JP5333150B2 - Electrostatic analysis method and electrostatic analysis apparatus - Google Patents

Electrostatic analysis method and electrostatic analysis apparatus Download PDF

Info

Publication number
JP5333150B2
JP5333150B2 JP2009242702A JP2009242702A JP5333150B2 JP 5333150 B2 JP5333150 B2 JP 5333150B2 JP 2009242702 A JP2009242702 A JP 2009242702A JP 2009242702 A JP2009242702 A JP 2009242702A JP 5333150 B2 JP5333150 B2 JP 5333150B2
Authority
JP
Japan
Prior art keywords
electrostatic
detection
laser light
electrostatic field
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009242702A
Other languages
Japanese (ja)
Other versions
JP2011089846A (en
Inventor
誠吾 伊藤
和美 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2009242702A priority Critical patent/JP5333150B2/en
Publication of JP2011089846A publication Critical patent/JP2011089846A/en
Application granted granted Critical
Publication of JP5333150B2 publication Critical patent/JP5333150B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for analysis of static electricity, which precisely inspect workpieces at each manufacturing stage by laser beams and also inspect electrodeless workpieces without any electric contact. <P>SOLUTION: The method includes: a laser beam incidence step of irradiating the workpieces with laser beams while scanning; a reflection light detection step of detecting reflection light of the laser beams from the workpieces; an electrostatic field detection step of detecting an electrostatic field that changes because of incidence of the laser beams in the workpieces without any electric contact using a detection electrode of a static electricity detection sensor in synchronization with the reflection light detection step; an imaging step of imaging a detection signal acquired in the electrostatic field detection step, based on a detection signal acquired by the reflection light detection step; and an analysis step of analyzing the workpieces, based on electrostatic field strength distribution formed in the imaging step. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は静電解析方法及び静電解析装置に関し、例えば、レーザ光照射に伴って発生する静電位の変化を非接触で検出して半導体装置をはじめとする化合物半導体、強磁性材料、太陽電池等の各種電子デバイスの故障箇所や植物組織等の電極を有さない被検査対象部を解析する手法に関する。   The present invention relates to an electrostatic analysis method and an electrostatic analysis device, for example, a compound semiconductor including a semiconductor device, a ferromagnetic material, and a solar cell by detecting a change in electrostatic potential caused by laser light irradiation in a non-contact manner. The present invention relates to a technique for analyzing a part to be inspected which does not have an electrode such as a failure portion of various electronic devices such as plant tissue.

近年、半導体集積回路装置の高集積化、微細化、低電圧化の進展に伴って半導体集積回路装置内部に発生する故障や欠陥の大きさも極めて小さく、また、故障による異常電流や電圧も微小になってきている。このため、高感度で半導体集積回路装置の故障部分を正確に検出する方法が望まれている。   In recent years, with the progress of higher integration, miniaturization, and lower voltage of semiconductor integrated circuit devices, the size of failures and defects occurring inside semiconductor integrated circuit devices is extremely small, and abnormal currents and voltages due to failures are very small. It has become to. Therefore, there is a demand for a method of accurately detecting a defective portion of a semiconductor integrated circuit device with high sensitivity.

半導体装置の解析手法としては、半導体集積回路装置のチップ表面或いはチップ裏面よりレーザ光を照射し、その照射により発生した熱によって変化する半導体装置内の電気回路における電流や電圧、抵抗の変化を検出する解析法がある。この方法は“オバーク”法(OBIRCH;Optical Beam Induced Resistance CHange)と呼ばれ、以下、OBIRCHと称す。   As an analysis method for semiconductor devices, laser light is irradiated from the chip front surface or back surface of the semiconductor integrated circuit device, and changes in current, voltage, and resistance in the electrical circuit in the semiconductor device that change due to the heat generated by the irradiation are detected. There is an analysis method. This method is called “OBIRCH” (Optical Beam Induced Resistance Change), hereinafter referred to as OBIRCH.

また、半導体装置にレーザ光を照射して、照射したレーザ光により生成された電子やホールを検出する光励起解析法が知られている。この解析法は“オービック法”(OBIC;Optical Beam Induced Current)と呼ばれ、以下、OBICと称す。   In addition, a photoexcitation analysis method is known in which a semiconductor device is irradiated with laser light and electrons and holes generated by the irradiated laser light are detected. This analysis method is called “OBIC (Optical Beam Induced Current)” and is hereinafter referred to as OBIC.

また、最近では配線の微細化やプロセス工程の途中過程で、直接メタル配線や電極パッドに電極針を接触させることなく解析できる、非バイアス、非接触プローブ解析が提案されている。例えば、励起レーザ照射による光起電流によってメタル配線を含む閉ループが形成され、その箇所で生ずる磁場を検出する、レーザスクイッド(Laser SQUID)法がある。或いは、パルス状のレーザ光を半導体装置に照射した際に生ずる電磁波を検出するテラヘルツ解析法がある。   Recently, a non-biased and non-contact probe analysis has been proposed that can be analyzed without bringing an electrode needle directly into contact with a metal wiring or an electrode pad in the course of miniaturization of wiring or in the course of a process. For example, there is a laser squid (Laser SQUID) method in which a closed loop including a metal wiring is formed by a photocurrent generated by excitation laser irradiation, and a magnetic field generated at that location is detected. Alternatively, there is a terahertz analysis method for detecting electromagnetic waves generated when a semiconductor device is irradiated with pulsed laser light.

上に挙げたレーザ光を用いた各解析手法は、レーザ走査に同期した形で故障箇所の物理位置特定ができるために、半導体装置の解析分野では広く活用されている。   The above-described analysis methods using laser light are widely used in the field of semiconductor device analysis because they can identify the physical location of a failure location in synchronization with laser scanning.

特開平06−300824号公報Japanese Patent Laid-Open No. 06-300824 特開平05−203877号公報Japanese Patent Laid-Open No. 05-203877

二川 清,「光を用いたLSIの故障解析技術」,日本信頼性学会誌「信頼性」,Vol.26,No.1,pp.28−36,2004Kiyoshi Futagawa, "Failure analysis technology of LSI using light", Journal of Reliability Society of Japan "Reliability", Vol. 26, no. 1, pp. 28-36, 2004

半導体集積回路装置の製造は200以上の工程を経て作り上げられるため、製品出荷された半導体装置に問題が発覚した場合に、半導体装置の製造途中の多くの仕掛り品や膨大な時間的なロスを発生させることになる。したがって、より製造工程の前段階で検査・解析を行い異常や問題を検出する必要がある。   Since the manufacture of semiconductor integrated circuit devices is completed through more than 200 processes, when a problem is discovered in a semiconductor device shipped, many work-in-progress products and enormous time losses are in the process of manufacturing the semiconductor device. Will be generated. Therefore, it is necessary to perform an inspection / analysis in an earlier stage of the manufacturing process to detect abnormalities and problems.

ところが、上述のOBIRCHやOBICによる解析では電極針を内部回路に接触させるための露出したパッド形成が必要であり、メタル配線は形成されていてもパッドが形成されていない段階の半導体装置の解析はできないという問題がある。   However, in the above-described analysis by OBIRCH or OBIC, it is necessary to form an exposed pad for bringing the electrode needle into contact with the internal circuit, and the analysis of the semiconductor device at the stage where the metal wiring is formed but the pad is not formed is performed. There is a problem that you can not.

また、上述レーザスクイッド法やテラヘルツ解析法の場合には、非接触で行うことができるためパッド形成は必要ないが、半導体装置のメタル配線工程まで完了していないと解析できないという問題がある。   In the case of the above-described laser squid method or terahertz analysis method, pad formation is unnecessary because it can be performed in a non-contact manner, but there is a problem that analysis cannot be performed unless the metal wiring process of the semiconductor device is completed.

したがって、従来のレーザ光を用いたいずれの解析手法の場合も、半導体装置のメタル配線が形成される工程まで完了しないと適用することができなかった。その結果、従来手法では拡散工程の異常や基板の欠陥異常、不純物注入異常等のようなメタル配線工程より前の製造工程の解析を行うことができないという問題がある。   Therefore, any analysis method using the conventional laser beam cannot be applied unless the process of forming the metal wiring of the semiconductor device is completed. As a result, there is a problem that the conventional method cannot analyze the manufacturing process prior to the metal wiring process, such as a diffusion process abnormality, a substrate defect abnormality, and an impurity implantation abnormality.

したがって、本発明は、レーザ光を用いた被検査対象物の各製造段階における検査や電極を有さない被検査対象物の検査を、電気的に非接触で精度良く行うことを目的とする。   Therefore, an object of the present invention is to perform inspection in each manufacturing stage of an inspection target object using a laser beam and inspection of an inspection target object that does not have electrodes with high accuracy in a non-contact manner.

開示する一観点からは、被検査対象物にレーザ光を走査しながら照射するレーザ光入射工程と、前記レーザ光の前記被検査対象物からの反射光を検出する反射光検出工程と、前記反射光検出工程と同期して、前記被検査対象物において前記レーザ光の入射に起因して変化する静電界を静電検出センサの検出電極により電気的に非接触で検出する静電界検出工程と、前記静電界検出工程で取得した検出信号を前記反射光検出工程で取得した検出信号に基づき画像化する画像化工程と、前記画像化工程で形成した静電界強度分布に基づいて前記被検査対象物を解析する解析工程とを有する静電解析方法が提供される。   From one aspect to be disclosed, a laser light incident step of irradiating the inspection target while scanning the laser light, a reflected light detection step of detecting reflected light of the laser light from the inspection target, and the reflection An electrostatic field detection step of detecting an electrostatic field that changes due to incidence of the laser beam in the inspection object in an electrically non-contact manner by a detection electrode of an electrostatic detection sensor in synchronization with a light detection step; An imaging step of imaging the detection signal acquired in the electrostatic field detection step based on the detection signal acquired in the reflected light detection step, and the inspection object based on the electrostatic field intensity distribution formed in the imaging step There is provided an electrostatic analysis method having an analysis step of analyzing

また、開示する別の観点からは、レーザ光源と、被検査対象物に前記レーザ光源からのレーザ光を走査しながら照射する走査光学系と、前記レーザ光の前記被検査対象物からの反射光を検出する反射光検出手段と、前記反射光検出と同期して、前記被検査対象物において前記レーザ光の入射に起因して変化する静電界を電気的に非接触で検出する検出電極を備えた静電検出センサと、前記静電検センサで取得した検出信号を前記反射光検出手段で取得した検出信号に基づき画像化する画像化手段とを有する静電解析装置が提供される。   Further, from another viewpoint to be disclosed, a laser light source, a scanning optical system that irradiates the inspection target while scanning the laser light from the laser light source, and reflected light of the laser light from the inspection target And a detection electrode for detecting an electrostatic field that changes due to incidence of the laser light in the inspection object in a non-contact manner in synchronization with the detection of the reflected light. There is provided an electrostatic analysis apparatus having an electrostatic detection sensor and an imaging means for imaging a detection signal acquired by the electrostatic detection sensor based on the detection signal acquired by the reflected light detection means.

開示の静電解析方法及び静電解析装置によれば、加工が難しい試料や半導体装置等の電子デバイスの製造工程の中間製品解析や、植物組織等の電極を有さない被検査対象物の解析を非接触で精度良く解析することが可能となる。   According to the disclosed electrostatic analysis method and electrostatic analysis apparatus, analysis of intermediate products in the manufacturing process of electronic devices such as difficult-to-process samples and semiconductor devices, and analysis of objects to be inspected that do not have electrodes such as plant tissue Can be accurately analyzed without contact.

本発明の実施の形態の静電解析装置の概念的構成図である。1 is a conceptual configuration diagram of an electrostatic analysis device according to an embodiment of the present invention. レーザ光照射による過渡電界発生原理の説明図である。It is explanatory drawing of the transient electric field generation | occurrence | production principle by laser beam irradiation. レーザ光照射により発生する静電界の模式的説明図である。It is a typical explanatory view of the electrostatic field generated by laser light irradiation. 本発明の実施例1の静電解析装置の概念的構成図である。It is a notional block diagram of the electrostatic analysis apparatus of Example 1 of this invention. 本発明の実施例1に用いる静電界プローブ及びアンプの構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is structure explanatory drawing of the electrostatic field probe and amplifier used for Example 1 of this invention. 検出電極の変形例の説明図である。It is explanatory drawing of the modification of a detection electrode. QFPパッケージの解析結果の説明図である。It is explanatory drawing of the analysis result of a QFP package. ベアシリコン基板の結晶欠陥解析結果の説明図である。It is explanatory drawing of the crystal defect analysis result of a bare silicon substrate. 本発明の実施例2の静電解析装置の概念的構成図である。It is a notional block diagram of the electrostatic analyzer of Example 2 of the present invention. 本発明の実施例3の静電解析装置の概念的構成図である。It is a notional block diagram of the electrostatic analyzer of Example 3 of the present invention. 本発明の実施例4の静電解析装置の概念的構成図である。It is a notional block diagram of the electrostatic analysis apparatus of Example 4 of this invention. 本発明の実施例5の静電解析装置の概念的構成図である。It is a notional block diagram of the electrostatic analysis apparatus of Example 5 of this invention.

ここで、図1乃至図3を参照して、本発明の実施の形態を説明する。図1は本発明の実施の形態の静電解析装置の概念的構成図である。レーザ光源1、試料台2、試料台2に載置した被検査対象物3にレーザ光源1からのレーザ光を走査しながら照射する走査光学系4、静電界を検出する検出電極6を備えた静電検出センサ5、被検査対象物3からの反射光を検出する反射光検出手段7を具備する。また、静電検出センサ5で取得した検出信号を反射光検出手段7で取得した検出信号に基づき画像化する画像化手段8を具備する。   Here, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a conceptual configuration diagram of an electrostatic analysis apparatus according to an embodiment of the present invention. A laser light source 1, a sample stage 2, a scanning optical system 4 for irradiating the inspection object 3 placed on the sample stage 2 while scanning the laser light from the laser light source 1, and a detection electrode 6 for detecting an electrostatic field are provided. An electrostatic detection sensor 5 and reflected light detection means 7 for detecting reflected light from the inspection object 3 are provided. Further, an imaging means 8 for imaging the detection signal acquired by the electrostatic detection sensor 5 based on the detection signal acquired by the reflected light detection means 7 is provided.

次に、検査手法を説明する。レーザ光源1から放出されたレーザ光をガルバノスキャンミラー等の走査光学系4で走査しながら半導体チップ等の被検査対象物3の全面、もしくは部分領域に照射する。レーザ光照射より被検査対象物3で発生した静電界を検出電極6を備えた静電検出センサ5で検出する。一方、被検査対象物3に走査されながら照射されたレーザ光の一部は反射され、反射光はハーフミラーを含む反射光検出手段7により検出されて被検査対象物3の光学像を形成する。   Next, an inspection method will be described. The laser light emitted from the laser light source 1 is irradiated on the entire surface or a partial region of the inspection object 3 such as a semiconductor chip while scanning with a scanning optical system 4 such as a galvano scan mirror. An electrostatic field generated in the inspection object 3 by laser light irradiation is detected by an electrostatic detection sensor 5 provided with a detection electrode 6. On the other hand, a part of the laser light irradiated while scanning the inspection object 3 is reflected, and the reflected light is detected by the reflected light detection means 7 including a half mirror to form an optical image of the inspection object 3. .

静電検出センサ5で検出された検出信号は、画像化手段8において反射光検出手段7により検出された検出信号、即ち、被検査対象物3の位置情報と同期させてマッピングすることにより静電界分布図として画像化する。この静電界分布図における暗点或いは輝点を欠陥箇所或いは故障箇所として解析を行う。   The detection signal detected by the electrostatic detection sensor 5 is mapped in synchronization with the detection signal detected by the reflected light detection means 7 in the imaging means 8, that is, the positional information of the object 3 to be inspected. It is imaged as a distribution map. The dark spot or bright spot in this electrostatic field distribution map is analyzed as a defective part or a fault part.

例えば、被検査対象物3としての半導体装置のPN接合部位にレーザビーム光を照射した際に光起電流によってここは電子双極子として作用し、距離rでの電界E(r)は、A,j,k(波数)を定数とすると、
E(r)=A(1/r3 +jk/r2 +k2 /r)
で表される。
For example, when a PN junction portion of a semiconductor device as an object to be inspected 3 is irradiated with a laser beam, it acts as an electron dipole by a photocurrent, and an electric field E (r) at a distance r is A, If j and k (wave numbers) are constants,
E (r) = A (1 / r 3 + jk / r 2 + k 2 / r)
It is represented by

ここで、右辺の第1項は静電界と呼び距離rの3 乗に逆比例し、第2項は誘導電界と呼び距離rの2 乗に逆比例し、第3項は放射電界(電波)と呼ばれ、減衰が少なく遠くまで伝搬する。このように、放射電界は電界発生部位より距離rに反比例し現象するため離れた箇所でも検出でき、誘導電界は距離rの2乗に反比例する。   Here, the first term on the right side is inversely proportional to the square of the electrostatic field and the nominal distance r, the second term is inversely proportional to the square of the induced electric field and the nominal distance r, and the third term is the radiated electric field (radio wave). It is called and propagates far away with little attenuation. As described above, the radiation electric field is inversely proportional to the distance r from the electric field generation site and thus can be detected even at a remote location, and the induced electric field is inversely proportional to the square of the distance r.

一方、本発明の検出対象である第1項の近距離に作用し周波数(波動)に無関係な静電界は距離rの3乗に反比例するため被検査対象物3の至近距離に検出電極6を配置する必要がある。また、静電界は被検査対象物3の全体に分布するが、レーザ光が照射される領域の強度が高いので、検出電極6はその付近に配置されるのが望ましい。   On the other hand, since the electrostatic field that acts on the short distance of the first term, which is the detection target of the present invention and is irrelevant to the frequency (wave), is inversely proportional to the cube of the distance r, the detection electrode 6 is placed close to the object 3 to be inspected. Need to be placed. Further, although the electrostatic field is distributed over the entire inspection object 3, since the intensity of the region irradiated with the laser light is high, the detection electrode 6 is preferably disposed in the vicinity thereof.

図2はレーザ光照射による過渡電界発生原理の説明図であり、ここでは、半導体チップにレーザ光を照射した場合を例に説明する。レーザ光が半導体装置回路の接合部、ソース・ドレイン拡散部、コンタクトやメタル配線等の回路エレメント9に当った際にレーザスポット径で決まる微小エリアで電界Eが発生する。電界Eの発生は回路エレメント9の境界が温度勾配や電界勾配が大きくなるため、図に示すように回路エレメント9の境界で電界検出信号は強くなる。なお、符号10は素子分離層である。   FIG. 2 is an explanatory view of the principle of generation of a transient electric field by laser light irradiation. Here, a case where a semiconductor chip is irradiated with laser light will be described as an example. An electric field E is generated in a minute area determined by the laser spot diameter when the laser light hits a circuit element 9 such as a junction part of a semiconductor device circuit, a source / drain diffusion part, a contact or a metal wiring. In the generation of the electric field E, the temperature gradient and the electric field gradient at the boundary of the circuit element 9 increase, so that the electric field detection signal becomes strong at the boundary of the circuit element 9 as shown in the figure. Reference numeral 10 denotes an element isolation layer.

電界Eは主に近赤外レーザ光の照射熱によるゼーベック効果(熱起電力)やシリコン基板のバンドギャップより高いエネルギーを有するレーザ光を照射した際に生ずる電子・正孔対による光起電流によって発生する。或いは、レーザ光の半導体装置回路の回路パターンからの反射や吸収の違いによって生じる静電界変化がある。また、PZT等の強誘電体材料に近赤外レーザ照射した場合には、発熱に起因する焦電電流による電界が発生する。   The electric field E is mainly due to the Seebeck effect (thermoelectromotive force) due to the irradiation heat of near-infrared laser light and the photocurrent due to electron-hole pairs generated when laser light having energy higher than the band gap of the silicon substrate is irradiated. Occur. Alternatively, there is an electrostatic field change caused by a difference in reflection or absorption of the laser light from the circuit pattern of the semiconductor device circuit. When a ferroelectric material such as PZT is irradiated with a near-infrared laser, an electric field is generated by a pyroelectric current caused by heat generation.

図3は、レーザ光照射により発生する静電界の模式的説明図であり、図3(a)は、被検査対象物の裏面からレーザ光を照射した場合を示し、図3(b)は、被検査対象物の表面からレーザ光を照射した場合を示している。   FIG. 3 is a schematic explanatory view of an electrostatic field generated by laser light irradiation. FIG. 3 (a) shows a case where laser light is irradiated from the back surface of the object to be inspected, and FIG. The case where the laser beam is irradiated from the surface of the inspection object is shown.

いずれの場合も、発生した静電界は瞬時に半導体チップの表面に分布し、チップに接近させた静電界プローブにて検出が可能である。なお、図3(b)に示すように、表面から照射するレーザ光は半導体装置の基板を透過させる必要がないためにエネルギーの高い、即ち、波長の短いレーザ光が利用でき、且つ、表面回路だけの効率的な静電界の発生・検出が可能になる。   In any case, the generated electrostatic field is instantaneously distributed on the surface of the semiconductor chip and can be detected by an electrostatic field probe brought close to the chip. As shown in FIG. 3B, the laser beam irradiated from the surface does not need to be transmitted through the substrate of the semiconductor device, so that a laser beam having a high energy, that is, a short wavelength can be used, and a surface circuit is used. It is possible to generate and detect an electrostatic field that is only as efficient as possible.

また、空間分解能は照射するレーザ光のスポット径に依存する。例えば、1340nm波長の近赤外レーザを用いた場合1000nmまで、また、632nm付近の可視レーザを使用した場合は分解能は500nm以下まで改善できる。なお、後者の波長はシリコン基板を透過することができないため、図3(b)に示すように、半導体装置のチップ表面回路情報だけを検出するのに有効である。   Further, the spatial resolution depends on the spot diameter of the irradiated laser beam. For example, the resolution can be improved to 1000 nm when a near-infrared laser having a wavelength of 1340 nm is used, and the resolution can be improved to 500 nm or less when a visible laser near 632 nm is used. Since the latter wavelength cannot be transmitted through the silicon substrate, it is effective to detect only the chip surface circuit information of the semiconductor device as shown in FIG.

また、静電検出センサ5は、S/N比を上げるために入力容量が2.0pF以下の低入力容量のMOS型FET或いはGaAsFET等の接合型FETが望ましいが、EO(電気光学結晶)を用いた静電センサやブリッジ回路を用いても良い。なお、10pF以上の入力容量のFETを用いた場合には良好な検出結果がえられなかった。   The electrostatic detection sensor 5 is preferably a junction type FET such as a MOS type FET or a GaAs FET having a low input capacity of 2.0 pF or less in order to increase the S / N ratio, but an EO (electro-optic crystal) is used. The used electrostatic sensor or bridge circuit may be used. In addition, when a FET having an input capacitance of 10 pF or more was used, a good detection result could not be obtained.

静電検出センサ5に2.0pF以下の低入力容量の電界効果型トランジスタを用いた場合には、検出電極6によって変化する電界を電位として電界効果型トランジスタのゲートで検知して、ドレイン−ソース間の電流量として電界を定量的に検出する。   When a field effect transistor having a low input capacitance of 2.0 pF or less is used for the electrostatic detection sensor 5, the electric field changed by the detection electrode 6 is detected as a potential at the gate of the field effect transistor, and the drain-source The electric field is quantitatively detected as the amount of current between them.

また、電界効果トランジスタのゲートに接続した検出電極6は、検出する範囲に応じて使い分けられ、広い平行面積を有する容量電極は検出電界量が多くなるため数mm離れた場所でも検出ができる。したがって、半導体装置が組み立てられた状態、例えば、パッケージ樹脂で封止された状態でも変化する静電界が検出可能である。一方、電界が微弱で且つ小さい領域の検出のためには細い針状の電極を用いる。   In addition, the detection electrode 6 connected to the gate of the field effect transistor is selectively used according to the detection range, and the capacitance electrode having a large parallel area can be detected even at a location several mm away because the detection electric field amount increases. Therefore, it is possible to detect an electrostatic field that changes even when the semiconductor device is assembled, for example, when it is sealed with a package resin. On the other hand, a thin needle electrode is used for detecting a small area where the electric field is weak.

いずれの電極においても先端に誘電率の高い素材を挟むことで、効率的に電界が検出できる。また、誘電体を挟むことで半導体装置回路の露出したメタル配線にも適用が可能になる。   In any electrode, an electric field can be efficiently detected by sandwiching a material having a high dielectric constant at the tip. In addition, it can be applied to the exposed metal wiring of the semiconductor device circuit by sandwiching the dielectric.

また、検出感度を高めるために、被検査対象物に配線が形成されている場合には、レーザ光の走査周期より速い周波数のリップル電圧を誘導結合により印加しても良い。または、レーザ光源を直接変調することにより或いは放射されたレーザ光をEO結晶等により、レーザ光の走査周期より速い周波数で光変調しても良い。   In order to increase the detection sensitivity, when a wiring is formed on the object to be inspected, a ripple voltage having a frequency faster than the scanning period of the laser beam may be applied by inductive coupling. Alternatively, the laser light source may be directly modulated or the emitted laser light may be optically modulated with an EO crystal or the like at a frequency faster than the scanning period of the laser light.

以上、説明したように、本発明は、従来のように誘導電界や放射電界を検出するのではなく、メタル配線がなくてもレーザ光照射により発生する静電界を検出しているので、各製造段階のデバイスの解析に用いることができる。また、レーザ光照射によって一部分で生じた微小電界は瞬時に被検出対象物の表面の全面に伝達し分布する静電検出センサを被検出対象物の表面や裏面のどのような箇所に配置しても検出が可能になる。   As described above, the present invention does not detect an induced electric field or a radiated electric field as in the prior art, but detects an electrostatic field generated by laser light irradiation even without a metal wiring. Can be used for stage device analysis. In addition, a minute electric field generated in part by laser light irradiation is instantaneously transmitted and distributed over the entire surface of the object to be detected. Can also be detected.

さらに、本発明は容量結合により静電界を検出するため、被検査対象物がパッケージされた半導体装置である場合、パッケージ樹脂の誘電率εp (≒4)が空気の誘電率の1より高く、検出電極の結合係数が増えて効率的に故障箇所の信号を検出することができる。 Further, since the present invention detects an electrostatic field by capacitive coupling, when the object to be inspected is a packaged semiconductor device, the dielectric constant ε p (≈4) of the package resin is higher than 1 of the dielectric constant of air, The coupling coefficient of the detection electrode is increased, and the signal at the failure location can be detected efficiently.

以上を前提として、次に、図4乃至図8を参照して本発明の実施例1の静電解析装置を説明する。図4は、本発明の実施例1の静電解析装置の概念的構成図であり、レーザ光源11、ガルバノミラー12、半導体チップ15を載置する透明板14を備えたステージ13、検出電極を構成する平板の容量電極17を備えた静電界プローブ16、アンプ18を備えている。また、半導体チップ15で反射されたレーザ光を反射するハーフミラー19、反射光を検出する光検出器20、アンプ21、及び、PC等の画像化装置22を備えている。   Based on the above, the electrostatic analysis apparatus according to the first embodiment of the present invention will now be described with reference to FIGS. FIG. 4 is a conceptual configuration diagram of the electrostatic analysis apparatus according to the first embodiment of the present invention. The stage 13 including the laser light source 11, the galvano mirror 12, the transparent plate 14 on which the semiconductor chip 15 is placed, and the detection electrode are illustrated. An electrostatic field probe 16 having a flat capacitive electrode 17 and an amplifier 18 are provided. Further, a half mirror 19 that reflects the laser light reflected by the semiconductor chip 15, a photodetector 20 that detects the reflected light, an amplifier 21, and an imaging device 22 such as a PC are provided.

図5は本発明の実施例1に用いる静電界プローブ及びアンプの構成説明図であり、図4(a)は全体構成図であり、図4(b)は、アンプの回路構成図である。図4(a)に示すように、静電界プローブ16は入力容量が0.02pFのMOS型FET或いは入力容量が2.0pFの接合型FET等の電界効果型トランジスタで構成される。   FIGS. 5A and 5B are explanatory diagrams of the configuration of the electrostatic field probe and the amplifier used in the first embodiment of the present invention, FIG. 4A is an overall configuration diagram, and FIG. 4B is a circuit configuration diagram of the amplifier. As shown in FIG. 4A, the electrostatic field probe 16 is composed of a field effect transistor such as a MOS FET having an input capacitance of 0.02 pF or a junction FET having an input capacitance of 2.0 pF.

また、アンプ18は、抵抗R1 が接続されたソースアンプOP1 と抵抗R2 が接続された入力アンプOP2 からなり、抵抗R1 や抵抗R2 を可変にして出力レベルV0 や入力VINのゲインを調整する。 The amplifier 18 includes a source amplifier OP 1 to which a resistor R 1 is connected and an input amplifier OP 2 to which a resistor R 2 is connected. The output level V 0 and the input VIN are made variable by changing the resistors R 1 and R 2. Adjust the gain.

電界効果トランジスタのドレイン−ソース間にアンプ18により10mV〜5Vのバイアスを印加して変化する電流をアンプ18で増幅して解析画像の輝度信号に変換する。電界効果トランジスタのゲートは容量電極17を接続して開放状態で使い、容量結合による電界を検出する。   The amplifier 18 applies a bias of 10 mV to 5 V between the drain and the source of the field effect transistor, and the amplifier 18 amplifies the changing current to convert it into a luminance signal of the analysis image. The gate of the field effect transistor is used in an open state with the capacitor electrode 17 connected to detect the electric field due to capacitive coupling.

次に、解析手順を説明すると、レーザ光源11から出たビーム光はガルバノミラー12で水平と垂直に走査され、光学系を通って半導体チップ15の所望の場所にフォーカスされ、まず、反射した光は光検出器で捕えて画像化装置22において光学像を作る。   Next, the analysis procedure will be described. The beam light emitted from the laser light source 11 is scanned horizontally and vertically by the galvano mirror 12, focused on a desired location of the semiconductor chip 15 through the optical system, and first reflected light. Is captured by a photodetector to produce an optical image in the imaging device 22.

また、レーザ光よって変化する静電界は容量電極17を介して静電界プローブ16で検出され、画像化装置22においてレーザ光の走査タイミングに同期させることによって信号の強度に応じて画像のコントラストとして表示する。これが解析像である。両者の像を合成することで故障位置を特定することができる。   Further, the electrostatic field changed by the laser light is detected by the electrostatic field probe 16 through the capacitive electrode 17, and is displayed as image contrast according to the signal intensity by synchronizing with the scanning timing of the laser light in the imaging device 22. To do. This is an analytical image. The failure position can be specified by combining both images.

本発明の実施例1においては、レーザ光照射に伴って発生する静電界を検出するだけであるので、被検査対象物である半導体チップを無バイアス且つ電気的に非接触で欠陥箇所や故障箇所の解析を行うことができる。したがって、配線形成前の半導体チップの欠陥箇所や故障箇所の解析を行うことが可能になる。   In the first embodiment of the present invention, only the electrostatic field generated with laser light irradiation is detected, so that the semiconductor chip that is the object to be inspected is not biased and electrically non-contact with a defective portion or a failed portion. Can be analyzed. Therefore, it becomes possible to analyze a defective portion or a failed portion of the semiconductor chip before wiring formation.

図6は、検出電極の変形例の説明図である。図6(a)は、検出電極としての平板の容量電極17の下部に誘電体層23を設けたものである。この場合の誘電体層23としては、例えば、ガラス(SiO2)、ゴム、アクリル等を用いる。 FIG. 6 is an explanatory diagram of a modified example of the detection electrode. FIG. 6A shows a structure in which a dielectric layer 23 is provided below a flat capacitor electrode 17 as a detection electrode. As the dielectric layer 23 in this case, for example, glass (SiO 2 ), rubber, acrylic, or the like is used.

このように、容量電極17と半導体チップ15の間に誘電体層23を入れて結合容量を増やすことにより、半導体チップ15の表面の電界を効率良く検出することが可能になる。また、半導体チップ15の表面メタル等の導体が露出している場合においてもショートすることなく測定することができる。   As described above, by inserting the dielectric layer 23 between the capacitor electrode 17 and the semiconductor chip 15 to increase the coupling capacitance, the electric field on the surface of the semiconductor chip 15 can be detected efficiently. Further, even when a conductor such as a surface metal of the semiconductor chip 15 is exposed, measurement can be performed without a short circuit.

図6(b)は、検出電極としての針状電極24を用いたものである。この針状電極24の直径は、例えば、0.01mm〜0.5mm程度とする。このような針状電極24を用いることにより、小さいエリアの検出が可能になる。   FIG. 6B uses the needle electrode 24 as a detection electrode. The diameter of the needle electrode 24 is, for example, about 0.01 mm to 0.5 mm. By using such a needle-like electrode 24, a small area can be detected.

即ち、静電界は上述のように距離rの3乗に反比例して減衰するために、細い針の場合、先端の接触面以外の結合容量は減衰し、半導体チップ15に接近するエリアだけの電界を検出することになる。半導体チップ15がメタル配線に覆われてシリコン基板との容量結合が低い場合に、メタル配線が少ない場所に針状電極24を接近させることで効率的に静電界を検出することができる。なお、この針状電極24の先端部に誘電体を設けることにより、図6(a)の場合と同様の効果が期待できる。   That is, since the electrostatic field attenuates in inverse proportion to the cube of the distance r as described above, in the case of a thin needle, the coupling capacitance other than the contact surface at the tip is attenuated, and the electric field only in the area approaching the semiconductor chip 15 is obtained. Will be detected. When the semiconductor chip 15 is covered with metal wiring and capacitive coupling with the silicon substrate is low, an electrostatic field can be efficiently detected by bringing the needle-like electrode 24 close to a place where the metal wiring is small. In addition, by providing a dielectric at the tip of the needle electrode 24, the same effect as in the case of FIG. 6A can be expected.

図7は、QFPパッケージの解析結果の説明図であり、図7(a)は測定状態を示す平面図であり、図7(b)は測定状態を示す断面図である。また、図7(c)は取得した反射光による光学像であり、図7(d)は取得したNEPS(Nano Electrostatic field Probe Sensor)像である。   FIG. 7 is an explanatory diagram of the analysis result of the QFP package, FIG. 7A is a plan view showing the measurement state, and FIG. 7B is a cross-sectional view showing the measurement state. FIG. 7C is an optical image by the acquired reflected light, and FIG. 7D is an acquired NEPS (Nano Electrostatic Field Probe Sensor) image.

図7(b)に示すように、静電気破壊したQFP(Quad Flat Package)のパッケージ封止樹脂25の裏側を取り除き半導体チップ26の裏面を露出させた状態で波長が1064nmで10mWのレーザ光を照射し発生する電界をパッケージ表面から検出した。   As shown in FIG. 7B, a laser beam having a wavelength of 1064 nm and 10 mW is irradiated with the back side of the package sealing resin 25 of QFP (Quad Flat Package) electrostatically destroyed removed and the back side of the semiconductor chip 26 exposed. The generated electric field was detected from the package surface.

図7(d)のNEPS像における上部の白い部位が破壊箇所であり、図7(c)の光学像と合わせて判断するとのゲート電極の位置に当たる。同箇所は静電気ストレスによりMOSトランジスタのゲートが破壊し、レーザ光照射により励起効率が高まり、キャリアの移動増による電界が高くなり、白いコントラストとして顕在化したものである。   The white portion at the top of the NEPS image in FIG. 7D is a broken portion, which corresponds to the position of the gate electrode that is determined together with the optical image in FIG. In this place, the gate of the MOS transistor is destroyed by electrostatic stress, the excitation efficiency is increased by laser light irradiation, the electric field is increased due to the increased movement of carriers, and is manifested as white contrast.

図8は、ベアシリコン基板の結晶欠陥解析結果の説明図であり、図8(a)は測定状態を示す斜視図であり、図8(b)は測定時における電界イメージを示す断面図である。また、図8(c)は取得した反射光による光学像であり、図8(d)は取得したNEPS像である。   FIG. 8 is an explanatory view of the result of crystal defect analysis of a bare silicon substrate, FIG. 8 (a) is a perspective view showing a measurement state, and FIG. 8 (b) is a cross-sectional view showing an electric field image at the time of measurement. . FIG. 8C is an optical image by the acquired reflected light, and FIG. 8D is an acquired NEPS image.

図8(a)に示すように、波長が1152nmで2mWのHeNeレーザ光をベアシリコン基板27の裏面から照射し、裏面及び表面で変化する静電界を表面側で静電界プローブ16により検出する。図8(b)に示すように、静電界はベアシリコン基板27に一様に分布しているため、どの位置に静電界プローブ16を持ってきても検出はできる。なお、図8(b)における黒丸は電子を、また、白丸は正孔を表す。   As shown in FIG. 8A, a HeNe laser beam having a wavelength of 1152 nm and 2 mW is irradiated from the back surface of the bare silicon substrate 27, and an electrostatic field changing on the back surface and the surface is detected by the electrostatic field probe 16 on the surface side. As shown in FIG. 8B, since the electrostatic field is uniformly distributed on the bare silicon substrate 27, the electrostatic field probe 16 can be detected at any position. In FIG. 8B, black circles represent electrons and white circles represent holes.

図8(d)に示すNEPS像においては、図8(c)に示す光学像では見ることができない、結晶欠陥部が黒いコントラストとして検出されている。ベアシリコン基板27の結晶欠陥部分は正常な部位に比べて励起効率が低いために周りの正常な部位で発生した励起によるキャリアが再結合しやすく、電界が低くなるため黒いコントラストになったものである。   In the NEPS image shown in FIG. 8D, a crystal defect portion that cannot be seen in the optical image shown in FIG. 8C is detected as a black contrast. Since the crystal defect portion of the bare silicon substrate 27 has lower excitation efficiency than that of a normal portion, carriers due to excitation generated in the surrounding normal portion are easily recombined, and the electric field is low, resulting in black contrast. is there.

次に、図9を参照して、本発明の実施例2の静電解析装置を説明するが、基本的構成は上記の実施例1と同じであり、実施例1に対してリップル電圧、即ち、交流電界を印加する手段を設けたものである。図9は、本発明の実施例2の静電解析装置の概念的構成図であり、実施例2に特有の特徴点のみを説明する。   Next, the electrostatic analysis apparatus according to the second embodiment of the present invention will be described with reference to FIG. 9, but the basic configuration is the same as that of the first embodiment. Means for applying an alternating electric field are provided. FIG. 9 is a conceptual configuration diagram of the electrostatic analysis apparatus according to the second embodiment of the present invention, and only the characteristic points unique to the second embodiment will be described.

この実施例2においては、上記の実施例1の構成に加えて半導体チップ15に対してリップル電圧を印加する電極31,32からなる電極対を設けるとともに、アンプとしてロックインアンプ33を用いたものである。電極31を半導体チップのVDD端子近傍に配置し、電極32をGND端子近傍に配置し、容量結合により半導体チップにリップル電圧を印加する。 In the second embodiment, in addition to the configuration of the first embodiment, an electrode pair including electrodes 31 and 32 for applying a ripple voltage to the semiconductor chip 15 is provided, and a lock-in amplifier 33 is used as an amplifier. It is. The electrode 31 is disposed in the vicinity of the V DD terminal of the semiconductor chip, the electrode 32 is disposed in the vicinity of the GND terminal, and a ripple voltage is applied to the semiconductor chip by capacitive coupling.

この場合のリップル電圧は、電極31,32の結合容量、半導体チップ15のインピーダンス、固有リアクタンスによって変わるが、1V〜30Vの範囲の電圧を印加する。また、リップル電圧の周波数fは、レーザ光の走査周期よりも速い周波数とするものであり、例えば、10kHz〜10MHzの範囲とする。   The ripple voltage in this case varies depending on the coupling capacitance of the electrodes 31 and 32, the impedance of the semiconductor chip 15, and the intrinsic reactance, but a voltage in the range of 1V to 30V is applied. The frequency f of the ripple voltage is set to a frequency that is faster than the scanning period of the laser beam, and is set to a range of 10 kHz to 10 MHz, for example.

静電界を検出する場合には、リップル電圧の周波数に同期させて、ロックインアンプ33で信号処理を行う。それによって、S/N比改善することができる。即ち、レーザ光照射に伴う光励起やゼーベック効果による起電流は僅かであるため、外部から交流電界を印加することで電界の偏り(偏極)が生じ、静電界プローブ16による検出感度が高まる。また、それにより、酸化膜や絶縁体の評価も可能になる。   When detecting the electrostatic field, the lock-in amplifier 33 performs signal processing in synchronization with the frequency of the ripple voltage. Thereby, the S / N ratio can be improved. That is, since an electromotive current due to photoexcitation or Seebeck effect accompanying laser light irradiation is very small, application of an alternating electric field from the outside causes an electric field bias (polarization), and the detection sensitivity of the electrostatic field probe 16 increases. This also makes it possible to evaluate oxide films and insulators.

次に、図10を参照して、本発明の実施例3の静電解析装置を説明するが、基本的構成は上記の実施例1と同じであり、実施例1に対してレーザ光変調手段を設けたものである。図10は、本発明の実施例3の静電解析装置の概念的構成図であり、実施例3に特有の特徴点のみを説明する。   Next, with reference to FIG. 10, a description will be given of an electrostatic analyzer according to a third embodiment of the present invention. The basic configuration is the same as that of the first embodiment. Is provided. FIG. 10 is a conceptual configuration diagram of the electrostatic analysis apparatus according to the third embodiment of the present invention, and only the characteristic points unique to the third embodiment will be described.

この実施例3においては、上記の実施例1の構成に加えてレーザ光を変調する光変調手段34を設けるとともに、アンプとしてロックインアンプ33を用いたものである。この場合の光変調手段34としては、レーザ光源11を直接変調するものでも良いし、或いは、EO(電気光学)結晶を用いてレーザ光源11から放出されたレーザ光を変調するものでも良い。   In the third embodiment, in addition to the configuration of the first embodiment, a light modulation means 34 for modulating laser light is provided, and a lock-in amplifier 33 is used as an amplifier. In this case, the light modulation means 34 may directly modulate the laser light source 11 or may modulate the laser light emitted from the laser light source 11 using an EO (electro-optic) crystal.

この場合の光変調周波数fは、レーザ光の走査周期よりも速い周波数とするものであり、速い周波数で変調を掛けることにより、励起効率や温度勾配を大きくすることができ、より微弱な変化を捕らえることができる。したがって、10kHz〜10MHzの範囲が望ましいが、現状における光変調の限界は1MHz程度である。   The light modulation frequency f in this case is a frequency that is faster than the scanning period of the laser light, and by applying modulation at a fast frequency, the excitation efficiency and the temperature gradient can be increased, resulting in a weaker change. Can be caught. Therefore, the range of 10 kHz to 10 MHz is desirable, but the current limit of light modulation is about 1 MHz.

この場合も、静電界を検出する場合には、光変調周波数に同期させて、ロックインアンプ33で信号処理を行う。それによって、S/N比改善することができる。   Also in this case, when detecting the electrostatic field, the lock-in amplifier 33 performs signal processing in synchronization with the optical modulation frequency. Thereby, the S / N ratio can be improved.

次に、図11を参照して、本発明の実施例4の静電解析装置を説明するが、基本的構成は上記の実施例1と同じであり、実施例1における検出電極をレーザ光を透過させる開口部を有する枠状構造として、検出電極の上に半導体チップを載置したものである。図11は、本発明の実施例4の静電解析装置の概念的構成図であり、実施例4に特有の特徴点のみを説明する。   Next, the electrostatic analysis apparatus according to the fourth embodiment of the present invention will be described with reference to FIG. 11. The basic configuration is the same as that of the first embodiment, and the detection electrode in the first embodiment is irradiated with laser light. A semiconductor chip is placed on the detection electrode as a frame-like structure having an opening for transmission. FIG. 11 is a conceptual configuration diagram of the electrostatic analysis apparatus according to the fourth embodiment of the present invention, and only the characteristic points unique to the fourth embodiment will be described.

この実施例4においては検出電極を枠状検出電極35とし、枠状検出電極35に誘電体層36を介して半導体チップ15を載置する。この場合、静電界プローブ16の移動の必要がなく、半導体チップ15を枠状検出電極35の上に置くだけで解析作業ができ、インプロセス工程内の解析を容易にする。   In the fourth embodiment, the detection electrode is a frame-shaped detection electrode 35, and the semiconductor chip 15 is mounted on the frame-shaped detection electrode 35 via a dielectric layer 36. In this case, there is no need to move the electrostatic field probe 16, analysis work can be performed simply by placing the semiconductor chip 15 on the frame-shaped detection electrode 35, and analysis within the in-process process is facilitated.

前にも述べたが、静電界は半導体チップ15の全面に分布するため、このように、半導体チップ15の裏から検出が可能になった。なお、枠状検出電極35の代わりに透明検出電極を用いても良く、この場合にはレーザ光を透過させるための開口部を設ける必要はない。   As described above, since the electrostatic field is distributed over the entire surface of the semiconductor chip 15, it is possible to detect from the back of the semiconductor chip 15 in this way. Note that a transparent detection electrode may be used instead of the frame-shaped detection electrode 35. In this case, it is not necessary to provide an opening for transmitting laser light.

次に、図12を参照して、本発明の実施例5の静電解析装置を説明する。図12は、本発明の実施例5の静電解析装置の概念的構成図であり、ここでは、信号処理手段或いは反射光検出手段は実施例1と同じであるので、静電界プローブの配置構成を説明する。   Next, with reference to FIG. 12, the electrostatic analysis apparatus of Example 5 of this invention is demonstrated. FIG. 12 is a conceptual configuration diagram of the electrostatic analysis apparatus according to the fifth embodiment of the present invention. Here, since the signal processing means or the reflected light detection means is the same as that of the first embodiment, the arrangement configuration of the electrostatic field probe. Will be explained.

図12に示すように、ステージ13に設けた絶縁性の透明板14上に半導体チップ15を載置し、半導体チップ15の周囲に複数個の静電界プローブ16をステージ13に容量電極17を接触させるように配置する。静電界プローブ16からの検出信号はアンプ18で増幅されたのち、スイッチングマトリクス回路&アンプ回路37に入力されて、信号の選択や合成処理を行い、解析信号として出力される。   As shown in FIG. 12, a semiconductor chip 15 is placed on an insulating transparent plate 14 provided on the stage 13, a plurality of electrostatic field probes 16 are brought into contact with the stage 13 around the semiconductor chip 15, and a capacitive electrode 17 is brought into contact with the stage 13. Arrange so that. The detection signal from the electrostatic field probe 16 is amplified by the amplifier 18 and then input to the switching matrix circuit & amplifier circuit 37 to perform signal selection and synthesis processing and output as an analysis signal.

この実施例5においては静電界プローブ16を複数個配置しているので、検出感度の良い条件の信号だけを選択したり、或いは、複数の静電界プローブ16の信号の処理を行うことを選択することができる。それによって、一個の静電界プローブ16を用いた場合に比べてS/N比を改善することができる。   In the fifth embodiment, since a plurality of electrostatic field probes 16 are arranged, only signals with good detection sensitivity are selected, or processing of signals from a plurality of electrostatic field probes 16 is selected. be able to. Thereby, the S / N ratio can be improved as compared with the case where one electrostatic field probe 16 is used.

ここで、実施例1乃至実施例5を含む本発明の実施の形態に関して、以下の付記を開示する。
(付記1) 被検査対象物にレーザ光を走査しながら照射するレーザ光入射工程と、前記レーザ光の前記被検査対象物からの反射光を検出する反射光検出工程と、前記静電界検出工程と同期して、前記被検査対象物において前記レーザ光の入射に起因して変化する静電界を静電検出センサの検出電極により電気的に非接触で検出する静電界検出工程と、前記静電界検出工程で取得した検出信号を前記反射光検出工程で取得した検出信号に基づき画像化する画像化工程と、前記画像化工程で形成した静電界強度分布に基づいて前記被検査対象物を解析する解析工程とを有する静電解析方法。
(付記2) 静電界検出工程において、静電検出センサの検出電極と前記被検査対象物との間に誘電体材料を介在させる付記1に記載の静電解析方法
(付記3)前記レーザ光入射工程において、前記レーザ光の走査周波数より速い周波数のリップル電圧を前記被検査対象物に誘導結合により印加するともに、前記リップル電圧の周波数に同期して、前記静電検出センサからの検出信号を取り込む付記1または付記2に記載の静電解析方法
(付記4)前記レーザ光入射工程において、前記レーザ光の走査周期より速い周波数で前記レーザ光を光変調するとともに、光変調周波数に同期して、前記静電検出センサからの検出信号を取り込む付記1または付記2に記載の静電解析方法。
(付記5) レーザ光源と、被検査対象物に前記レーザ光源からのレーザ光を走査しながら照射する走査光学系と、前記レーザ光の前記被検査対象物からの反射光を検出する反射光検出手段と、前記反射光検出と同期して、前記被検査対象物において前記レーザ光の入射に起因して変化する静電界を電気的に非接触で検出する検出電極を備えた静電検出センサと、前記静電検出センサで取得した検出信号を前記反射光検出手段で取得した検出信号に基づき画像化する画像化手段とを有する静電解析装置。
(付記6)
前記静電検出センサの検出電極が、針状電極である付記4に記載の静電解析装置。
(付記7) 前記被検査対象物に誘導結合により、前記走査光学系の走査周期より速い周波数のリップル電圧を印加する手段を備えるとともに、前記リップル電圧の周波数と同期して、前記静電検出センサからの検出信号を取り込む手段を備えた付記5または付記6に記載の静電解析装置。
(付記8) 前記レーザ光を光変調する光変調手段を備えるとともに、光変調周波数と同期して、前記静電検出センサからの検出信号を取り込む手段を備えた付記5または付記6に記載の静電解析装置
(付記9) 前記静電検出センサが、入力容量が2pF以下の低容量電界効果型トランジスタを備えている付記5乃至付記8のいずれか1に記載の静電解析装置。
(付記10) 前記被検査対象部を非導電性の測定用部材上に載置するとともに、前記静電検出センサを前記測定用部材上に複数個設置し、前記被検査対象部で発生する静電界分布を前記試料台を介して検出する付記5に記載の静電解析装置。
Here, the following additional notes are disclosed regarding the embodiment of the present invention including Examples 1 to 5.
(Additional remark 1) The laser beam incident process which irradiates a to-be-inspected object while scanning a laser beam, the reflected light detection process to detect the reflected light from the to-be-inspected object of the said laser beam, and the said electrostatic field detection process An electrostatic field detection step of detecting an electrostatic field that changes due to incidence of the laser beam in the inspection object in an electrically non-contact manner by a detection electrode of an electrostatic detection sensor; and An imaging process for imaging the detection signal acquired in the detection process based on the detection signal acquired in the reflected light detection process, and the inspection object is analyzed based on the electrostatic field intensity distribution formed in the imaging process An electrostatic analysis method having an analysis step.
(Additional remark 2) The electrostatic analysis method of Additional remark 1 which adds a dielectric material between the detection electrode of an electrostatic detection sensor, and the said to-be-inspected object in an electrostatic field detection process (Appendix 3) The said laser beam incidence In the process, a ripple voltage having a frequency faster than the scanning frequency of the laser beam is applied to the inspection object by inductive coupling, and a detection signal from the electrostatic detection sensor is captured in synchronization with the frequency of the ripple voltage. Appendix 1 or Appendix 2 Electrostatic Analysis Method (Appendix 4) In the laser beam incident step, the laser beam is optically modulated at a frequency faster than the scanning period of the laser beam, and in synchronization with the optical modulation frequency, The electrostatic analysis method according to appendix 1 or appendix 2, wherein a detection signal from the electrostatic detection sensor is captured.
(Supplementary Note 5) A laser light source, a scanning optical system that irradiates the inspection target while scanning the laser light from the laser light source, and reflected light detection that detects the reflected light of the laser light from the inspection target. And an electrostatic detection sensor comprising a detection electrode for detecting an electrostatic field that changes due to incidence of the laser light in the inspection object in a non-contact manner in synchronization with detection of the reflected light. An electrostatic analysis apparatus comprising: an imaging unit configured to image a detection signal acquired by the electrostatic detection sensor based on the detection signal acquired by the reflected light detection unit.
(Appendix 6)
The electrostatic analysis device according to appendix 4, wherein the detection electrode of the electrostatic detection sensor is a needle electrode.
(Supplementary Note 7) The electrostatic detection sensor includes means for applying a ripple voltage having a frequency faster than the scanning period of the scanning optical system by inductive coupling to the object to be inspected, and in synchronization with the frequency of the ripple voltage. The electrostatic analysis device according to appendix 5 or appendix 6, comprising means for capturing a detection signal from
(Supplementary note 8) The static electricity according to supplementary note 5 or supplementary note 6, further comprising light modulating means for light modulating the laser light, and means for capturing a detection signal from the electrostatic detection sensor in synchronization with a light modulation frequency. Electric analysis device (Appendix 9) The electrostatic analysis device according to any one of appendices 5 to 8, wherein the electrostatic detection sensor includes a low-capacitance field effect transistor having an input capacitance of 2 pF or less.
(Additional remark 10) While mounting the said to-be-inspected object part on the nonelectroconductive measuring member, the said electrostatic detection sensor is installed in multiple numbers on the said measuring member, and the static which generate | occur | produces in the to-be-inspected part The electrostatic analysis device according to appendix 5, which detects an electric field distribution through the sample stage.

1 レーザ光源
2 試料台
3 被検査対象物
4 走査光学系
5 静電検出センサ
6 検出電極
7 反射光検出手段
8 画像化手段
9 回路エレメント
10 素子分離層
11 レーザ光源
12 ガルバノミラー
13 ステージ
14 透明板
15 半導体チップ
16 静電界プローブ
17 容量電極
18 アンプ
19 ハーフミラー
20 光検出器
21 アンプ
22 画像化装置
23 誘電体層
24 針状電極
25 パッケージ封止樹脂
26 半導体チップ
27 ベアシリコン基板
31,32 電極
33 ロックインアンプ
34 光変調手段
35 枠状検出電極
36 誘電体層
37 スイッチングマトリクス回路&アンプ回路
DESCRIPTION OF SYMBOLS 1 Laser light source 2 Sample stand 3 Inspected object 4 Scanning optical system 5 Electrostatic detection sensor 6 Detection electrode 7 Reflected light detection means 8 Imaging means 9 Circuit element 10 Element separation layer 11 Laser light source 12 Galvano mirror 13 Stage 14 Transparent plate DESCRIPTION OF SYMBOLS 15 Semiconductor chip 16 Electrostatic field probe 17 Capacitance electrode 18 Amplifier 19 Half mirror 20 Photo detector 21 Amplifier 22 Imaging device 23 Dielectric layer 24 Needle electrode 25 Package sealing resin 26 Semiconductor chip 27 Bare silicon substrates 31 and 32 Electrode 33 Lock-in amplifier 34 Light modulation means 35 Frame-shaped detection electrode 36 Dielectric layer 37 Switching matrix circuit & amplifier circuit

Claims (5)

被検査対象物にレーザ光を走査しながら照射するレーザ光入射工程と、
前記レーザ光の前記被検査対象物からの反射光を検出する反射光検出工程と、
前記反射光検出工程と同期して、前記被検査対象物において前記レーザ光の入射に起因して変化する静電界を静電検出センサの検出電極により電気的に非接触で検出する静電界検出工程と、
前記静電界検出工程で取得した検出信号を前記反射光検出工程で取得した検出信号に基づき画像化する画像化工程と、
前記画像化工程で形成した静電界強度分布に基づいて前記被検査対象物を解析する解析工程と
を有する静電解析方法。
A laser beam incident process for irradiating the inspection target while scanning the laser beam;
A reflected light detection step of detecting reflected light from the inspection object of the laser light;
An electrostatic field detection step of detecting, in a non-contact manner, an electrostatic field that changes due to incidence of the laser light in the inspection object in synchronization with the reflected light detection step. When,
An imaging step of imaging the detection signal acquired in the electrostatic field detection step based on the detection signal acquired in the reflected light detection step;
And an analysis step of analyzing the inspection object based on the electrostatic field intensity distribution formed in the imaging step.
レーザ光源と、
被検査対象物に前記レーザ光源からのレーザ光を走査しながら照射する走査光学系と、 前記レーザ光の前記被検査対象物からの反射光を検出する反射光検出手段と、
前記反射光の検出に同期し、前記被検査対象物において前記レーザ光の入射に起因して変化する静電界を電気的に非接触で検出する検出電極を備えた静電検出センサと、
前記静電検出センサで取得した検出信号を前記反射光検出手段で取得した検出信号に基づき画像化する画像化手段と
を有する静電解析装置。
A laser light source;
A scanning optical system for irradiating the inspection object while scanning the laser light from the laser light source; and a reflected light detecting means for detecting reflected light of the laser light from the inspection object;
An electrostatic detection sensor provided with a detection electrode for detecting an electrostatic field which changes in synchronization with detection of the reflected light due to incidence of the laser light in the inspection object in an electrically non-contact manner;
An electrostatic analysis apparatus comprising: an imaging unit configured to image a detection signal acquired by the electrostatic detection sensor based on the detection signal acquired by the reflected light detection unit.
前記静電検出センサの検出電極が、針状電極である請求項2に記載の静電解析装置。   The electrostatic analysis apparatus according to claim 2, wherein the detection electrode of the electrostatic detection sensor is a needle electrode. 前記被検査対象物に誘導結合により、前記走査光学系の走査周期より速い周波数のリップル電圧を印加する手段を備えるとともに、前記リップル電圧の周波数と同期して、前記静電検出センサからの検出信号を取り込む手段を備えた請求項2または請求項3に記載の静電解析装置。   Means for applying a ripple voltage having a frequency faster than the scanning period of the scanning optical system by inductive coupling to the object to be inspected, and a detection signal from the electrostatic detection sensor in synchronization with the frequency of the ripple voltage The electrostatic analysis device according to claim 2, further comprising means for taking in. 前記レーザ光を光変調する光変調手段を備えるとともに、光変調周波数と同期して、前記静電検出センサからの検出信号を取り込む手段を備えた請求項2または請求項3に記載の静電解析装置。   4. The electrostatic analysis according to claim 2, further comprising: a light modulating unit that modulates the laser light, and a unit that captures a detection signal from the electrostatic detection sensor in synchronization with a light modulation frequency. 5. apparatus.
JP2009242702A 2009-10-21 2009-10-21 Electrostatic analysis method and electrostatic analysis apparatus Expired - Fee Related JP5333150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009242702A JP5333150B2 (en) 2009-10-21 2009-10-21 Electrostatic analysis method and electrostatic analysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009242702A JP5333150B2 (en) 2009-10-21 2009-10-21 Electrostatic analysis method and electrostatic analysis apparatus

Publications (2)

Publication Number Publication Date
JP2011089846A JP2011089846A (en) 2011-05-06
JP5333150B2 true JP5333150B2 (en) 2013-11-06

Family

ID=44108235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009242702A Expired - Fee Related JP5333150B2 (en) 2009-10-21 2009-10-21 Electrostatic analysis method and electrostatic analysis apparatus

Country Status (1)

Country Link
JP (1) JP5333150B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454605B2 (en) 2018-06-20 2022-09-27 National Institute Of Advanced Industrial Science And Technology Image forming method and impedance microscope

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683869B2 (en) * 2004-07-08 2011-05-18 独立行政法人理化学研究所 Semiconductor device failure diagnosis method and apparatus
JP2006337203A (en) * 2005-06-02 2006-12-14 Nec Electronics Corp Positioning method and apparatus
JP2007266127A (en) * 2006-03-27 2007-10-11 Fujitsu Ltd Semiconductor analyzer
JP2007298424A (en) * 2006-05-01 2007-11-15 Matsushita Electric Ind Co Ltd Nondestructive inspection method for semiconductor device
JP2009008396A (en) * 2007-06-26 2009-01-15 Fujitsu Microelectronics Ltd Inspection device and inspection method

Also Published As

Publication number Publication date
JP2011089846A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
US6407560B1 (en) Thermally-induced voltage alteration for analysis of microelectromechanical devices
KR100377990B1 (en) Semiconductor device wafer, semiconductor integrated circuit, semiconductor device chip and nondestructive inspection method
US8139228B2 (en) Methods for optically enhanced holographic interferometric testing for test and evaluation of semiconductor devices and materials
US9250064B2 (en) Multiple beam transmission interferometric testing methods for the development and evaluation of subwavelength sized features within semiconductor and anisotropic devices
EP2574906B1 (en) Semiconductor inspection method and semiconductor inspection apparatus
KR100402044B1 (en) Non-destructive inspection method
JP6245600B2 (en) Polarization sensitive terahertz wave detector
US20060244974A1 (en) Non-destructive testing system
US4644264A (en) Photon assisted tunneling testing of passivated integrated circuits
US20080036464A1 (en) Probes and methods for semiconductor wafer analysis
Yamashita et al. THz emission characteristics from p/n junctions with metal lines under non-bias conditions for LSI failure analysis
JP4001373B2 (en) Integrated circuit disconnection inspection method and apparatus
EP1679522A1 (en) Method and device for measuring electric field distribution of semiconductor device
US4786864A (en) Photon assisted tunneling testing of passivated integrated circuits
JP3175766B2 (en) Non-destructive inspection device and non-destructive inspection method
US20160195479A1 (en) Multiple beam transmission interferometric testing methods for the development and evaluation of subwavelength sized features within semiconductor and anisotropic devices
JP5333150B2 (en) Electrostatic analysis method and electrostatic analysis apparatus
JP2002313859A (en) Nondestructive inspection method and device and semiconductor chip
US8907691B2 (en) Integrated circuit thermally induced noise analysis
JP5301770B2 (en) Thin film semiconductor crystallinity measuring apparatus and method
JPH06102318A (en) Probe device
JP2011169615A (en) Quasi-electrostatic field analyzer and quasi-electrostatic field analysis method
JP5418015B2 (en) Semiconductor analysis apparatus and semiconductor analysis method
KR100531957B1 (en) Front and backside failure localization tool
JP2648947B2 (en) Inspection equipment for semiconductor devices

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Ref document number: 5333150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees