12に対して温調空気SAが到達する順序が順流チャンバー25A側と逆流チャンバー25B側とで逆になっていることにより、冷暖房室R内における温度分布が一方に偏ってしまうことを低減することができる。   The temperature-controlled air SA supplied to the forward flow chamber 25A and the reverse flow chamber 25B flows toward the closed ends, and sequentially flows into the drawn steel 12 connected in order on the way. The temperature-controlled air SA that has flowed from the forward flow chamber 25A into the one end 12a of the large drawing steel 12 and from the reverse flow chamber 25B into the other end 12b of the large drawing steel 12 respectively in the large drawing steel 12 toward the opposite end. , And flows in the joist steel 11 sequentially from the communication holes 14 that appear in order on the way. The temperature-controlled air SA that has flowed in from both ends 12a and 12b of the large drawing steel 12 meets within the large drawing steel 12 (hereinafter, the point where the temperature-controlled air SA meets is referred to as “meeting point”). The distance from the end of 12 to the meeting point of the temperature-controlled air SA is such that the order in which the temperature-controlled air SA reaches the multiple drawn steel 12 is the forward flow chamber 25A side and the reverse flow chamber 25B side. The distances from the end portions 12a and 12b to the portions having the same static pressure are different depending on each large drawing steel 12, and therefore differ depending on each large drawing steel 12. The order in which the temperature-controlled air SA reaches the large drawn steel 12 disposed in a plurality is reversed between the forward flow chamber 25A side and the reverse flow chamber 25B side, so that the temperature distribution in the heating / cooling room R is on one side. It is possible to reduce the bias.

連絡孔14から根太鋼11の内部に流入した温調空気SAは、大引鋼12に直交する2方向に分かれて流れ、途中で左右順番に現れる導出孔11hから床下空間SP(閉塞板16が敷設されている場合は空気拡散空間SPD)に導出される。導出孔11hから導出された温調空気SAは、床材15の裏面に沿って拡散しながら隣の根太鋼11に向かって流れる。このとき、温調空気SAは、床材15に接触しながら流れて床材15に冷熱(冷房時)又は温熱(暖房時)を伝達する。このことにより、床材15は冷やされ又は温められる。なお、床材15は、接触している根太鋼11からも冷熱又は温熱を受熱して冷やされ又は温められる。根太鋼11及び大引鋼12は鋼板で形成されているので、熱伝導率が比較的高く、効率よく床材15に冷熱又は温熱を伝達することができる。そして、冷やされ又は温められた床材15から冷暖房室Rに冷熱又は温熱が輻射され、冷暖房室Rの冷房又は暖房が行われる。   The temperature-controlled air SA that has flowed into the joist steel 11 from the connection hole 14 flows in two directions perpendicular to the large drawing steel 12 and flows from the outlet hole 11h that appears in the left-right order on the way to the underfloor space SP (the blocking plate 16 is provided). If it is laid, it is led out to the air diffusion space SPD). The temperature-controlled air SA led out from the lead-out hole 11h flows toward the adjacent joist steel 11 while diffusing along the back surface of the flooring 15. At this time, the temperature-controlled air SA flows while in contact with the flooring 15 and transmits cold (cooling) or warming (heating) to the flooring 15. Thereby, the flooring 15 is cooled or warmed. The flooring 15 is cooled or warmed by receiving cold or warm heat from the joist steel 11 that is in contact therewith. Since the joist steel 11 and the large drawing steel 12 are formed of steel plates, they have a relatively high thermal conductivity and can efficiently transmit cold heat or heat to the flooring 15. Then, cooling or heating is radiated from the cooled or warmed flooring 15 to the cooling / heating room R, and the cooling / heating of the cooling / heating room R is performed.

床材15に冷熱又は温熱を伝達した温調空気SAは、冷房時は温度が上昇して暖房時は温度が低下している。床材15と熱交換して床下空間SP(又は空気拡散空間SPD)に存在する温調空気SAは、連通口17を介して冷暖房室R内に流入し、冷暖房室R内を対流する。冷暖房室R内に流入した温調空気SAは、床材15の温度と同等あるいは冷房時は床材15よりも低温で暖房時は床材15よりも高温であるので、冷暖房室Rの冷暖房に寄与することとなる。冷暖房室Rに流入した温調空気SAは、その後、温調機器21に還されて温度が調節された後に再び順流チャンバー25A及び逆流チャンバー25Bに供給され、あるいは外気に放出されて新たな空気が温調機器21で温度調節された後に順流チャンバー25A及び逆流チャンバー25Bに供給される。   The temperature-controlled air SA that has transmitted cold or warm heat to the flooring 15 is increased in temperature during cooling and decreased in temperature during heating. The temperature-controlled air SA existing in the underfloor space SP (or the air diffusion space SPD) by exchanging heat with the flooring material 15 flows into the cooling / heating room R through the communication port 17 and convects in the cooling / heating room R. The temperature-controlled air SA flowing into the air conditioning room R is equal to the temperature of the flooring 15 or lower than the flooring 15 during cooling and higher than the flooring 15 during heating. Will contribute. The temperature-controlled air SA that has flowed into the air-conditioning room R is then returned to the temperature-adjusting device 21 and the temperature is adjusted, and then supplied to the forward flow chamber 25A and the backflow chamber 25B again, or released to the outside air to generate new air. The temperature is adjusted by the temperature control device 21 and then supplied to the forward flow chamber 25A and the reverse flow chamber 25B.

以上で説明したように、冷暖房システム1は、温調空気SAで床材15を冷却又は加熱して輻射冷暖房を行うので、液体を熱媒体として用いて床面を温めるシステム(例えば温水床暖房)に起こりうる漏水等のトラブルが発生する心配がない。また、支持部材セット10が建築用鋼製床組の構成部材と温調空気SAのダクトとを兼ねるので、床の工事が完了した時点で大部分のダクト工事が終了することとなり、施工上の手間(工数)を大幅に低減でき、システム構築コストを大幅に削減することができる。それでいて、根太鋼11及び大引鋼12を適切に配置すると共に根太鋼11への導出孔11hの形成を適切に行うことにより、床材15全体を満遍なく冷却又は加熱することができ、良好な輻射冷暖房効果を得ることができる。   As described above, since the cooling / heating system 1 performs radiation cooling / heating by cooling or heating the flooring 15 with the temperature-controlled air SA, the system warms the floor using a liquid as a heat medium (for example, hot water floor heating). There is no worry of problems such as water leakage that may occur. In addition, since the support member set 10 serves as both a structural steel floor assembly member and a temperature-controlled air SA duct, most of the duct work is completed when the floor work is completed. Time and effort (man-hours) can be greatly reduced, and system construction costs can be greatly reduced. Nevertheless, by properly arranging the joist steel 11 and the large drawing steel 12 and appropriately forming the outlet hole 11h in the joist steel 11, the entire flooring 15 can be uniformly cooled or heated, and good radiation is obtained. A cooling / heating effect can be obtained.

以上の説明では、根太鋼11に形成された導出孔11hから床下空間SP(又は空気拡散区間SPD)に直接温調空気SAを導出することとしたが、以下に説明するノズルを介して温調空気SAを導出することとしてもよい。
図4は、床下空間SP(又は空気拡散区間SPD)に導出される温調空気SAの圧力を高める全圧取出ノズル30を説明する図であり、(a)は斜視図、(b)は平面図である。全圧取出ノズル30は、混合部としての混合ボックス31と、動圧取り出し部としての動圧ノズル32と、静圧取り出し部としての静圧ノズル33とを備えている。
In the above description, the temperature-controlled air SA is directly derived from the outlet hole 11h formed in the joist steel 11 to the underfloor space SP (or the air diffusion section SPD). However, the temperature adjustment is performed via the nozzle described below. The air SA may be derived.
4A and 4B are diagrams for explaining the total pressure extraction nozzle 30 that increases the pressure of the temperature-controlled air SA led to the underfloor space SP (or the air diffusion section SPD). FIG. 4A is a perspective view, and FIG. FIG. The total pressure extraction nozzle 30 includes a mixing box 31 as a mixing unit, a dynamic pressure nozzle 32 as a dynamic pressure extraction unit, and a static pressure nozzle 33 as a static pressure extraction unit.

混合ボックス31は、ほぼ直方体に形成されており、1つの面(以下「嵌挿面31a」という。)が根太鋼11に形成されている導出孔11hに嵌め込むことができる大きさに形成されている。嵌挿面31aに対向する面には、温調空気SAを床下空間SP(又は空気拡散区間SPD)に導出する噴出孔31hが形成されている。噴出孔31hが形成されている面は、嵌挿面31aよりも高さ方向が小さく細長の長方形になっており、噴出孔31hも導出孔11hに比べて細長の長方形に形成されている。混合ボックス31の、嵌挿面31aと噴出孔31hが形成された面とをつなぐ両側面は、台形形状を呈している。このように、混合ボックス31は、概ね直方体に形成されている。嵌挿面31aに直交する4つの面には、混合ボックス31を導出孔11hに装着するための取付爪31cが形成されている。取付爪31cは、典型的には、根太鋼11を形成する鋼板を厚さ方向で挟む突起が上記4つの面に形成されて構成されている。取付爪31cは、噴出孔31hから導出される温調空気SAの向きを調節可能なように、例えば選択的に利用可能に複数設けられているとよい。   The mixing box 31 is formed in a substantially rectangular parallelepiped shape, and one surface (hereinafter referred to as “insertion surface 31 a”) is formed to have a size that can be fitted into the outlet hole 11 h formed in the joist steel 11. ing. A jet hole 31h for leading the temperature-controlled air SA to the underfloor space SP (or the air diffusion section SPD) is formed on the surface facing the fitting insertion surface 31a. The surface on which the ejection hole 31h is formed is an elongated rectangle that is smaller in height than the fitting insertion surface 31a, and the ejection hole 31h is also formed in an elongated rectangle as compared to the outlet hole 11h. Both side surfaces of the mixing box 31 that connect the fitting insertion surface 31a and the surface on which the ejection holes 31h are formed have a trapezoidal shape. Thus, the mixing box 31 is formed in a substantially rectangular parallelepiped. On the four surfaces orthogonal to the fitting insertion surface 31a, mounting claws 31c for mounting the mixing box 31 in the outlet hole 11h are formed. The attachment claw 31c is typically configured such that protrusions that sandwich the steel plate forming the joist steel 11 in the thickness direction are formed on the four surfaces. A plurality of attachment claws 31c may be provided so as to be selectively usable, for example, so that the direction of the temperature-controlled air SA led out from the ejection holes 31h can be adjusted.

動圧ノズル32は、中空円筒状に形成されている。動圧ノズル32は、中空円筒状の一端が閉塞されており、他端が開口となっている。また、動圧ノズル32は、閉塞端側の回動部32aと開口端側の固定部32bとに分割されており、回動部32aは固定部32bに対して、円筒の軸回りに回動可能に装着されている。そして、動圧ノズル32の固定部32bが、混合ボックス31の嵌挿面31aに固定されている。動圧ノズル32は、典型的には嵌挿面31aに対して直角に延びるように取り付けられている。動圧ノズル32の回動部32aの閉塞端近傍の側面には、空気を取り込む開口としての動圧口32hが形成されている。動圧ノズル32は、動圧ノズル32が取り付けられた混合ボックス31が導出孔11hに取り付けられたときに、根太鋼11の幅方向のおよそ中央部に動圧口32hが位置する長さに形成されている。回動部32aには、動圧口32hの裏側に、動圧口32hを風上に向けるための方向舵32rが取り付けられている。方向舵32rは、平面が三角形の平板であり、三角形の底辺が円筒の軸と平行になるように、かつ、三角形の底辺が接する部分の円筒の接線に直交する方向に平板が延びるように、動圧ノズル32の側面に取り付けられている。   The dynamic pressure nozzle 32 is formed in a hollow cylindrical shape. The dynamic pressure nozzle 32 has a hollow cylindrical end closed and the other end opened. The dynamic pressure nozzle 32 is divided into a closed end side rotating portion 32a and an open end side fixed portion 32b, and the rotating portion 32a rotates about a cylindrical axis with respect to the fixed portion 32b. It is installed as possible. A fixing portion 32 b of the dynamic pressure nozzle 32 is fixed to the fitting insertion surface 31 a of the mixing box 31. The dynamic pressure nozzle 32 is typically attached so as to extend at a right angle to the fitting insertion surface 31a. A dynamic pressure port 32h as an opening for taking in air is formed on the side surface near the closed end of the rotating portion 32a of the dynamic pressure nozzle 32. The dynamic pressure nozzle 32 is formed in such a length that the dynamic pressure port 32h is located at approximately the center in the width direction of the joist steel 11 when the mixing box 31 to which the dynamic pressure nozzle 32 is attached is attached to the outlet hole 11h. Has been. A rudder 32r for directing the dynamic pressure port 32h to the windward side is attached to the rotating portion 32a on the back side of the dynamic pressure port 32h. The rudder 32r is a flat plate having a triangular plane, and moves so that the base of the triangle is parallel to the axis of the cylinder, and the flat plate extends in a direction perpendicular to the tangent to the cylinder at the portion where the base of the triangle touches. It is attached to the side surface of the pressure nozzle 32.

静圧ノズル33は、断面が矩形の筒状の部材で、長さが極短く形成されている。静圧ノズル33の長さは、およそ断面の矩形の短辺の1/3〜1/5程度の長さであり、例えば5mm程度である。静圧ノズル33は両端が開口になっており、その一端が混合ボックス31の嵌挿面31aに、動圧ノズル32の取り付け部に隣接して取り付けられている。静圧ノズル33の、混合ボックス31に取り付けられている端部とは逆の端部の開口が、空気を取り込む開口としての静圧口33hとなっている。静圧ノズル33が取り付けられた混合ボックス31が導出孔11hに取り付けられると、根太鋼11内部の温調空気SAの流れの向きに対して静圧口33hは平行になる。なお、嵌挿面31aに静圧ノズル33を取り付けずに、静圧ノズル33が取り付けられる部分の嵌挿面31aに直に静圧口を形成することとして、静圧ノズル33を省略してもよい。全圧取出ノズル30は、典型的には、熱可塑性樹脂をブロー成形することにより製造される。混合ボックス31と、動圧ノズル32と、静圧ノズル33とは、一体に形成されていてもよい。   The static pressure nozzle 33 is a cylindrical member having a rectangular cross section and is formed to be extremely short. The length of the static pressure nozzle 33 is about 1/3 to 1/5 of the short side of the rectangular cross section, for example, about 5 mm. Both ends of the static pressure nozzle 33 are open, and one end thereof is attached to the fitting insertion surface 31 a of the mixing box 31 adjacent to the attachment portion of the dynamic pressure nozzle 32. The opening at the end of the static pressure nozzle 33 opposite to the end attached to the mixing box 31 is a static pressure opening 33h as an opening for taking in air. When the mixing box 31 to which the static pressure nozzle 33 is attached is attached to the outlet hole 11h, the static pressure port 33h becomes parallel to the flow direction of the temperature-controlled air SA inside the joist steel 11. Even if the static pressure nozzle 33 is omitted, the static pressure nozzle 33 is not formed on the insertion surface 31a, but a static pressure port is formed directly on the insertion surface 31a where the static pressure nozzle 33 is attached. Good. The total pressure extraction nozzle 30 is typically manufactured by blow molding a thermoplastic resin. The mixing box 31, the dynamic pressure nozzle 32, and the static pressure nozzle 33 may be integrally formed.

上記の構成の全圧取出ノズル30を根太鋼11の導出孔11hに取り付けることにより、床下空間SP(又は空気拡散区間SPD)に導出される温調空気SAの圧力を高めることができる。その作用は以下のようになる。根太鋼11の内部を流れる温調空気SAは、流れに直交するように配設されている動圧ノズル32に衝突する分が動圧口32hから取り込まれ、動圧ノズル32に取り込まれた温調空気SAは動圧ノズル32の軸方向に流れの向きを変えて混合ボックス31に流入する。他方、動圧口32hから取り込まれなかった温調空気SAは、根太鋼11内を引き続き流れ、静圧口33hの脇を通過する際の温調空気SAの静圧により一部が静圧口33hから混合ボックス31に流入する。混合ボックス31へ、動圧ノズル32を介して流入した温調空気SAと静圧ノズル33を介して流入した温調空気SAとは、混合ボックス31内で混合され、噴出孔31hに向かって流れる。このとき、噴出孔31hの開口面積が導出孔11hの嵌挿面31aの面積よりも小さく、混合ボックス31内を流れる温調空気SAの流路断面積が徐々に小さくなるので、温調空気SAの動圧も徐々に高まる。また、混合ボックス31内を流れる温調空気SAは、根太鋼11を流れる温調空気SAの動圧及び静圧の両方、すなわち全圧を取り出したものとなる。このように混合ボックス31内を流れて噴出孔31hから導出される温調空気SAは、全圧取出ノズル30を設けない場合に導出される温調空気SAに比べて動圧が高く、噴流となっている。そのため、噴出孔31hから導出される温調空気SAは、到達距離がより長くなり、境膜をより破壊しやすく、温調空気SAから床材15への熱伝達率を向上させることができる。   By attaching the total pressure extraction nozzle 30 having the above configuration to the outlet hole 11h of the joist steel 11, the pressure of the temperature-controlled air SA led out to the underfloor space SP (or the air diffusion section SPD) can be increased. The operation is as follows. The temperature-controlled air SA flowing inside the joist steel 11 is taken in from the dynamic pressure port 32h by the amount colliding with the dynamic pressure nozzle 32 arranged so as to be orthogonal to the flow, and the temperature taken into the dynamic pressure nozzle 32. The air conditioning SA flows into the mixing box 31 while changing the flow direction in the axial direction of the dynamic pressure nozzle 32. On the other hand, the temperature-controlled air SA that has not been taken in from the dynamic pressure port 32h continues to flow through the joist steel 11 and partly due to the static pressure of the temperature-controlled air SA when passing through the side of the static pressure port 33h. It flows into the mixing box 31 from 33h. The temperature-controlled air SA that has flowed into the mixing box 31 through the dynamic pressure nozzle 32 and the temperature-controlled air SA that has flowed in through the static pressure nozzle 33 are mixed in the mixing box 31 and flow toward the ejection hole 31h. . At this time, the opening area of the ejection hole 31h is smaller than the area of the fitting insertion surface 31a of the outlet hole 11h, and the flow path cross-sectional area of the temperature-controlled air SA flowing in the mixing box 31 is gradually reduced. The dynamic pressure gradually increases. The temperature-controlled air SA flowing in the mixing box 31 is obtained by taking out both the dynamic pressure and the static pressure of the temperature-controlled air SA flowing in the joist steel 11, that is, the total pressure. Thus, the temperature-controlled air SA that flows through the mixing box 31 and is derived from the ejection hole 31h has a higher dynamic pressure than the temperature-controlled air SA that is derived when the total pressure extraction nozzle 30 is not provided. It has become. Therefore, the temperature-controlled air SA derived from the ejection holes 31h has a longer reach distance, can easily break the boundary film, and can improve the heat transfer rate from the temperature-controlled air SA to the flooring 15.

以上の説明では、冷却又は加熱される床材15が冷暖房室Rの床面に設けられているとしたが、天井及び/又は壁も温調空気SAによって冷却又は加熱できるように構成してもよい。天井に採用する場合、例えば、大引鋼12に相当する角スタッドを、梁に隣接して設けた順流チャンバー25A及び逆流チャンバー25Bに接続し、根太鋼11に相当する天井ボード固定用軽量鉄骨を角スタッドに取り付けることにより構成することができる。また、壁に採用する場合、例えば、所定の間隔で直立させて設けた順流チャンバー25A及び逆流チャンバー25Bに、大引鋼12に相当する角スタッドを水平にして接続し、根太鋼11に相当する壁ボード固定用軽量鉄骨を角スタッドに取り付けることにより構成することができる。壁の下地材となる角スタッド及び壁ボード固定用軽量鉄骨は、水平及び垂直の向きを相互に代えてもよい。   In the above description, the floor material 15 to be cooled or heated is provided on the floor surface of the air conditioning room R. However, the ceiling and / or the wall may be configured to be cooled or heated by the temperature-controlled air SA. Good. When adopting for the ceiling, for example, a square stud corresponding to the large drawing steel 12 is connected to a forward flow chamber 25A and a reverse flow chamber 25B provided adjacent to the beam, and a lightweight steel frame for fixing the ceiling board corresponding to the joist steel 11 is used. It can be configured by attaching to a square stud. Moreover, when employ | adopting as a wall, for example, the square stud equivalent to the large drawing steel 12 is connected horizontally to the forward flow chamber 25A and the backflow chamber 25B provided upright at predetermined intervals, and corresponds to the joist steel 11. It can be configured by attaching a lightweight steel frame for fixing a wall board to a square stud. The horizontal studs and the lightweight steel frame for fixing the wall board as the wall base material may be interchanged in the horizontal and vertical directions.

以上の説明では、床下空間SP(又は空気拡散空間SPD)に放出された温調空気SAを、連通口17を介して冷暖房室Rに流入させることとしたが、床下空間SP(又は空気拡散空間SPD)から屋外に放出してもよく、あるいは床下空間SPからダクトを介して温調機器21に還気してもよい。   In the above description, the temperature-controlled air SA released to the underfloor space SP (or air diffusion space SPD) is caused to flow into the cooling / heating room R through the communication port 17, but the underfloor space SP (or air diffusion space) SPD) may be discharged to the outside, or air may be returned from the underfloor space SP to the temperature control device 21 through a duct.

本実施の形態に係る冷暖房システム1は、例えば体育館等の大空間に採用することにより、震災が発生した際に体育館等が収容避難場所(避難所)となった場合に避難所の冷暖房を効果的に行うことができる。一般に、天井空間が大きい体育館等の大空間は、夏場は太陽光による屋根面の放射熱で体育館内が蒸し風呂状態となり、冬場は床面が極端に冷え込んで底冷えを感じることが多く、ただでさえ苦痛な避難生活を強いられている被災者はさらなる苦痛を感じることとなることが多いが、対流方式の冷暖房では、大空間を効果的に冷暖房するのが難しい。本実施の形態に係る冷暖房システム1によれば、体育館等の大空間の輻射冷暖房を効果的に行うことができる。   The air conditioning system 1 according to the present embodiment is adopted in a large space such as a gymnasium, for example, so that when a gymnasium or the like becomes a containment evacuation area (evacuation area) when an earthquake occurs, the evacuation area is cooled or heated. Can be done effectively. In general, in large spaces such as gymnasiums with large ceiling spaces, the gymnasium is in a steam bath in the summer due to the radiant heat of the roof surface due to sunlight, and in the winter the floor surface is extremely cold and often feels cold at the bottom. Victims who are forced to have a difficult evacuation life often feel further pain, but it is difficult to effectively cool and heat a large space with convection cooling and heating. According to the cooling / heating system 1 according to the present embodiment, radiation cooling / heating in a large space such as a gymnasium can be performed effectively.

本発明の第1の実施の形態に係る支持部材セットを含む本発明の第2の実施の形態に係る冷暖房システムの構成を示す図である。(a)は断面図、(b)は平面図である。It is a figure which shows the structure of the air conditioning system which concerns on the 2nd Embodiment of this invention containing the supporting member set which concerns on the 1st Embodiment of this invention. (A) is sectional drawing, (b) is a top view. 本発明の第1の実施の形態に係る支持部材セットを含む本発明の第2の実施の形態に係る冷暖房システムの構成を示す斜視図である。It is a perspective view which shows the structure of the air conditioning system which concerns on the 2nd Embodiment of this invention containing the support member set which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る支持部材セットの部分斜視図である。It is a fragmentary perspective view of the support member set which concerns on the 1st Embodiment of this invention. 全圧取出ノズルを説明する図である。(a)は斜視図、(b)は平面図である。It is a figure explaining a total pressure extraction nozzle. (A) is a perspective view, (b) is a plan view.

符号の説明Explanation of symbols

1 冷暖房システム
10 支持部材セット
11 根太鋼
11h 導出孔
12 大引鋼
12a 一端
12b 他端
14 連絡孔
15 床材
16 閉塞板
21 温調機器
25A 順流チャンバー
25B 逆流チャンバー
30 全圧取出ノズル
31 混合ボックス
32 動圧ノズル
32h 動圧口
33 静圧ノズル
33h 静圧口
L2 大引間隔
R 冷暖房室
SA 温調空気
SP 床裏空間
SPD 空気拡散空間
DESCRIPTION OF SYMBOLS 1 Air-conditioning / heating system 10 Support member set 11 joist steel 11h Lead-out hole 12 Large drawing steel 12a One end 12b Other end 14 Communication hole 15 Flooring material 16 Blocking plate 21 Temperature control apparatus 25A Forward flow chamber 25B Reverse flow chamber 30 Dynamic pressure nozzle 32h Dynamic pressure port 33 Static pressure nozzle 33h Static pressure port L2 Large draw interval R Air conditioning room SA Temperature control air SP Floor space SPD Air diffusion space

Claims (4)

部屋の輪郭を形成する板状の区画材を前記部屋の裏側から支える第1の支持部材であって、内部に空気の流路が形成された第1の支持部材と
記第1の支持部材を前記区画材との間に挟む位置で支える第2の支持部材であって、前記第1の支持部材に対して交差して配置されると共に内部に空気の流路が形成された第2の支持部材とを有し、
記第1の支持部材と前記第2の支持部材とが前記交差により接触する位置に、互いの前記空気の流路が連絡する連絡孔が、前記第1の支持部材及び前記第2の支持部材のそれぞれに形成され
記第1の支持部材の前記空気の流路から前記部屋の裏側の空間に空気を導出する導出孔であって、該導出孔から導出された空気が前記区画材の裏面に沿って流れる向きに開口した導出孔が前記第1の支持部材に形成された支持部材セットと;
前記第1の支持部材及び前記第2の支持部材の内部を流れる空気の温度を事前に調節する空気温度調節機器とを備え;
前記第1の支持部材及び前記第2の支持部材を複数有し
複数の前記第2の支持部材がそれぞれ線状に形成され、かつ、所定の間隔を持って配列され;
複数の前記第2の支持部材のそれぞれの一端に空気を供給する第1のチャンバーと;
複数の前記第2の支持部材のそれぞれの他端に空気を供給する第2のチャンバーとをさらに備え;
前記第1のチャンバーが、配列された前記第2の支持部材のそれぞれの前記一端に順番に空気が到達する方向に空気を流すように構成され;
前記第2のチャンバーが、配列された前記第2の支持部材のそれぞれの前記他端に、前記一端に空気が到達する順番とは逆の順番で空気が到達する方向に空気を流すように構成された;
冷暖房システム。
A first support member for supporting a plate-shaped partition material forming the outline of the room from the back side of the room, wherein the first support member has an air flow path formed therein ;
A second support member for supporting at positions sandwiching between the front Symbol first support member and the partition member, the flow path of air therein while being arranged to intersect with the first support member A second support member formed with
The position where the front Symbol first support member and said second support member is contacted by the intersection, a communication hole communicating the flow path of the air from each other, said first support member and said second support Formed on each of the members ,
A lead-out hole for deriving air from the flow path of the air on the back side of the space of the room before Symbol first support member, the direction of air derived from the conductor Deana flows along the back side of the partition member and supporting lifting member sets the opened outlet hole is formed in said first support member;
E Bei the air temperature regulating device for adjusting the temperature of the air flowing through the inside of the first support member and said second support member in advance;
Has a plurality of said first support member and said second support member;
A plurality of the second support members are each formed in a linear shape and arranged at a predetermined interval;
A first chamber for supplying air to one end of each of the plurality of second support members;
A second chamber for supplying air to the other end of each of the plurality of second support members;
The first chamber is configured to flow air in a direction in which air sequentially reaches the one end of each of the arranged second support members;
The second chamber is configured to flow air in the direction in which the air reaches the other end of each of the second support members arranged in a reverse order to the order in which the air reaches the one end. Was;
Air conditioning system.
前記導出孔に取り付けられる全圧取り出しノズルであって、
前記第1の支持部材の内部を流れる空気の向きに直交する面に空気を取り込む開口が形成されて取り込んだ空気の流れの向きを直角に変えて前記第1の支持部材の外部に導く動圧取り出し部と、
前記第1の支持部材の内部を流れる空気の向きに平行な面に空気を取り込む開口が形成されて取り込んだ空気を前記第1の支持部材の外部に導く静圧取り出し部と、
前記動圧取り出し部を通過した空気と前記静圧取り出し部を通過した空気とを混合する混合部と、を有する全圧取り出しノズルを備える;
請求項に記載の冷暖房システム。
A total pressure takeout nozzle attached to the outlet hole,
An opening for taking in air is formed in a plane orthogonal to the direction of air flowing through the inside of the first support member, and the direction of the flow of the taken air is changed to a right angle to introduce the dynamic pressure to the outside of the first support member. A take-out section;
An opening for taking in air is formed in a plane parallel to the direction of the air flowing through the inside of the first support member, and a static pressure take-out portion for guiding the taken-in air to the outside of the first support member;
A total pressure extraction nozzle having a mixing section that mixes the air that has passed through the dynamic pressure extraction section and the air that has passed through the static pressure extraction section;
The air conditioning system according to claim 1 .
部屋の輪郭を形成する板状の区画材を前記部屋の裏側から支える第1の支持部材であって、内部に空気の流路が形成された第1の支持部材と
記第1の支持部材を前記区画材との間に挟む位置で支える第2の支持部材であって、前記第1の支持部材に対して交差して配置されると共に内部に空気の流路が形成された第2の支持部材とを有し、
記第1の支持部材と前記第2の支持部材とが前記交差により接触する位置に、互いの前記空気の流路が連絡する連絡孔が、前記第1の支持部材及び前記第2の支持部材のそれぞれに形成され
記第1の支持部材の前記空気の流路から前記部屋の裏側の空間に空気を導出する導出孔であって、該導出孔から導出された空気が前記区画材の裏面に沿って流れる向きに開口した導出孔が前記第1の支持部材に形成された支持部材セットと;
前記第1の支持部材及び前記第2の支持部材の内部を流れる空気の温度を事前に調節する空気温度調節機器と;
前記導出孔に取り付けられる全圧取り出しノズルであって、
前記第1の支持部材の内部を流れる空気の向きに直交する面に空気を取り込む開口が形成されて取り込んだ空気の流れの向きを直角に変えて前記第1の支持部材の外部に導く動圧取り出し部と、
前記第1の支持部材の内部を流れる空気の向きに平行な面に空気を取り込む開口が形成されて取り込んだ空気を前記第1の支持部材の外部に導く静圧取り出し部と、
前記動圧取り出し部を通過した空気と前記静圧取り出し部を通過した空気とを混合する混合部と、を有する全圧取り出しノズルを備える;
冷暖房システム。
A first support member for supporting a plate-shaped partition material forming the outline of the room from the back side of the room, wherein the first support member has an air flow path formed therein ;
A second support member for supporting at positions sandwiching between the front Symbol first support member and the partition member, the flow path of air therein while being arranged to intersect with the first support member A second support member formed with
The position where the front Symbol first support member and said second support member is contacted by the intersection, a communication hole communicating the flow path of the air from each other, said first support member and said second support Formed on each of the members ,
A lead-out hole for deriving air from the flow path of the air on the back side of the space of the room before Symbol first support member, the direction of air derived from the conductor Deana flows along the back side of the partition member and supporting lifting member sets the opened outlet hole is formed in said first support member;
An air temperature adjusting device for adjusting in advance the temperature of air flowing through the first support member and the second support member ;
A total pressure takeout nozzle attached to the outlet hole,
An opening for taking in air is formed in a plane orthogonal to the direction of air flowing through the inside of the first support member, and the direction of the flow of the taken air is changed to a right angle to introduce the dynamic pressure to the outside of the first support member. A take-out section;
An opening for taking in air is formed in a plane parallel to the direction of the air flowing through the inside of the first support member, and a static pressure take-out portion for guiding the taken-in air to the outside of the first support member;
And a total pressure extraction nozzle with a mixing unit for mixing the air passing through the air static pressure extraction portion that has passed through the dynamic pressure extraction portion;
Air conditioning system.
複数の前記第1の支持部材間で前記第2の支持部材に接触して配置される閉塞板であって、前記区画材との間に形成される空間に前記導出孔が位置するように配置された閉塞板を備える;
請求項1乃至請求項3のいずれか1項に記載の冷暖房システム。
A closing plate that is disposed in contact with the second support member among the plurality of first support members, and is disposed such that the lead-out hole is located in a space formed between the partition members. Provided with a closed plate;
The air conditioning system of any one of Claim 1 thru | or 3.
JP2008282752A 2008-11-04 2008-11-04 Air conditioning system Active JP5335376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282752A JP5335376B2 (en) 2008-11-04 2008-11-04 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282752A JP5335376B2 (en) 2008-11-04 2008-11-04 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2010112566A JP2010112566A (en) 2010-05-20
JP5335376B2 true JP5335376B2 (en) 2013-11-06

Family

ID=42301262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282752A Active JP5335376B2 (en) 2008-11-04 2008-11-04 Air conditioning system

Country Status (1)

Country Link
JP (1) JP5335376B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7149145B2 (en) * 2018-09-26 2022-10-06 正 角田 Support member set and air conditioning system
JP2021021539A (en) * 2019-07-29 2021-02-18 角田 正 Cooling and heating gas flow passage forming system and cooling and heating system
JP7354389B1 (en) 2022-09-30 2023-10-02 大建工業株式会社 Indoor heating and cooling systems and heat transfer floor structures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109786A (en) * 1993-10-12 1995-04-25 Misawa Homes Co Ltd Beams and duct structure based on their application
JPH07150750A (en) * 1993-11-25 1995-06-13 Matsushita Electric Works Ltd Structure for building skeleton
JPH0861727A (en) * 1994-08-24 1996-03-08 Fujita Corp Ventilating system using hollow structure of structure skeleton
JP3602110B2 (en) * 2002-05-07 2004-12-15 株式会社インターセントラル Residential all-air floor cooling and heating system
JP2010037744A (en) * 2008-08-01 2010-02-18 Sus Corp Building

Also Published As

Publication number Publication date
JP2010112566A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP5043158B2 (en) Air source heat pump air conditioner
JP6198404B2 (en) Radiant panel and air conditioning system
JP2007017079A (en) Radiator tube and air conditioning system
JP5335376B2 (en) Air conditioning system
JP5431760B2 (en) Air conditioning system
JP2010139124A (en) Air-circulation type cooling/heating system
JP2004132680A (en) Air conditioning air jetting type radiation air conditioning system
JP7149145B2 (en) Support member set and air conditioning system
JP5081023B2 (en) Building air conditioning system and building equipped with the same
JP2023077655A (en) Base member set, partitioning support member and heating/cooling system
JP5348996B2 (en) Air conditioning structure for physical education facilities
JP2022113280A (en) Floor radiation/convention-type heating system
JP2015040667A (en) Partition member and air-conditioning system
JP6046176B2 (en) Underfloor chamber for floor-mounted indoor air conditioner connection
JP2021021539A (en) Cooling and heating gas flow passage forming system and cooling and heating system
JP7429395B1 (en) Support legs, support member set and heating and cooling system
JP2016089416A (en) Free access floor and cooling and heating system
JP2976846B2 (en) Air conditioning system using heat exchange floor panels
JP7421779B1 (en) Support members and heating and cooling systems
JP7286830B2 (en) personal air conditioning system
JP7033486B2 (en) Personal air conditioning system
JP2023150361A (en) Radiation/convection air conditioning system
JP5132356B2 (en) Floor heating system
JP7206047B2 (en) latent heat storage unit
JP5258511B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130731

R150 Certificate of patent or registration of utility model

Ref document number: 5335376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314215

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250