JP5332559B2 - Charger - Google Patents

Charger Download PDF

Info

Publication number
JP5332559B2
JP5332559B2 JP2008308065A JP2008308065A JP5332559B2 JP 5332559 B2 JP5332559 B2 JP 5332559B2 JP 2008308065 A JP2008308065 A JP 2008308065A JP 2008308065 A JP2008308065 A JP 2008308065A JP 5332559 B2 JP5332559 B2 JP 5332559B2
Authority
JP
Japan
Prior art keywords
charging
current
time
voltage
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008308065A
Other languages
Japanese (ja)
Other versions
JP2010136488A (en
Inventor
博典 杉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lecip Holdings Corp
Original Assignee
Lecip Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lecip Holdings Corp filed Critical Lecip Holdings Corp
Priority to JP2008308065A priority Critical patent/JP5332559B2/en
Publication of JP2010136488A publication Critical patent/JP2010136488A/en
Application granted granted Critical
Publication of JP5332559B2 publication Critical patent/JP5332559B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make sufficient use of a time until a secondary battery is used next and prevent a current value from becoming excessive even in secondary batteries different in capacity during charging. <P>SOLUTION: A charge controlling means gradually increases a charging current after start of charging and determines a charging current when the difference between terminal voltage and open voltage V<SB>o</SB>reaches a predetermined voltage difference set value &Delta;V<SB>a</SB>as maximum charging current I<SB>0</SB>. It carries out precharging with the maximum charging current. It determines a time t<SB>p0</SB>it takes for terminal voltage to reach an inflection-point voltage V<SB>p0</SB>by charging with the maximum charging current from a terminal voltage increment &Delta;V<SB>b</SB>relative to the precharging time t<SB>0</SB>. It calculates the earliest ending time T<SB>min</SB>at which charging is terminated based thereon and calculates a remaining amount of charge based thereon. When a target ending time T<SB>1</SB>is later than the earliest ending time, it determines a first current value and a second current value so that second constant-current charging is terminated at the target ending time. This determination is made based on the remaining amount of charge, a charging time relational expression between first constant-current charging and second constant-current charging, and a relational expression between the first current value I<SB>1</SB>and the second current value I<SB>2</SB>. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、二次電池の充電を行う充電装置に関するものである。   The present invention relates to a charging device that charges a secondary battery.

放電した二次電池が充電される過程では、二次電池の端子電圧が上昇して行くが、満充電に近づくと充電時間に対する端子電圧曲線に変曲点が現れる。この変曲点を端子電圧が超えると、二次電池に供給された電気エネルギーが熱エネルギーに変換される割合が急激に増大し、充電効率が悪くなることに加え、発熱によって二次電池がダメージを受けるおそれがある。そこで、従来、端子電圧が変曲点に達するまで、あるいは変曲点より僅かに小さな電圧に達するまでは、比較的大きな電流値(以下、「電流値Ia」と称する)で定電流充電を行うことによって、できるだけ満充電に近い状態にしておき、その後に比較的小さな電流値(以下、「電流値Ib」と称する)で定電流充電を行うことによって、発熱を抑制しつつ満充電まで充電を行う充電方法が行われている。   In the process of charging the discharged secondary battery, the terminal voltage of the secondary battery increases, but an inflection point appears in the terminal voltage curve with respect to the charging time as it approaches full charge. If the terminal voltage exceeds this inflection point, the rate at which electrical energy supplied to the secondary battery is converted to thermal energy increases rapidly, resulting in poor charging efficiency and damage to the secondary battery due to heat generation. There is a risk of receiving. Therefore, conventionally, constant current charging is performed with a relatively large current value (hereinafter referred to as “current value Ia”) until the terminal voltage reaches the inflection point or until it reaches a voltage slightly lower than the inflection point. Therefore, the battery is kept as close to full charge as possible, and then charged with constant current with a relatively small current value (hereinafter referred to as “current value Ib”) until the battery is fully charged while suppressing heat generation. The charging method to be performed is performed.

本発明者は、このような充電方法において、総充電時間の長さを可変とすると共に、総充電時間の長さに応じて電流値Ibの大きさを設定することができる充電方法を提案している(特許文献1参照)。この方法によれば、二次電池の使用が終了してから次に使用が開始されるまでの時間の変動に対応し、その時間を充分に活用して電流値Ibを小さく抑えて充電を行うことにより、発熱を抑制して二次電池のダメージを低減することができる。また、使用が開始される直前に充電を終了させることができるため、充電された二次電池が次に使用されるまで長時間放置されることがなく、二次電池の自然放電による充電状態の低下を防止することができると共に、二次電池の温度低下による化学反応の活性の低下を防止することができる。   The inventor of the present invention has proposed a charging method in which the length of the total charging time is variable and the magnitude of the current value Ib can be set according to the length of the total charging time. (See Patent Document 1). According to this method, it is possible to cope with a change in time from the end of use of the secondary battery to the start of use of the secondary battery, and sufficiently charge the time to suppress the current value Ib to perform charging. Thus, heat generation can be suppressed and damage to the secondary battery can be reduced. In addition, since the charging can be terminated immediately before the use is started, the charged secondary battery is not left for a long time until the next use, and the charged state due to the spontaneous discharge of the secondary battery is prevented. A decrease in the chemical reaction activity due to a decrease in the temperature of the secondary battery can be prevented.

ところが、特許文献1の充電方法は、充電に先立ち、二次電池の電池容量に応じて電流値Iaを入力する必要がある点で、改善の余地があるものであった。また、比較的大きな電流値Iaによる定電流充電における二次電池の発熱を、抑制することに対する要請もあった。   However, the charging method of Patent Document 1 has room for improvement in that it is necessary to input the current value Ia according to the battery capacity of the secondary battery prior to charging. There has also been a demand for suppressing heat generation of the secondary battery in constant current charging with a relatively large current value Ia.

ここで、二次電池の電池容量に応じて、定電流充電における電流値を調整する充電装置も提案されている(特許文献2参照)。これは、定電流充電に先立ち、一定の電流を流しつつ二次電池の開放電圧を複数回測定し、二以上の開放電圧、それぞれの測定点間の時間、及び、充電電流値によって電池容量を推定し、推定された電池容量と予め定めた充電時間に基づいて、定電流充電を行う電流値を定めるものである。   Here, a charging device that adjusts a current value in constant current charging according to the battery capacity of the secondary battery has also been proposed (see Patent Document 2). Prior to constant current charging, the secondary battery's open circuit voltage is measured multiple times while flowing a constant current, and the battery capacity is determined by two or more open circuit voltages, the time between each measurement point, and the charge current value. The current value for performing constant current charging is determined based on the estimated battery capacity and a predetermined charging time.

特開2005−20894号公報JP 2005-20894 A 特開2008−61373号公報JP 2008-61373 A

しかしながら、特許文献2の充電装置では、総充電時間は所定の固定値であるため、二次電池が次に使用されるまでの時間を充分に活用することができず、自然放電によって充電状態が低下し、温度低下よって二次電池における化学反応の活性が低下するおそれがあった。加えて、特許文献2の充電装置では、開放電圧を複数回測定するために、電源部と二次電池との電気的な接続のオンとオフを繰り返す必要があり、その制御が煩雑であった。更に、電源部との電気的な接続が複数回オフされる度に、二次電池の端子電圧が大きく低下するため、電池容量を推定するための処理中は充電がほとんど進行せず、全体として充電効率が悪いという問題があった。   However, in the charging device of Patent Document 2, since the total charging time is a predetermined fixed value, the time until the secondary battery is next used cannot be fully utilized, and the state of charge is caused by spontaneous discharge. There is a risk that the activity of the chemical reaction in the secondary battery may decrease due to a decrease in temperature. In addition, in the charging device of Patent Document 2, in order to measure the open circuit voltage a plurality of times, it is necessary to repeatedly turn on and off the electrical connection between the power supply unit and the secondary battery, and the control is complicated. . In addition, every time the electrical connection with the power supply unit is turned off multiple times, the terminal voltage of the secondary battery greatly decreases, so charging hardly proceeds during the process for estimating the battery capacity, and as a whole There was a problem of poor charging efficiency.

そこで、本発明は、上記の実情に鑑み、二次電池の使用が終了してから次の使用開始までの変動する可能性のある時間を充分に活用し、電池容量の異なる二次電池であっても、発熱を抑制すべく電流値が過度に大となることを防止しつつ、効率よく充電することができる充電装置の提供を課題とするものである。   Therefore, in view of the above circumstances, the present invention is a secondary battery having a different battery capacity by fully utilizing the time that may vary from the end of use of the secondary battery to the start of the next use. However, an object of the present invention is to provide a charging device that can efficiently charge while preventing the current value from becoming excessively large to suppress heat generation.

上記の課題を解決するため、本発明にかかる充電装置は、「二次電池に直流電力を供給する電源部と、該電源部から前記二次電池に流れる充電電流を検出する充電電流検出部と、前記二次電池の端子電圧を検出する端子電圧検出部と、時刻を出力する時計手段と、該時計手段による時刻の出力、前記時計手段から出力された時刻に基づく時間の計測、前記充電電流検出部による前記充電電流の検出、及び、前記端子電圧検出部による前記端子電圧の検出に基づいて、前記電源部から前記二次電池への直流電力の供給を制御することにより、第一電流値による第一定電流充電及び前記第一電流値より小さい第二電流値による第二定電流充電の実行を制御する充電制御手段とを具備し、前記充電制御手段は、充電前の前記二次電池の開放電圧を取得し、充電を開始すると共に前記充電電流を徐々に増加させ、前記端子電圧と前記開放電圧との差が予め定めた電圧差設定値に達したときの前記充電電流を最大充電電流として決定し、該最大充電電流による予充電を行う予充電時間及び前記予充電に伴う端子電圧増加分の何れか一方の値を予め定めて前記予充電を実行して他方の値を算出し、前記予充電時間に対する前記端子電圧増加分から、前記最大充電電流による充電を継続すると仮定した場合に前記端子電圧が変曲点電圧に達するまでの所要時間を算出し、該所要時間に基づき充電を終了する最短終了時刻を算出すると共に、前記予充電の終了時から前記最短終了時刻までの充電量を残充電量として算出し、充電の開始に先立ち記憶された終了目標時刻が前記最短終了時刻以降のときは、前記第一定電流充電による充電量及び前記第二定電流充電による充電量の関係式として予め定めた配分式に基づき、前記終了目標時刻に前記第二定電流充電が終了するように前記残充電量を前記第一定電流充電及び前記第二定電流充電に配分して前記第一電流値及び前記第二電流値を決定し、決定された前記第一電流値による前記第一定電流充電及び前記第二電流値による前記第二定電流充電をそれぞれ実行する」ものである。   In order to solve the above-described problems, the charging device according to the present invention includes a power supply unit that supplies DC power to a secondary battery, and a charging current detection unit that detects a charging current flowing from the power supply unit to the secondary battery. A terminal voltage detector for detecting a terminal voltage of the secondary battery; a clock means for outputting time; an output of the time by the clock means; a time measurement based on the time output from the clock means; and the charging current Based on detection of the charging current by the detection unit and detection of the terminal voltage by the terminal voltage detection unit, by controlling the supply of DC power from the power supply unit to the secondary battery, the first current value Charging control means for controlling execution of the first constant current charging by the second constant current charging by the second current value smaller than the first current value, and the charging control means comprises the secondary battery before charging. Open circuit voltage And gradually increasing the charging current while starting charging, determining the charging current when the difference between the terminal voltage and the open voltage reaches a predetermined voltage difference setting value as a maximum charging current, A precharge time for performing precharge with the maximum charge current and a value for increasing the terminal voltage associated with the precharge are determined in advance, the precharge is executed, the other value is calculated, and the precharge time is calculated. The time required for the terminal voltage to reach the inflection point voltage when it is assumed that charging with the maximum charging current is continued from the increase in the terminal voltage with respect to the shortest end time at which charging is terminated based on the required time And calculating the remaining charge amount from the end of the precharge to the shortest end time, and the end target time stored prior to the start of charge is after the shortest end time The remaining constant current charging is terminated at the end target time based on a predetermined distribution formula as a relational expression between the charging amount by the first constant current charging and the charging amount by the second constant current charging. The charge amount is distributed to the first constant current charge and the second constant current charge to determine the first current value and the second current value, and the first constant current charge according to the determined first current value And the second constant current charging with the second current value is performed.

上記構成の本発明の充電装置によれば、最初に最大充電電流を求め、最大充電電流による予充電から最短終了時刻を算出し、終了目標時刻が最短終了時刻以降の場合は、終了目標時刻に第二定電流充電が終了するように、第一定電流充電及び第二定電流充電に残充電量を配分する。従って、終了目標時刻までの時間を充分に活用し、第一電流値及び第二電流値を共に小さく抑えて、二次電池の充電をすることが可能となる。   According to the charging device of the present invention having the above-described configuration, the maximum charging current is first obtained, the shortest end time is calculated from the precharge by the maximum charging current, and when the end target time is after the shortest end time, the end target time is set. The remaining charge amount is distributed to the first constant current charge and the second constant current charge so that the second constant current charge is completed. Therefore, it is possible to charge the secondary battery by making full use of the time until the target end time and keeping both the first current value and the second current value small.

これにより、比較的大きな電流値で定電流充電を行って、できるだけ満充電に近い状態にしておき、その後に比較的小さな電流値で定電流充電を行っていた従来の充電に比べ、充電に伴う発熱によって二次電池がダメージを受けるおそれを大幅に低減することができる。また、終了目標時刻に第二定電流充電が終了するように第一電流値及び第二電流値を定めるため、使用が開始される直前に二次電池の充電を終了させることができる。これにより、自然放電による充電状態の低下を防止することができると共に、二次電池の温度低下による化学反応の活性の低下を防止することができる。   As a result, constant current charging is performed with a relatively large current value so that it is as close to full charge as possible, and then charging is performed compared to conventional charging in which constant current charging is performed with a relatively small current value. The risk of the secondary battery being damaged by heat generation can be greatly reduced. In addition, since the first current value and the second current value are determined so that the second constant current charging ends at the end target time, the charging of the secondary battery can be ended immediately before the start of use. As a result, it is possible to prevent a decrease in the state of charge due to spontaneous discharge, and it is possible to prevent a decrease in the activity of the chemical reaction due to a decrease in temperature of the secondary battery.

また、電圧差設定値が同一であっても、電池容量が異なれば端子電圧がその電圧差だけ増加したときの充電電流、換言すれば最大充電電流の大きさは異なる。すなわち、二次電池の電池容量が大きいほど、内部インピーダンスが小さいため同じだけ電流を流したときの電圧増加分は小さく、電圧差設定値が同一であれば電池容量が大きいほど最大充電電流は大きくなる。従って、本発明によれば、二次電池の電池容量自体を測定しなくても、電池容量の相違を充電条件に反映させることができ、電池容量に適した条件で充電を行うことができる。   Even if the voltage difference setting value is the same, if the battery capacity is different, the charging current when the terminal voltage is increased by the voltage difference, in other words, the maximum charging current is different. That is, the larger the battery capacity of the secondary battery, the smaller the internal impedance, so the amount of voltage increase when the same current flows is small. If the voltage difference setting value is the same, the larger the battery capacity, the larger the maximum charging current. Become. Therefore, according to the present invention, the difference in battery capacity can be reflected in the charging conditions without measuring the battery capacity itself of the secondary battery, and charging can be performed under conditions suitable for the battery capacity.

更に、最短終了時刻を算出するために行う予充電中も二次電池は充電されるため、全体として効率よく充電を行うことができる。   Furthermore, since the secondary battery is charged even during the precharge performed for calculating the shortest end time, the entire battery can be charged efficiently.

なお、定電流充電において端子電圧が変曲点電圧に達した時の充電量は、通常、満充電の80〜90%であるとされており、変曲点以降の端子電圧の増加特性は、二次電池の種類や充電電流値によって相違する。従って、変曲点電圧に達した後どのくらいの時間充電を行えば、より満充電に近い状態で充電を終了することができるかを考慮し、変曲点電圧に達するまでの所要時間と変曲点電圧に達した時以降の充電時間との関係式あるいはテーブルを、経験に基づいて予め定めておくことにより、上記構成における「該所要時間に基づき充電を終了する最短終了時刻を算出する」処理を行うことができる。   The charging amount when the terminal voltage reaches the inflection point voltage in constant current charging is normally 80 to 90% of the full charge, and the increase characteristic of the terminal voltage after the inflection point is It differs depending on the type of secondary battery and the charging current value. Therefore, considering how long it takes to charge after reaching the inflection point voltage, charging can be completed in a state closer to full charge, and the time required to reach the inflection point voltage and the inflection The process of “calculating the shortest end time to end charging based on the required time” in the above configuration by predetermining a relational expression or table with the charging time after reaching the point voltage based on experience It can be performed.

本発明にかかる充電装置は、「前記配分式は、充電開始時から前記第一定電流充電を終了するまでの時間と前記第二定電流充電を行う時間との関係を予め定めた充電時間関係式、及び、前記第一電流値と前記第二電流値との関係を予め定めた電流値関係式から構成される」ものとすることができる。   The charging device according to the present invention is described as follows. “The distribution formula is a charging time relationship in which a relationship between a time from the start of charging to the end of the first constant current charging and a time for performing the second constant current charging is determined in advance. The equation and the relationship between the first current value and the second current value are configured from a predetermined current value relational expression.

上記構成により、本発明の充電装置によれば、最短終了時刻から終了目標時刻までの時間の長さ、換言すれば、最短終了時刻までどのくらい時間の余裕があるかに応じて、第一電流値、第二電流値、第一定電流充電を終了するまでの時間、及び第二定電流を行う時間の四つファクターを、何れも変動させることができる。これにより、残充電量を第一定電流充電及び第二定電流充電に配分するに当たり、第一電流値及び第二電流値を適切な値に設定し易く、二次電池の受けるダメージをより低減しつつ終了目標時刻までの時間を充分に活用して充電を行うことができる。   With the above configuration, according to the charging device of the present invention, the first current value depends on the length of time from the shortest end time to the target end time, in other words, how much time is available until the shortest end time. The four factors of the second current value, the time until the first constant current charging is completed, and the time for performing the second constant current can be varied. This makes it easy to set the first current value and the second current value to appropriate values when allocating the remaining charge amount to the first constant current charge and the second constant current charge, and further reduces the damage received by the secondary battery. However, charging can be performed by fully utilizing the time until the end target time.

本発明にかかる充電装置は、上記構成に加え、「電圧差と開放電圧とを関連付けたテーブルを記憶する記憶装置を更に具備し、前記充電制御手段は、取得した開放電圧と関連付けられた電圧差を前記テーブルから読み出して電圧差設定値として定め、最大充電電流を決定する処理を行う」ものとすることができる。   In addition to the above-described configuration, the charging device according to the present invention further includes a “storage device that stores a table in which a voltage difference and an open circuit voltage are associated with each other, and the charge control unit includes a voltage difference associated with the acquired open circuit voltage. Is read out from the table and defined as a voltage difference set value, and a process for determining the maximum charging current is performed. "

上記構成により、本発明の充電装置によれば、電圧差設定値を電圧差−開放電圧テーブルを参照して設定するため、放電が深く開放電圧が小さい場合ほど、電圧差設定値として大きな値を用いる設定とすることが可能となる。これにより、二次電池の放電量に応じた適切な充電条件を定めて、充電を行うことが可能となる。   With the above configuration, according to the charging device of the present invention, the voltage difference set value is set with reference to the voltage difference-open voltage table, so that the larger the discharge is and the smaller the open voltage is, the larger the voltage difference set value is. It is possible to set to use. Thereby, it becomes possible to charge by determining an appropriate charging condition according to the discharge amount of the secondary battery.

本発明にかかる充電装置は、「前記充電制御手段は、前記第一定電流充電と前記第二定電流充電との間で、充電を継続しつつ前記充電電流を減少させる定電圧充電または可変電圧充電を行う」ものとすることができる。ここで、「定電圧充電」が電圧値を一定として行う充電であるのに対し、電圧値を変化させながら行う充電を「可変電圧充電」と称している。   The charging device according to the present invention is described as follows: "The charging control means is a constant voltage charging or a variable voltage that decreases the charging current while continuing the charging between the first constant current charging and the second constant current charging. To charge ". Here, “constant voltage charging” is charging performed with a constant voltage value, whereas charging performed while changing the voltage value is referred to as “variable voltage charging”.

仮に、第一定電流充電の終了後に直ぐ第二定電流充電に切り替える場合は、充電電流の不連続な低下により二次電池の端子電圧が大きく落ち込むおそれがある。これに対し、本発明では、第一定電流充電が終了してから第二定電流充電に移行する前に、定電圧充電または可変電圧充電を行うことにより、充電しながら電流値を徐々に減少させているため、全体として効率よく二次電池を充電することができる。   If switching to the second constant current charging immediately after the end of the first constant current charging, the terminal voltage of the secondary battery may drop significantly due to the discontinuous decrease in the charging current. In contrast, in the present invention, the current value is gradually decreased while charging by performing constant voltage charging or variable voltage charging before the transition to the second constant current charging after the completion of the first constant current charging. Therefore, the secondary battery can be efficiently charged as a whole.

以上のように、本発明の効果として、二次電池の使用が終了してから次の使用開始までの変動する可能性のある時間を充分に活用し、電池容量の異なる二次電池であっても、発熱を抑制すべく電流値が過度に大となることを防止しつつ、効率よく充電することができる充電装置を提供することができる。   As described above, as an effect of the present invention, a secondary battery having different battery capacities by fully utilizing the time that may vary from the end of use of the secondary battery to the start of the next use. However, it is possible to provide a charging device that can efficiently charge while preventing the current value from becoming excessively large in order to suppress heat generation.

以下、本発明の最良の一実施形態である充電装置について、図1乃至図7を用いて説明する。ここで、図1は本実施形態の充電装置の構成を示すブロック図であり、図2乃至図4は図1の充電装置による二次電池の充電について充電時間と充電電流及び端子電圧との関係を示すグラフであって、それぞれ終了目標時刻がT,T,Tの場合であり、図5は充電電流の時間による積分値A及びAを説明するグラフであり、図6及び図7は図1の充電装置における処理の流れを説明するフローチャートである。 Hereinafter, a charging apparatus according to an embodiment of the present invention will be described with reference to FIGS. Here, FIG. 1 is a block diagram showing the configuration of the charging device of the present embodiment, and FIGS. 2 to 4 are relationships between charging time, charging current, and terminal voltage for charging the secondary battery by the charging device of FIG. FIG. 5 is a graph illustrating the integration values A 1 and A 2 according to the charging current time, respectively, when the end target times are T 1 , T 2 and T 3 , respectively. FIG. 7 is a flowchart for explaining the flow of processing in the charging apparatus of FIG.

本実施形態の充電装置1は、図1に示すように、二次電池59に直流電力を供給する電源部5と、電源部5から二次電池59に流れる充電電流を検出する充電電流検出部6と、二次電池59の端子電圧を検出する端子電圧検出部7と、充電装置1による二次電池59の充電を制御する制御部10を機能的構成として備えるコンピュータ9とによって、主に構成されている。   As shown in FIG. 1, the charging device 1 of the present embodiment includes a power supply unit 5 that supplies DC power to the secondary battery 59 and a charging current detection unit that detects a charging current flowing from the power supply unit 5 to the secondary battery 59. 6, a terminal voltage detection unit 7 that detects a terminal voltage of the secondary battery 59, and a computer 9 that includes a control unit 10 that controls charging of the secondary battery 59 by the charging device 1 as a functional configuration. Has been.

より詳細に説明すると、電源部5は全波整流回路を有する整流部2と、スイッチング式のDC−DC変換部3を備えており、交流電源51から供給された交流電力は整流部2で全波整流された後、DC−DC変換部3において異なる電圧に変換されて二次電池59に供給される。また、充電電流検出部6及び端子電圧検出部7は、それぞれ検出した充電電流及び二次電池59の端子電圧を制御部10に出力している。   More specifically, the power supply unit 5 includes a rectification unit 2 having a full-wave rectification circuit and a switching type DC-DC conversion unit 3, and the AC power supplied from the AC power supply 51 is all supplied by the rectification unit 2. After the wave rectification, the DC-DC conversion unit 3 converts the voltage into a different voltage and supplies it to the secondary battery 59. Further, the charging current detection unit 6 and the terminal voltage detection unit 7 output the detected charging current and the terminal voltage of the secondary battery 59 to the control unit 10, respectively.

コンピュータ9は、ハード構成として中央処理装置、主記憶装置、及び補助記憶装置を有し、主記憶装置には充電制御手段20としてコンピュータ9を機能させるプログラムが記憶されている。また、コンピュータ9は、時刻を出力する時計手段13と、制御部10に対して終了目標時刻等の情報や種々の指令の入力を行うキーボード、ポンティングデバイス等の操作入力部11と、充電制御手段20による処理の過程や結果を表示手段40を介して出力するモニタ等の出力部12を備えている。   The computer 9 has a central processing unit, a main storage device, and an auxiliary storage device as hardware configurations, and a program that causes the computer 9 to function as the charge control means 20 is stored in the main storage device. The computer 9 also includes a clock unit 13 for outputting time, an operation input unit 11 such as a keyboard and a ponting device for inputting information such as an end target time and various commands to the control unit 10, and charging control. An output unit 12 such as a monitor for outputting the process and results of the processing by the means 20 via the display means 40 is provided.

更に、補助記憶装置30は、入力された終了目標時刻を記憶する終了目標時刻記憶部31、及び、充電を開始した充電開始時刻を記憶する充電開始時刻記憶部32を備えると共に、電圧差と開放電圧とを関連付けた電圧差−開放電圧テーブル35、電流値とその電流値における変曲点電圧とを関連付けた電流−変曲点電圧テーブル36を記憶している。なお、本実施形態の補助記憶装置が本発明の「記憶装置」に相当する。   Further, the auxiliary storage device 30 includes an end target time storage unit 31 that stores the input end target time, and a charge start time storage unit 32 that stores a charge start time when charging is started, and a voltage difference and release. A voltage difference-open voltage table 35 associated with the voltage and a current-inflection voltage table 36 associated with the current value and the inflection point voltage at the current value are stored. The auxiliary storage device of this embodiment corresponds to the “storage device” of the present invention.

充電制御手段20は、時計手段の出力に基づき時間を計測する時間計測手段21と、充電電流を時間で積分する充電電流積分手段22と、取得した開放電圧と関連付けられた電圧差を電圧差−開放電圧テーブル35から読み出して電圧差設定値ΔVとして定める電圧差設定値決定手段23と、端子電圧と開放電圧との差が定められた電圧差設定値ΔVに達したときの充電電流を最大充電電流Iとして決定する最大充電電流決定手段24と、最大充電電流による予充電を予め定めた予充電時間t実行し、予充電時間tの経過後の端子電圧増加分ΔVを算出する予充電制御手段25と、予充電時間tに対する端子電圧増加分ΔVから、最大充電電流Iによる充電を継続すると仮定した場合に端子電圧が電流Iにおける変曲点電圧Vpoに達するまでの所要時間を算出し、この所要時間に基づき最短終了時刻Tminを算出すると共に残充電量を算出する最短終了時刻算出手段26と、終了目標時刻と最短終了時刻Tminとの関係、残充電量、充電時間関係式、及び、電流値関係式に基づいて、第一電流値I、第二電流値I、及び、可変電圧充電を終了して第二定電流充電に切り替える切替電流値I’を決定する電流値算出手段27と、予め定めた演算式に基づいて第一定電流充電から可変電圧充電に切り替える切替電圧Vを算出する切替電圧算出手段28と、第一定電流充電、可変電圧充電、及び第二定電流充電の実行を制御する定電流充電・可変電圧充電制御手段29とを具備している。 The charging control unit 20 includes a time measuring unit 21 that measures time based on the output of the clock unit, a charging current integrating unit 22 that integrates the charging current with time, and a voltage difference − a voltage difference setting value determining means 23 for determining reads from the open voltage table 35 as the voltage difference set value [Delta] V a, the charging current when the difference between the terminal voltage and the open-circuit voltage reaches the voltage difference set value [Delta] V a defined the maximum charging current determining means 24 for determining the maximum charging current I 0, and precharge time t 0 executions predetermining precharge by the maximum charging current, the terminal voltage increment [Delta] V b after the elapse of the precharge time t 0 and precharge control means 25 for calculating, from the terminal voltage increment [Delta] V b for precharge time t 0, varying terminal voltage at a current I 0 when it is assumed to continue the charging with the maximum charge current I 0 Calculates the time required to reach the point voltage V po, the shortest end time calculation means 26 for calculating a remaining charge amount to calculate the shortest end time T min based on the required time, the end target time and the shortest end time T Based on the relationship with min , the remaining charge amount, the charging time relational expression, and the current value relational expression, the first current value I 1 , the second current value I 2 , and the variable voltage charging are terminated and the second constant is determined. Current value calculating means 27 for determining the switching current value I 2 ′ to be switched to current charging, and switching voltage calculating means for calculating the switching voltage V 1 for switching from the first constant current charging to the variable voltage charging based on a predetermined arithmetic expression. 28, and a constant current charge / variable voltage charge control means 29 for controlling execution of the first constant current charge, variable voltage charge, and second constant current charge.

次に、充電装置1における処理の流れについて、図2乃至図7を用いて説明する。まず、処理を開始すると、二次電池59への通電の開始に先立ち、端子電圧検出部7の検知に基づいて二次電池59の開放電圧Vを取得する(ステップS1)。また、終了目標時刻を設定する(ステップS2)。ここで、終了目標時刻が操作入力部11から入力された場合は、これを受け付けて終了目標時刻記憶部31に記憶する。或いは、始業開始時刻のように、二次電池59の使用を開始する時刻が毎日一定である場合などは、例えば始業開始時刻の一時間前などをデフォルト値として終了目標時刻記憶部31に記憶しておくこともでき、操作入力部11から終了目標時刻の入力がない場合は、デフォルト値或いは前回の処理における終了目標時刻として、終了目標時刻記憶部31に既に記憶されている時刻を終了目標時刻として設定することができる。 Next, the flow of processing in the charging device 1 will be described with reference to FIGS. First, when the process is started, the open-circuit voltage V 0 of the secondary battery 59 is acquired based on the detection of the terminal voltage detector 7 prior to the start of energization of the secondary battery 59 (step S1). Also, an end target time is set (step S2). Here, if the end target time is input from the operation input unit 11, it is received and stored in the end target time storage unit 31. Alternatively, when the start time of use of the secondary battery 59 is constant every day as in the start work start time, for example, one hour before the start work start time is stored in the end target time storage unit 31 as a default value. If the end target time is not input from the operation input unit 11, the time already stored in the end target time storage unit 31 is used as the end target time as the default value or the end target time in the previous process. Can be set as

続いて、電圧差−開放電圧テーブル35を参照して、取得した開放電圧Vに関連付けられた電圧差を読み出し、この値を電圧差設定値ΔVとして決定する(ステップS3)。そして、時計手段の出力により現在時刻を充電開始時刻として充電開始時刻記憶部32に記憶すると共に、電源部5を制御して二次電池59への充電を開始し(ステップS4)、充電電流を徐々に増加させる(ステップS5)。そして、端子電圧と開放電圧との差が電圧差設定値ΔVに達するまでは一定の割合で徐々に充電電流を増加させ(ステップS6においてNo)、端子電圧と開放電圧との差がΔVに達したら(ステップS6においてYes)、このときの充電電流を最大充電電流Iとして決定する(ステップS7)。なお、経過時間は、時計手段の出力に基づき時間計測手段により常時計測される。また、充電量は、充電電流の時間による積分値として充電電流積分手段により常時算出される。 Then, the voltage difference - with reference to the open circuit voltage table 35, reads the voltage value associated with the open circuit voltage V 0 obtained, and determines the value as a voltage difference setting value [Delta] V a (step S3). Then, the current time is stored in the charging start time storage unit 32 as the charging start time by the output of the clock means, and the power source unit 5 is controlled to start charging the secondary battery 59 (step S4). Increase gradually (step S5). Then, the charging current is gradually increased at a constant rate until the difference between the terminal voltage and the open voltage reaches the voltage difference set value ΔV a (No in step S6), and the difference between the terminal voltage and the open voltage is ΔV a. upon reaching (Yes in step S6), and it determines the charging current at this time as the maximum charging current I 0 (step S7). The elapsed time is always measured by the time measuring means based on the output of the clock means. Further, the charge amount is always calculated by the charge current integration means as an integral value according to the time of the charge current.

次に、決定された最大充電電流Iで予め定めた予充電時間tだけ定電流で予充電を行う(ステップS8)。時間tの経過後、端子電圧Vt0の検出に基づいて、予充電における端子電圧増加分ΔV=Vt0−ΔV−Vを算出する(ステップS9)。そして、電流−変曲点電圧テーブル36から電流Iのときの変曲点電圧Vpを読み出す。予充電における充電時間−端子電圧曲線の傾き(ΔV/t)から、最大充電電流Iによる充電を継続すると仮定した場合に、予充電開始時から端子電圧が変曲点電圧Vp0に達するまでの時間tp0が分かる。通常、定電流充電において端子電圧が変曲点電圧Vp0に達したときの充電量は満充電の80〜90%であるとされており、経験に基づいて予め定めた関係式(例えば、t=αtpo+β)により、予充電開始時からほぼ満充電に達したと判断して充電を終了するまでの時間tを算出する。 Next, the pre-charge at a predetermined precharge time t 0 by the constant current at a maximum charging current I 0 which is determined (step S8). After the elapse of time t 0 , the terminal voltage increase ΔV b = V t0 −ΔV a −V 0 in precharging is calculated based on the detection of the terminal voltage V t0 (step S9). The current - reading the inflection point voltage Vp 0 when the current I 0 from the inflection point voltage table 36. When it is assumed that charging with the maximum charging current I 0 is continued from the slope (ΔV b / t 0 ) of the charging time-terminal voltage curve in precharging, the terminal voltage becomes the inflection point voltage V p0 from the start of precharging. The time t p0 to reach is known. Normally, the charge amount when the terminal voltage reaches the inflection point voltage Vp0 in constant current charging is 80 to 90% of full charge, and a relational expression (e.g., t f = αt po + β), a time t f until it is determined that the battery has almost fully charged since the start of precharging and the charging is finished is calculated.

そして、予充電を開始した時刻は時計手段による出力に基づき把握できるため、予充電開始時から時間tの経過後の時刻Tminを求め、この時刻を最短終了時刻Tminとする(ステップS10)。また、予充電終了時からほぼ満充電に達する最短終了時刻Tminまでの充電量を算出し、残充電量とする(ステップS11)。 Since the time that started the precharge can be grasped on the basis of the output by the clock means, determine the time T min after the lapse of time t f from the time of precharge started, the time and the shortest end time T min (step S10 ). Further, the amount of charge from the end of precharge to the shortest end time T min that reaches almost full charge is calculated and set as the remaining amount of charge (step S11).

更に、最短終了時刻Tminを終了目標時刻と対比し、終了目標時刻が最短終了時刻以降の場合は(ステップS12においてYes)、残充電量、充電開始から第一定電流充電を終了するまでの時間tと第二定電流充電を行う時間tとの関係を予め定めた充電時間関係式(例えば、t=0.4×t+0.4(h))、及び、第一電流値Iと第二電流値Iとの関係を予め定めた電流値関係式(例えば、I=k×I,0<k<1)に基づいて、第一電流値I及び第二電流値Iを決定する(ステップS13)。このとき、決定された第二電流値Iに基づき、後述の関係式により第二定電流充電に切り替える切替電流値I’も決定することができる。 Further, the shortest end time Tmin is compared with the target end time, and when the target end time is after the shortest end time (Yes in step S12), the remaining charge amount, from the start of charging to the end of the first constant current charging. A charging time relational expression (for example, t 2 = 0.4 × t 1 +0.4 (h)) that predetermines the relationship between the time t 1 and the time t 2 for performing the second constant current charging, and the first current Based on a current value relational expression (for example, I 2 = k × I 1 , 0 <k <1) that predetermines the relationship between the value I 1 and the second current value I 2 , the first current value I 1 and the second current value I 2 determining a second current value I 2 (step S13). At this time, based on the determined second current value I 2 , the switching current value I 2 ′ for switching to the second constant current charging can also be determined by the relational expression described later.

これにより、予充電後に、第一電流値Iによる第一定電流充電を、充電開始時から時間tが経過する時点まで行い、第二電流値Iによる第二定電流充電を時間t行った場合に、ほぼ終了目標時刻に第二定電流充電が終了することとなるが、本実施形態では、第一定電流充電及び第二定電流充電を時間で管理するのではなく、第一定電流充電は実際の二次電池59の端子電圧によって管理し、第二定電流充電は後述のように充電量によって管理することとしている。具体的には、第一定電流充電を終了する切替電圧Vは、演算式V=(I/I)m+Vp0によって定める(ステップS14)。ここで、mは負の係数であり、切替電圧Vは最大充電電流Iで充電した場合の変曲点電圧Vp0より若干小さな値となる。 Thus, after the precharge, the first constant current charging with a first current value I 1, performed from the time of start of charging to the point where time t 1 has elapsed, the second current value I 2 according to the second constant-current charging time t 2 , the second constant current charging is almost completed at the target end time, but in this embodiment, the first constant current charging and the second constant current charging are not managed by time, The constant current charging is managed by the actual terminal voltage of the secondary battery 59, and the second constant current charging is managed by the charge amount as described later. Specifically, the switching voltage V 1 for ending the first constant current charging is determined by the arithmetic expression V 1 = (I 1 / I 0 ) m + V p0 (step S14). Here, m is a negative factor, switching voltages V 1 is slightly smaller than the inflection point voltage V p0 in the case of charging with the maximum charge current I 0.

そして、端子電圧が定められた切替電圧Vに達するまでは、第一電流値Iで第一定電流充電を行う(ステップS15,ステップS16においてNo)。端子電圧が切替電圧Vに達したら(ステップS16においてYes)、第一定電流充電を終了し、この時点までの充電量を充電電流の時間による積分値Aとして把握すると共に積分値Aから後述するAを算出し(ステップS17)、可変電圧充電に移行する(ステップS18)。 Then, until it reaches the switching voltages V 1 the terminal voltage has been determined, the first constant current charging performed by the first current value I 1 (No in step S15, step S16). When the terminal voltage reaches the switching voltage V 1 (in step S16 Yes), and terminates the first constant current charging, the integrated value A 1 to grasp the charging amount up to this point as the integrated value A 1 with time of the charging current calculates a 2 to be described later from (step S17), and proceeds to the variable voltage charge (step S18).

可変電圧充電では、充電電流検出部6によって刻々と検出される充電電流Iと端子電圧Vとが比例関係となるように、予め定めた演算式V=K×I+nからVを求め、制御部10を制御して二次電池59に印加される電圧がVとなるように調整する。そして、第二電流値Iより僅かに大きい切替電流値I’となるまでは、上記処理により充電電流を徐々に低下させる(ステップS19においてNo)。なお、本実施形態では、関係式I’=k’×I(0<k<k’<1)を用い、切替電流値I’が第二電流値Iより僅かに大きな値となるように設定している。 In variable voltage charging, a predetermined arithmetic expression V x = K × I x + n to V x is set so that the charging current I x detected by the charging current detector 6 and the terminal voltage V x have a proportional relationship. look, the voltage applied to the control unit 10 to control to the secondary battery 59 is adjusted to be V x. Then, until the switching current value I 2 ′ is slightly larger than the second current value I 2 , the charging current is gradually reduced by the above process (No in step S19). In this embodiment, the relational expression I 2 ′ = k ′ × I 1 (0 <k <k ′ <1) is used, and the switching current value I 2 ′ is a value slightly larger than the second current value I 2. It is set to be.

充電電流が切替電流I’に達したら(ステップS19においてYes)、第二電流値Iに切り替え、第二定電流充電を行う(ステップS20)。この第二定電流充電は、図5に示すように、充電電流積分手段による算出に基づいて、第一定電流充電の終了時以降の充電電流の時間による積分値がAに達するまで行う(ステップS21においてNo)。ここで、Aは、充電開始時から第一定電流充電の終了時まで充電電流を時間で積分した積分値Aに対する比率を予め定めておくことにより、あるいはAとAとの関係式を予め定めておくことにより算出することができる。そして、第一定電流充電の終了時以降の充電電流の時間による積分値がAに達したら(ステップS21においてYes)、二次電池59の充電を終了する。なお、図5におけるVp2は第二電流値Iのときの変曲点電圧Vp2である。通常、定電流充電において端子電圧が変曲点電圧に達した時の充電量は満充電の80〜90%であるとされているが、本実施形態では充電電流の時間による積分値がAとなるまで第二定電流充電を行うため、端子電圧がVp2に達した後も、小さい電流値である第二電流値Iで継続して充電が行われる。 When the charging current reaches the switching current I 2 ′ (Yes in Step S19), the charging current is switched to the second current value I 2 and the second constant current charging is performed (Step S20). The second constant-current charging, as shown in FIG. 5, on the basis of the calculation by the charging current integrating means, carried out until the integrated value by the time of the constant current charging at the end after the charging current reaches A 2 ( No in step S21). Here, A 2 is determined by predetermining a ratio to the integrated value A 1 obtained by integrating the charging current with time from the start of charging to the end of the first constant current charging, or the relationship between A 1 and A 2. It can be calculated by predetermining the formula. Then, the integration value by the time of the constant current charging at the end after the charging current reaches the A 2 (Yes in step S21), and terminates the charging of the secondary battery 59. Note that V p2 in FIG. 5 is the inflection point voltage V p2 at the second current value I 2 . Normally, the charging amount when the terminal voltage reaches the inflection point voltage in constant current charging is 80 to 90% of full charging, but in this embodiment, the integral value depending on the charging current time is A 2. Therefore , even after the terminal voltage reaches V p2 , charging is continuously performed at the second current value I 2 that is a small current value.

上記の処理により、終了目標時刻が最短終了時刻Tmin以降の場合は、図2及び図3に充電時間に対する充電電流曲線及び端子電圧曲線を示したように、二次電流の充電が行われる。ここで、図2は終了目標時刻がTの場合であり、図3は終了目標時刻がTより早い時刻Tの場合である。これらのグラフから明らかなように、最短終了時刻Tminから終了目標時刻までの時間の長さに応じて残充電量が第一定電流充電及び第二定電流充電に配分されるため、終了目標時刻まで時間的余裕があるほど、第一電流値I及び第二電流値Iを、共により小さな値に抑えて充電を行うことができる。 By the above processing, when the end target time is after the shortest end time T min , the secondary current is charged as shown in the charging current curve and the terminal voltage curve with respect to the charging time in FIGS. Here, FIG. 2 shows a case end mark time is T 1, FIG. 3 shows the case end mark time is earlier time T 2, from T 1. As is apparent from these graphs, the remaining charge amount is distributed to the first constant current charge and the second constant current charge according to the length of time from the shortest end time Tmin to the end target time. Charging can be performed while the first current value I 1 and the second current value I 2 are both reduced to a smaller value as the time is increased.

一方、図4に示すように、終了目標時刻Tが最短終了時刻Tminより前の場合は(ステップS12においてNo)、最大充電電流Iで第一定電流充電を行うこととし(I=I)、上記の電流値関係式からI及びI’を算出し(ステップP1)、上記と同様にVを算出する(ステップP2)。 On the other hand, as shown in FIG. 4, the end mark time T 3 in the case of prior shortest end time T min and by performing (No in step S12), the first constant current charging at the maximum charging current I 0 (I 1 = I 0 ), I 2 and I 2 ′ are calculated from the current value relational expression (step P1), and V 1 is calculated in the same manner as described above (step P2).

以降の処理は上述の処理と同様であるが(ステップP3〜P9)、図4の例では、充電電流の時間による積分値がAに達する前に終了目標時刻Tが到来する。そのため、本実施形態では、第二定電流充電の途中であっても、使用者による手動入力等によって終了指令が入力されれば(ステップP10においてYes)、充電を終了する処理としている。 Although subsequent processing is the same as the above-described processing (step P3~P9), in the example of FIG. 4, the integrated value over time of the charging current is terminated target time T 3 arrives before reaching the A 2. Therefore, in the present embodiment, even when the second constant current charging is in progress, if a termination command is input by a manual input by the user (Yes in Step P10), the charging is terminated.

上記のように、本実施形態の充電装置1によれば、終了目標時刻までの時間を充分に活用し、第一電流値I及び第二電流値Iを共に小さく抑え、二次電池59がダメージを受けるおそれを低減して二次電池59の充電をすることができる。 As described above, according to the charging device 1 of the present embodiment, fully utilize the time to the end target time, both suppressed the first current value I 1 and the second current value I 2, the secondary battery 59 The secondary battery 59 can be charged by reducing the risk of damage.

また、電圧差設定値ΔVが同一であっても、電池容量が異なれば最大充電電流Iの大きさは異なるため、二次電池59の電池容量自体を測定することなく、電池容量の相違を充電条件に反映させて、電池容量に適した条件で充電を行うことができる。 Even if the voltage difference setting value ΔV a is the same, the maximum charging current I 0 differs if the battery capacity is different. Therefore, the difference in battery capacity is not measured without measuring the battery capacity itself of the secondary battery 59. Can be reflected in the charging conditions, and charging can be performed under conditions suitable for the battery capacity.

加えて、本実施形態では、電圧差−開放電圧テーブル35を参照することにより、二次電池59の開放電圧に基づいてΔVを決定している。これにより、例えば、放電が深い場合はΔVを大きく設定し、逆に放電が浅い場合はΔVを小さく設定することができ、放電量に応じた適切な充電条件を定めて充電を行うことができる。 In addition, in this embodiment, ΔV a is determined based on the open voltage of the secondary battery 59 by referring to the voltage difference-open voltage table 35. Thus, for example, ΔV a can be set large when the discharge is deep, and ΔV a can be set small when the discharge is shallow, and charging is performed by setting appropriate charging conditions according to the discharge amount. Can do.

また、最短終了時刻Tminを算出するために行う予充電中も二次電池59は充電されるため、全体として効率よく充電を行うことができる。更に、第一定電流充電が終了してから第二定電流充電に移行する前に、第二電流値Iに近い電流値I’まで、充電を継続しつつ電流値を徐々に減少させているため、第一定電流充電から第二定電流充電に直接切り替える場合とは異なり端子電圧が大きく落ち込むことがなく、全体として効率よく二次電池59を充電することができる。 Moreover, since during the precharge secondary batteries 59 performed to calculate the shortest end time T min is charged, it is possible to perform efficiently charge as a whole. Further, before the transition to the second constant current charging after the completion of the first constant current charging, the current value is gradually decreased while continuing the charging to the current value I 2 ′ close to the second current value I 2. Therefore, unlike the case of directly switching from the first constant current charge to the second constant current charge, the terminal voltage does not drop greatly, and the secondary battery 59 can be efficiently charged as a whole.

更に、本実施形態では、第一定電流充電の終了後に、充電しつつ電流値を徐々に減少させる充電として、刻々と変化し減少する充電電流と比例関係となるように電圧を低下させる可変電圧充電を行っている。従来、二つの定電流充電の間で、後に行う定電流充電の電流値まで電流値を変化させる充電を行う場合は、後に行う定電流充電の電流値に相当する電圧値で定電圧充電を行うのが一般的であり、この場合は後に行う定電流充電の電流値に到達するまでに時間を要する。これに対し、本実施形態では、高い電圧値から徐々に電圧値を減少させるため充電効率が高く、切替電流値I’に達するまでより早く電流を降下させることができる。 Furthermore, in this embodiment, after the completion of the first constant current charging, as charging that gradually decreases the current value while charging, a variable voltage that decreases the voltage so as to be proportional to the charging current that changes and decreases every moment. Charging is in progress. Conventionally, when charging is performed by changing the current value to the current value of constant current charging performed later between two constant current charging, constant voltage charging is performed at a voltage value corresponding to the current value of constant current charging performed later. In this case, it takes time to reach the current value of constant current charging to be performed later. On the other hand, in this embodiment, since the voltage value is gradually decreased from a high voltage value, the charging efficiency is high, and the current can be dropped earlier until the switching current value I 2 ′ is reached.

加えて、本実施形態では、第二電流値Iより僅かに大きな切替電流値I’で可変電圧充電を終了している。そのため、第二定電流充電の開始時に端子電圧が僅かながら不連続に低下し、そこから第二定電流充電に伴って端子電圧が増加していく。これにより、第二定電流充電への切り替え後まもなく電流値Iにおける変曲点電圧Vp2に達する場合であっても、これを把握し易い。 In addition, in the present embodiment, the variable voltage charging is terminated with a switching current value I 2 ′ slightly larger than the second current value I 2 . Therefore, the terminal voltage slightly decreases discontinuously at the start of the second constant current charging, and the terminal voltage increases with the second constant current charging. Accordingly, even when reaching the inflection point voltage V p2 soon at a current value I 2 after switching to the second constant-current charging, easy to grasp it.

また、端子電圧が変曲点電圧に達したときの充電量は、通常、満充電の80〜90%であるとされているが、本実施形態では、第一定電流充電における充電電流の時間による積分値Aに基づき、第一定電流充電終了後の充電電流の時間による積分値がAとなるまで第二定電流充電を行っているため、端子電圧が第二電流値Iのときの変曲点電圧Vp2に達した後も継続して充電が行われる。従って、小さい電流値である電流値Iで二次電池59の発熱を抑えつつ、より満充電に近い状態まで二次電池59を充電することができる。 In addition, the charge amount when the terminal voltage reaches the inflection point voltage is normally 80 to 90% of the full charge, but in this embodiment, the charge current time in the first constant current charge Since the second constant current charging is performed until the integration value according to the charging current time after the completion of the first constant current charging becomes A 2 based on the integration value A 1 by the terminal current, the terminal voltage is equal to the second current value I 2 . Even after reaching the inflection point voltage Vp2 , the charging is continued. Therefore, it is possible to charge the secondary battery 59 to a state closer to full charge while suppressing the heat generation of the secondary battery 59 with the current value I 2 which is a small current value.

加えて、本実施形態では、第一電流値I及び第二電流値Iの決定に際しては、充電時間tとtとの関係式を用いているものの、第一定電流充電から可変電圧充電への切り替え、可変電圧充電から第二定電流充電への切り替え、及び、第二定電流充電の終了は、時間による制御ではなく、切替電圧V、切替電流I’、充電電流の時間による積分値Aによって制御している。このように、二次電池59の実際の充電状態を反映して充電の制御が行われるため、より適切に充電を行うことができる。 In addition, in the present embodiment, when the first current value I 1 and the second current value I 2 are determined, a relational expression between the charging times t 2 and t 1 is used. Switching to voltage charging, switching from variable voltage charging to second constant current charging, and termination of second constant current charging are not time-based control, but include switching voltage V 1 , switching current I 2 ′, charging current It is controlled by the integral value A 2 with time. As described above, since the charging control is performed reflecting the actual charging state of the secondary battery 59, the charging can be performed more appropriately.

以上、本発明について好適な実施形態を挙げて説明したが、本発明は上記の実施形態に限定されるものではなく、以下に示すように、本発明の要旨を逸脱しない範囲において、種々の改良及び設計の変更が可能である。   The present invention has been described with reference to the preferred embodiments. However, the present invention is not limited to the above-described embodiments, and various improvements can be made without departing from the scope of the present invention as described below. And design changes are possible.

例えば、上記では、予充電において予充電時間tを予め設定し、予充電時間t経過後の端子電圧増加分ΔVを検出することにより、充電時間に対する端子電圧曲線の傾きを求めたが、逆に、ΔVを予め定めた設定値とし、端子電圧がΔVだけ上昇するのに要する時間tを実測しても良い。なお、前者の場合は、端子電圧がΔVだけ増加するのに長時間を要してしまうことによって、充電時間全体における予充電の割合が大きくなるおそれを回避することができるメリットがある。 For example, in the above, the precharge time t 0 is set in advance in the precharge, and the terminal voltage curve slope with respect to the charge time is obtained by detecting the terminal voltage increase ΔV b after the precharge time t 0 has elapsed. On the contrary, ΔV b may be set to a predetermined value, and the time t 0 required for the terminal voltage to rise by ΔV b may be measured. In the case of the former, by the terminal voltage it takes a long time to increase by [Delta] V b, there is a merit that it is possible to avoid the risk that the rate of pre-charge the entire charging time increases.

また、ある電流値における変曲点電圧を電流−変曲点電圧テーブルから読み出す場合を例示したが、これに限定されず、電流値と変曲点電圧との関係を予め定めた演算式を用いて変曲点電圧を算出することもできる。   Moreover, although the case where the inflection point voltage in a certain current value is read from the current-inflection point voltage table is illustrated, the present invention is not limited to this, and an arithmetic expression in which the relationship between the current value and the inflection point voltage is determined in advance is used. Thus, the inflection point voltage can be calculated.

また、最大充電電流を求める処理において、開放電圧に基づいてΔVを定める際に、電圧差−開放電圧テーブルを用いる場合を例示したが、電圧差と開放電圧との関係に更に二次電池の温度の要素を付加したテーブルを備えると共に、二次電池の温度を検出する温度検出部を備える構成とし、二次電池の温度及び開放電圧に基づいてΔVを定めることもできる。 Further, in the process of obtaining the maximum charging current, the case where the voltage difference-open voltage table is used when ΔV a is determined based on the open voltage has been illustrated. A table to which a temperature element is added is provided, and a temperature detection unit that detects the temperature of the secondary battery is provided, and ΔV a can be determined based on the temperature and open circuit voltage of the secondary battery.

また、上記では充電時間関係式が予め設定されている場合を例示したが、これに限定されず、複数の充電時間関係式の中から使用者が選択できる構成とすることもできる。例えば、予充電が終了した段階で、異なる充電時間関係式に基づいて算出される第一電流値及び第二電流値を用いた場合の充電時間に対する充電電流曲線及び端子電圧曲線を、モニタ等の出力部12に複数表示し、その中から使用者が所望の充電電流曲線及び端子電圧曲線を選択して操作入力部11から入力することにより、充電時間関係式を設定することもできる。   Moreover, although the case where the charging time relational expression was preset was illustrated above, it is not limited to this, It can also be set as the structure which a user can select from several charging time relational expressions. For example, when precharging is completed, the charging current curve and the terminal voltage curve with respect to the charging time when the first current value and the second current value calculated based on different charging time relational expressions are used, such as a monitor It is possible to set a charging time relational expression by displaying a plurality of items on the output unit 12 and selecting a desired charging current curve and terminal voltage curve from among them and inputting them from the operation input unit 11.

本実施形態の充電装置の構成を示すブロック図である。It is a block diagram which shows the structure of the charging device of this embodiment. 図1の充電装置による二次電池の充電について充電時間と充電電流及び端子電圧との関係を示すグラフ(終了目標時刻がTの場合)である。Is a graph for charging the secondary battery by the charging device of FIG. 1 shows the relationship between the charging time and the charging current and the terminal voltage (If the end goal time is T 1). 図1の充電装置による二次電池の充電について充電時間と充電電流及び端子電圧との関係を示すグラフ(終了目標時刻がTより早い時刻Tの場合)である。It is a graph for charging the secondary battery by the charging device of FIG. 1 shows the relationship between the charging time and the charging current and the terminal voltage (If the end goal time is earlier time T 2, from T 1). 図1の充電装置による二次電池の充電について充電時間と充電電流及び端子電圧との関係を示すグラフ(終了目標時刻Tが最短終了時刻Tminより早い場合)である。Is a graph for charging the secondary battery by the charging device of FIG. 1 shows the relationship between the charging time and the charging current and the terminal voltage (If the end target time T 3 is earlier than the shortest end time T min). 充電電流を時間で積分した積分値A及びAを説明するグラフである。Is a graph illustrating the integral value A 1 and A 2 is calculated by integrating the charge current time. 図1の充電装置における処理の流れを説明するフローチャートである。3 is a flowchart for explaining a processing flow in the charging apparatus of FIG. 1. 図6に続き図1の充電装置における処理の流れを説明するフローチャートである。7 is a flowchart for explaining the flow of processing in the charging device of FIG. 1 following FIG. 6.

符号の説明Explanation of symbols

1 充電装置
5 電源部
6 充電電流検出部
7 端子電圧検出部
13 時計手段
20 充電制御手段
30 補助記憶装置(記憶装置)
35 電圧差−開放電圧テーブル
59 二次電池
第一電流値
第二電流値
最大充電電流
開放電圧
p0 電流Iにおける変曲点電圧
△V 電圧差設定値
△V 端子電圧増加分
予充電時間
p0 予充電開始時から端子電圧が変曲点電圧Vp0に達するまでの所要時間
min 最短終了時刻
,T,T 目標終了時刻
DESCRIPTION OF SYMBOLS 1 Charging apparatus 5 Power supply part 6 Charging current detection part 7 Terminal voltage detection part 13 Clock means 20 Charging control means 30 Auxiliary storage device (storage device)
35 Voltage difference-open voltage table 59 Secondary battery I 1 First current value I 2 Second current value I 0 Maximum charging current V 0 Open voltage V p0 Current I 0 Inflection point voltage ΔV a Voltage difference set value Δ V b terminal voltage increase t 0 precharge time t p0 Precharge time required time until terminal voltage reaches inflection point voltage V p0 T min shortest end time T 1 , T 2 , T 3 target end time

Claims (4)

二次電池に直流電力を供給する電源部と、
該電源部から前記二次電池に流れる充電電流を検出する充電電流検出部と、
前記二次電池の端子電圧を検出する端子電圧検出部と、
時刻を出力する時計手段と、
該時計手段による時刻の出力、前記時計手段から出力された時刻に基づく時間の計測、前記充電電流検出部による前記充電電流の検出、及び、前記端子電圧検出部による前記端子電圧の検出に基づいて、前記電源部から前記二次電池への直流電力の供給を制御することにより、第一電流値による第一定電流充電及び前記第一電流値より小さい第二電流値による第二定電流充電の実行を制御する充電制御手段とを具備し、
前記充電制御手段は、
充電前の前記二次電池の開放電圧を取得し、
充電を開始すると共に前記充電電流を徐々に増加させ、前記端子電圧と前記開放電圧との差が予め定めた電圧差設定値に達したときの前記充電電流を最大充電電流として決定し、
該最大充電電流による予充電を行う予充電時間及び前記予充電に伴う端子電圧増加分の何れか一方の値を予め定めて前記予充電を実行して他方の値を算出し、
前記予充電時間に対する前記端子電圧増加分から、前記最大充電電流による充電を継続すると仮定した場合に前記端子電圧が変曲点電圧に達するまでの所要時間を算出し、該所要時間に基づき充電を終了する最短終了時刻を算出すると共に、前記予充電の終了時から前記最短終了時刻までの充電量を残充電量として算出し、
充電の開始に先立ち記憶された終了目標時刻が前記最短終了時刻以降のときは、前記第一定電流充電による充電量及び前記第二定電流充電による充電量の関係式として予め定めた配分式に基づき、前記終了目標時刻に前記第二定電流充電が終了するように前記残充電量を前記第一定電流充電及び前記第二定電流充電に配分して前記第一電流値及び前記第二電流値を決定し、決定された前記第一電流値による前記第一定電流充電及び前記第二電流値による前記第二定電流充電をそれぞれ実行する
ことを特徴とする充電装置。
A power supply unit for supplying DC power to the secondary battery;
A charging current detector for detecting a charging current flowing from the power source to the secondary battery;
A terminal voltage detector for detecting a terminal voltage of the secondary battery;
Clock means for outputting time;
Based on the output of the time by the timepiece means, the measurement of the time based on the time output from the timepiece means, the detection of the charging current by the charging current detection section, and the detection of the terminal voltage by the terminal voltage detection section , By controlling the supply of DC power from the power supply unit to the secondary battery, the first constant current charging by the first current value and the second constant current charging by the second current value smaller than the first current value Charging control means for controlling execution,
The charge control means includes
Obtain the open voltage of the secondary battery before charging,
Starting charging and gradually increasing the charging current, determining the charging current when the difference between the terminal voltage and the open voltage reaches a predetermined voltage difference set value as a maximum charging current,
Predetermining either one of the precharge time for precharging with the maximum charging current and the terminal voltage increase associated with the precharge, and performing the precharge to calculate the other value,
When it is assumed that the charging with the maximum charging current is continued from the increase in the terminal voltage with respect to the precharge time, the time required for the terminal voltage to reach the inflection point voltage is calculated, and charging is terminated based on the time required. Calculating the shortest end time to be calculated, and calculating the remaining charge amount from the end time of the precharge to the shortest end time,
When the end target time stored prior to the start of charging is after the shortest end time, a predetermined distribution formula is used as a relational expression between the charge amount by the first constant current charge and the charge amount by the second constant current charge. Based on the first current value and the second current, the remaining charge amount is distributed to the first constant current charge and the second constant current charge so that the second constant current charge ends at the target end time. A charging device that determines a value and executes the first constant current charging with the determined first current value and the second constant current charging with the second current value, respectively.
前記配分式は、
充電開始時から前記第一定電流充電を終了するまでの時間と前記第二定電流充電を行う時間との関係を予め定めた充電時間関係式、及び、前記第一電流値と前記第二電流値との関係を予め定めた電流値関係式から構成される
ことを特徴とする請求項1に記載の充電装置
The distribution formula is
A charging time relational expression that predetermines the relationship between the time from the start of charging to the end of the first constant current charging and the time for performing the second constant current charging, and the first current value and the second current The charging device according to claim 1, wherein the charging device is configured by a current value relational expression that has a predetermined relationship with a value.
電圧差と開放電圧とを関連付けたテーブルを記憶する記憶装置を更に具備し、
前記充電制御手段は、取得した前記開放電圧と関連付けられた電圧差を前記テーブルから読み出して前記電圧差設定値として定める
ことを特徴とする請求項1または請求項2に記載の充電装置。
A storage device for storing a table associating the voltage difference with the open circuit voltage;
3. The charging device according to claim 1, wherein the charging control unit reads a voltage difference associated with the acquired open-circuit voltage from the table and sets the voltage difference as a voltage difference setting value.
前記充電制御手段は、
前記第一定電流充電と前記第二定電流充電との間で、充電を継続しつつ前記充電電流を減少させる定電圧充電または可変電圧充電の実行を制御する
ことを特徴とする請求項1乃至請求項3の何れか一つに記載の充電装置。
The charge control means includes
The constant voltage charging or the variable voltage charging for reducing the charging current while controlling the charging is controlled between the first constant current charging and the second constant current charging. The charging device according to claim 3.
JP2008308065A 2008-12-03 2008-12-03 Charger Expired - Fee Related JP5332559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008308065A JP5332559B2 (en) 2008-12-03 2008-12-03 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308065A JP5332559B2 (en) 2008-12-03 2008-12-03 Charger

Publications (2)

Publication Number Publication Date
JP2010136488A JP2010136488A (en) 2010-06-17
JP5332559B2 true JP5332559B2 (en) 2013-11-06

Family

ID=42347173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308065A Expired - Fee Related JP5332559B2 (en) 2008-12-03 2008-12-03 Charger

Country Status (1)

Country Link
JP (1) JP5332559B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5379535B2 (en) * 2009-03-30 2013-12-25 プライムアースEvエナジー株式会社 Secondary battery charge control method and charger
JP2012060813A (en) * 2010-09-10 2012-03-22 Toyota Industries Corp Charging control method, vehicle, and charging stand
JP2012249410A (en) * 2011-05-27 2012-12-13 Sharp Corp Electric vehicle charger and charging system
JP5619806B2 (en) * 2012-03-21 2014-11-05 古河電気工業株式会社 Secondary battery state detection device and secondary battery state detection method
CN104167787B (en) * 2014-08-11 2016-09-14 Tcl通讯(宁波)有限公司 A kind of mobile terminal precharge method of flow control, system and mobile terminal
CN106532825B (en) * 2016-11-21 2018-12-14 珠海格力电器股份有限公司 Storage battery charging method and device
CN110137584B (en) * 2019-03-20 2020-12-11 北京车和家信息技术有限公司 Charging voltage threshold determination method and charging strategy determination method
KR20210156618A (en) * 2020-06-18 2021-12-27 주식회사 엘지에너지솔루션 Battery management system, battery management method, battery pakc, and electric vehicle
CN114069751A (en) * 2020-08-07 2022-02-18 北京小米移动软件有限公司 Charging control method, charging control device, and storage medium
CN113725954B (en) * 2021-08-16 2024-05-07 北京小米移动软件有限公司 Charging method, device, equipment and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332327A (en) * 1989-06-26 1991-02-12 Matsushita Electric Works Ltd Charge control circuit
JP3347808B2 (en) * 1993-05-24 2002-11-20 本田技研工業株式会社 Rechargeable battery charging method
JPH11341694A (en) * 1998-05-28 1999-12-10 Fuji Film Celltec Kk Charging method of secondary battery
JP4221636B2 (en) * 2000-10-19 2009-02-12 ソニー株式会社 Lithium ion secondary battery charging method and charging device
JP2002191136A (en) * 2000-12-19 2002-07-05 Sumitomonacco Materials Handling Co Ltd Battery charger
JP2008206259A (en) * 2007-02-19 2008-09-04 Matsushita Electric Ind Co Ltd Charging system, charger, and battery pack

Also Published As

Publication number Publication date
JP2010136488A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5332559B2 (en) Charger
TWI547704B (en) Device,method and system for estimating battery remaining capacity
JP2009296868A (en) Intelligent battery charging rate management method and device
JP5119307B2 (en) Battery pack charge control method
JP2007288982A (en) Charging circuit and charging method for the same
TW200827754A (en) A method of calculating remaining capacity of rechargeable battery
JP6066163B2 (en) Open circuit voltage estimation device, state estimation device, and open circuit voltage estimation method
EP3271994B1 (en) A method for operating a battery charger, and a battery charger
JP6790290B2 (en) Dynamic battery power management
JP5367422B2 (en) Secondary battery capacity estimation device and secondary battery capacity estimation method
JP2008154323A (en) Charger and method for detecting charged state
JP2014057505A (en) Charge/discharge control device, charge/discharge control method, program, and charge/discharge control system
TWI542115B (en) Charging apparatus and charging method thereof
JP2011038878A (en) Deterioration degree determination method for secondary battery and secondary battery
JP6324332B2 (en) Charge / discharge control device and control method for lithium ion battery
EP4376251A1 (en) Electronic device and control method therefor
JP2009284685A (en) Charging device
JP2020016582A (en) Semiconductor device and method for detecting remaining amount of battery
JPH07274408A (en) Charging time estimating device for secondary battery
US20220224142A1 (en) Power supply circuit and power distribution method thereof
US10270272B2 (en) Charge measurement in a system using a pulse frequency modulated DC-DC converter
JP2007259633A (en) Charging circuit and charging control method
JP2016015840A (en) Charging current control method
JP2008092710A (en) Battery voltage controller, battery voltage control method, and computer program
JP2007155434A (en) Method of detecting remaining capacity of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Ref document number: 5332559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees