JP5334830B2 - Exhaust heat recovery device - Google Patents

Exhaust heat recovery device Download PDF

Info

Publication number
JP5334830B2
JP5334830B2 JP2009291431A JP2009291431A JP5334830B2 JP 5334830 B2 JP5334830 B2 JP 5334830B2 JP 2009291431 A JP2009291431 A JP 2009291431A JP 2009291431 A JP2009291431 A JP 2009291431A JP 5334830 B2 JP5334830 B2 JP 5334830B2
Authority
JP
Japan
Prior art keywords
heat
exhaust
transport device
fuel
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009291431A
Other languages
Japanese (ja)
Other versions
JP2010144733A (en
Inventor
ランドール・ディー・パートリッジ
グプタ ラメッシュ
宏石 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
ExxonMobil Research and Engineering Co
Original Assignee
Toyota Motor Corp
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Exxon Research and Engineering Co filed Critical Toyota Motor Corp
Publication of JP2010144733A publication Critical patent/JP2010144733A/en
Application granted granted Critical
Publication of JP5334830B2 publication Critical patent/JP5334830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M1/00Carburettors with means for facilitating engine's starting or its idling below operational temperatures
    • F02M1/16Other means for enriching fuel-air mixture during starting; Priming cups; using different fuels for starting and normal operation
    • F02M1/165Vaporizing light fractions from the fuel and condensing them for use during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/005Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture using a heat-pipe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/20Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • F02M37/0064Layout or arrangement of systems for feeding fuel for engines being fed with multiple fuels or fuels having special properties, e.g. bio-fuels; varying the fuel composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、排気熱回収装置に関する。   The present invention relates to an exhaust heat recovery apparatus.

内燃機関から排出される排気ガスは一般に大気温度よりも高温であり、従って大きな熱エネルギを含んでいる。そこで、排気ガスに含まれる熱エネルギを回収し、回収した熱エネルギを内燃機関の他の装置の昇温に利用したり、熱エネルギを電気エネルギに変換してバッテリに充電したりする排気熱回収装置が提案されている。   Exhaust gas discharged from an internal combustion engine is generally higher than atmospheric temperature and therefore contains a large amount of thermal energy. Therefore, exhaust heat recovery that recovers the thermal energy contained in the exhaust gas and uses the recovered thermal energy to raise the temperature of other devices in the internal combustion engine, or converts the thermal energy into electrical energy and charges the battery. A device has been proposed.

斯かる排気熱回収装置としては、例えば、内燃機関の排気系の構成部品にヒートパイプを取り付けると共にこのヒートパイプに熱電変換素子を取り付けたものが知られている(例えば、特許文献1)。このようにヒートパイプを用いることで、排気系の熱を熱電変換素子に移動させて発電を行わせている。   As such an exhaust heat recovery apparatus, for example, an apparatus in which a heat pipe is attached to a component of an exhaust system of an internal combustion engine and a thermoelectric conversion element is attached to the heat pipe is known (for example, Patent Document 1). By using the heat pipe in this way, the heat of the exhaust system is transferred to the thermoelectric conversion element to generate power.

特に、特許文献1に記載の排気熱回収装置では、内燃機関の排気系の構成部品にヒートパイプを取り付けることにより排気浄化触媒に流入する排気ガスに含まれる熱量が減少してしまうという問題を解決すべく、ヒートパイプの作動開始温度を排気浄化触媒の活性温度よりも高い温度に設定している。   In particular, the exhaust heat recovery device described in Patent Document 1 solves the problem that the amount of heat contained in the exhaust gas flowing into the exhaust purification catalyst is reduced by attaching a heat pipe to the exhaust system component of the internal combustion engine. Therefore, the operation start temperature of the heat pipe is set higher than the activation temperature of the exhaust purification catalyst.

特開2005−264916号公報JP 2005-264916 A 特開2005−69161号公報JP 2005-69161 A 特公平6−29551号公報Japanese Patent Publication No. 6-29551

ところで、特許文献1に記載の排気熱回収装置のようにヒートパイプの作動開始温度を排気浄化触媒の活性温度よりも高い温度に設定すると、排気浄化触媒に流入する排気ガスの温度が触媒の活性温度以下のときにはヒートパイプによる熱エネルギの回収が行われない。従って、この間、昇温が必要な内燃機関の他の装置を昇温することができない。   By the way, when the operation start temperature of the heat pipe is set to a temperature higher than the activation temperature of the exhaust purification catalyst as in the exhaust heat recovery device described in Patent Document 1, the temperature of the exhaust gas flowing into the exhaust purification catalyst becomes the activity of the catalyst. When the temperature is lower than the temperature, heat energy is not recovered by the heat pipe. Therefore, during this time, it is not possible to raise the temperature of other devices in the internal combustion engine that need to be raised.

ここで、昇温が必要な装置としては、例えば原料として供給される燃料(すなわち原料燃料)を分離して、原料燃料とは性状の異なる燃料を生成する燃料分離装置が知られている。斯かる燃料分離装置では、原料燃料を効率的に分離させるために原料燃料を一定温度以上にまで昇温する必要があり、この原料燃料の昇温に上述したような排気熱回収装置を用いることが考えられる。   Here, as an apparatus that requires a temperature increase, for example, a fuel separation apparatus that separates a fuel supplied as a raw material (that is, a raw material fuel) and generates a fuel having a property different from that of the raw material fuel is known. In such a fuel separator, it is necessary to raise the temperature of the raw material fuel to a certain temperature or higher in order to efficiently separate the raw material fuel, and the exhaust heat recovery device as described above is used for raising the temperature of this raw material fuel. Can be considered.

ところが、上述したように特許文献1に記載されたような排気熱回収装置を用いると、斯かる燃料分離装置において原料燃料を一定温度以上にまで昇温できず、よって原料燃料を効率的に分離させることができない場合がある。このように原料燃料を効率的に分離させることができないと、内燃機関の燃焼を最適に維持することができない。   However, as described above, when the exhaust heat recovery device as described in Patent Document 1 is used, the raw material fuel cannot be raised to a certain temperature or higher in such a fuel separation device, and thus the raw material fuel is efficiently separated. It may not be possible to Thus, if the raw material fuel cannot be separated efficiently, the combustion of the internal combustion engine cannot be maintained optimally.

そこで、本発明の目的は、排気浄化触媒の暖機性能を維持しつつ常に一定以上の排気熱の回収を行うことができる排気熱回収装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust heat recovery device that can always recover a certain amount of exhaust heat while maintaining the warm-up performance of an exhaust purification catalyst.

上記課題を解決するために、第1の発明では、熱回収部と熱交換部とを備える複数の熱輸送装置を具備し、各熱輸送装置は熱回収部において内燃機関から排出される排気ガスから熱を回収すると共にこの回収した熱を熱交換部において加熱対象へと伝熱する、排気熱回収装置において、第一熱輸送装置の熱回収部は機関排気通路内に設けられた排気浄化触媒又はその上流側で排気ガスから熱を回収し、第二熱輸送装置の熱回収部は上記排気浄化触媒の下流側で排気ガスから熱を回収する。
第1の発明によれば、第一熱輸送装置の熱回収部が排気浄化触媒又はその上流側で排気ガスから熱を回収するため、内燃機関の冷間始動時であっても排気ガスから熱を回収することができる。一方、第二熱輸送装置の熱回収部が排気浄化触媒の下流側で排気ガスから熱を回収するため、内燃機関の暖機後には排気ガスから多量の熱を回収することができる。
In order to solve the above-mentioned problem, in the first invention, a plurality of heat transport devices including a heat recovery unit and a heat exchange unit are provided, and each heat transport device exhaust gas discharged from the internal combustion engine in the heat recovery unit. In the exhaust heat recovery device, the heat recovery unit of the first heat transport device is provided in the engine exhaust passage, and collects the recovered heat and transfers the recovered heat to the heating target in the heat exchange unit. Alternatively, heat is recovered from the exhaust gas on the upstream side, and the heat recovery unit of the second heat transport device recovers heat from the exhaust gas on the downstream side of the exhaust purification catalyst.
According to the first invention, since the heat recovery part of the first heat transport device recovers heat from the exhaust gas at the exhaust purification catalyst or upstream thereof, the heat from the exhaust gas even at the cold start of the internal combustion engine. Can be recovered. On the other hand, since the heat recovery part of the second heat transport device recovers heat from the exhaust gas on the downstream side of the exhaust purification catalyst, a large amount of heat can be recovered from the exhaust gas after the internal combustion engine is warmed up.

第2の発明では、第1の発明において、上記複数の熱輸送装置の熱輸送能力は熱輸送装置毎に異なる。   In 2nd invention, in 1st invention, the heat transport capability of said several heat transport apparatus differs for every heat transport apparatus.

第3の発明では、第2の発明において、上記第一熱輸送装置の熱容量は第二熱輸送装置の熱容量よりも小さい。   In 3rd invention, in 2nd invention, the heat capacity of the said 1st heat transport apparatus is smaller than the heat capacity of a 2nd heat transport apparatus.

第4の発明では、第3の発明において、上記熱輸送装置はヒートパイプであり、上記第一熱輸送装置と第二熱輸送装置とではヒートパイプ内の熱媒体の量が異なる。   In a fourth invention, in the third invention, the heat transport device is a heat pipe, and the amount of the heat medium in the heat pipe is different between the first heat transport device and the second heat transport device.

第5の発明では、第1の発明において、上記熱交換部では加熱対象流体の加熱が行われる。   In the fifth invention, in the first invention, the fluid to be heated is heated in the heat exchange section.

第6の発明では、第5の発明において、上記内燃機関から排出される排気ガスの温度に応じて熱交換部を流れる加熱対象流体の流量が制御される。   According to a sixth aspect, in the fifth aspect, the flow rate of the heating target fluid flowing through the heat exchange unit is controlled according to the temperature of the exhaust gas discharged from the internal combustion engine.

第7の発明では、第5の発明において、上記熱輸送装置がヒートパイプであり、上記第二熱輸送装置の温度が基準温度よりも低いときには、上記第二熱輸送装置の熱交換部を流れる加熱対象流の流量がゼロとされる。   In a seventh invention, in the fifth invention, when the heat transport device is a heat pipe and the temperature of the second heat transport device is lower than a reference temperature, the heat transport device flows through a heat exchange part of the second heat transport device. The flow rate of the heating target flow is set to zero.

第8の発明では、第5の発明において、上記第一熱輸送装置の熱交換部と上記第二熱輸送装置の熱交換部とを通る加熱対象流体用の流路と、上記第一熱輸送装置の熱交換部と上記第二熱輸送装置の熱交換部との間の流路に設けられた流量調整弁とを具備し、該流量調整弁は上記第一熱輸送装置の熱交換部を通った加熱対象流体のうち上記第二熱輸送装置の熱交換部を通る加熱対象流体の流量を調整する。   In an eighth aspect based on the fifth aspect, the flow path for the fluid to be heated that passes through the heat exchange section of the first heat transport device and the heat exchange section of the second heat transport device, and the first heat transport A flow rate adjusting valve provided in a flow path between the heat exchanging unit of the apparatus and the heat exchanging unit of the second heat transporting device, the flow rate regulating valve providing the heat exchanging unit of the first heat transporting device. The flow volume of the heating object fluid which passes the heat exchange part of said 2nd heat transport apparatus among the heating object fluids which passed is adjusted.

本発明によれば、第二熱輸送装置が排気浄化触媒の下流側で排気ガスの熱を回収するため、排気浄化触媒の暖機性能を維持することができる。また、第一熱輸送装置が排気浄化触媒又はその上流側で排気ガスの熱を回収するため、内燃機関の冷間始動時であっても或る程度の熱を回収することができる。従って、本発明によれば、第一熱輸送装置と第二熱輸送装置との熱輸送能力を適切に設定することにより、排気浄化触媒の暖機性能を維持しつつ常に一定以上の排気熱の回収を行うことができる。   According to the present invention, since the second heat transport device recovers the heat of the exhaust gas on the downstream side of the exhaust purification catalyst, the warm-up performance of the exhaust purification catalyst can be maintained. In addition, since the first heat transport device recovers the heat of the exhaust gas at the exhaust purification catalyst or upstream thereof, a certain amount of heat can be recovered even during the cold start of the internal combustion engine. Therefore, according to the present invention, by appropriately setting the heat transport capacity of the first heat transport device and the second heat transport device, the exhaust heat of the exhaust purification catalyst is always kept above a certain level while maintaining the warm-up performance. Recovery can be performed.

火花点火式内燃機関の側面断面図を示す図である。It is a figure which shows side surface sectional drawing of a spark ignition type internal combustion engine. 燃料供給機構の概略構成を模式的に示す図である。It is a figure which shows typically schematic structure of a fuel supply mechanism. 第一実施形態の排気熱回収装置の概略図である。It is the schematic of the exhaust heat recovery apparatus of 1st embodiment. 図3のA−A線概略断面図である。It is an AA line schematic sectional drawing of FIG. ヒートパイプの熱回収部における熱回収量と熱交換部へと伝達可能な熱伝達量との関係を示すグラフである。It is a graph which shows the relationship between the heat recovery amount in the heat recovery part of a heat pipe, and the heat transfer amount which can be transmitted to a heat exchange part. 第二実施形態の排気熱回収装置の概略図である。It is the schematic of the exhaust heat recovery apparatus of 2nd embodiment. 第三実施形態の排気熱回収装置の概略図である。It is the schematic of the exhaust heat recovery apparatus of 3rd embodiment. 第四実施形態の排気熱回収装置の概略図である。It is the schematic of the exhaust heat recovery apparatus of 4th embodiment.

以下、図面を参照して本発明の第一実施形態の排気熱回収装置について詳細に説明する。図1に排気熱回収装置の搭載される火花点火式内燃機関の側面断面図を示す。   Hereinafter, an exhaust heat recovery apparatus according to a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a side sectional view of a spark ignition type internal combustion engine on which an exhaust heat recovery device is mounted.

図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は燃焼室5の頂面中央部に配置された点火プラグ、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートをそれぞれ示す。シリンダヘッド4のシリンダ内壁面周辺部には燃焼室5内に直接燃料を噴射する燃料噴射弁(以下、「筒内噴射用燃料噴射弁」という)11aが配置される。吸気ポート8は吸気枝管12を介してサージタンク13に連結され、各吸気枝管12にはそれぞれ対応する吸気ポート8内に向けて燃料を噴射するための燃料噴射弁(以下、「ポート噴射用燃料噴射弁」という)11bが配置される。   Referring to FIG. 1, 1 is an engine body, 2 is a cylinder block, 3 is a cylinder head, 4 is a piston, 5 is a combustion chamber, 6 is a spark plug disposed at the center of the top surface of the combustion chamber 5, and 7 is intake air. 8 is an intake port, 9 is an exhaust valve, and 10 is an exhaust port. A fuel injection valve (hereinafter referred to as “in-cylinder injection fuel injection valve”) 11 a that directly injects fuel into the combustion chamber 5 is disposed around the cylinder inner wall surface of the cylinder head 4. The intake port 8 is connected to a surge tank 13 via an intake branch pipe 12, and a fuel injection valve (hereinafter referred to as “port injection”) for injecting fuel into each intake branch pipe 12 into the corresponding intake port 8. 11b) (referred to as “fuel injection valve”).

サージタンク13は吸気ダクト14を介してエアクリーナ15に連結され、吸気ダクト14内にはアクチュエータ16によって駆動されるスロットル弁17と例えば熱線を用いた吸入空気量検出器18とが配置される。一方、排気ポート10は排気マニホルド19を介して排気浄化触媒(例えば三元触媒)を内蔵した触媒コンバータ20に連結される。触媒コンバータ20は排気管21に接続される。なお、以下では排気ポート10の下流側において排気通路を画成する排気マニホルド19、触媒コンバータ20、排気管21を総称して排気管22と称する。   The surge tank 13 is connected to an air cleaner 15 via an intake duct 14, and a throttle valve 17 driven by an actuator 16 and an intake air amount detector 18 using, for example, heat rays are disposed in the intake duct 14. On the other hand, the exhaust port 10 is connected through an exhaust manifold 19 to a catalytic converter 20 containing an exhaust purification catalyst (for example, a three-way catalyst). The catalytic converter 20 is connected to the exhaust pipe 21. Hereinafter, the exhaust manifold 19, the catalytic converter 20, and the exhaust pipe 21 that define an exhaust passage on the downstream side of the exhaust port 10 are collectively referred to as an exhaust pipe 22.

燃料噴射弁11a、11bは燃料タンク23に接続され、燃料噴射弁11a、11bと燃料タンク23との間には燃料分離装置24が設けられる。燃料分離装置24は、原料燃料(燃料タンク3内に貯留されるガソリン)を原料燃料よりもオクタン価の高い高オクタン価燃料と原料燃料よりもオクタン価の低い低オクタン価燃料とに分離する。また、排気管22には排気管22内を流れる排気ガスから熱を回収して加熱対象へと伝熱する排気熱回収装置25が設けられる。   The fuel injection valves 11 a and 11 b are connected to a fuel tank 23, and a fuel separator 24 is provided between the fuel injection valves 11 a and 11 b and the fuel tank 23. The fuel separator 24 separates the raw fuel (gasoline stored in the fuel tank 3) into a high octane fuel having a higher octane number than that of the raw fuel and a low octane fuel having a lower octane number than that of the raw fuel. The exhaust pipe 22 is provided with an exhaust heat recovery device 25 that recovers heat from the exhaust gas flowing in the exhaust pipe 22 and transfers the heat to the object to be heated.

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35及び出力ポート36を具備する。吸入空気量検出器18の出力信号は対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量に比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して点火プラグ6、燃料噴射弁11a、11b、スロットル弁駆動用アクチュエータ16、燃料分離装置24に接続される。   The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. A ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a CPU (Microprocessor) 34, an input port 35 and an output port 36. It comprises. The output signal of the intake air amount detector 18 is input to the input port 35 via the corresponding AD converter 37. A load sensor 41 that generates an output voltage proportional to the amount of depression of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. The Further, a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 30 ° is connected to the input port 35. On the other hand, the output port 36 is connected to the spark plug 6, the fuel injection valves 11 a and 11 b, the throttle valve driving actuator 16, and the fuel separation device 24 via corresponding drive circuits 38.

次に、本実施形態の車載用の燃料分離装置24の構成について図2を参照して説明する。図2は燃料供給機構の概略構成を模式的に示す図である。   Next, the configuration of the on-vehicle fuel separation device 24 of the present embodiment will be described with reference to FIG. FIG. 2 is a diagram schematically showing a schematic configuration of the fuel supply mechanism.

図2に示した燃料供給機構は、原料燃料タンク23、燃料分離装置24、高オクタン価燃料用タンク51と低オクタン価燃料用タンク52とを具備する。原料燃料タンク23には通常の(市販の)ガソリンが供給され、貯留されている。原料燃料タンク23に貯留されている燃料は燃料分離装置24により、原料燃料よりもオクタン価の高い高オクタン価燃料と、原料燃料よりもオクタン価の低い低オクタン価燃料とに分離され、分離された燃料はそれぞれ高オクタン価燃料用タンク51と低オクタン価燃料用タンク52とに貯留される。   The fuel supply mechanism shown in FIG. 2 includes a raw material fuel tank 23, a fuel separator 24, a high octane fuel tank 51, and a low octane fuel tank 52. The raw fuel tank 23 is supplied with ordinary (commercially available) gasoline and stored. The fuel stored in the raw fuel tank 23 is separated by the fuel separator 24 into a high octane fuel having a higher octane number than that of the raw fuel and a low octane fuel having a lower octane number than that of the raw fuel. It is stored in a high octane fuel tank 51 and a low octane fuel tank 52.

高オクタン価燃料用タンク51内の高オクタン価燃料は、フィードポンプ53によりポート噴射用燃料噴射弁11bに供給され、各気筒の吸気ポート8に噴射される。一方、低オクタン価燃料用タンク52内の低オクタン価燃料は、フィードポンプ54により筒内噴射用燃料噴射弁11aに供給され、各気筒の燃焼室5内に直接噴射される。   The high-octane fuel in the high-octane fuel tank 51 is supplied to the port injection fuel injection valve 11b by the feed pump 53 and injected into the intake port 8 of each cylinder. On the other hand, the low octane fuel in the low octane fuel tank 52 is supplied by the feed pump 54 to the in-cylinder fuel injection valve 11a and directly injected into the combustion chamber 5 of each cylinder.

このように、本実施形態では、低オクタン価燃料用と高オクタン価燃料用に互いに独立した燃料噴射弁11a、11bを使用しているため、機関運転状態に応じて低オクタン価燃料と高オクタン価燃料との一方を選択的に、或いは両方を所定の比率で動じに機関本体1の各気筒の燃焼室5に供給することが可能となっている。   Thus, in this embodiment, since the fuel injection valves 11a and 11b that are independent from each other are used for the low-octane fuel and the high-octane fuel, the low-octane fuel and the high-octane fuel are used according to the engine operating state. It is possible to supply one to the combustion chamber 5 of each cylinder of the engine body 1 selectively or by moving both at a predetermined ratio.

次に、図2を参照して本実施形態の燃料分離装置24について簡単に説明する。燃料分離装置24は、流量制御弁55、熱交換器56、分離膜を用いた分離ユニット57、凝縮式又は冷却式の気液分離器58等を具備する。   Next, the fuel separator 24 of this embodiment will be briefly described with reference to FIG. The fuel separator 24 includes a flow control valve 55, a heat exchanger 56, a separation unit 57 using a separation membrane, a condensing or cooling gas-liquid separator 58, and the like.

分離ユニット57は、耐熱容器からなるハウジング57aをアロマ分離膜57bで2つの区画57c、57dに区分した構成とされている。アロマ分離膜57bとしては、ガソリン中の芳香族成分を選択的に透過させる性質を有するものが使用される。すなわち、アロマ分離膜57bでは、原料燃料を一方の側(例えば、区画57c側、すなわち低オクタン価燃料側)に比較的高い圧力で供給し、もう一方の側(例えば、区画57d側、すなわち高オクタン価燃料側)を比較的低圧に保持すると、主に原料燃料中の芳香族成分が分離膜57bを透過して分離膜57bの低圧側(区画57d側、すなわち高オクタン価側)の表面に浸出して低圧側に面した分離膜57b表面を覆うようになる。   The separation unit 57 is configured such that a housing 57a made of a heat-resistant container is divided into two compartments 57c and 57d by an aroma separation membrane 57b. As the aroma separation membrane 57b, one having a property of selectively permeating aromatic components in gasoline is used. That is, in the aroma separation membrane 57b, the raw fuel is supplied to one side (for example, the section 57c side, that is, the low octane number fuel side) at a relatively high pressure, and the other side (for example, the section 57d side, that is, the high octane number). When the fuel side is kept at a relatively low pressure, aromatic components in the raw material fuel mainly permeate the separation membrane 57b and leached out to the surface of the separation membrane 57b on the low pressure side (section 57d side, that is, the high octane number side). The surface of the separation membrane 57b facing the low pressure side is covered.

この低圧側の分離膜57bの表面を覆う液状の浸出燃料を除去することにより、高圧区画57c側から低圧区画57d側に連続的に分離膜57bを通して芳香族成分の浸出が生じるようになる。本実施形態では、低圧側(区画57d側)の圧力を浸出した芳香族成分の蒸気圧よりも低い圧力に維持することにより、低圧側の分離膜57b表面を覆う芳香族成分を多く含む浸出燃料を蒸発させて連続的に表面から除去し、燃料蒸気の形で回収するようにしている。   By removing the liquid leached fuel that covers the surface of the low-pressure side separation membrane 57b, aromatic components are leached from the high-pressure compartment 57c side to the low-pressure compartment 57d side through the separation membrane 57b. In the present embodiment, by maintaining the pressure on the low pressure side (compartment 57d side) at a pressure lower than the vapor pressure of the brewed aromatic component, the leached fuel containing a large amount of aromatic component covering the surface of the separation membrane 57b on the low pressure side. Is evaporated and continuously removed from the surface and recovered in the form of fuel vapor.

分離膜ユニット57の低圧側区画57dから回収された燃料蒸気は、気液分離器58に送られて、そこで冷却される。これにより、比較的沸点の高い芳香族成分は液化し、気液分離器58には芳香族成分を多く含む液体の高オクタン価燃料が生成される。このようにして生成された高オクタン価燃料は、高オクタン価燃料用タンク51に供給される。   The fuel vapor recovered from the low pressure side section 57d of the separation membrane unit 57 is sent to the gas-liquid separator 58 where it is cooled. As a result, the aromatic component having a relatively high boiling point is liquefied, and a liquid high-octane fuel containing a large amount of the aromatic component is generated in the gas-liquid separator 58. The high-octane fuel produced in this way is supplied to the high-octane fuel tank 51.

一方、分離膜ユニット57の高圧側区画57cに残った燃料は、芳香族成分の一部が除去されて高オクタン価成分含有量が少なくなっている。従って、分離膜ユニット57の高圧側区画57c内には芳香族成分の含有量の少ない低オクタン価燃料が生成される。このようにして生成された低オクタン価燃料は、低オクタン価燃料用タンク52に供給される。   On the other hand, the fuel remaining in the high pressure side section 57c of the separation membrane unit 57 has a high octane component content reduced by removing a part of the aromatic component. Therefore, a low octane fuel with a low content of aromatic components is generated in the high pressure side compartment 57c of the separation membrane unit 57. The low-octane fuel produced in this way is supplied to the low-octane fuel tank 52.

ここで、分離膜57bの分離効率はこの分離膜57bの作動条件によって大きく変化する。従って、分離膜57bによる分離効率を高いものとするためには、分離膜57bの作動条件を適切に制御する必要がある。このような分離膜57bの分離効率に影響する作動条件として、分離膜57bに供給される原料燃料の温度が挙げられる。   Here, the separation efficiency of the separation membrane 57b varies greatly depending on the operating conditions of the separation membrane 57b. Therefore, in order to increase the separation efficiency by the separation membrane 57b, it is necessary to appropriately control the operating conditions of the separation membrane 57b. An operating condition that affects the separation efficiency of the separation membrane 57b includes the temperature of the raw material fuel supplied to the separation membrane 57b.

原料燃料中の芳香族成分の量のうち分離膜57bを透過するものの割合(透過率)は、大気温からある温度に到達するまでは原料燃料の温度上昇に応じて増大する。この温度は分離膜57bの低圧側(区画57d)の温度がある下限温度に到達する温度である。この下限温度は分離膜57b低圧側の圧力の関数であり、例えば低圧側の圧力が5kPaで353K(80°C)程度になる。   The ratio (permeability) of the aromatic component in the raw material fuel that permeates the separation membrane 57b increases as the temperature of the raw material fuel increases until the temperature reaches a certain temperature from the atmospheric temperature. This temperature is a temperature at which the temperature on the low pressure side (section 57d) of the separation membrane 57b reaches a certain lower limit temperature. This lower limit temperature is a function of the pressure on the low pressure side of the separation membrane 57b. For example, the pressure on the low pressure side is about 353 K (80 ° C.) at 5 kPa.

一方、低圧側での温度が蒸気下限温度を超えて上昇を続けると、透過率は或る温度以上では低下するようになる。すなわち、低圧側での温度を維持すべき最適温度範囲が存在し、この最適温度範囲は、例えば低圧側圧力が5〜50kPaの範囲で348K〜438K(約75°C〜165°C)程度となる。   On the other hand, if the temperature on the low pressure side exceeds the steam lower limit temperature and continues to rise, the transmittance will drop above a certain temperature. That is, there exists an optimum temperature range in which the temperature on the low pressure side should be maintained. This optimum temperature range is, for example, about 348 K to 438 K (about 75 ° C. to 165 ° C.) when the low pressure side pressure is in the range of 5 to 50 kPa. Become.

従って、分離膜57bによる分離効率を最大にするためには、分離膜57bの低圧側温度が上記最適温度範囲になるように原料燃料の温度を維持する必要がある。このため、本実施形態では、原料燃料を分離膜ユニット57に供給する前に熱交換器56を用いて原料燃料を加熱して、分離膜57bによる分離効率が最も高くなるような温度に維持するようにしている。なお、本発明の実施形態では、熱交換器56として後述する排気熱回収装置25の熱交換部が利用される。   Therefore, in order to maximize the separation efficiency of the separation membrane 57b, it is necessary to maintain the temperature of the raw material fuel so that the low-pressure side temperature of the separation membrane 57b is in the optimum temperature range. For this reason, in this embodiment, before supplying raw material fuel to the separation membrane unit 57, the raw material fuel is heated using the heat exchanger 56 and maintained at a temperature at which the separation efficiency by the separation membrane 57b is maximized. I am doing so. In the embodiment of the present invention, a heat exchanger of the exhaust heat recovery device 25 described later is used as the heat exchanger 56.

また、本実施形態では、原料燃料タンク23の燃料ポンプ59と熱交換器56との間の燃料配管に流量制御弁55が設けられており、この流量制御弁55の開度を制御することにより、熱交換器56及び分離ユニット57への原料燃料の供給流量が制御される。   In the present embodiment, a flow rate control valve 55 is provided in the fuel pipe between the fuel pump 59 and the heat exchanger 56 of the raw material fuel tank 23, and by controlling the opening degree of the flow rate control valve 55. The supply flow rate of the raw material fuel to the heat exchanger 56 and the separation unit 57 is controlled.

なお、上述した燃料供給機構の構成及び燃料分離装置24の構成は一つの例である。熱交換器の必要な燃料分離装置が設けられれば、如何なる構成の燃料供給機構が用いられても良い。   The configuration of the fuel supply mechanism and the configuration of the fuel separation device 24 described above are examples. As long as a fuel separation device that requires a heat exchanger is provided, a fuel supply mechanism of any configuration may be used.

次に、図3を参照して本発明の第一実施形態の排気熱回収装置25について説明する。図3に示したように、排気熱回収装置25は、二つのヒートパイプ60、61を有し、各ヒートパイプ60、61はその一端に熱回収部60a、61aを有すると共に、他端に熱交換部60b、61bを有する。本実施形態では、一方のヒートパイプ60の熱回収部60aは排気浄化触媒20’の排気上流側において排気管22に取り付けられ、他方のヒートパイプ61の熱回収部61aは排気浄化触媒20’の排気下流側において排気管22に取り付けられている。以下の説明では、二つのヒートパイプ60、61のうち排気上流側において排気管22に取り付けられているものを上流側ヒートパイプ60、排気下流側において排気管22に取り付けられているものを下流側ヒートパイプ61と称する。   Next, the exhaust heat recovery device 25 of the first embodiment of the present invention will be described with reference to FIG. As shown in FIG. 3, the exhaust heat recovery device 25 has two heat pipes 60, 61. Each heat pipe 60, 61 has heat recovery parts 60a, 61a at one end and heat at the other end. It has exchange parts 60b and 61b. In the present embodiment, the heat recovery part 60a of one heat pipe 60 is attached to the exhaust pipe 22 on the exhaust upstream side of the exhaust purification catalyst 20 ′, and the heat recovery part 61a of the other heat pipe 61 is the exhaust purification catalyst 20 ′. The exhaust pipe 22 is attached to the exhaust downstream side. In the following description, of the two heat pipes 60 and 61, the one attached to the exhaust pipe 22 on the exhaust upstream side is the upstream heat pipe 60, and the one attached to the exhaust pipe 22 on the exhaust downstream side is the downstream side. This is referred to as a heat pipe 61.

図4は、図3のA−A線概略断面図である。図4に示したように、本実施形態では、ヒートパイプ60、61の熱回収部60a、61aは、排気管22を貫通し、排気管22内の排気通路内に挿入される。熱回収部60a、61aにおいてヒートパイプ60、61の側面には複数のフィン62が取り付けられる。これにより、ヒートパイプ60、61の熱回収部60a、61aでは、排気通路内を流れる排気ガスからヒートパイプ60、61に熱が伝達される。   FIG. 4 is a schematic cross-sectional view taken along line AA in FIG. As shown in FIG. 4, in the present embodiment, the heat recovery portions 60 a and 61 a of the heat pipes 60 and 61 penetrate the exhaust pipe 22 and are inserted into the exhaust passage in the exhaust pipe 22. A plurality of fins 62 are attached to the side surfaces of the heat pipes 60, 61 in the heat recovery units 60a, 61a. Thereby, in the heat recovery units 60a and 61a of the heat pipes 60 and 61, heat is transmitted from the exhaust gas flowing in the exhaust passage to the heat pipes 60 and 61.

なお、ヒートパイプ60、61の熱回収部60a、61aは、排気ガスから熱を回収することができれば、上述した図4に示したような構成のみならず、様々な構成を採用可能である。例えば、ヒートパイプ60、61を排気管22回りに巻回させて、排気管22を介して排気通路内を流れる排気ガスから熱を回収するようにしてもよい。   It should be noted that the heat recovery units 60a and 61a of the heat pipes 60 and 61 can adopt various configurations in addition to the configuration shown in FIG. 4 described above, as long as heat can be recovered from the exhaust gas. For example, the heat pipes 60 and 61 may be wound around the exhaust pipe 22 to recover heat from the exhaust gas flowing in the exhaust passage via the exhaust pipe 22.

一方、ヒートパイプ60、61の熱交換部60b、61bは、いずれも原料燃料タンク23と分離ユニット57との間において燃料供給管63に取り付けられる。ヒートパイプ60、61の熱交換部60b、61bも上記ヒートパイプの熱回収部60a、61aと同様に、燃料供給管63を貫通し、燃料供給管63内の燃料通路内に挿入される。これにより、ヒートパイプ60、61の熱交換部60b、61bでは、ヒートパイプ60、61から燃料通路内を流れる燃料へと熱伝達が行われる。なお、ヒートパイプ60、61の熱交換部60b、61bについても、上記熱回収部60a、61aと同様に、燃料に熱を伝達することができれば、上記構成のみならず、様々な構成を採用可能である。   On the other hand, the heat exchange portions 60 b and 61 b of the heat pipes 60 and 61 are both attached to the fuel supply pipe 63 between the raw fuel tank 23 and the separation unit 57. Similarly to the heat recovery units 60a and 61a of the heat pipe, the heat exchanging units 60b and 61b of the heat pipes 60 and 61 pass through the fuel supply pipe 63 and are inserted into the fuel passage in the fuel supply pipe 63. Thereby, in the heat exchange parts 60b and 61b of the heat pipes 60 and 61, heat transfer is performed from the heat pipes 60 and 61 to the fuel flowing in the fuel passage. As with the heat recovery units 60a and 61a, not only the above configuration but also various configurations can be adopted for the heat exchange units 60b and 61b of the heat pipes 60 and 61 as long as the heat can be transferred to the fuel. It is.

各ヒートパイプ60、61は、内部に毛細管構造(ウィック)を有する中空管から構成され、中空管内には、例えば水や蒸気といった熱媒体が封入される。ヒートパイプ60、61では、熱回収部60a、61aにおいて排気ガスの熱によりヒートパイプ60、61内の熱媒体が蒸発し、この蒸発した熱媒体は熱交換部60b、61bにおいて燃料に熱を伝達し、これにより熱媒体が凝縮する。凝縮した熱媒体は排気ガスの熱により再び蒸発せしめられる。ヒートパイプ60、61によれば、斯かるサイクルを繰り返すことで、熱回収部60a、61aから熱交換部60b、61bへと熱の伝達が行われる。   Each of the heat pipes 60 and 61 is constituted by a hollow tube having a capillary structure (wick) inside, and a heat medium such as water or steam is enclosed in the hollow tube. In the heat pipes 60 and 61, the heat medium in the heat pipes 60 and 61 is evaporated by the heat of the exhaust gas in the heat recovery units 60a and 61a, and this evaporated heat medium transfers heat to the fuel in the heat exchange units 60b and 61b. As a result, the heat medium condenses. The condensed heat medium is evaporated again by the heat of the exhaust gas. According to the heat pipes 60 and 61, heat is transferred from the heat recovery units 60a and 61a to the heat exchange units 60b and 61b by repeating such a cycle.

従って、本発明の実施形態では、上流側ヒートパイプ60は、その熱回収部60aで排気浄化触媒20’の排気上流側において排気ガスから熱を回収すると共に、その熱交換部60bで燃料供給管63内を流れる燃料に熱を供給する。一方、下流側ヒートパイプ61は、その熱回収部61aで排気浄化触媒20’の排気下流側において排気ガスから熱を回収すると共に、その熱交換部61bで燃料供給管63内を流れる燃料に熱を供給する。   Therefore, in the embodiment of the present invention, the upstream heat pipe 60 recovers heat from the exhaust gas at the exhaust upstream side of the exhaust purification catalyst 20 ′ at the heat recovery section 60a, and at the fuel exchange pipe at the heat exchange section 60b. Heat is supplied to the fuel flowing in 63. On the other hand, the downstream heat pipe 61 recovers heat from the exhaust gas at the exhaust downstream side of the exhaust purification catalyst 20 ′ at the heat recovery part 61a, and heats the fuel flowing through the fuel supply pipe 63 at the heat exchange part 61b. Supply.

また、本発明の実施形態では、上流側ヒートパイプと下流側ヒートパイプとで熱輸送能力が異なるものとされる。例えば、本実施形態では、上流側ヒートパイプの方が下流側ヒートパイプよりも熱容量が小さいものとされる。   In the embodiment of the present invention, the heat transport capacity is different between the upstream heat pipe and the downstream heat pipe. For example, in the present embodiment, the heat capacity of the upstream heat pipe is smaller than that of the downstream heat pipe.

図5は、ヒートパイプの熱回収部における熱回収量と、熱交換部へと伝達可能な熱伝達量との関係を示すグラフである。図5中の実線は熱容量の小さいヒートパイプ(以下、「小容量ヒートパイプ」という)における関係を、破線は封熱容量の大きいヒートパイプ(以下、「大容量ヒートパイプ」)における関係をそれぞれ示している。   FIG. 5 is a graph showing the relationship between the heat recovery amount in the heat recovery unit of the heat pipe and the heat transfer amount that can be transferred to the heat exchange unit. The solid line in FIG. 5 indicates the relationship in a heat pipe with a small heat capacity (hereinafter referred to as “small capacity heat pipe”), and the broken line indicates the relationship in a heat pipe with a large sealed heat capacity (hereinafter referred to as “large capacity heat pipe”). Yes.

図5から分かるように、小容量ヒートパイプの場合、熱回収量が少ない場合において、熱回収量の増大量に対する熱伝達量の増大量が大きく、熱回収量の増大に伴って迅速に熱伝達量が上昇する。すなわち、小容量ヒートパイプでは、熱回収部において回収される熱回収量が少ないときであっても、熱を伝達することができる。従って、小容量ヒートパイプでは、熱回収部において排気管22内を流れる排気ガスの温度が低いときから熱交換部への熱の移動を開始させることができる。   As can be seen from FIG. 5, in the case of a small-capacity heat pipe, when the amount of heat recovery is small, the amount of increase in heat transfer with respect to the amount of increase in heat recovery is large, and heat transfer is quickly performed as the amount of heat recovery increases. The amount increases. That is, the small capacity heat pipe can transfer heat even when the amount of heat recovered in the heat recovery unit is small. Therefore, in the small capacity heat pipe, the heat transfer to the heat exchange unit can be started when the temperature of the exhaust gas flowing through the exhaust pipe 22 in the heat recovery unit is low.

ところが、一般にヒートパイプによって伝達可能な熱量は限られている。すなわち、熱回収量が少ないうちは熱回収量の増大に伴って熱伝達量が増大する。しかしながら、或る一定の熱伝達量(最大熱伝達量)に到達すると、それ以上熱回収量が増大しても熱伝達量は増大しなくなってしまう。この最大熱伝達量はヒートパイプの容量に応じて異なり、ヒートパイプの容量が小さいほど最大熱伝達量は小さい。   However, the amount of heat that can be transferred by a heat pipe is generally limited. That is, as long as the heat recovery amount is small, the heat transfer amount increases as the heat recovery amount increases. However, when a certain heat transfer amount (maximum heat transfer amount) is reached, the heat transfer amount does not increase even if the heat recovery amount further increases. The maximum heat transfer amount varies depending on the capacity of the heat pipe. The smaller the heat pipe capacity, the smaller the maximum heat transfer amount.

従って、小容量ヒートパイプは、排気管22を流れる排気ガスの温度が低いときから熱回収部において排気ガスの熱を回収してその熱を熱交換部へ伝熱することができる。しかしながら、小容量ヒートパイプは最大熱伝達量が小さく、よって排気ガスの温度が高くなっても熱回収部から熱交換部へ多量の熱を伝達することはできない。逆に、大容量ヒートパイプは、排気管22を流れる排気ガスの温度が低いときには熱回収部において排気ガスの熱を回収しても効率的に熱交換部へ伝熱することができない。しかしながら、大容量ヒートパイプは最大熱伝達量が大きく、よって排気ガスの温度が高くなると熱回収部から熱交換部へ多量の熱を伝達することができる。   Therefore, the small-capacity heat pipe can recover the heat of the exhaust gas in the heat recovery unit and transfer the heat to the heat exchange unit when the temperature of the exhaust gas flowing through the exhaust pipe 22 is low. However, the small-capacity heat pipe has a small maximum heat transfer amount, so that a large amount of heat cannot be transferred from the heat recovery unit to the heat exchange unit even when the temperature of the exhaust gas becomes high. On the other hand, when the temperature of the exhaust gas flowing through the exhaust pipe 22 is low, the large-capacity heat pipe cannot efficiently transfer heat to the heat exchange unit even if the heat recovery unit recovers the heat of the exhaust gas. However, the large-capacity heat pipe has a large maximum heat transfer amount, so that a large amount of heat can be transferred from the heat recovery unit to the heat exchange unit when the temperature of the exhaust gas increases.

なお、ヒートパイプの熱容量をヒートパイプ毎に変える方法としては、例えばヒートパイプ内に封入される熱媒体の量を変える事が挙げられる。ヒートパイプ内に封入される熱媒体の量を少なくすればヒートパイプの熱容量を小さくすることができ、逆にヒートパイプ内に封入する熱媒体の量を多くすればヒートパイプの熱容量を大きくすることができる。   In addition, as a method of changing the heat capacity of a heat pipe for every heat pipe, changing the quantity of the heat medium enclosed in a heat pipe is mentioned, for example. If the amount of heat medium enclosed in the heat pipe is reduced, the heat capacity of the heat pipe can be reduced. Conversely, if the amount of heat medium enclosed in the heat pipe is increased, the heat capacity of the heat pipe is increased. Can do.

或いは、ヒートパイプの熱容量を変える方法として、熱媒体の種類を変えることも挙げられる。熱容量の小さい液体を熱媒体として用いればヒートパイプの熱容量を小さくすることができる。逆に熱容量の大きい液体を熱媒体として用いればヒートパイプの熱容量を大きくすることができる。   Alternatively, as a method of changing the heat capacity of the heat pipe, changing the type of the heat medium can also be mentioned. If a liquid having a small heat capacity is used as the heat medium, the heat capacity of the heat pipe can be reduced. Conversely, if a liquid having a large heat capacity is used as the heat medium, the heat capacity of the heat pipe can be increased.

さらに、ヒートパイプの熱容量を変える方法として、ヒートパイプの数を変えることが考えられる。ヒートパイプの数を多くすれば、これらヒートパイプ全体の熱容量は大きいものとなり、逆にヒートパイプの数を少なくすると、これらヒートパイプ全体の熱容量は小さいものとなる。従って、例えば、上流側ヒートパイプ60を一本のヒートパイプから構成し、下流側ヒートパイプ61を複数本のヒートパイプから構成するようにすることもできる。   Further, as a method of changing the heat capacity of the heat pipe, it is conceivable to change the number of heat pipes. If the number of heat pipes is increased, the heat capacity of these heat pipes will be large. Conversely, if the number of heat pipes is reduced, the heat capacity of these heat pipes will be small. Therefore, for example, the upstream heat pipe 60 can be constituted by a single heat pipe, and the downstream heat pipe 61 can be constituted by a plurality of heat pipes.

このように、上流側ヒートパイプ60の熱容量を小さくし、下流側ヒートパイプ61の熱容量を大きくすると、内燃機関の冷間始動時等に排気浄化触媒20’を迅速に昇温させつつ、加熱対象(すなわち、燃料供給管63内を流れる原料燃料)に対して必要最低限の熱を供給することができるようになる。本実施形態によってこのような効果を得られる理由について以下に説明する。   As described above, when the heat capacity of the upstream heat pipe 60 is reduced and the heat capacity of the downstream heat pipe 61 is increased, the exhaust purification catalyst 20 ′ is rapidly heated at the time of cold start of the internal combustion engine, etc. That is, the minimum necessary heat can be supplied to (that is, the raw material fuel flowing in the fuel supply pipe 63). The reason why such an effect can be obtained by this embodiment will be described below.

内燃機関の冷間始動時においては排気浄化触媒20’はその活性温度にまで昇温されていない。したがって、排気ガスの浄化性能を高めるためには、排気浄化触媒20’を昇温する必要がある。ところが、排気浄化触媒20’の排気上流側に大容量ヒートパイプを配置して排気ガスから熱を回収すると、排気ガスの熱は大容量ヒートパイプによって多量に回収されてしまうため、排気浄化触媒20’に流入する排気ガスの温度は機関本体1から排出された排気ガスの温度よりもかなり低下する。このため、排気浄化触媒20’を迅速に昇温させることができなくなってしまう。一方、排気浄化触媒20’の排気上流側に小容量ヒートパイプを配置して排気ガスから熱を回収すれば、小容量ヒートパイプによって回収される排気ガスの熱は少量であるため、排気浄化触媒20’に流入する排気ガスの温度は機関本体1から排出された排気ガスの温度とほとんど変わらない。このため、排気浄化触媒20’を迅速に昇温することができる。   At the time of cold start of the internal combustion engine, the exhaust purification catalyst 20 'is not heated up to its activation temperature. Accordingly, in order to improve the exhaust gas purification performance, it is necessary to raise the temperature of the exhaust purification catalyst 20 '. However, if a large-capacity heat pipe is disposed upstream of the exhaust purification catalyst 20 ′ and heat is recovered from the exhaust gas, a large amount of exhaust gas heat is recovered by the large-capacity heat pipe. The temperature of the exhaust gas flowing into 'is considerably lower than the temperature of the exhaust gas discharged from the engine body 1. For this reason, it becomes impossible to raise the temperature of the exhaust purification catalyst 20 'quickly. On the other hand, if a small capacity heat pipe is disposed upstream of the exhaust purification catalyst 20 ′ and heat is recovered from the exhaust gas, the heat of the exhaust gas recovered by the small capacity heat pipe is small. The temperature of the exhaust gas flowing into 20 'is almost the same as the temperature of the exhaust gas discharged from the engine body 1. For this reason, it is possible to quickly raise the temperature of the exhaust purification catalyst 20 '.

特に、本実施形態のように加熱対象流体が原料燃料であって燃料分離のために原料燃料が加熱される場合、内燃機関の冷間始動時から多量の原料燃料を加熱する必要はない。すなわち、内燃機関の冷間始動時には通常、アイドル運転が行われるため、燃料噴射弁から噴射すべき燃料量は少ない。このため、燃料分離すべき燃料の量も少なく、従って内燃機関の冷間始動時には多量の原料燃料を加熱する必要はない。このため内燃機関の冷間始動時には、小容量ヒートパイプを用いて燃料を加熱すれば、必要最低限の量の原料燃料を加熱することができる。本実施形態では、排気浄化触媒20’の排気上流側に小容量の上流側ヒートパイプ60が設けられているため、内燃機関の冷間始動時において必要最低限の量の原料燃料を加熱することができる。   In particular, when the fluid to be heated is a raw material fuel and the raw material fuel is heated for fuel separation as in this embodiment, it is not necessary to heat a large amount of the raw material fuel from the cold start of the internal combustion engine. That is, when the internal combustion engine is cold started, idling operation is usually performed, so that the amount of fuel to be injected from the fuel injection valve is small. For this reason, the amount of fuel to be separated is small, and therefore it is not necessary to heat a large amount of raw material fuel when the internal combustion engine is cold started. For this reason, at the time of cold start of the internal combustion engine, if the fuel is heated using a small capacity heat pipe, the necessary minimum amount of raw material fuel can be heated. In the present embodiment, since a small-capacity upstream heat pipe 60 is provided on the exhaust upstream side of the exhaust purification catalyst 20 ′, a minimum amount of raw material fuel is heated when the internal combustion engine is cold started. Can do.

しかしながら、上述したように小容量ヒートパイプは最大熱伝達量が小さいため、小容量ヒートパイプのみを用いると排気浄化触媒20’が十分に昇温された後であっても十分な量の原料燃料を加熱することができない。これに対して、本実施形態では、上述したように排気浄化触媒20’の排気下流側には大容量の下流側ヒートパイプ61が設けられている。排気浄化触媒20’が十分に昇温された後には排気浄化触媒20’から排出される排気ガスの温度は比較的高い。従って、排気浄化触媒20’の排気下流側に大容量の下流側ヒートパイプ61を設けることにより、排気浄化触媒20’が十分に昇温された後にはこの大容量の下流側ヒートパイプ61によって排気浄化触媒20’から排出された排気ガスから多量に熱を回収することができ、その結果、加熱対象流体である原料燃料を十分に加熱することができる。   However, as described above, the maximum heat transfer amount of the small capacity heat pipe is small. Therefore, when only the small capacity heat pipe is used, a sufficient amount of the raw material fuel is obtained even after the exhaust purification catalyst 20 'is sufficiently heated. Can not be heated. In contrast, in the present embodiment, as described above, the large-capacity downstream heat pipe 61 is provided on the exhaust downstream side of the exhaust purification catalyst 20 '. After the exhaust purification catalyst 20 'is sufficiently heated, the temperature of the exhaust gas discharged from the exhaust purification catalyst 20' is relatively high. Therefore, by providing the large capacity downstream heat pipe 61 on the exhaust downstream side of the exhaust purification catalyst 20 ′, the exhaust purification catalyst 20 ′ is exhausted by the large capacity downstream heat pipe 61 after the temperature is sufficiently raised. A large amount of heat can be recovered from the exhaust gas discharged from the purification catalyst 20 ′, and as a result, the raw material fuel that is the fluid to be heated can be sufficiently heated.

このように本発明の実施形態によれば、内燃機関の冷間始動時においては排気浄化触媒20’の暖機性能をほとんど悪化させることなく必要最低限の熱量を回収することができると共に、内燃機関の暖機後には多量の熱量を回収することができる。すなわち、内燃機関の冷間始動時に排気浄化触媒20’を迅速に昇温させつつ、加熱対象に対して常に必要最低限の熱量以上の熱を供給することができる。   As described above, according to the embodiment of the present invention, at the time of cold start of the internal combustion engine, it is possible to recover the minimum amount of heat without substantially deteriorating the warm-up performance of the exhaust purification catalyst 20 ′, and the internal combustion engine. A large amount of heat can be recovered after the engine is warmed up. That is, it is possible to always supply heat above the minimum necessary amount of heat to the object to be heated while rapidly raising the temperature of the exhaust purification catalyst 20 'when the internal combustion engine is cold started.

また、上述したような排気熱回収装置25の構成を採用する場合、上流側ヒートパイプ60の熱回収部60aを排気ポート10の直ぐ排気下流側に配置することもできる。これにより、内燃機関の冷間始動時においても確実に排気ガスから熱を回収して原料燃料の加熱を行うことができる。   Further, when the configuration of the exhaust heat recovery device 25 as described above is employed, the heat recovery part 60 a of the upstream heat pipe 60 can be disposed immediately downstream of the exhaust port 10. As a result, even when the internal combustion engine is cold started, it is possible to reliably recover the heat from the exhaust gas and heat the raw material fuel.

また、本実施形態では、機関本体1から排出される排気ガスの温度に応じて流量制御弁55によってヒートパイプ60、61の熱交換部60a、61aを流れる原料燃料の流量が制御される。具体的には、機関本体1から排出される排気ガスの温度が低いほどヒートパイプ60、61の熱交換部60a、61aを流れる原料燃料の流量は減少せしめられ、機関本体1から排出される排気ガスの温度が高くなるにつれてヒートパイプ60、61の熱交換部60a、61aを流れる原料燃料の流量が増大せしめられる。   In the present embodiment, the flow rate of the raw material fuel flowing through the heat exchanging portions 60a and 61a of the heat pipes 60 and 61 is controlled by the flow rate control valve 55 according to the temperature of the exhaust gas discharged from the engine body 1. Specifically, as the temperature of the exhaust gas discharged from the engine body 1 is lower, the flow rate of the raw material fuel flowing through the heat exchanging parts 60a and 61a of the heat pipes 60 and 61 is reduced, and the exhaust gas discharged from the engine body 1 is reduced. As the gas temperature increases, the flow rate of the raw material fuel flowing through the heat exchanging parts 60a and 61a of the heat pipes 60 and 61 is increased.

すなわち、上述したように原料燃料を分離ユニット57において効率的に分離させるためには、分離膜57bの低圧側温度が上記所定の最適温度範囲内にある必要がある。ところが、ヒートパイプ60、61の熱交換部60a、61aを流れる原料燃料を一定とすると、ヒートパイプ60、61によって排気ガスから回収される熱量が少な過ぎると或いは斯かる熱量が多すぎると、分離ユニット57に流入する原料燃料の温度が低すぎたり高すぎたりしてしまう。このような場合には、分離膜57bの低圧側温度を最適温度範囲内に収めることができない。   That is, as described above, in order to efficiently separate the raw material fuel in the separation unit 57, the low pressure side temperature of the separation membrane 57b needs to be within the predetermined optimum temperature range. However, if the raw material fuel flowing through the heat exchanging parts 60a and 61a of the heat pipes 60 and 61 is constant, if the amount of heat recovered from the exhaust gas by the heat pipes 60 and 61 is too small, or if the amount of heat is too large, the separation is performed. The temperature of the raw material fuel flowing into the unit 57 is too low or too high. In such a case, the low pressure side temperature of the separation membrane 57b cannot fall within the optimum temperature range.

ここで、ヒートパイプ60、61によって排気ガスから回収される熱量はヒートパイプの熱回収部60a、61aを流れる排気ガスの温度に依存し、斯かる排気ガスの温度が高い程、回収される熱量も多く、よって原料燃料に伝達される熱量も多い。従って、機関本体1から排出される排気ガスの温度が高くなるにつれてヒートパイプ60、61の熱交換部60a、61aを流れる原料燃料の流量を増大させることで、原料燃料の温度を一定温度範囲内に維持することができる。   Here, the amount of heat recovered from the exhaust gas by the heat pipes 60 and 61 depends on the temperature of the exhaust gas flowing through the heat recovery portions 60a and 61a of the heat pipe, and the amount of heat recovered as the temperature of the exhaust gas increases. Therefore, the amount of heat transferred to the raw material fuel is also large. Therefore, by increasing the flow rate of the raw material fuel flowing through the heat exchanging portions 60a and 61a of the heat pipes 60 and 61 as the temperature of the exhaust gas discharged from the engine body 1 increases, the temperature of the raw material fuel is kept within a certain temperature range. Can be maintained.

次に、図6を参照して本発明の第二実施形態について説明する。第二実施形態の排気熱回収装置25’の構成は基本的に第一実施形態の排気熱回収装置25の構成と同様である。しかしながら、第二実施形態では、図6に示したように、上流側ヒートパイプ60の熱回収部60aが排気浄化触媒20’の排気上流側ではなく、排気浄化触媒20’自体又は排気浄化触媒20’を収容する触媒コンバータ20に取り付けられている。   Next, a second embodiment of the present invention will be described with reference to FIG. The configuration of the exhaust heat recovery device 25 ′ of the second embodiment is basically the same as the configuration of the exhaust heat recovery device 25 of the first embodiment. However, in the second embodiment, as shown in FIG. 6, the heat recovery unit 60 a of the upstream heat pipe 60 is not the exhaust upstream side of the exhaust purification catalyst 20 ′, but the exhaust purification catalyst 20 ′ itself or the exhaust purification catalyst 20. It is attached to the catalytic converter 20 that houses'.

このように、上流側ヒートパイプ60の熱回収部60aを排気浄化触媒20’自体又は排気浄化触媒20’を収容する触媒コンバータ20に取り付けることにより、機関本体1から排出された排気ガスはヒートパイプ60、61により熱を吸収されることなく排気浄化触媒20’に流入する。このため、特に内燃機関の冷間始動時において、より迅速に排気浄化触媒20’を暖機させることができる。   Thus, by attaching the heat recovery part 60a of the upstream heat pipe 60 to the exhaust purification catalyst 20 ′ itself or the catalytic converter 20 containing the exhaust purification catalyst 20 ′, the exhaust gas discharged from the engine body 1 is heat pipe. The heat flows into the exhaust purification catalyst 20 ′ without being absorbed by 60, 61. For this reason, the exhaust purification catalyst 20 'can be warmed up more quickly, particularly during the cold start of the internal combustion engine.

また、排気浄化触媒20’とヒートパイプ60の熱回収部60aとを一体的に形成することにより、又は触媒コンバータ20とヒートパイプ60の熱回収部60aとを一体的に形成することにより、これら一体化された部品の車両への搭載性が向上する。   Further, by integrally forming the exhaust purification catalyst 20 ′ and the heat recovery part 60a of the heat pipe 60, or by integrally forming the catalytic converter 20 and the heat recovery part 60a of the heat pipe 60, these The mountability of the integrated parts on the vehicle is improved.

次に、図7を参照して本発明の第三実施形態について説明する。第三実施形態の排気熱回収装置25’’の構成は基本的に第一実施形態又は第二実施形態の排気熱回収装置25、25’の構成と同様である。しかしながら、第三実施形態では、上流側ヒートパイプ60の熱交換部60bと下流側ヒートパイプ61の熱交換部61bとの間において燃料供給管63に経路切替弁64が設けられている。   Next, a third embodiment of the present invention will be described with reference to FIG. The configuration of the exhaust heat recovery device 25 "of the third embodiment is basically the same as the configuration of the exhaust heat recovery devices 25, 25 'of the first embodiment or the second embodiment. However, in the third embodiment, the path switching valve 64 is provided in the fuel supply pipe 63 between the heat exchange part 60 b of the upstream heat pipe 60 and the heat exchange part 61 b of the downstream heat pipe 61.

図7に示したように、上流側ヒートパイプ60の熱交換部60bと下流側ヒートパイプ61の熱交換部61bとの間において燃料供給管63からはバイパス管65が分岐しており、このバイパス管65の分岐部には経路切替弁64が設けられる。バイパス管65は下流側ヒートパイプ61の熱交換部61bをバイパスして直接分離ユニット57の高圧区画57cに連通する。このバイパス管65の長さは分岐部下流から分離ユニット57までの燃料供給管63の長さよりも短い。経路切替弁64は、上流側ヒートパイプ60の熱交換部60bから流出した原料燃料を下流側ヒートパイプ61の熱交換部61bへ流入させる流入位置と、上流側ヒートパイプ60の熱交換部60bから流出した燃料をバイパス管65に流入させるバイパス位置との間で切替可能である。   As shown in FIG. 7, a bypass pipe 65 is branched from the fuel supply pipe 63 between the heat exchange section 60b of the upstream heat pipe 60 and the heat exchange section 61b of the downstream heat pipe 61. A path switching valve 64 is provided at a branch portion of the pipe 65. The bypass pipe 65 bypasses the heat exchange part 61 b of the downstream heat pipe 61 and communicates directly with the high pressure section 57 c of the separation unit 57. The length of the bypass pipe 65 is shorter than the length of the fuel supply pipe 63 from the branch section downstream to the separation unit 57. The path switching valve 64 has an inflow position where the raw material fuel that has flowed out of the heat exchange section 60 b of the upstream heat pipe 60 flows into the heat exchange section 61 b of the downstream heat pipe 61, and the heat exchange section 60 b of the upstream heat pipe 60. It is possible to switch between a bypass position where the fuel that has flowed out flows into the bypass pipe 65.

従って、経路切替弁64が流入位置にあるときには、原料燃料タンク23の燃料は上流側ヒートパイプ60の熱交換部60b及び下流側ヒートパイプ61の熱交換部61bの両熱交換部を通る。一方、経路切替弁64がバイパス位置にあるときには、原料燃料タンク23の燃料は上流側ヒートパイプ60の熱交換部60bのみを通り、下流側ヒートパイプ61の熱交換部61bは通らない。   Therefore, when the path switching valve 64 is in the inflow position, the fuel in the raw material fuel tank 23 passes through both heat exchange portions of the heat exchange portion 60 b of the upstream heat pipe 60 and the heat exchange portion 61 b of the downstream heat pipe 61. On the other hand, when the path switching valve 64 is in the bypass position, the fuel in the raw material fuel tank 23 passes only through the heat exchange part 60b of the upstream heat pipe 60 and does not pass through the heat exchange part 61b of the downstream heat pipe 61.

本実施形態では、下流側ヒートパイプ61の温度(すなわち、下流側ヒートパイプ61内に封入された熱媒体の温度)が或る一定の基準温度よりも低いときには経路切替弁64が流入位置にされ、原料燃料は両熱交換部60b、61bを通って流れる。一方、下流側ヒートパイプ61の温度が上記基準温度以上であるときには経路切替弁64がバイパス位置にされ、原料燃料は上流側ヒートパイプ60の熱交換部60bのみを通って流れる。   In this embodiment, when the temperature of the downstream heat pipe 61 (that is, the temperature of the heat medium sealed in the downstream heat pipe 61) is lower than a certain reference temperature, the path switching valve 64 is set to the inflow position. The raw material fuel flows through both heat exchange parts 60b and 61b. On the other hand, when the temperature of the downstream heat pipe 61 is equal to or higher than the reference temperature, the path switching valve 64 is set to the bypass position, and the raw material fuel flows only through the heat exchange part 60 b of the upstream heat pipe 60.

ここで、下流側ヒートパイプ61の温度が低いときには、下流側ヒートパイプ61の熱交換部61bにおいて原料燃料はあまり昇温されない。このため、下流側ヒートパイプ61の温度が低いときに原料燃料が分岐部下流の燃料供給管63を通ると、原料燃料は分岐部下流における燃料供給管63内を流れる間に燃料供給管63の周囲の大気によって熱を奪われ、原料燃料の温度は分離ユニット57に流入するまでに低下してしまう。   Here, when the temperature of the downstream heat pipe 61 is low, the temperature of the raw material fuel is not increased so much in the heat exchanging portion 61 b of the downstream heat pipe 61. For this reason, when the raw material fuel passes through the fuel supply pipe 63 downstream of the branch portion when the temperature of the downstream heat pipe 61 is low, the raw material fuel passes through the fuel supply pipe 63 downstream of the branch portion. Heat is taken away by the surrounding atmosphere, and the temperature of the raw material fuel is lowered before flowing into the separation unit 57.

本実施形態では、下流側ヒートパイプ61の温度が低いときには、原料燃料はバイパス管65を通って分離ユニット57に流入する。バイパス管65の長さは分岐部下流における燃料供給管63の長さよりも短いため、原料燃料がバイパス管65内を流れる間に、バイパス管65の周囲の大気によって奪われる熱量は少なく、よって原料燃料の温度は分離ユニット57に流入するまでにあまり低下しない。従って、本実施形態によれば、排気ガスの熱を効率的に分離ユニット57に流入する原料燃料に供給することができる。   In the present embodiment, when the temperature of the downstream heat pipe 61 is low, the raw material fuel flows into the separation unit 57 through the bypass pipe 65. Since the length of the bypass pipe 65 is shorter than the length of the fuel supply pipe 63 downstream of the branch portion, the amount of heat taken away by the atmosphere around the bypass pipe 65 while the raw material fuel flows through the bypass pipe 65 is small. The temperature of the fuel does not decrease so much before flowing into the separation unit 57. Therefore, according to the present embodiment, the heat of the exhaust gas can be efficiently supplied to the raw material fuel flowing into the separation unit 57.

なお、上記基準温度は、例えば、バイパス管65を介して原料燃料を分離ユニット57に流入させた場合も、燃料供給管63を介して原料燃料を分離ユニット57に流入させた場合も、分離ユニット57に流入する原料燃料の温度が等しくなるような下流側ヒートパイプ61の温度とされる。   Note that the reference temperature is the same when the raw fuel is caused to flow into the separation unit 57 via the bypass pipe 65 or when the raw fuel is caused to flow into the separation unit 57 via the fuel supply pipe 63. The temperature of the downstream heat pipe 61 is set so that the temperature of the raw material fuel flowing into the fuel 57 becomes equal.

また、上記実施形態では、下流側ヒートパイプ61の温度に応じて原料燃料を流す経路を変更しているが、下流側ヒートパイプ61の温度のみならず、他のパラメータ(例えば、内燃機関始動後の経過時間等)に応じて原料燃料を流す経路を変更してもよい。   Further, in the above embodiment, the path for flowing the raw material fuel is changed according to the temperature of the downstream heat pipe 61. However, not only the temperature of the downstream heat pipe 61 but also other parameters (for example, after starting the internal combustion engine) The passage through which the raw material fuel flows may be changed according to the elapsed time).

また、下流側ヒートパイプ61の温度と流量制御弁55の開度とに応じて経路切替弁64の位置を切り替えても良い。すなわち、下流側ヒートパイプ61の温度が非常に高く且つ流量制御弁55の開度が小さいときには経路切替弁64をバイパス位置にし、それ以外のときには経路切替弁64を流入位置にするようにしてもよい。   Further, the position of the path switching valve 64 may be switched according to the temperature of the downstream heat pipe 61 and the opening degree of the flow control valve 55. That is, when the temperature of the downstream heat pipe 61 is very high and the opening degree of the flow control valve 55 is small, the path switching valve 64 is set to the bypass position, and otherwise, the path switching valve 64 is set to the inflow position. Good.

すなわち、流量制御弁55の開度が小さいと燃料供給管63内を流れる原料燃料の流量が少なく、また下流側ヒートパイプ61の温度が高いと下流側ヒートパイプ61の熱交換部61bにおいて原料燃料に供給される熱量が多くなる。このような場合に原料燃料に下流側ヒートパイプ61の熱交換部61bを通過させると、原料燃料は過剰に加熱されてしまい、燃料の劣化等が生じてしまう。そこで、このような場合には、原料燃料を下流側ヒートパイプ61の熱交換部61bに流さないようにすることにより、原料燃料の過加熱を防止することができる。   That is, when the opening degree of the flow control valve 55 is small, the flow rate of the raw material fuel flowing in the fuel supply pipe 63 is small, and when the temperature of the downstream heat pipe 61 is high, the raw material fuel in the heat exchanging portion 61 b of the downstream heat pipe 61. The amount of heat supplied to is increased. In such a case, if the raw material fuel is passed through the heat exchanging portion 61b of the downstream heat pipe 61, the raw material fuel is excessively heated, resulting in deterioration of the fuel. In such a case, overheating of the raw material fuel can be prevented by preventing the raw material fuel from flowing into the heat exchanging portion 61b of the downstream heat pipe 61.

さらに、上記実施形態では、バイパス管65の分岐部に経路切替弁64が設けられているが、経路切替弁64の代わりに、分岐部下流の燃料供給管63及びバイパス管65に流入する燃料の流量を調整可能な流量調整弁を設けてもよい。これにより、下流側ヒートパイプ61の温度に応じて分岐部下流の燃料供給管63内に流れる原料燃料の流量を調整することができる。   Furthermore, in the above embodiment, the path switching valve 64 is provided at the branch portion of the bypass pipe 65, but instead of the path switching valve 64, the fuel flowing into the fuel supply pipe 63 and the bypass pipe 65 downstream of the branch section is provided. A flow rate adjustment valve capable of adjusting the flow rate may be provided. Thereby, the flow rate of the raw material fuel flowing in the fuel supply pipe 63 downstream of the branch portion can be adjusted according to the temperature of the downstream heat pipe 61.

次に、図8を参照して本発明の第四実施形態について説明する。第四実施形態の排気熱回収装置25’’’の構成は基本的に第三実施形態の排気熱回収装置25’’の構成と同様である。しかしながら、第四実施形態では、経路切替弁64、バイパス管65が設けられておらず、代わりに燃料供給管及び流量制御弁が二つずつ設けられている。   Next, a fourth embodiment of the present invention will be described with reference to FIG. The configuration of the exhaust heat recovery device 25 "" according to the fourth embodiment is basically the same as the configuration of the exhaust heat recovery device 25 "according to the third embodiment. However, in the fourth embodiment, the path switching valve 64 and the bypass pipe 65 are not provided, but two fuel supply pipes and two flow control valves are provided instead.

すなわち、図8に示したように、第四実施形態では、原料燃料タンク23と分離ユニット57との間に二つの燃料供給管63a、63bが設けられると共に、各燃料供給管63a、63bにはそれぞれ流量制御弁55a、55bが設けられる。上流側ヒートパイプ60の熱交換部60bは第一燃料供給管63aに取り付けられると共に、下流側ヒートパイプ61の熱交換部61bは第二燃料供給管63bに取り付けられる。   That is, as shown in FIG. 8, in the fourth embodiment, two fuel supply pipes 63a and 63b are provided between the raw material fuel tank 23 and the separation unit 57, and each of the fuel supply pipes 63a and 63b includes Flow control valves 55a and 55b are provided respectively. The heat exchange part 60b of the upstream heat pipe 60 is attached to the first fuel supply pipe 63a, and the heat exchange part 61b of the downstream heat pipe 61 is attached to the second fuel supply pipe 63b.

本実施形態では、下流側ヒートパイプ61の温度が或る一定の基準温度よりも低い時には、第一燃料供給管63aに設けられた流量制御弁55aのみが開弁されて、第二燃料供給管63bに設けられた流量制御弁55bは開弁されない。一方、下流側ヒートパイプ61の温度が上記基準温度以上であるときには、両流量制御弁55a、55bが開弁される。これにより、上記第三実施形態と同様に、排気ガスの熱を効率的に分離ユニット57に流入する原料燃料に供給することができる。   In this embodiment, when the temperature of the downstream heat pipe 61 is lower than a certain reference temperature, only the flow control valve 55a provided in the first fuel supply pipe 63a is opened, and the second fuel supply pipe is opened. The flow control valve 55b provided in 63b is not opened. On the other hand, when the temperature of the downstream heat pipe 61 is equal to or higher than the reference temperature, both flow rate control valves 55a and 55b are opened. Thereby, as in the third embodiment, the heat of the exhaust gas can be efficiently supplied to the raw material fuel flowing into the separation unit 57.

なお、本実施形態においても、上記第三実施形態と同様に、下流側ヒートパイプ61の温度と原料燃料タンク23から分離ユニット57に供給すべき原料燃料の流量とに応じて第二流量制御弁55bの開度を調整してもよい。すなわち、下流側ヒートパイプ61の温度が非常に高く且つ原料燃料タンク23から分離ユニット57に供給すべき原料燃料の流量が少ないときには第二流量制御弁55bを閉弁し、それ以外のときには第二流量制御弁55bを開弁するようにしてもよい。これにより、原料燃料の過加熱を防止することができる。   In the present embodiment, as in the third embodiment, the second flow rate control valve depends on the temperature of the downstream heat pipe 61 and the flow rate of the raw material fuel to be supplied from the raw material fuel tank 23 to the separation unit 57. The opening degree of 55b may be adjusted. That is, the second flow rate control valve 55b is closed when the temperature of the downstream heat pipe 61 is very high and the flow rate of the raw material fuel to be supplied from the raw material fuel tank 23 to the separation unit 57 is small, and otherwise the second flow rate control valve 55b is closed. The flow control valve 55b may be opened. Thereby, overheating of the raw material fuel can be prevented.

1 機関本体
8 吸気ポート
10 排気ポート
11a、11b 燃料噴射弁
22 排気管
23 燃料タンク
24 燃料分離装置
25 排気熱回収装置
55 流量制御弁
60 上流側ヒートパイプ
61 下流側ヒートパイプ
60a、61a 熱回収部
60b、61b 熱交換部
63 燃料供給管
DESCRIPTION OF SYMBOLS 1 Engine body 8 Intake port 10 Exhaust port 11a, 11b Fuel injection valve 22 Exhaust pipe 23 Fuel tank 24 Fuel separator 25 Exhaust heat recovery device 55 Flow control valve 60 Upstream heat pipe 61 Downstream heat pipe 60a, 61a Heat recovery section 60b, 61b Heat exchange part 63 Fuel supply pipe

Claims (7)

熱回収部と熱交換部とを備える複数の熱輸送装置を具備し、各熱輸送装置は熱回収部において内燃機関から排出される排気ガスから熱を回収すると共にこの回収した熱を熱交換部において加熱対象へと伝熱する、排気熱回収装置において、
第一熱輸送装置の熱回収部は機関排気通路内に設けられた排気浄化触媒又はその上流側で排気ガスから熱を回収し、第二熱輸送装置の熱回収部は上記排気浄化触媒の下流側で排気ガスから熱を回収し、
上記複数の熱輸送装置の熱輸送能力は熱輸送装置毎に異なる、排気熱回収装置。
A plurality of heat transport devices including a heat recovery unit and a heat exchange unit are provided, and each heat transport device recovers heat from the exhaust gas discharged from the internal combustion engine in the heat recovery unit and uses the recovered heat to the heat exchange unit. In the exhaust heat recovery device that transfers heat to the heating target in
The heat recovery part of the first heat transport device recovers heat from the exhaust purification catalyst provided in the engine exhaust passage or upstream thereof, and the heat recovery part of the second heat transport device is downstream of the exhaust purification catalyst. Heat from the exhaust gas at the side ,
An exhaust heat recovery device in which the heat transport capability of the plurality of heat transport devices is different for each heat transport device.
上記第一熱輸送装置の熱容量は第二熱輸送装置の熱容量よりも小さい、請求項1に記載の排気熱回収装置。The exhaust heat recovery device according to claim 1, wherein the heat capacity of the first heat transport device is smaller than the heat capacity of the second heat transport device. 上記熱輸送装置はヒートパイプであり、上記第一熱輸送装置と第二熱輸送装置とではヒートパイプ内の熱媒体の量が異なる、請求項2に記載の排気熱回収装置。The exhaust heat recovery device according to claim 2, wherein the heat transport device is a heat pipe, and the first heat transport device and the second heat transport device have different amounts of heat medium in the heat pipe. 上記熱交換部では加熱対象流体の加熱が行われる、請求項1に記載の排気熱回収装置。The exhaust heat recovery apparatus according to claim 1, wherein the fluid to be heated is heated in the heat exchange unit. 熱回収部と熱交換部とを備える複数の熱輸送装置を具備し、各熱輸送装置は熱回収部において内燃機関から排出される排気ガスから熱を回収すると共にこの回収した熱を熱交換部において加熱対象へと伝熱する、排気熱回収装置において、A plurality of heat transport devices including a heat recovery unit and a heat exchange unit are provided, and each heat transport device recovers heat from the exhaust gas discharged from the internal combustion engine in the heat recovery unit and uses the recovered heat to the heat exchange unit. In the exhaust heat recovery device that transfers heat to the heating target in
第一熱輸送装置の熱回収部は機関排気通路内に設けられた排気浄化触媒又はその上流側で排気ガスから熱を回収し、第二熱輸送装置の熱回収部は上記排気浄化触媒の下流側で排気ガスから熱を回収し、The heat recovery part of the first heat transport device recovers heat from the exhaust purification catalyst provided in the engine exhaust passage or upstream thereof, and the heat recovery part of the second heat transport device is downstream of the exhaust purification catalyst. Heat from the exhaust gas at the side,
上記熱交換部では加熱対象流体の加熱が行われ、In the heat exchange part, the heating target fluid is heated,
上記内燃機関から排出される排気ガスの温度に応じて熱交換部を流れる加熱対象流体の流量が制御される、排気熱回収装置。An exhaust heat recovery apparatus in which a flow rate of a heating target fluid flowing through a heat exchange unit is controlled in accordance with a temperature of exhaust gas discharged from the internal combustion engine.
熱回収部と熱交換部とを備える複数の熱輸送装置を具備し、各熱輸送装置は熱回収部において内燃機関から排出される排気ガスから熱を回収すると共にこの回収した熱を熱交換部において加熱対象へと伝熱する、排気熱回収装置において、A plurality of heat transport devices including a heat recovery unit and a heat exchange unit are provided, and each heat transport device recovers heat from the exhaust gas discharged from the internal combustion engine in the heat recovery unit and uses the recovered heat to the heat exchange unit. In the exhaust heat recovery device that transfers heat to the heating target in
第一熱輸送装置の熱回収部は機関排気通路内に設けられた排気浄化触媒又はその上流側で排気ガスから熱を回収し、第二熱輸送装置の熱回収部は上記排気浄化触媒の下流側で排気ガスから熱を回収し、The heat recovery part of the first heat transport device recovers heat from the exhaust purification catalyst provided in the engine exhaust passage or upstream thereof, and the heat recovery part of the second heat transport device is downstream of the exhaust purification catalyst. Heat from the exhaust gas at the side,
上記熱交換部では加熱対象流体の加熱が行われ、In the heat exchange part, the heating target fluid is heated,
上記熱輸送装置がヒートパイプであり、上記第二熱輸送装置の温度が基準温度よりも低いときには、上記第二熱輸送装置の熱交換部を流れる加熱対象流の流量がゼロとされる、排気熱回収装置。When the heat transport device is a heat pipe and the temperature of the second heat transport device is lower than a reference temperature, the flow rate of the heating target flow that flows through the heat exchanging portion of the second heat transport device is zero. Heat recovery device.
熱回収部と熱交換部とを備える複数の熱輸送装置を具備し、各熱輸送装置は熱回収部において内燃機関から排出される排気ガスから熱を回収すると共にこの回収した熱を熱交換部において加熱対象へと伝熱する、排気熱回収装置において、A plurality of heat transport devices including a heat recovery unit and a heat exchange unit are provided, and each heat transport device recovers heat from the exhaust gas discharged from the internal combustion engine in the heat recovery unit and uses the recovered heat to the heat exchange unit. In the exhaust heat recovery device that transfers heat to the heating target in
第一熱輸送装置の熱回収部は機関排気通路内に設けられた排気浄化触媒又はその上流側で排気ガスから熱を回収し、第二熱輸送装置の熱回収部は上記排気浄化触媒の下流側で排気ガスから熱を回収し、The heat recovery part of the first heat transport device recovers heat from the exhaust purification catalyst provided in the engine exhaust passage or upstream thereof, and the heat recovery part of the second heat transport device is downstream of the exhaust purification catalyst. Heat from the exhaust gas at the side,
上記熱交換部では加熱対象流体の加熱が行われ、In the heat exchange part, the heating target fluid is heated,
上記第一熱輸送装置の熱交換部と上記第二熱輸送装置の熱交換部とを通る加熱対象流体用の流路と、上記第一熱輸送装置の熱交換部と上記第二熱輸送装置の熱交換部との間の流路に設けられた流量調整弁とを具備し、該流量調整弁は上記第一熱輸送装置の熱交換部を通った加熱対象流体のうち上記第二熱輸送装置の熱交換部を通る加熱対象流体の流量を調整する、排気熱回収装置。A flow path for a fluid to be heated that passes through a heat exchange section of the first heat transport device and a heat exchange section of the second heat transport device, a heat exchange section of the first heat transport device, and the second heat transport device A flow rate adjusting valve provided in a flow path between the second heat transport portion of the fluid to be heated that has passed through the heat exchanging portion of the first heat transport device. An exhaust heat recovery device that adjusts the flow rate of the fluid to be heated that passes through the heat exchange section of the device.
JP2009291431A 2008-12-22 2009-12-22 Exhaust heat recovery device Expired - Fee Related JP5334830B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/318,133 US20100154394A1 (en) 2008-12-22 2008-12-22 Exhaust heat recovery system
US12/318,133 2008-12-22

Publications (2)

Publication Number Publication Date
JP2010144733A JP2010144733A (en) 2010-07-01
JP5334830B2 true JP5334830B2 (en) 2013-11-06

Family

ID=42264090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291431A Expired - Fee Related JP5334830B2 (en) 2008-12-22 2009-12-22 Exhaust heat recovery device

Country Status (2)

Country Link
US (1) US20100154394A1 (en)
JP (1) JP5334830B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0618867D0 (en) * 2006-09-25 2006-11-01 Univ Sussex The Vehicle power supply system
JP5195381B2 (en) * 2008-12-11 2013-05-08 株式会社デンソー Exhaust heat recovery device
US8580111B2 (en) * 2010-11-29 2013-11-12 Toyota Jidosha Kabushiki Kaisha Device for separating fuel components
JP2012183978A (en) * 2011-03-08 2012-09-27 Denso Corp Heating device
US20130333673A1 (en) * 2012-05-16 2013-12-19 Transonic Combustion, Inc. Heating of fuel with exhaust gas recirculation
CN105180129B (en) * 2015-10-30 2017-06-27 山东舜耕干燥设备有限公司 Heat pipe waste heat boiler
US9816467B2 (en) * 2016-02-16 2017-11-14 Saudi Arabian Oil Company Adjusting a fuel on-board a vehicle
US9957903B2 (en) 2016-02-16 2018-05-01 Saudi Arabian Oil Company Adjusting a fuel on-board a vehicle
KR102598538B1 (en) * 2018-10-22 2023-11-03 현대자동차주식회사 Exhaust tail trim for vehicle
CN110410242A (en) * 2019-07-25 2019-11-05 吉林省丰奥汽车零部件有限公司 A kind of fuel Heating pipe of high efficient heat exchanging
CN113028870A (en) * 2021-03-03 2021-06-25 东营职业学院 Heat recovery equipment for petrochemical industry

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659720B2 (en) * 1987-09-11 1997-09-30 三菱重工業株式会社 Exhaust heat exchanger
US5599509A (en) * 1993-03-17 1997-02-04 Nippondenso Co., Ltd. Honeycomb body and catalyst converter having catalyst carrier configured of this honeycomb
DE19746658A1 (en) * 1997-10-22 1999-04-29 Emitec Emissionstechnologie Temperature control of nitrogen oxides storage catalyst used with diesel- and lean burn engines
US6871489B2 (en) * 2003-04-16 2005-03-29 Arvin Technologies, Inc. Thermal management of exhaust systems
JP4085998B2 (en) * 2004-03-22 2008-05-14 トヨタ自動車株式会社 Waste heat recovery device
US20060037589A1 (en) * 2004-08-17 2006-02-23 Ramesh Gupta Heat pipe for heating of gasoline for on-board octane segregation
US7275366B2 (en) * 2004-09-14 2007-10-02 Advanced Cleanup Technologies, Inc. High thermal efficiency Selective Catalytic Reduction (SCR) system
JP2006317013A (en) * 2005-04-12 2006-11-24 Denso Corp Heat pipe and waste heat recovering device using the same
JP2007187139A (en) * 2006-01-16 2007-07-26 Toyota Motor Corp Exhaust heat recovery system
JP2008051062A (en) * 2006-08-28 2008-03-06 Hitachi Ltd Automobile
US7832204B2 (en) * 2006-12-18 2010-11-16 Ford Global Technologies, Llc Engine system including heat pipe
US7797938B2 (en) * 2007-07-31 2010-09-21 Caterpillar Inc Energy recovery system

Also Published As

Publication number Publication date
US20100154394A1 (en) 2010-06-24
JP2010144733A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP5334830B2 (en) Exhaust heat recovery device
JP5340134B2 (en) In-vehicle fuel separator
US10041451B2 (en) Methods and systems for controlling air flow paths in an engine
JP5424857B2 (en) In-vehicle fuel separator
US8544446B2 (en) Fluid injection pressurization system
JP4498384B2 (en) Fuel supply device for an internal combustion engine having a membrane that separates gasoline into a high-octane fuel and a low-octane fuel
EP2565436A1 (en) Ammonia-burning internal combustion engine
US8327812B2 (en) Nucleate boiling cooling system
US8806858B2 (en) Method to protect the exhaust manifold from overheating using heat pipe
JP5502153B2 (en) Fuel supply device
JP5638586B2 (en) Fuel supply device
JP4952452B2 (en) Working gas circulation hydrogen engine
JP4923971B2 (en) Engine cooling system
WO2011114525A1 (en) Fuel supply device for internal combustion engine
JP6627245B2 (en) Thermal storage system
JP4345443B2 (en) In-vehicle fuel separation system
JP6095484B2 (en) Fuel supply device for internal combustion engine
JP5856530B2 (en) Fuel supply device
JP2010163909A (en) On-vehicle fuel separation device
JP6109644B2 (en) Fuel separation system for internal combustion engines
JP6004987B2 (en) Fuel separation system for internal combustion engines
US11220946B1 (en) Exhaust gas heat recovery system having a thermosiphon heat transfer circuit with an accumulator
JP2014227896A (en) Fuel separation system of internal combustion device
JP5836315B2 (en) Fuel supply device
JP6012543B2 (en) Fuel supply device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees